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Abstract

This dissertation explores the concept of visual saliency as it pertains to atten-

tional selection, visual search, and machine vision. A novel framework for visual

saliency is put forth derived from consideration of the problem in the context of

information theory. The proposed definition is distinguished from previous efforts

on this front and is demonstrated to be a natural principled definition for salient

visual content. Specifically, the proposal deemed Attention by Information Maxi-

mization (AIM) seeks to select visual content that is most informative in a formal

sense in the context of a specific scene, and is put forth in a form that is amenable

to considering more general definitions of context. Efficacy in predicting human

gaze patterns is demonstrated and the proposal is revealed to outperform existing

models in the prediction of fixation points. With regard to biological plausibil-

ity, an important consideration is the extent to which the model behavior agrees

with the psychophysics and neurophysiology literature. To this end it is revealed

that AIM is able to account for an unprecedented range of classic psychophysics
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results including some subtle and counterintuitive results and may be achieved via

a neural implementation that is consistent with observations concerning surround

modulation in the cortex. More general modeling considerations are also addressed

including compatibility with descriptions of how attention as a whole is achieved

and constraints on possible architectures for achieving attentional selection in light

of recent psychophysics and neural imaging results. The applicability of this defi-

nition within a machine vision context is also discussed revealing some interesting

properties as emergent from the basic framework.
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1 General Introduction

Visual attention is a problem that has been studied intensely, and encompasses a

wide range of different subareas, each of which are important in understanding the

overall system. In this dissertation, the focus is on the notion of visual saliency and

the bottom-up processes that give rise to its computation. That is, what is it about

certain visual patterns that result in attention being directed in an automatic and

rapid fashion such as a bright light, a colored sign or rapid movement. Alternatively,

why is it that certain visual patterns are difficult to detect, such as an animal

camouflaged by its natural environment. These considerations motivate the subject

matter of this dissertation which considers the cortical basis for the computation

that underlies these behavioral observations. The basis for such computation is

explored in a principled manner, through consideration of information coding within

the cortex. A variety of interesting observations emerge from this formulation

including a system that is better able to capture eye movement patterns than its

predecessors, that explains a wide range of psychophysics behavior, and may be
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achieved by way of an implementation reminiscent of circuitry observed within the

visual cortex. The resultant system also has important applications in a machine

vision context, and may be of interest to those carrying out research in machine

vision and image and signal processing. The fundamental principal by which the

proposed model operates is that of selecting visual content that is informative, and

the model is referred to as Attention by Information Maximization (AIM) in light

of this.

1.1 Motivation

There are a variety of considerations relating to the notion of saliency that leave

much to be desired. The majority of models that provide an explanation of saliency

related computation assume that saliency is represented in a single hierarchical to-

pographical representation, and that selection of regions of interest proceeds on the

basis of this representation (e.g. [222] shows the basic structure that motivates

existing approaches). There are a variety of observations concerning attentional

selection derived from the behavioral and imaging literature that simply do not

support this sort of architecture. That being said, one ambition of this dissertation

is to disentangle the notion of saliency from the associated attentional selection

strategy. An additional shortcoming of existing saliency based models, is that they

may be viewed in some cases as simply an approximate implementation of general
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observations concerning cortical computation, but say little concerning the under-

lying impetus for such computation and are vague with respect to some important

details [97; 98]. In this dissertation, consideration of saliency computation pro-

ceeds on the basis of a principled assumption concerning the role of saliency related

computation and the relation of this computation to cortical and behavioral mani-

festations is secondary. This is important in that the end result has greater value in

the sense that it offers insight on the possible raison d’être for saliency based com-

putation. A secondary approach to consideration of saliency in the past has been

the examination of the relationship between somewhat ad hoc feature measures and

fixational eye-tracking data. This is an avenue that has not been fruitful as there

is no single measure that appears to correlate strongly with fixated content, and

this approach informs little on the motivation underlying cortical saliency related

computation. As a whole, there exist many aspects of saliency related computation

that leave much to be desired, and these are highlighted in further detail in chapter

3.

1.2 Contributions

The central contribution of this dissertation concerns the claim that bottom-up

saliency related computation should serve to effectively maximize information sam-

pled from one’s environment insofar as this determination is based on stimulus
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properties. A formal infrastructure is derived on the basis of this premise and the

plausibility of this proposal is evaluated via a variety of different avenues. Foremost,

it is demonstrated that the proposed model offers greater agreement in predicting

fixational eye movements than any existing effort. This is achieved using two sep-

arate data sets with very different properties.

An additional important aspect of the proposed computation concerns a possible

neural analogue. To this end, it is demonstrated that the proposed model requires

circuitry with many properties exhibiting substantial agreement with local surround

computation in the cortex.

Certain prior efforts at characterizing saliency computation, in particular those

derived from the psychophysics literature examine the extent to which model predic-

tions agree with the large body of psychophysics results that exist concerning visual

search associated with various target-distractor paradigms [197; 222; 248; 251]. To

this end, it is demonstrated that the proposed model agrees with a greater range

of observations in this domain than existing efforts and additionally offers insight

on some experimental domains that previously lacked any satisfactory explanation.

This arrives in part through emphasizing the role that the statistics of the natural

world play in the formation of visual circuitry. Specifically, construction of a rep-

resentation optimal for representing said statistics produces a variety of behaviors

as emergent properties.
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In the domain of attention modeling in general, there lacks agreement as to the

specific mechanism underlying attentional selection and the neural representation

upon which attentional selection operates. To this end, it is demonstrated that the

proposed model is compatible with a variety of claims concerning how attentional

selection operates and in particular, it is established that the proposed model is

amenable to operation within a distributed hierarchical representation. It is argued

that this sort of representation has the most favorable supporting experimental

evidence based on recent work.

Finally, a central role of attention in the domain of machine vision, concerns

the selection of smaller subsets of the visual field for directed processing. The

importance of this derives from its use as a pre-cursor to object recognition and

localization among other machine vision tasks. It is demonstrated within this dis-

sertation, that the saliency proposal lends itself to selection of stable points and

regions of interest, emerging as a potentially important contribution to the machine

vision literature.

As a whole the dissertation seeks to provide the foundation for a variety of in-

teresting potential avenues for future research efforts. In addition, the work affords

a definition of saliency computation that is principled and demonstrates greater

agreement with eye tracking, psychophysics, and anatomical data and is a better

fit with recent thinking concerning general cortical attentional architectures than
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its predecessors.

1.3 Organization

The content of the dissertation and its organization is as follows:

As an ambition of this dissertation lies in placing the notion of saliency within

a broader context of how attention is achieved in general, chapter 2 reviews the

history of modeling work surrounding attention, describing the varying opinions

on the macroscopic structure of the system that orchestrates attention within the

cortex. A basic understanding of the structure and properties of the human visual

system is assumed. The emphasis is on providing a computational description, and

the elements included are intended to provide the basic background necessary to

understand the dissertation as a whole.

A more specific aspect of attention concerns the notion of visual saliency, and

this concept is explored in detail in chapter 3. In particular, an attempt is made

to precisely define what the term saliency is intended to capture and to review

in a critical fashion, prior definitions for what constitutes salient content. This

chapter serves a dual role in giving a more precise history of saliency than that

offered by chapter 2, while additionally providing motivation for the balance of the

dissertation by way of pointing out shortcomings of prior work.

The core of the dissertation lies in a principled definition for what comprises
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salient visual content, and this definition is motivated in chapter 4. Cast as a

problem of information coding, a basic framework is described including its ties to

cortical machinery and preliminary results on eye tracking data are presented.

A detailed analysis of performance in predicting eye movements appears in chap-

ter 5 including an exhaustive exploration of the parameter space and a detailed look

at implementation issues.

An important aspect in the validation of the model, is the extent to which it

may be achieved within a neural implementation, and moreover, the extent to which

this implementation is consistent with observed neuroanatomy. This consideration

and the associated details are considered in chapter 6. A proposal for a simple

neural circuit that is sufficient to achieve the desired implementation is presented

and shown to have a striking relationship to certain circuitry observed within the

visual cortex.

An additional litmus test on the plausibility of the model, lies in the extent to

which it agrees with behavioral results. Chapter 7 explores model behavior in the

context of a variety of classic psychophysics paradigms, demonstrating agreement

of model behavior across a wide range of classic visual search experiments. Insight

is also gained on the impetus for certain visual search behaviors when viewed in

the context of AIM.

As mentioned earlier in this chapter, an ambition of this dissertation lies in
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connecting the notion of saliency to the broader body of work concerning how at-

tentional selection in general is achieved within the cortex. As there exist many

different proposals for how attention is achieved, chapter 8 discusses the compati-

bility of the model with these various accounts. Furthermore, this chapter makes

the case that one class of models seems to have more support than others in light of

recent research, and the implications of AIM in the context of this class of models

is discussed. The generality of the model is demonstrated via application to spa-

tiotemporal data and validated on a very different eye tracking data set than that

considered in chapters 4 and 5.

In addition to the neuroscience of attention, there is also great potential for

applications of attention within a machine vision context. Currently, the bulk

of work in this area is restricted to the use of attention as a front-end to object

recognition systems, or more generally, for the selection of relevant landmarks.

Chapter 9 considers the applicability of the model in the domain of machine vision

in a few different contexts. It is revealed that the model output is stable across

certain transformations, and may be of utility in image enhancement, and the search

for certain visual objects.

As a whole, the body of work put forth in this dissertation includes a novel

proposal for the role of saliency related computation in the cortex. In contrast

to existing models that employ crude approximations, or normalization operations
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with weak biological relevance, the dissertation puts forth a very specific proposal

for the form of rapid local context related gain control in visual processing. Evidence

in favor of this proposal is put forth in the form of a few very different eye tracking

experiments, comparison with important results from decades of behavioral data

from the psychophysics literature, and in establishing a neural analogue for the

implementation of such a mechanism.
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2 Computational Modeling of Attention

Despite the perception that we “see everything around us”, there is significant dis-

parity between the amount of visual information that is received at the retinae, and

the proportion of this visual information that reaches later processing or impacts

on conscious awareness. Attention is crucial in determining visual experience. The

spirit of attention is perhaps best captured by William James [100]:

Everyone knows what attention is. It is the taking possession by the
mind, in clear and vivid form, of one out of what seem several simultane-
ously possible objects or trains of thought. Focalization, concentration,
of consciousness are of its essence. It implies withdrawal from some
things in order to deal effectively with others.

Attention provides a mechanism for selection of particular aspects of a scene for

subsequent processing while eliminating interference from competing visual events.

A common misperception is that attention and ocular fixation are one and the

same phenomenon. Attention focuses processing on a selected region of the visual

field that needn’t coincide with the centre of fixation. The first observation of this

phenomenon is often credited to Helmholtz who had observers fixate a pinhole sized
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light target prior to a very brief illumination of a printed sheet of large clear letters

[240]. Following the observation of this experiment, Helmholtz noted:

The electrical discharge illuminated the printed page for a brief mo-
ment during which the image of the sheet became visible and persisted
as a positive after-image for a short while. Hence, perception of the
image was limited to the duration of the after-image. Eye movements
of measurable size could not be performed during the duration of the
flash and even those performed during the short persistence of the after-
image could not shift its location on the retina. Nonetheless, I found
myself able to choose in advance which part of the dark field off to the
side of the constantly fixated pinhole I wanted to perceive by indirect
vision. Consequently, during the electrical illumination, I in fact per-
ceived several groups of letters in that region of the field....The letters
in most of the remaining part of the field, however, had not reached
perception, not even those that were close to the point of fixation.

In the following sections, these issues are touched on in more detail with the

hope that the reader will attain a greater appreciation of what exactly attention

entails, and what attention provides with regard to our ability to interpret and

act upon visual stimuli. This chapter affords an overview of certain aspects of

the current understanding of visual attention with consideration to neurobiology,

the role of attention in computer vision, and with an emphasis on computational

modeling of attention.

2.1 The Need for Attention

A question that frequently arises with regards to attention, particularly in the

context of computer vision, is that of why attention is a necessary component of
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such a system. Computer vision systems are frequently developed with the intention

of operating in real time but often fall short of this mark at the time of their

inception. It is not unusual to read statements such as “the algorithm should allow

for real time performance given future hardware developments”, or “this algorithm

may operate in real-time given massively parallel computing hardware”. Attention

is typically thought of as a means of focusing processing on some subset of the

incoming stimuli thus reducing the computational load. On the basis of this view,

the importance of attention is sometimes downplayed with regards to its role in

computer vision under the assumption that advances in hardware will eventually

overcome such limitations. The intention of this section is to motivate why this is an

invalid assumption, since the issue at hand is greater in scope than simply reducing

computational running times. One of the primary goals of attention, unrelated

to complexity, concerns interference between signals generated by unrelated image

events and selecting between possible outcomes. In a feedforward network, crossover

between signals and blurring may result in a response at the output level that is

highly confused. This issue is elaborated on in the following discussion. Tsotsos

examined the problem of visual search as derived from first principles [226] within

a well defined framework including images, a model base of objects and events, and

an objective function that affords a metric of closeness between an image subset and

an element of the model base. On the basis of this formulation, it may be shown
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that visual search in the general case (i.e. when no explicit target is given) is

NP-complete. One conclusion that emerges on the basis of this analysis and other

complexity arguments [7; 27; 154; 230], is that the computational complexity

of vision demands a pyramidal processing architecture. Such an architecture is

observed in the primate brain on the basis of increasing receptive field size and the

observed connectivity between neurons as one ascends the visual pathway [174].

Pyramidal processing may greatly reduce the computation required to accomplish

a particular task by reducing the number of instances to be processed. Tsotsos et

al. outline four major issues that arise in a pyramid processing architecture, all of

which result in corruption of information as input flows from the earliest to later

layers [228]. The four cases are depicted in figure 2.1. The pyramid depicted in

the top left (Fig. 2.1a) demonstrates the context effect. The response of any given

unit at the top of the pyramid results from input from a very large portion of the

input image. As such, the response of a given unit at the top of the pyramid may

result from a variety of different objects or events in the image. On the basis of this

observation, one may observe that the response at the output layer with regards to

a particular event depends significantly on the context of that event. The top right

pyramid (Fig. 2.1b) demonstrates the blurring effect. A small localized event in the

input layer eventually impacts on the response of a large number of neurons at the

output layer. This may result in issues in localizing the source of the response at
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the output layer, as a localized event may be represented by a large portion of the

highest layer. The pyramid on the bottom left (Fig. 2.1c) displays the cross-talk

effect. Cross-talk refers to the overlap of two image events in the pyramid which

results in interference between signals in higher layers of the pyramid. Finally, the

pyramid on the bottom right (Fig. 2.1d) displays the boundary effect. Units at the

outer edges connect to fewer units in higher layers of the pyramid. As a result, a

significantly stronger response may result from the same stimulus centered in the

visual field relative to near the boundaries. Means of overcoming this difficulty are

discussed in detail in [44].

An additional argument concerning the role of attentional processing is moti-

vated by consideration of the action domain. That is, one can only perform actions

upon a few or even a single item at a time. This is evidently another motivating

factor with respect to the role of attention and is advocated by studies such as that

of Rizzolatti et al. [193]

At this point, the rationale of the preceding discussion may not yet be apparent.

The motive for addressing such issues is that an appropriate attentional mechanism

may overcome the aforementioned issues inherent in pyramid processing. In par-

ticular, the Selective Tuning Model [228] was designed with these issues in mind.

Deactivation of appropriate connections in the network allows each of the aforesaid

issues to be overcome. The exact mechanism by which such issues are handled
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Figure 2.1: Four major issues in pyramid information flow: a. Context: Responses

of units at the highest layer of a processing hierarchy are dependent on a large

region at the input layer., b. Blurring: A stimulus at the input layer impacts on

the response of a large number of units at the output layer, c. Cross-talk: Two

unrelated visual stimuli result in overlap in the processing hierarchy resulting in a

response in some units that corresponds to mutual interference of the two stimuli.,

d. Boundary-effect: Units at the boundary on the input layer connect to fewer

units at the highest layer of the pyramid than those at a central location. Adapted

from [227].
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becomes evident in the description of the Selective Tuning Model presented in sec-

tion 2.4.

2.2 Attention in the Human Brain

The neurobiology of attention has been a controversial subject for decades with

much of our understanding coming from behavioral studies often drawing ambigu-

ous or conflicting conclusions. That said, recent advances in imaging technology

(fMRI in particular) have given rise to a significant number of imaging studies

affording a more definite picture of the neuroanatomy and processes involved in

attention. The following discussion offers a picture of the current understanding of

the effects of top-down biasing on neural activity and in particular, some thoughts

on where signals that initiate top-down bias originate.

2.2.1 Top-down Bias in the Visual Cortex

A key property of attention is the top-down modulation of visually evoked activity.

Such modulation is believed to facilitate bias for a particular location of the visual

field, or a particular stimulus property [51]. Modulation is thought to come in

one of the following three forms: response enhancement, information filtering, and

increase of response sensitivity [106].

There is evidence in favor of two distinct types of response enhancement result-
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ing from top-down bias. The first of these types comes in the form of a presumed

enhancement of cell response brought about by top-down attentional bias. Such

enhancement has been detected in virtually every area of the primate visual system

including LGN [163], V1 [148], V2 [132; 148], V4 [41; 79; 132; 137; 148; 210], MT

[224; 225], and the lateral intraparietal area (LIP) [28; 40]. Top-down attentional

bias then seems to impact on neural activity in virtually every area of the visual

cortex and even down to the level of a single cell [146]. It has been demonstrated

that bias may act in favor of location in the visual field [50], or particular stimulus

properties such as luminance and color [149], line orientation [79; 136], and direc-

tion of motion [68]. There also exists some evidence that biasing for location occurs

at a faster rate than bias for stimulus type [88; 235]. Explanations for this obser-

vation range from a hierarchical model of attention wherein selection of stimulus

attributes requires prior selection of location [88], to parallel channels mediating

each of space and attribute modulation with the spatial channel faster [51].

Secondly, modulation of cell responses also seems to come in the form of an

increase of baseline activity in the absence of any visual stimulus. Increase in

baseline firing rates of 30-40% have been observed in response to covert deployment

of attention in areas V1 [109], V2 and V4 [132], and LIP [40].

In a scene containing multiple competing stimuli, interaction between cells re-

sponding to competing stimului may exhibit mutual suppression interaction [107;
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108; 191]. There is evidence that top-down attention may result in modulation of

suppressive interaction. Spatially directed attention to a stimulus in the receptive

field of a particular neuron may eliminate suppressive activity of a non-attended

stimulus falling in the same receptive field [191]. Attentional effects tend to be less

pronounced when competing stimuli fall outside of the receptive field of the neu-

ron in question. A further discussion of this interaction including a more detailed

account of suppressive surround effects appears in chapter 6.

2.2.2 Where are Attentional Signals Generated?

Although the effects of attention may be seen in all areas of the visual cortex, there

is evidence that top-down bias signals are generated outside the visual cortex and

transmitted via feedback connections to the visual cortex. In particular, current

evidence seems to favor selection achieved by way of competitive interaction in the

visual cortex with bias signals originating within parietal and frontal cortices [106].

Unilateral lesions in a variety of brain areas give rise to unilateral neglect of the

visual field contralateral to the lesion [16; 87; 183]. Cases range from mild, where

patients have difficulties directing attention to competing stimuli in the affected

visual hemifield, to severe resulting in a total lack of awareness of anything in the

affected hemifield. Areas in which lesions result in the described effects include the

parietal lobe [232], parts of the frontal lobe [46; 86], the anterior cingulate [101],
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the basal ganglia [46], and the pulvinar [242]. It has been hypothesized that such

areas form a network for directing attention to visual areas [139; 180]. In the case

of patients exhibiting neglect, it has been shown that bottom-up computation in

the affected hemifield proceeds as normal and may have an impact on behaviour

[55; 56; 57; 76; 134] further reinforcing the importance of the previously mentioned

areas in top-down modulation.

Imaging studies have further reinforced some conclusions drawn from lesion

studies while casting doubt on others. fMRI studies have suggested that activity in

frontal and parietal areas seems to correspond to attentional operations, and not

merely the attentional modulation of visual responses [187].

One phenomenon that remains poorly understood is a particular asymmetry

that is observed in neglect cases. Right sided parietal lesions result in hemispatial

neglect much more frequently and with greater severity than is the case with left

side parietal lesions [231]. Based on the observed asymmetry, it has been suggested

that the right hemisphere directs attention to stimuli in both hemifields while the

left hemisphere directs attention in the right hemifield [139]. A variety of fMRI

studies have explored this asymmetry with some reporting a significantly stronger

activation of the right parietal lobe [42; 159; 234] and others reporting symmetric

activation of parietal lobes [70; 108] with some observing such symmetric interaction

regardless of the visual field in which stimulus is presented [108].
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2.3 Selected Computational Models of Attention

There exist an abundance of “theories” of attention ranging in specificity from very

general conceptual descriptions to highly detailed computational mechanisms. This

section is intended to serve as a review of computational models of attention that are

much better classified as belonging to the latter of these categories. The discussion

that follows is intended to serve as a historical review of biologically plausible

computational models of attention, or, neurobiological models of attention that

include concepts that might impact on the computational modeling of attention.

Any models that are purely computational, purely descriptive, purely speculative,

or only propose small variations on existing models, are excluded. Following this

review, Tsotsos’ Selective Tuning Model [226] is described in some detail as the

Selective Tuning Model contains a variety of properties consistent with the views

put forth in chapter 8.

Early Ideas

Perhaps the earliest mention of attention that borders on modeling of attention

comes in the form of Broadbent’s theory of early selection [24]. Early selection

posits that rudimentary visual processing occurs preattentively and that focused

attention is then required to facilitate higher visual processes such as object recog-
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nition. Shortly after this time Deutsch, Deutsch and Norman proposed an opposing

view known as late selection [52] that requires preattentive processing of the entire

scene to a high-level with attention selecting a subset of this highly processed in-

formation. Since that time, a number of more detailed accounts of attention have

been suggested mostly in agreement with ideas of early selection.

Adaptive Resonance Theory (Grossberg, 1976)

Adaptive Resonance Theory (ART) [78] falls under the classification of a model of

attention based on its original concern for human cognitive information processing

and filtering. Grossberg developed a theory of information processing based on a

number of principles derived from experiments involving cognitive development, re-

inforcement learning and attentional blocking. Central ideas of ART with respect

to attention are as follows: i. The magnitude of the response of a cell may be

modulated by top-down priming. ii. Sufficiently large bottom up activation drives

a cell. iii. A cell becomes active if it receives sufficient top-down and bottom-up ac-

tivation. iv. top-down attentional modulation should exist in all cortical areas that

learn. The basis for such rules revolves around the general principle of guarding

stored memories against transient changes while maintaining plasticity in learning.

ART has since evolved into a series of real-time neural network models for pattern

recognition, unsupervised learning and classification( [123], [58]). ART provides
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an interesting early account of the utility of attentive behavior in learning. Gross-

berg’s description satisfies its ambitions in explaining the aforementioned tradeoff

in learning behavior and outlines specific circuitry that accounts for the dynamics

of attentive behavior in early visual areas. The chief contribution to the attention

literature, is a specific scheme for the modulation of signals in early sensory coding.

Feature Integration Theory (Treisman and Gelade, 1980)

Treisman and Gelade’s Feature Integration Theory (FIT) [222], inspired by exper-

imental work pertaining to visual search, proved to be a very influential early view

of selective visual attention. FIT proposes that visual information is represented

in a number of topographically organized feature maps. For example, a partic-

ular feature map might correspond to a topographic representation of local edge

strength, or “blueness” over the image in question. Attention is then deployed on

the basis of shifting an attentional spotlight over a “master map” constructed on

the basis of information transfer from the various feature maps. In their proposed

model, only information that falls under the attentional spotlight is said to reach

the level of conscious awareness. The mechanism for information transfer between

feature maps and the master map in the general case is not described with any

specificity. A number of key predictions arise from FIT: First, visual search for a

unique element is constant with regard to display size and number of distractors

22



since activity in an appropriate feature map can guide the attentional spotlight

directly to the unique element. Secondly, search for an element that is only unique

on the basis of a conjunction of features increases linearly as a function of the

number of distracting elements. This second effect is explained in the context of

their model by the observation that no single feature map can directly shift the

attentional spotlight and as such, a serial visit of each of the distracting elements

is required. Ideas inherent in feature integration theory have had a profound influ-

ence on many models of attention that have been proposed in the quarter century

since its inception. In particular, models that include a saliency map as a means

of guiding attention typically share many attributes with FIT. When introduced,

FIT provided a convincing computational explanation for trends observed in slopes

derived from visual search experiments. That said, more recent psychophysical re-

sults suggest that search tasks are perhaps not simply divisible into two distinct

search paradigms.

Correlation Theory (von der Malsburg, 1981)

von der Malsburg’s Correlation Theory of Brain Function [239] marks a very early

account of the binding problem and perhaps the first account of this problem in

a computational neuroscience context. The binding problem refers to problem of

creating a unified percept from the responses of many separate neurons distributed
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throughout the visual system. Correlation Theory is motivated by the necessity of

responses of cells corresponding to different parts or properties of a single object to

be integrated to arrive at a single unified percept of the object. von der Malsburg

proposes that this task is accomplished by way of synaptic modulation in which cells

switch between conducting and non-conducting states. Such modulation is governed

by correlation in the temporal structure of cellular signals. Correlation in the timing

of cell responses, signals that such responses correspond to a single object. This

paradigm allows connections corresponding to irrelevant stimulus responses to be

deactivated momentarily to reduce interference between different memory traces

affording an increase in memory capacity. Correlation theory is important from the

perspective of its introduction of the binding problem to the attention literature,

and satisfies its aim of highlighting the importance of, and describing a mechanism

for, allowing active cells to express relationships amongst themselves.

Koch and Ullman (1985)

In 1985, Koch and Ullman introduced a model of selective attention [110] based on a

number of ideas inherent in Treisman’s proposal [222]. Koch and Ullman suggested

that, as was the case in Treisman’s approach, attention is directed on the basis of

a master feature map (called a saliency map by Koch and Ullman) derived from a

variety of elementary feature maps. Feature maps are assumed to be computed in
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parallel over the entire image, and afford a topographical representation of image

content with regard to a particular elementary feature (e.g. color, edge orientation,

movement direction, etc.). Koch and Ullman’s model is characterized by a second

step wherein the early topographic representation (saliency map) is projected into

a more central non topographic representation which contains properties of only

the selected location. Items are chosen for the central representation on the basis

of a winner-take-all network. Winning locations are successively inhibited so that

attention continually shifts to the next most conspicuous position. It is worth

noting that no single cell modulation occurs in the context of this model. Koch and

Ullman suggest that the model might be implemented in “neural hardware” with a

saliency map located in the striate cortex (V1) or lateral geniculate nucleus (LGN).

Although the model of Koch and Ullman provides a more complete description

of attention than some of the earlier models discussed, that focus on more specific

concepts, it relies on a number of assumptions that one might question. Perhaps the

biggest question, is that of how to put into effect modulation at the level of a single

cell. This is a consideration that is fundamentally important in any computational

model of attention. Also, one might express concern with the claim that their

exists a single unique topographical salience map in the brain that guides the focus

of attention, since there is no significant evidence in favor of this hypothesis.
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The Shifter Circuit Model (Anderson and Van Essen, 1987)

Anderson and Van Essen’s Shifter Circuit Model [7] is based on an infrastructure in

which a set of control neurons dynamically modify synaptic strength of intracortical

neurons. The result is that information from within a windowed region of V1

is selectively routed to higher cortical areas. In neurobiological terms, Anderson

and Van Essen suggest that control neurons might reside in the pulvinar, with

intracortical connection strength modified by way of multiplicative interactions on

the dendrites. As was the case in many of the aforementioned models, Shifter

Circuits rely on a master/saliency map which drives the responses of the control

neurons. The representation of global saliency is suggested to be represented in the

superior colliculus or, the parietal cortex. In addition to the contentious assumption

of a single localized representation of salience, the suggestion that the routing of

information relies on a simple switching mechanism among early visual areas is

highly questionable, and further, fails to explain attentional modulation observed

in extrastriate areas.

Sandon (1989)

The model of attention proposed by Sandon [201], marks the first complete imple-

mentation of a computational model of attention. The aim of Sandon’s proposal
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is the selective routing of information to an object recognition processing step. An

image processed by their model is first represented at three spatial scales. Scaled

images are passed through a number of attention modules, which select features

to be attended. The finest scale image is passed through the two attention mod-

ules, the intermediate scale image is passed through one attention module, and the

coarsest scale image is not processed by any attention module. A scale arbitrator

determines which of the three resulting streams is to be processed by the object

recognition processor. The attention module consists of a hierarchical multi-scale

network, in which features are computed in parallel, feature maps are transformed

into feature contrast maps, and finally winner-take-all selection as described in Koch

and Ullman’s approach determines attended features. Given the criteria for models

included in this review, one might question the inclusion of Sandon’s model. The

inclusion is based solely on the fact that Sandon’s effort marks the first complete

implementation of an attention model. That said, it offers little from a theoretical

perspective in the context of attention, and lacks plausibility from the perspective

of neurobiology.

Guided Search (Wolfe, 1989)

Wolfe and colleagues propose a computational model for visual search [251], that

emphasizes a distinction between preattentive massively parallel computation of
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feature information, and a secondary stage that performs more complex operations

over a selected portion of the visual field. An activation map is generated on the

basis of a weighted sum of feature maps computed in parallel. Feature maps are

also adjusted on the basis of top-down demands. That is, top-down task demands

may bias processing of specific categorical attributes (e.g. bias for vertical lines).

The activation map is transformed into a saccade map through convolution with

an averaging operator. The peak of the saccade map then determines the next

saccade position. Guided search is very similar to Koch and Ullmans model with

the slight distinction that Wolfe stresses thinking of attention as a limited capacity

resource that is distributed in order of strength in the activation map. As such,

guided search suffers from the same difficulties attributed to the model of Koch and

Ullman.

MORSEL (Mozer, 1991)

Mozer proposes a connectionist model of object perception that includes an at-

tentional mechanism that limits input to a network (BLIRNET) responsible for

building location invariant representations of letters and words [150]. Attention is

directed on the basis of an attentional map produced by bottom up input from a

number of primitive feature maps, and top-down task bias (e.g. a temporal ordering

imposed by higher levels of cognition when reading). Primitive feature information
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is gated to BLIRNET by associating a probability with transmitted input based on

the attentional map. From the perspective of attention theory, the sole distinction

between MORSEL and its predecessors, is that a lower probability of transmission

takes the place of inhibition. Some of the benefits of MORSEL have been its use in

demonstrating the effects of deficits such as virtual lesions on attention. This last

consideration is elaborated on in chapter 7.

VISIT (Ahmed, 1991)

Ahmed proposes a model for covert visual attention that predicts specific roles

for a number of cortical areas [4]. The design proposed by Ahmed includes the

following components: i. A set of basic feature maps assumed to correspond to

the representation of the visual world on the retina, and in early areas of the brain

including LGN, V1 and V2. ii. A gating system mediated by the pulvinar, which

produces gated feature maps within higher visual areas such as MT, IT and V4

based on responses of early visual areas. iii. Bottom-up feature maps derived from

early visual areas and represented in the superior colliculus. iv. A control center

located in the posterior parietal cortex that controls access to working memory.

The complexity of Ahmed’s proposal is linear in the number of image pixels, and

is successful in modeling aspects of visual search and spatial relationships. The

primary contribution of VISIT to the literature might be considered the explicit
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inclusion of various areas of the brain, and specific predictions surrounding the role

of such areas in attention.

Olshausen et al. (1993)

Olshausen and colleagues suggest an attentional model [166] based on an imple-

mentation of Anderson and Van Essen’s shifter circuit model [7]. The intention of

the model is to form representations of input stimului that are invariant with re-

gard to position, orientation, and scale at the output layer. Inputs from the retinal

reference frame are selected based on modulation of synaptic weights in the net-

work to route the desired input coordinates to an object centred reference frame.

Such modification of synapic weights is achieved by control neurons originating

in the pulvinar. Selection is based on Koch and Ullmans WTA mechanism [110].

Although the model achieves its aim of producing a position and scale invariant

representation, the precise relation of aspects of the model to cortical computation

remains unclear, including the existence of a neural analogue that achieves scale

invariance by way of the proposed mechanism.

Niebur, Koch, et al. (1993)

Niebur et al. [158] and Niebur and Koch [156], propose a model for the neuronal

implementation of selective visual attention that is based on correlation in the
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temporal structure of a group of neurons. V1 neurons respond with a stimulus

dependent mean firing rate according to a Poisson distributed spike train. Spike-

trains of neurons within the receptive field of the focus of attention are distributed

according to a time-dependent Poisson process while those outside the focus of

attention respond with no correlation between action potentials. Temporal corre-

lations in spike trains are detected by V4 inhibitory integrate-and-fire neurons that

act as coincidence detectors inhibiting the response of unattended stimuli. Atten-

tional effects on the temporal structure of firing rates affect cells in all visual areas.

In contrast, attentional effects on neuron mean firing rates are limited to neurons

in V4 and higher visual areas. Selection of attended regions is achieved by way of

Koch and Ullman’s attentional mechanism [110]. The model of Niebur et al. pro-

vides a plausible means of achieving synchronization, but only predicts modulation

in V4 and later areas.

The Biased Competition Model (Desimone and Duncan, 1995)

Desimone and Duncan propose a Biased Competition model [51] wherein mutu-

ally suppressive interaction between competing stimuli facilitates selection. The

model includes top-down bias for spatial location or feature type on the basis of a

model of working memory. Strength of interactions is a function of the proximity

of competing stimuli. Their initial proposal was largely descriptive but an updated
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account establishes a more detailed picture of biased competition in the context of

a neural model. Reynolds, Chelazzi and Desimone [191] describe a number of single

cell recording experiments focusing on areas V2 and V4 of the visual cortex. They

demonstrate that when two stimuli fall in a single receptive field, the neuron may

be biased to elicit a response similar to that resulting from each one of the stimuli

presented alone, through the influence of attention. The neural circuit describing

such interaction consists of an output neuron, relying on two input neurons having

both excitatory and inhibitory influences on the output. It is demonstrated that

the equilibrium response is proportional to the relative contributions of the excita-

tory input and inhibitory input to the output neuron. A distinction between the

mechanism described by Desimone and Duncan is the presence of both excitatory

and inhibitory connections from the input neurons to the output neuron.

VAM (Schneider, 1995)

Following von der Malsberg’s correlation theory [239], Schneider proposed a model

based on attentional selection for object recognition and space based motor action

called VAM [204]. The main distinction between the two proposals is that in VAM,

computation is divided into distinct “what” and “where” pathways. Low level fea-

tures are represented at the level of the primary visual cortex, such as colour and

contrast information. The “what” pathway encompasses V4, the inferior tempo-
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ral cortex, and the superior temporal sulcus in VAM. Shape primitives and object

templates are represented among these regions. The “where” pathway is charac-

terized by parietal areas that represent locations involved in various actions such

as grasping or saccade execution. VAM includes an inhibition of return mechanism

to avoid revisiting recently visited areas of space. The division of VAM into two

distinct “what” and “where” pathways offers little with regard to advancing the

understanding of attentive behavior, and this distinction is inherent in Ahmed’s

VISIT. The division into streams for recognition and motor-action perhaps offers a

more useful division from a control-systems perspective.

SCAN (Postma et al., 1997)

The Signal Channeling Attentional Network (SCAN) proposed by Postma et al.

[181] consists of a scalable neural network model, intended to simulate attentional

scanning. SCAN consists of a hierarchy of gating networks that select an output

pattern from the input image (by way of a bottom-up WTA process) that best

matches an expectation pattern. The primary contribution of SCAN might be

considered the description of a network architecture capable of explicitly routing

information based on expectation.
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Itti and Koch (1998)

Itti and Koch [98] extend the earlier work of Koch and Ullman [110] with an

updated implementation including a number of minor modifications. The steps in-

volved in the newer proposal are as follows: i. 42 feature maps affording topographic

representations of orientation, intensity and color information are produced from

the input image. This stage involves linear filtering at 6 spatial scales followed by

convolution with a centre-surround kernel and a normalization operator. Feature

maps are combined across scale to produce a single conspicuity map corresponding

to each of intensity, color and orientation information. A linear sum of the resulting

conspicuity maps give rise to a saliency map which, combined with a WTA network

and inhibition facilitates successive shifts in attention based on the topographical

saliency map. The model of Itti and Koch might be viewed as a description of the

model of Koch and Ullman expressed at a more specific level of abstraction. The

basic properties remain the same, with specific details of the feature maps fleshed

out in an implemented model. As such, the concerns expressed in regard to the

Koch and Ullman model also apply to the Itti and Koch model.
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Cave (1999)

Cave’s feature gate model [34] is based on a hierarchical structure whereby elements

at each level compete for selection for the next level. Responses at a given level

are gated so that as one ascends the hierarchy, the proportion of the visual field

represented is reduced. Inhibition takes place at a number of levels to prevent

interference with competing stimuli. Selection of open-gate elements is made on

the basis of local differences in a winner-take-all network with top-down biases

impacting on selection. Bias in Cave’s model is achieved within the gating of

stimuli, so that no modulation of the signals at the input takes place, only selective

routing. Further, the proposed mechanism only allows for gating from discrete non-

overlapping regions. The mechanisms included in Cave’s model lack neurobiological

analogues, and as such the model is not predictive of the behavior of attentional

mechanisms in the primate brain.

Deco and Zihl (2001)

Deco and Zihl propose a model that includes a number of modules each consisting

of populations of neurons [49]. The model exhibits parallel computation across the

entire visual field with a serial focal mode by nature of the dynamics of the system.

That is, neither saliency maps nor a focal search mode are explicitly included but
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emerge as a result of intrinsic properties of the system. The model consists of

a number of feature maps produced on the basis of sensory input and top-down

influences. Each feature map is associated with an inhibitory pool that mediates

inhibition among competing elements. A high-level map used to guide the focus

of attention is derived from the aforementioned feature maps. One element of the

Deco and Zihl model that distinguishes it from others is the idea that attention

serves to control the spatial resolution at which processing occurs. Deco and Zihl

have also considered the effects of lesioning the model with reference to studies of

unilateral neglect.

2.4 The Selective Tuning Model (1995)

This section describes key details involved in Tsotsos’ Selective Tuning Model [228].

In the most detailed account of Selective Tuning, Tsotsos and colleagues outline a

number of problems that arise in the context of pyramid computation (described

in section 2.1). Many design choices in the Selective Tuning Model are formed on

the basis of overcoming such limitations. The following describes details of the

model with commentary on how various components overcome issues of complexity

and problems inherent in pyramid processing. Selective Tuning simultaneously

handles the issues of spatial selection of relevant stimulus and features. Spatial

selection is accomplished by way of inhibition of appropriate connections in the
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network. Feature selection is accomplished through bias units which allow inhibition

of responses to irrelevant features. The Selective Tuning Model is characterized

by a multi-scale pyramid architecture with feedforward and feedback connections

between units of each layer. A high level schematic of the model is depicted in

figure 2.2. Details concerning the connectivity between adjacent layers are displayed

in figure 2.3. Variables shown in figure 2.3 are as follows (Also refer to [228] for a

more detailed description):

• Îl,k : interpretive unit in layer l and assembly k

• Ĝl, k, j : jth gating unit in the WTA network in layer l, assembly k which

links Îl,k to Îl−1,j

• ĝl,k : gating control unit for the WTA over inputs to Îl,k

• b̂l,k : bias unit for Îl,k

• ql.j.i : weight corresponding to Îl−1,i in computing Îl,j

• nl,x : scale normalization factor

• Ml,k : set of gating units corresponding to Îl,k

• Ul+1,k: set of gating units in layer l+1 connected to ĝl,k

• Bl+1,k: set of bias units in layer l+1 connected to b̂l,k

Selection is accomplished through two traversals of the pyramid. First, the

responses of interpretive units are computed from the lowest level to the highest

level of the pyramid in a feedforward manner. Next, WTA competition takes place

between all units at the highest layer to select a single winning unit. In subsequent
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Figure 2.2: A high-level schematic of the selective tuning model. a. Bottom up

feedforward computation. Stimulus at the input level (green) causes a spread in

activity in successively higher layers. Winner selected at the highest layer is shown

by the orange oval. b. Top-down WTA selection. WTA selection happens in a top-

down-manner with the winning unit at each level indicated by the orange region. A

suppressive annulus around the attended item caused by inhibition of connections

is depicted by the greyed region.
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Figure 2.3: A detailed depiction of connectivity between units and layers in the

Selective Tuning model. (From [228]).
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layers, units in layer l that connect to the winning unit in layer l+1 compete for

selection. This ultimately leads to selection of a localized response in the input

layer. Figure 2.4 depicts a series of stages in the selection process. Note that

interference between competing elements is eliminated by way of selection. Bias

is handled through a connected network of bias units that impact on the response

of interpretive units they are tied to in a multiplicative manner. Bias units may

be used to modify the response of interpretive units to a particular stimulus type,

such as blue items. Bias values less than one might be assigned to the response of

non-blue units to bias selection in favor of blue pixels. Bias values are entered at the

top level of the pyramid and propagate downwards through inter-layer connections

between bias units. The value of a bias unit at layer l is given by the minimum

of all bias values of units at layer l+1 to which the layer l unit is connected. The

WTA process employed in Selective Tuning differs from that of Koch and Ullman

[110] in a number of aspects. The effect of unit i in the WTA network on unit j is

quantified by the following expression:

y =


ql,k,iG

t−1
l,k,i − ql,k,jG

t−1
l,k,j, if 0 < θ < ql,k,iG

t−1
l,k,i − ql,k,jG

t−1
l,k,j

0, otherwise.

(2.1)

with θ = Z
2γ+1

, γ a parameter that controls the convergence rate of the WTA

network (converges within γ iterations) and Gt0
l,k,j = bl−1nl−1Il−1,j. A more detailed

version of the preceding description concerning the WTA scheme may be found in
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Figure 2.4: A series of stages in top-down winner take all selection depicting 4

hypothetical layers of a visual processing hierarchy. Note that attentional selection

eliminates interference between the competing elements. a. Two winning units

are selected at the highest level, no attentional effects are yet exhibited. b-d.

Connections to winning units at layer (4,3,2 respectively) are inhibited and winners

are selected at layer (3,2,1 respectively). (Adapted from [227]).
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[228].

2.5 Visual Search

One experimental paradigm that has proved particularly useful for studying visual

attention, is the task of visual search. Subjects are typically required to localize

a stimulus element with particular characteristics among a number of distracting

elements, with a response of some kind to indicate when the element is found, or in

some cases, whether no stimulus element with the desired characteristics is present.

The timing of such decisions has provided insights concerning the attentional mech-

anisms underlying visual processing, since performance differences may be telling in

terms of the ability to narrow down processing to some subset of the visual stimulus

presented.

Visual search tasks are typically conducted under conditions in which the target

item is present 50% of the time. The number of distracting elements (called the set

size) is varied, and reaction time to indicate that the target has been located, or,

whether no such target is present is measured and may be observed as a function

of set size. Slopes and intercepts of reaction time versus set size are then used to

infer the role of attention in searching among the stimulus elements. There are of

course many variations of the setup described including searching for one of several

target items, or, setups in which accuracy is measured in lieu of reaction time.
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In demonstrating why reaction time is a useful measure in studying attention,

it may be instructive to provide a few examples of extreme cases that demonstrate

the utility of such results. Consider first the task of searching for a red item

among green distractors. The trend observed in this task, is near zero slope in the

number distracting elements, which suggests a search achieved by processing the

entire visual field in parallel [151]. In contrast, the task of searching for 2 among

5’s exhibits a slope that is linear in the number of distractors with a cost of 20-

30ms per item [250] with twice as much time required for target absent than target

present trials on average. The obvious conclusion that emerges from the trends

observed under such conditions is that search requires a serial search in which

elements are visited one at a time. For a number of years, following Treisman’s

Feature Integration Theory [222], search tasks were described in terms of a strict

dichotomy of serial versus parallel searches. Since this time, it has emerged that

visual search tasks fall in a continuum of slopes ranging from near zero to greater

than 30 ms per distractor [250].

Drawing inferences from reaction time slopes is a practice that should be car-

ried out with some caution. This is a view that is advocated particularly strongly

by Townsend [219; 220; 221]. Wolfe notes that various limited capacity parallel

models give rise to patterns that appear to correspond to serial searches. Further,

serial search in which processing time associated with each item is sufficiently low
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might be misclassified as parallel searches [250]. The most important fact to put

forth is that data drawn from visual search studies do not support a strict di-

chotomy between parallel and serial searches. Visual search slopes from different

tasks range from shallow to steep. Although this does not preclude the possibility

of parallel and serial processes acting together, it is important that visual search

tasks not be grouped into parallel or serial categories. Feature searches may be

made to exhibit linear slopes by narrowing the feature contrast between target and

distractors. Wolfe proposes that search tasks may be more practically described

using terms such as efficient or inefficient, owing to the obvious differences that do

appear between tasks in which targets pop-out, versus those that do clearly require

visiting a number of elements in series. Searches that are very efficient tend to be

supported by a set of basic elements that may be computed in parallel including

color, orientation, spatial frequency, curvature, motion, form, and depth.
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3 Saliency: A Brief History and Critique

The central theme of this dissertation concerns the notion of saliency. A few passing

references to the term were made in the preceding chapters, but the importance of

this notion with respect to the subject matter of this dissertation warrants further

discussion.

The term saliency describes the state of being salient which is defined according

to the Merriam-Webster dictionary as

standing out conspicuously, prominent, of notable significance.

This gives some sense of what a definition of saliency should capture, and also

agrees in an intuitive sense with what tends to draw our gaze ignoring any task

directives.

The inception of this term in the context of attention modeling derives from

models that posit that a spotlight of attention is deployed on the basis of a unique

topographical representation of saliency: a saliency map. Some models fitting

this category were mentioned briefly in chapter 3 and are described in more detail
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in section 3.2 in particular with respect to the relation of the computation they

perform to the incoming retinal input.

In practice the idea of saliency is very often described in the context of saliency

maps in the domain of attention. One important ambition of this work is to dis-

entangle the notion of saliency from the idea of a saliency map. As described in

the previous chapter there exist a variety of different models, some concerned heav-

ily with the routing of signals through a hierarchy and other architectures quite

distinct from those based on a saliency map.

A significant component of this chapter is to place the discussion of saliency

outside of the discussion of models based on a unique topographical saliency map

since as mentioned, some models include nothing resembling a saliency map but

nevertheless discussion of the relation of the behavior of such models to the visual

input is useful. For example, if one posits that the network underlying attention

consists of a distributed hierarchy of winner-take-all networks, this says much con-

cerning the flow of activity through the network. However, without knowledge of

the nature of the underlying interpretive units, nothing can be said with respect to

how the selection relates to the input to the network, the photoreceptor array that

is the retina.

If one begins to consider the nature and properties of the millions of tiny com-

putational units that comprise the visual cortex, a definition for what is salient
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may emerge directly from architectures whose focus is a detailed account of the

selection mechanism. In the case of a distributed hierarchical selection mechanism,

saliency would correspond to distributed, localized activity in visual neurons in

lieu of a single topographical representation of perceptual importance. Moreover,

it is possible to consider definitions for what is salient in the absence of a specific

selection mechanism. In this manner the definition of saliency is distinct from the

selection of visual content and may or may not be compatible with a wide array

of attention models, but its specification lies outside of the description of how con-

tent is selected and routed through the visual cortex, and the focus is on what is

selected. The later chapters of this dissertation focus on how content is selected,

but the emphasis for the remainder of this chapter and the next is on the what.

The intention of this chapter is to provide a historical overview of saliency. The

focus is on efforts that include some description of how visual input translates into a

representation of the perceptual importance of the content involved with a focus on

the representation of salience rather than the mechanism implicated in attentional

selection. As discussed in chapter 2 attention may be discussed in terms of covert

and overt attention. Owing to the fact that there is as of yet no simple means of

tracking the focus of covert attention, many saliency studies focus their attention

on the prediction of eye movement patterns rather than discussing the relation

to covert attention. It is worth noting that one possible means of observing the
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covert focus of attention appears in [190] and such a paradigm might be adapted

to consider tracking the covert focus of attention with the goal of assessing model

performance.

The implicit assumption in many existing efforts is that overt attention equates

to covert attention. As is discussed in chapter 7, this is not necessarily the case.

Furthermore, the relation between overt and covert attention may be more complex

than it appears on first inspection, and certainly more involved than is assumed in

prior work. An additional contribution of the work in this dissertation is to describe

precisely what claims may be made about a model on the basis of various overt and

covert test cases.

For the time being, discussion is restricted to overt attention, but in chapter 7

discussion of how such results may generalize to conclusions concerning covert at-

tention is included. The structure of each section in this chapter is a brief historical

overview followed by some critical commentary. Passing references to more general

modeling considerations are made but this discussion is largely relegated to chapter

8.

3.1 Correlates of Fixation Points

An important consideration with regard to the subject matter at hand, is the

relationship between visual stimuli and eye movements. Early influential studies
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by Buswell into reading and picture viewing marked the first experiments using

non-intrusive eye trackers [29]. Several decades later, Yarbus conducted some

eye tracking experiments involving picture viewing with different task directives,

demonstrating the importance of task on the resultant eye movements made [254].

In the context of this dissertation, we are interested specifically in the relationship

between eye movements made and the properties of the visual stimulus itself. It

has recently been demonstrated that this remains an important consideration in

the determination of where saccades are directed [61].

There are many basic measures on visual content such as edge strength or cur-

vature that have been shown to correlate to varying degrees with the deployment of

fixations. This section outlines a set of such contributions intended to reflect those

that have been the most influential, while making the discussion as representative

as possible of past efforts considering the relation of image content to saccadic eye

movements.

In a somewhat exploratory effort, Privitera and Stark consider the relation of

10 different measures of local image content to the deployment of fixations [182]:

1. A measure based on Canny edge detection [31] which quantifies edges per

unit area.

2. Masks selective for high curvature.
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3. A 7x7 positive centre - negative surround operator.

4. Gabor masks measuring grey level orientation differences as in [157].

5. A pyramidal discrete wavelet transform based on Daubechies and Symlet

bases.

6. A measure of local symmetry.

7. Michaelson contrast defined as C = ‖(Lm−Om)/(Lm +Om‖ where Lm is the

mean luminance of a local 7x7 region and Om is the overall mean luminance

of the image.

8. An entropy measure of the type often used to measure texture variance given

by: N =
∑

i∈G filogfi where fi is the number of times the ith grey level

appears in the neighborhood G.

9. Coefficients of the Discrete Cosine Transform with high frequency components

indicating areas of interest.

10. The Laplacian of Gaussian operator.

The set of operators showed varying degrees of correlation with human fixation

points with the exception of the DCT based operator which was uniformly poor.

The most important result from this work, and the one result that was consistent
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across all of the operators, was their inconsistency. That is, each of them performed

well for some subset of the images and very poor for others. The conclusion to

be drawn from this is that none of the operators could be classed as a universal

predictor of fixations and also that this problem seems inherently hard. It also raises

the question of whether local image content alone is sufficient to predict fixations

to a high degree of accuracy.

Another important study of this type was conducted by Tatler, Baddeley and

Gilchrist [213]. Tatler et al. considered the extent to which contrast, edge and

chromaticity content at various spatial scales is predictive of fixation points. There

are a few important aspects of their work. Perhaps the most important element of

this work, is that the various operators tuned to combinations of angular and radial

frequency, contrast and chromaticity are based on models of neurons in the visual

cortex of primates. In this manner the various feature measures reflect (to some

degree) the extent to which various types of neurons, akin to those appearing in the

primary visual cortex of primates, are predictive of fixation patterns. Their findings

indicate primarily that edge content and contrast are most predictive of fixation

points, especially at high spatial frequencies. An additional important aspect of

this work concerns the methodology in assessing agreement between features and

eye tracking data and is discussed in further detail in chapter 4.

A related piece of work was presented by Pomplun [179]. Pomplun considers
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the role of task related information in the context of fixations. Subjects were given

a particular pattern to search for in complex natural scenes and fixated regions were

compared with properties of the pattern with respect to their intensity, contrast,

spatial frequency and orientation. For each of these categories, correlation between

these measures on the target item, and fixated regions was determined to be statis-

tically significant. The amount of guidance attributable to the features varied with

intensity and contrast having the strongest correlation with fixated regions. This is

an important reminder that there is an inherent cap on how well basic image fea-

tures may predict fixation content since the goals of an observer exert influence on

the selection of visual content. That said, fixated regions are not overwhelmingly

biased with respect to the relation of their features to the target features suggesting

there is still a significant role of bottom-up feature based selection.

Although work on visual correlates of fixations has given some insight on the

nature of stimuli that tends to draw an observers gaze, this approach is inherently

limited. One serious drawback of this approach, is that the relation of the features

considered to the neural representation of such content is unclear. The fact that

some choice of image operator produces output that is in some cases predictive of

fixation patterns says little of what is happening in the brain. That said, opera-

tors based on either cortical processing or a principled decomposition of the visual

signal may lead to hypotheses that are testable by psychologists or neuroscientists
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based on their apparent role in guiding gaze. The fact that there is as of yet no

single operator that is a reliable predictor of gaze patterns makes this line of work

especially disappointing since we are left essentially with the knowledge that a va-

riety of different image operators correlate with fixation patterns some of the time.

This does not allow even the possibility of considering the relation of a particular

feature or image operator to the underlying neural representation since none are

universally good classifiers.

There are also some problems with this type of evaluation that lie with diffi-

culties associated with experimental design. In some cases, the set of test images

is sufficiently small that it is unclear how well the results presented generalize to

visual sampling in general. An even bigger problem lies in disentangling top-down

and bottom-up influences on selection. For example, knowledge that the image set

contains mostly outdoor natural scenes taken in the summer time provides strong

priors on the content of the scene and is liable to play a significant role in the

deployment of fixations. In some cases, images consist of such stimuli as paintings,

terrain photographs, and landscapes. Ignoring the effect of familiarity in this case,

there is also the issue of the extent to which such stimuli are representative of natu-

ral scenes. For example, a painting will in many cases have a very different spectral

profile than a natural scene. It follows that the observed behavior may not general-

ize to natural viewing conditions owing to an unusual neural representation of the
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content. In later chapters, some of these issues pertaining to experimental design

are explored further, and the problem of producing natural stimuli that minimize

prior knowledge is considered.

An additional issue that pertains to all of the results in this chapter is that of as-

sessing algorithm performance. In most cases a mechanism is assumed that selects

a number of discrete coordinates for fixation points and such points are compared

with human observers’ data according to some metric. The selection procedures are

wildly variable ranging from hierarchical Winner-Take-All networks to clustering

algorithms. A resultant difficulty is gauging the quality of the underlying represen-

tation of saliency versus the performance associated with the selection procedure.

In general, this sort of analysis will determine the extent to which the largest few

peaks in the saliency representation correspond to human fixation points, but says

little regarding the assessment of saliency away from these peaks. There is also an

issue with determining the number of fixation points to consider, and depending

on the cutoff this may produce artificially good or poor results. In general if one

wishes to characterize the relative saliency of different targets or locations in space

it would make sense to consider a metric that characterizes the quality of the repre-

sentation of saliency. One might assume that the potential yields from the selection

algorithm are proportional to and limited by the quality of the underlying saliency

representation.
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There is one more recent means of assessing the quality of a saliency measure

that is favourable in regards to addressing some of the above issues. Tatler et

al. [213] propose a means of assessing algorithm performance in a manner which

produces an ROC curve as a performance measure. Their approach involves the

following: A very large number of thresholds is chosen and each threshold applied

to the representation of saliency. This yields a large number of binary maps, which

are each treated as a classifier for fixated and non-fixated locations. Each of these

classifiers is then applied to the fixation data set with regards to its hit rate (cor-

rectly classified fixated locations) and its false alarm rate (locations labeled fixation

which were not). The range of classifiers produces hit rates and false alarm rates

ranging from {0,0} ({hit rate, false alarm rate} respectively) for the lowest thresh-

old to {1,1} for the highest threshold. In between the relative scores of hits versus

false alarms can take on any range of values in [0,1] with the values increasing

monotonically. Higher hit rates for lower false alarm rates means a better classifier

typically. Additionally the overall performance may be quantified by considering

the area under the ROC curve. This method provides a complete assessment of

saliency over all of space, avoids the problems with choosing a single threshold,

avoids the problems of assuming a specific selection mechanism, and offers a good

sense of how well a measure of saliency might correlate with human data given the

selection of a discrete number of points. An additional advantage of this means
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of assessing saliency measures that will become apparent in chapters that follow is

that it does not assume that attention must be directed to a single discrete point.

In chaper 8, we argue that attention is more naturally modeled as deployed over a

region of space with variable size and shape as opposed to a discrete point. Owing

to the intimate relationship between saccadic eye movements and attention, this

distinction is important.

3.2 Saliency in Saliency Models

As described in chapter 3, the introduction of saliency maps came with Treisman

and Gelade’s Feature Integration Theory [222]. To briefly reiterate, the basic struc-

ture of the model is that various basic features are extracted from the scene. Subse-

quently the distinct feature representations are merged into a single topographical

representation of saliency. (In later work this single topographical representation

has been deemed a saliency map.) A selection process then takes place which in

vague terms selects the largest peak in this representation, and the spotlight of at-

tention moves to the location of this peak. In this context, the combined pooling of

the basic feature maps is referred to as the saliency map. Saliency in this context

then refers to the output of an operation that combines some basic set of features.

Since there is some contention regarding the nature of the mechanism respon-

sible for attentional selection in primates, we will focus for the time being on the
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definition of saliency in this chapter. Further discussion of issues pertaining to

the selection mechanism appear in chapter 8. In Treisman and Gelade’s original

description, there is little discussion with respect to the nature of features, or how

they might combine.

Greater specificity in this regard was introduced by Koch and Ullman [110], who

described selection on the saliency map in the form of a winner-take-all network.

Such WTA behavior was thereafter applied to the problem of modal control of a

robot head by Clark and Ferrier [38].

An implementation with greater specificity was produced by Itti and Koch [98],

including specific feature definitions and claims concerning neurobiology and visual

search performance. Since its introduction, this particular approach has seen con-

siderable use and is generally the metric against which many models are compared.

Many additional descriptions of saliency in the domain of saliency based models

constitute the addition of features to the basic structure described by Itti and Koch.

The saliency map then becomes the amalgamation of some subset (not necessarily

proper) of the original features along with an additional feature or features such as

depth [172], motion [20; 186], symmetry [85], faces [20], or skin [185].

Some of the drawbacks already described in the previous section also apply to

maps that pool features to create a single master saliency map. The biggest gain

in systems that pool a number of features to derive a representation of saliency, is
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that they have greater consistency in predicting fixation patterns across a larger

set of images. This is perhaps unsurprising since we already detailed the fact that

a variety of features that may have some intuitive relation to salient image content

performed reasonably well on some images, and poorly on others. It follows then

that a system that combines many of these types of features may produce more

consistent results.

One element worth mentioning at this point pertaining to overt versus covert

attention, is that the history of these models describes a story that is highly con-

fused. The description of Treisman and Gelade, as well as Koch and Ullman is a

description of how covert attention is achieved and as such the motivating exper-

imental evidence derived from foveal displays with controlled fixation. However,

in the subsequent work of Itti and Koch and the corresponding implementation,

tests are carried out involving eye movements from which claims concerning covert

(as well as overt) attention are drawn. As mentioned, it would be desirable to

consider how these two issues interrelate as this is an issue neglected in previous

contributions to the saliency literature.

One difficulty with a system that pools the responses of a variety of features into

a single topographical representation of saliency, is that knowledge of the extent to

which the underlying features are predictive of fixation patterns is lost. That is, it

is no longer possible to measure the individual contribution of orientation content
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versus spatial frequencies versus color. Nevertheless, it may be said that a variety of

features combined appropriately may perform reasonably well in predicting fixation

patterns, and certainly better than any single local operator. It is also worth noting

that it may be possible to consider disection of the model, or anatomically in animal

experiments to assess the relative contribution of the various features.

There is a significant criticism that may be levied against the definition of

saliency captured by these saliency map models. The interpretive units in these

models are hand-crafted on the basis of observations on primate neurophysiology.

Observation in V1 of cells coding for different orientations, color opponency and

intensity characterized by centre-surround receptive fields at various spatial scales

have prompted their inclusion as basic building blocks of the saliency map paradigm.

It is then perhaps not overly surprising that a selection mechanism acting on units

whose response resembles those of cells appearing in the visual cortex should pro-

duce behavior that correlates with that observed in primates. The bigger issue

however, is that although the models do give a definition of computational units

that act on the incoming retinal image, they offer little in explaining why the neu-

rons involved have the structure they do, and what this model translates into with

respect to its relationship to the incoming stimulus.

One possible connection of the types of features typically found in early cortical

processing to a quantitative principle is expressed by Koenderink and van Doorn
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[111]. In this account, one may view the function of early visual circuitry as cap-

turing the geometry of visual patterns according to a principled definition. There is

therefore an explicit relationship between the V1 style features often employed by

these models, and those that derive from a principled geometric framework. That

being said, the specific relationship between the features employed in some studies

of saliency [97; 98] and the geometric motivation put forth by Koenderink et al.

exists only at an abstract level (i.e. there are some units with similar receptive field

profiles across the two sets of features) with the specific relationship of features

chosen, to those that are emergent from a principled geometric decomposition not

a principle consideration in the work.

An additional account of the impetus behind the properties of features in early

visual processing is found in the work of Linsker [128; 129; 130; 131]. Linsker’s

infomax principle [131] prescribes that a function that maps a set of input units

to a set of outputs should be learned in a manner that maximizes the Shannon

mutual information between the inputs and outputs. In performing experiments

of this type based on Hebbian style learning on a neural network, one arrives at

units that have properties reminiscent of those observed in early cortical processing

including centre-surround configurations [128], responses to specific combinations

of angular and radial frequency [129], and organization into cortical columns [130].

In this case, the learned receptive field profiles once again bear a resemblance to
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those employed as basic building blocks of some saliency based models, but the

connection is not made explicit.

The model of Itti and Koch offers at least a detailed quantitative description

of the units, and hypothesized circuitry involved in attentional selection. The

contributions of extensions to this model consist almost exclusively of the addition

of various features, some lacking any neurobiological motivation. For this reason,

these additional contributions offer little in contributing to what constitutes salient

visual content in that their applicability is often restricted to specific types of

stimuli. An additional consideration is that the saliency based models fail to address

the issue of modulation throughout the cortex. It was mentioned that the pooling of

features into a featureless representation precludes determination of what content

gave rise to the resulting activation. This consideration in fact poses a deeper

problem when attentional selection is considered. This issue is explored in greater

detail in chapter 8.

3.3 Neuroanatomy

If one assumes that there is a unique topographical representation of saliency in

the brain, the question follows of where this representation might reside.

Several areas of the brain have been proposed as possible loci for the saliency

map. Proposals for the site of the saliency map have included V1 [124], areas
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along the ventral pathway [138], one area on the dorsal pathway [39], and within

the oculomotor network, specifically in the lateral intraparietal area [116]. Fecteau

describes some important criteria that should be considered constraints on the

possible candidates for the neural site of the saliency map [66]. It is worth stating

in advance that the LIP area is the only region that satisfies all of these conditions

and references follow where appropriate.

1. The neurons within the area should be featureless and retinotopic [17]. It is

worth stating that although the local grouping of receptive field organization

within LIP is retinotopic, the overall organization of LIP is highly complex

[6].

2. Lesions within the area should produce deficits in orienting attention [140].

It is worth noting that LIP tends to be associated with overt rather than

covert eye movements. Regions of 7a are monosynaptically connected with

LIP and and yield far fewer presaccadic responses. Covert shifts of attention

appear to be signalled by both LIP and 7a activation; however, activation in

7a only appears when a target excites neurons at a location different than

the cue. Mesulam suggests that this may indicate that such neurons are

more involved in shifting the covert or overt focus of attention rather than an

explicit representation of saliency.
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3. Facilitation should be possible through electrical stimulation [33; 45; 144;

145].

4. There should be input from the ventral pathway that codes for content nec-

essary to compute relative saliency [67; 72; 202].

Additional elements that make the LIP area a suitable candidate for the locus of

the saliency map include its connectivity to regions involved in generating saccadic

eye movements including the frontal eye fields and the superior colliculus. LIP

neurons have been demonstrated to respond to the abrupt onset of motion in the

absence of selectivity for direction, and also to briefly flashed stimuli. Given all of

the aforementioned properties, it is likely safe to say that the LIP plays some role

in the neural representation of saliency, but the notion that it contains the saliency

map remains a moot point. It is worth mentioning that LIP has considerable

interconnection with various areas of the brain which poses questions for models

that presume that some basic set of features, for example solely those of the type

V1 computes, inform this representation of saliency.

The discussion of the location of the saliency map reveals an important con-

sideration. Despite the variety of brain imaging technologies we now have at our

disposal, the neural locus of the saliency map, or even the claim that such a rep-

resentation exists remains open to debate. This consideration is explored in more
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detail in chapter 8 within discussion focusing on more general modeling considera-

tions.

3.4 Saliency in Computer Vision

An additional domain of interest relating to saliency comes from the computer vision

literature. Although formal arguments have been made [226] on the necessity of

attention for the problem of visual search, the computer vision community at large

has yet to universally acknowledge the necessity of attention in computer vision

systems. That said, there do appear to be more mentions of attention in the

literature with attention being described as a front end to object recognition in

particular for appearance based systems [54]. As chapter 9 explores this area in

detail, a detailed review of these approaches is relegated to chapter 9.

One point perhaps worth noting pertaining to saliency in a computer vision

context is that the current trend in the design of algorithms that select local features

might be regarded as the complement of saliency algorithms. While operators that

extract local features are often designed on the basis of invariance properties, the

distinctiveness or saliency of such points is often an afterthought. This raises the

question of whether success may be had in designing an operator to select salient

or distinctive features, and adapt this paradigm to include desirable invariance

properties. It is this consideration that forms the subject matter of chapter 9.
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In the most ideal case, one might simultaneously consider constraints pertaining

to invariance and distinctiveness and produce an interest operator that forms an

optimal trade-off between these elements.

3.5 Conclusions

The preceding discussion reviews current thinking regarding saliency. The major is-

sue with the field is that models either focus exclusively on image properties while

saying nothing about the brain, or focus exclusively on implementing anecdotal

observations concerning the brain, while yielding little in the way of insight con-

cerning why such content is salient, or why the brain is organized as it is. Further,

the current trend in this area is either simply consideration of new features, or the

addition of features to the basic saliency map model, offering little in the way of

progress or additional insight. This provides the motivation for the subject matter

of the chapter that follows. The ultimate aim is to start with nothing except an

appropriate principle regarding what is salient in terms of stimulus content in light

of the role of attention and then to explore this definition in terms of stimulus

properties and neural hardware. Ultimately it would be desirable to have a model

with considerable generality, with significant success in predicting eye movement

patterns, that extends to explain covert attention, with some insight on visual neu-

rophysiology, and consistent with basic psychophysics derived from visual search

65



literature or other attention related areas. These issues are explored in some detail

in the chapters that follow.
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4 Towards a Principled Definition of Saliency

Chapter 3 reviewed the current state of the notion of saliency in the attention

literature, while highlighting the shortcomings. In this chapter, the aim shifts to the

solution, that is, an attempt to form a definition of saliency based on some criterion

for optimality with a theoretical basis describing both what the definition means in

terms of visual input, and how it might manifest itself neurally. It is demonstrated

through the discussion in this chapter that ideas borrowed from information theory

provide a natural interpretation of the problem.

4.1 Revisiting Attneave, 1954

The central core of the proposal is built on computational constraints derived from

efficient coding and information theory. The intuition behind the role of these ele-

ments in saliency computation is perhaps best introduced by considering an example

from an early influential paper by Attneave that considers aspects of information

theory as they pertain to visual processing [8]. Within this work, Attneave provides
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Figure 4.1: A crude depiction of an ink bottle on a desk corner from [8].

the following description and associated figure (labeled figure 4.1):

Consider the very simple situation presented in Fig. 1. With a modicum of effort,

the reader may be able to see this as an ink bottle on the corner of a desk. Let us

suppose that the background is a uniformly white wall, that the desk is a uniform

brown, and that the bottle is completely black. The visual stimulation from these

objects is highly redundant in the sense that portions of the field are highly pre-

dictable from other portions. In order to demonstrate this fact and its perceptual

significance, we may employ a variant of the “guessing game” technique with which
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Shannon has studied the redundancy of printed English. We may divide the picture

into arbitrarily small elements which we ”transmit” to a subject (S) in a cumula-

tive sequence, having him guess at the color of each successive element until he is

correct. ... If the picture is divided into 5O rows and 80 columns, as indicated, our

S will guess at each of 4,000 cells as many times as necessary to determine which

of the three colors it has. If his error score is significantly less than chance [2/3 X

4,000 + 1/2(2/3 X 4,000) = 4,000], it is evident that the picture is to some degree

redundant. Actually, he may be expected to guess his way through Fig. 1 with only

15 or 20 errors.

The intent of Attneave’s example is to demonstrate that there exists significant

redundancy in natural visual stimuli, and that human subjects appear to have some

degree of an internal model of this redundancy. A second observation that is not

made in the original description, but that is fundamental to the subject matter of

this dissertation, is that one might also suggest that the areas of the scene where

subjects make the greatest number of errors on average in guessing, are those that

contain content of interest. A comparison to some of Shannon’s work on modeling

redundancy in the English language may also be made in observing that words that

occur less frequently within a particular context will tend to provide more informa-

tion. In the sentence “The man went to the store to buy some bread”, most would

agree that selecting the subset of words “man went store buy bread” provides more
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information than “The to the to some”, the former being the 5 words that occur

least frequently in English writing of the 10, and the latter being those words that

occur most frequently. In the same manner, those visual patterns that are less likely

or predictable are more informative in a Shannon sense [205]. This is the intuition

that underlies the proposed saliency computation, that the saliency of visual signals

may be equated to a measure of information or the degree of surprisal that they

carry. The possibility of considering information in a principled sense associated

with ensembles of neurons is expressed in the work of Palm [173] who outlines the

possibility of characterizing the surprise associated with the temporal structure of

spike trains generated by a neuron. The generality of Shannon’s proposal makes

it amenable to considering the surprise or information associated with various as-

pects of neural information processing, of the sort that forms the motivation in this

chapter.

Imagine a hypothetical generalization of the game described by Attneave in

which a human participant is required to describe the contents of a region of a

scene containing arbitrary structure, lightness, contrast and colors. Although it

is not practical to carry out an experiment of this type, most would agree that

there exists some general intuition concerning what a certain portion of a scene is

expected to contain on the basis of its context. Consider for example figure 4.1:

Under the blacked out regions (left) labeled A,B and C, one would likely claim to
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have some general intuition concerning the contents of each hidden region on the

basis of the surround and the contents of the scene. It is also evident from the frame

on the right that the image content hidden within regions A and B come very close

to this intuition whereas the content that lies beneath region C is very far from

our expectation and would almost certainly require the greatest number of guesses

within the hypothetical guessing game. This region is also the most informative in

a Shannon sense on this basis. The intuition this example provides is that salient

content corresponds to content that is surprising and fundamentally informative in

a Shannon sense. In the latter part of this chapter, this computation is described

formally and examples of its output are given.

4.2 A Mathematical Theory of Communication

It has been discussed formally why the complexity of certain visual tasks demands

attention [226]. The solution to this problem, is that some subset of visual content

is selected at the expense of other content for high-level processing such as object

recognition. In a dynamic environment, it is inevitable that the time available

to evaluate one’s current surroundings and act upon the resultant representation

restricts the content that receives this deeper analysis to only a subset of all visual

input. This raises the question of what content is selected, and why.

Certainly an important element is the current goals of the observer. If a monkey
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Figure 4.2: An example of how context shapes our expectation of scene content.

The content hidden behind regions labeled A and B come close to one’s expectation

while that hidden by C is arguably quite different from what one would guess. C

carries the most surprisal or carries the greatest self-information in a Shannon sense.
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is hungry and is traveling in search of fruit, the tendency to attend to and fixate

more vivid colors is inevitable. That said, there is also an important influence of

the nature of the visual content itself. That is, in the search for fruit a bright

light flashing, an unusual object in the forest, or sudden movement suggestive of

a predator is almost certain (hopefully for the monkeys sake!) to warrant the

deployment of attention and/or fixation. For now the discussion is restricted to

what properties of the stimulus itself results in selective attention either overt or

covert independent of task related information.

As discussed, in order to consider this problem, it would be useful to establish

a formal context in which to consider the elements involved. Some previous ef-

forts have suggested the possibility of information theoretic measures as a means of

guiding selection. Previous efforts fall short of establishing why this may be an ap-

propriate domain in which to consider the problem of visual saliency. Furthermore,

we will establish in the following discussion that the formulation that previous ap-

proaches consider, is perhaps not the most intuitive interpretation of the problem of

attentional selection from an information theoretic perspective. Attneave’s example

suggests that one line of reasoning derived from information theoretic ideals agrees

anecdotally with our intuition of what constitutes salient content. Specifically, the

saliency of a region of a scene corresponds to the likelihood of error, or expected

number of guesses to describe the region on the basis of its context or more formally
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it’s Shannon surprisal or self-information.

4.2.1 Some Previous Efforts

Previous work pertaining to attention that appeals to information theoretic con-

siderations focuses almost exclusively on the notion of entropy. Shannon entropy

is defined as follows: Given a discrete random variable X with possible outcomes

x1, ..., xn, the Shannon entropy H(x) is given by

H(X) = −
n∑
i=1

p(xi)log(p(xi))

The continuous case is analogous with

H(f) = −
∫ ∞

−∞
f(x)log(f(x))dx

with f a probability density function on R.

There are numerous interpretations of this definition all of which are equivalent.

Entropy might be described as a measure of uncertainty. Intuitively the definition

of entropy should require that the measure of entropy is at a maximum for a uniform

distribution since this implies total uncertainty. Consider the example of a coin toss.

For a standard coin the value of H(x) is given by −0.5∗ log(0.5)−0.5∗ log(0.5) = 1.

Now imagine we know ahead of time that the coin is biased and comes up heads 90

percent of the time. In that case, H(x) = −0.9 ∗ log(0.9)− 0.1 ∗ log(0.1) = 0.469.

In the latter situation since we can predict to a greater extent the outcome of the
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coin-toss the associated uncertainty or entropy is reduced. The specific nature of

Shannon’s definition is uniquely defined in satisfying 3 criteria. These include that

H is at a maximum for a uniform distribution, that H is a continuous function of

the probabilities in question, and that regrouping the various outcomes should not

change the measure of entropy.

A slightly different interpretation of this quantity is related to the idea of sur-

prise. The value of −log(p(xi)) is often referred to as self-information and also

sometimes described as the surprise associated with outcome i. Defined in this

manner, entropy measures the average surprise over all possible outcomes. For ex-

ample, in the case of the coins, it may be unsurprising to learn that the biased coin

came up heads. That said, this outcome is far more frequent than the coin coming

up tails and thus the average surprise is consequently lower than the unbiased coin

case.

Another useful interpretation, particularly with respect to neural representation

is that of coding. In short, coding in this context refers to the representation of

some concept or event by another. Consider a hypothetical language that consists

of characters from a 4 letter alphabet. Let us assume that the likelihood of each of

these letters occurring in a message written in this language are p(x1) = 0.5, p(x2) =

0.25, p(x3) = 0.125, p(x4) = 0.125. Consider first the possibility of encoding this

language based on a simple binary representation. That is, let x1 = 00, x2 =
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01, x3 = 10, x4 = 11. Since the alphabet consists of 2 symbols which are always

required to transmit a letter, the average number of bits required for a letter is

2 based on this encoding. Now consider a slightly different encoding given by

x1 = 0, x2 = 10, x3 = 110, x4 = 111. In this case the number of bits is 1 to convey

x1 and 3 to convey x3 and x4. However, one must consider how frequently such

letters occur. The average number of bits in this case is given by 0.5∗ 1 + 0.25∗ 2 +

0.125 ∗ 3 + 0.125 ∗ 3 = 1.75. So we have a more efficient code for the language in

this case and an example which serves to show the relationship between coding and

entropy. This becomes an important point in considering neural representation.

H(x) captures the average number of bits required to store the random variable X.

The precise mathematical details of this discussion are outside of the scope of the

necessary background, but additional details may be found in [205].

In the context of discussing visual stimuli, the relation of entropy to the visual

content varies. In the context of image content, often entropy is regarded in relation

to the grey values within a local patch of the image. Given some local neighborhood,

one can consider the distribution of grey values and derive a measure of entropy on

the local neighborhood. For example, let us assume that one is dealing with a binary

image, with pixels either black or white. In some local region, one might have a mix

of black and white pixels, or a patch that is predominantly white or predominantly

black. The case of an equal number of black and white pixels corresponds to a
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uniform distribution and hence maximum entropy. The entropy is much lower in

instances where the patch is predominantly one color. One can do the same sort of

analysis on a greyscale patch, the only difference being that the number of bins is

greater. Note that the spatial arrangement of pixels has no effect on the resulting

entropy in this case.

Recently, a variety of proposals based on information theory concerning atten-

tion and fixation behavior have emerged. Najemnik and Geisler consider fixation

behavior predicted by a Bayesian ideal observer with the focus on predicting se-

quences of fixations [153]. They demonstrate that human observers appear to

compute an accurate posterior probability map in the search for a target within

1/f noise, and that inhibition of return proceeds according to a very coarse rep-

resentation of past fixations. An important element of this work lies in showing

that target search in primates appears to operate according to maximizing the

information about the location of the target in the selection of fixations.

Lee and Yu propose a model of information maximization as the basis for sac-

cadic eye movements [119]. As with others, the approach of Lee and Yu is based

on local entropy. A distinguishing factor of the approach, is that it is based on

a local hypercolumn representation of Gabor filters rather than simpler features.

A normalization procedure takes place on the basis of the response values of lo-

cal hypercolumns and those in the surround. The choice of this operation comes
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from prior observations that a transformation based on local contrast tends to yield

greater correlation to fixation patterns than the raw features themselves. A step

is also included which maintains a prior memory in the form of a mental mosaic

which may factor into the choice of saccades by discounting the role of mutual in-

formation between any given target location and the existing mental mosaic. This

model has a variety of nice properties, but fundamentally maintains a measure of

local entropy as the basis for selection. The model does not consider performance

based on eye tracking data.

The model of Lee and Yu was imported to an experimental setting by Renninger

et al. to establish its plausibility as a description of primate saliency computation.

[189]. The task involved determining whether the silhouette of a particular shape

matched with a subsequently presented silhouette. Eye movements were tracked

during the presentation to observe the strategy underlying the selection of fixa-

tions. Renninger et al. demonstrate that the selection of fixation points proceeds

according to a strategy of minimizing local uncertainty. This is the same as a

strategy of maximizing information assuming information equates to local entropy.

This will typically correspond to regions of the shape silhouette which contain sev-

eral edgelets of various orientations. In agreement with the work of Najemnik and

Geisler, it was found that there is little benefit to the optimal integration of infor-

mation across successive fixations. One critique that might be levied against an
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entropy based definition is that a definition based on minimizing local uncertainty,

or entropy is inherently local. A further commentary on this issue appears later in

this chapter. Mechanisms for gain control at the level of a single neuron have been

observed which have been shown to correspond to a strategy based on information

maximization [23]. Although the proposal put forth in this paper is distinct from

a description that involves sequences of fixations, the search for a specific target,

or specific task conditions, it is nevertheless encouraging that there do appear to

be mechanisms at play in visual search that serve to maximize some measure of

information in sampling, and it is also the case that the findings of these studies

may be viewed as complementary to our proposal rather than conflicting. It is also

interesting to note that recent studies have observed quantitatively an increase in

the information transmission of a cell associated with stimulation outside of the

classical receptive field [238].

An effort found in the computer vision literature is that of Kadir and Brady

[104]. The approach of Kadir and Brady examines the local Shannon entropy based

on intensity or color values in a local neighborhood. This operation is done across

several spatial scales. Various scales are chosen based on peaks in the entropy

versus scale curve. Subsequently the magnitude change of the probability density

function as a function of scale is measured for each peak. The final saliency map

is then given by the product of the local entropy and the magnitude change in
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the local probability density function. This typically results in the selection of a

variety of circular regions at several spatial scales. This approach is of interest in

how it handles the scale variance of features of interest. In the class of entropy

based approaches, this model is unique in this regard.

As alluded to in the previous chapter, there is currently interest in the selection

of features as a precursor to object recognition. One entropy based approach in

this regard is presented by Fritz et al. [73]. In their model, local features are

selected on the basis of entropy with PCA employed as a precursor to reduce the

dimensionality locally. The focus of this work is on recognition performance, but

the work nevertheless employs an entropy based approach to select a subset of

available visual content.

All of the aforementioned approaches that equate visual saliency to a measure

of information are largely advocating the same theory, that being that a measure of

how much local entropy is present is the basis for selecting gaze points or features.

A slightly different way of saying this would be that fixation or feature selection

chooses the region/features that requires the greatest number of bits to encode the

content of the region and thus it is a region that contains the most information.

It is worth pointing out that in the latter way of stating this idea there is one ele-

ment that one might take issue with. The local content will give rise to a complex

neural representation. That is, a stimulus with a relatively uniform distribution
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with respect to a particular feature measure (e.g. luminance) may actually give

rise to a highly peaked distribution of firing rates in terms of a neural representa-

tion. This implies the feature under consideration (e.g. grey values or orientation)

in measuring entropy influences heavily the choice of gaze points and there is no

particular formula for what the feature or set of features should look like except

that this behavior should be governed by the specific nature of the neural repre-

sentation involved. Additionally, a particular distribution within a chosen feature

space says little about the resulting neural representation. That being said, the fea-

tures employed in some studies do bear a resemblance to those that are emergent

from principled approaches to deriving features such as those selective for specific

combinations of angular and radial frequency [175]. That said, even under the

assumption of such a representation, there are instances under which an entropy

based definition seems to fail to predict observed behavior. In addition to these

issues, there are also some more general philosophical considerations that render

this interpretation questionable. These issues are discussed in the latter sections of

this chapter.

4.2.2 A More Natural Interpretation

The entropy based interpretation of the problem lies essentially in the claim that

the local region that contains the greatest number of bits of information, or un-
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certainty is worth attending to. At first glance this appears to be a nice intuitive

interpretation of the problem. The aim of this section is to introduce a slightly

different interpretation of the problem of attention in an information theoretic con-

text and contrast this against the entropy definition. The core of the problem with

the entropy based definition is that the notion of uncertainty is misleading and

does not always correspond with the content that informs most upon the content

of the scene. The problem of selection of visual content can be stated as follows:

At any given time, an observer is faced with an array of input covering the entire

visual field and is faced with the decision of what to attend to or fixate in terms

of some subset of the overall visual field. When phrased in this manner, the prob-

lem is very reminiscent of a basic problem addressed by information theory, that

is, given a limited capacity channel, which messages should be sent to convey the

maximum amount of information?. In this regard, the incoming visual input may

be regarded as the message space and the local regions that are attended to or

fixated as the messages being transmitted, in this case to other areas of the brain

for more detailed analysis. As in the classic case, it is the nature of the message

space that determines what messages are appropriate to send. The implication of

this is that observation of a single message, or local region is insufficient in itself

to determine what should be selected. This gives some early insight into what is

lacking in the definition of some of the local entropy based approaches and any
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local feature measure for that matter. Further discussion in this chapter elaborates

on this consideration providing details on cases where the traditional measures fail

spectacularly.

For example, consider a scenario wherein the visual field consists of a portrait

hanging on an otherwise blank white wall. Most would agree that having a variety

of local snapshots of the portrait will provide a greater sense of the content of the

scene than a handful of local regions of the empty wall. Of course in this case the

local activity and richness of content (and entropy on this basis) in the portrait

is sufficient to predict this result, however, consider the case of a portrait hanging

on a wall with highly textured and colorful wallpaper. The local activity may no

longer be sufficient to define the portrait as a region of interest in the absence of

some measure of context. It is this thinking that forms the basis for the proposed

approach.

An element of this intuition is captured in the work of Topper [217]. Topper

considered a variety of basic features such as intensity, contrast, edges etc. and their

relation to eye movements. He concluded that a variety of basic features (many

of those examined by Privitera et al. [182].) produce greater correlation to eye

movements when remapped to a space representative of their information content

based on Shannon’s self-information measure. The definition and description of

this information operation was mentioned briefly earlier in this chapter. A more
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detailed discussion of this measure follows in the remainder of this section since

it is an important element of the proposal put forth in this dissertation. Topper’s

work relies on a simple transformation based on local features and thus suffers

from some of the methodological problems discussed in chapter 3 such as having

a poor connection to human performance, and inconsistent performance for any of

the features proposed. Nevertheless, as we will demonstrate there is something in

this basic idea that makes it amenable to addressing the general problem of visual

saliency. When viewed in a specific light the problem of visual saliency appears

in a manner that suggests self-information as a transformation from some internal

neural representation to one of visual saliency. Although this is far removed from

the operation on basic features considered by Topper, as we are not interested in

arbitrary feature sets, or any ad hoc choice of operators, it is interesting to note

the performance gain resulting from an operation with some relationship to the

eventual formulation derived in this chapter.

An additional consideration that has not yet been mentioned, is that of anisotropy

in sampling. That is, content centered in the fovea has a more complex representa-

tion than that appearing in the periphery in regard to photoreceptor density. This

is an issue that has been avoided by many previous efforts at understanding vi-

sual saliency. For the time being, the discussion assumes a representation in which

all content exists in a relatively low resolution uniformly sampled representation.
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Figure 4.3: A depiction of the basic elements of a communication system. Adapted

from [205].

Some deeper analysis of this consideration appears in the chapters that follow.

Let us consider this issue in a somewhat more formal context. Consider first

figure 4.3. Figure 4.3 depicts the typical schematic of a general communication

system. An information source is conveyed to a transmitter, from which messages

are then passed on to a receiver and the messages arrive at their destination. In

its intermediate form the message may or may not be subjected to the influence of

some noise process. The nature of communication is such that the entire message

cannot be transmitted in its entirety in parallel, but rather pieces of the message

may be sent over time. The size of these pieces is governed by the capacity of the

channel and given a limited time course or an ever changing information source,

only a small subset of all possible messages may be sent.

In a similar manner, the complexity of content in the visual field prohibits a
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deep analysis of all such content in parallel. This difficulty is solved by selecting

some subset of visual content (a message) from the information source (incoming

input comprising the contents of the visual field) and relaying this content to higher

areas of the visual cortex (the receiver). The encoding of the incoming signals may

be viewed as the actions that early neurons of the visual cortex perform on such

signals.

In the classic problem, the messages that warrant transmission are governed

by the properties of the message space. That is, in the example of the sentence

the man went to the store to buy some bread, if the message space consists of our

vocabulary of English words, the decision to send messages that are improbable

yields a sentence that is highly informative.

A basic definition from information theory that encapsulates this idea is termed

self-information. Self-information quantifies the amount of information that knowl-

edge of the outcome of a certain event adds to one’s overall knowledge. The

self-information associated with the outcome An is given by −log(p(An)). Self-

information is related to entropy in that entropy quantifies the weighted average

self-information over the entire set of possible outcomes. So in the example of the

biased coin toss, the self-information tells us that learning the coin came up tails

is more informative than learning it came up heads.

Framed in the context of the communication problem, in the same manner as
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self-information defines which packets to send to convey the maximum amount of

information about the information source or message space, it may tell us which

local regions of an image or scene inform most upon the contents of the image,

and as such deserve the status of greater scrutiny by higher brain structures, or

foveation.

The preceding formulation is expressed in figure 4.4. Figure 4.4 shows a scene

S and some local neighbourhoods Nk with their local surround Ck. The question

is that of the extent to which each N provides information about the contents of

C, or S. Note that there is no claim being made as to the shape or size of N or

C, but rather the figure merely uses circle shaped regions as an illustration of a

generic neighborhood and its surrounding context.

4.2.3 Self-Information versus Entropy

The preceding discussion outlines the basic definition of entropy and its relation

to self-information. The following discussion focuses specifically on the difference

between these measures in the context of vision. The difference is subtle but impor-

tant on two fronts. The first consideration lies in the expected behavior in popout

paradigms and the second in the neural circuitry involved.

Let X = [x1, x2, ..., xn] denote a vector of RGB values corresponding to im-

age patch X, and D a probability density function describing the distribution of
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Figure 4.4: An illustration of the basic setup. The question is that of the extent to

which each N informs on the associated C, or indeed S. Most would agree that N1

provides more information about the contents of the scene than N2.
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some feature set over X. For example, D might correspond to a histogram esti-

mate of intensity values within X or the relative contribution of different orienta-

tions within a local neighborhood situated on the boundary of an object silhouette

[188]. Assuming an estimate of D based on N bins, the entropy of D is given by:

−
∑N

i=1Dilog(Di). In this example, entropy characterizes the extent to which the

feature(s) characterized by D are uniformly distributed on X. An example for 2

feature domains (grey levels and orientations) is show in figure 4.5. The woman’s

eye, and the bottom region of the silhouette have relatively more uniform distri-

butions and hence higher entropy. Note that the silhouette shown is of the type

employed in the study of Renninger et al [188]. Self-information in the proposed

saliency measure is given by −log(p(X)). That is, Self-information characterizes

the raw likelihood of the specific n-dimensional vector of RGB values given by X.

p(X) in this case is based on observing a number of n-dimensional feature vectors

based on patches drawn from the area surrounding X. Thus, p(X) characterizes

the raw likelihood of observing X based on its surround and −log(p(X)) becomes

closer to a measure of local contrast whereas Entropy as defined in the usual man-

ner is closer to a measure of local activity. The importance of this distinction is

evident in considering figure 4.6. Figure 4.6a depicts a variety of candles of varying

orientation, and color. There is a tendency to fixate the empty region on the left,

which is the location of lowest entropy in the image in color and orientation space.
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Figure 4.5: The distributions associated with two different features (greylevels and

orientations). The eye region and the region on the lower part of the silhouette

have more uniform distributions and hence higher entropy.

In contrast, this region receives the highest confidence from the quantity proposed

in this work as it is highly informative in the context of this image. In figure 4.6b

a silhouette of a figure is presented of the type considered by Renninger et al. In

this case there is a tendancy to fixate the relatively flat region on the lower right of

the figure, which corresponds to a highly peaked distribution in orientation space

and is the locus of minimum entropy according to their measure.

It is worth briefly mentioning scale since evidently the local entropy and self-

information associated with a more global context are influenced by the size of the

region under consideration. For example, one might argue that for a sufficiently

large window (or viewed from sufficiently far away), an entropy based operator
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Figure 4.6: Examples that highlight the difference between entropy and self-

information. a. Fixation invariably falls on the empty patch, the locus of min-

imum entropy in orientation and color but maximum in self-information when the

surrounding context is considered. b. There is a tendency to fixate the relatively

flat region on the lower right of the silhouette, a region of minimum entropy in

orientation space. This is contrary to the predictions of the model of Renninger et

al. [188].
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might also predict the empty white region as most salient. It is less clear in the case

of the object silhouette whether this is true. That said, the self-information operator

provides the behavior one would expect regardless of the scale under consideration,

whereas in this case an entropy based operator would offer an appropriate prediction

only within a specific range of neighborhood sizes. The issue of scale also has a

strong relationship to receptive fields. One would expect the receptive field size at

any given layer to influence the region size over which entropy or self-information

might be computed on the basis of the number of interneuron connections increasing

as a function of this window. These are thoughts to bear in mind in the discussion

of circuitry and coding in chapter 6.

4.3 A Computational Approach to Measuring Local Infor-

mation

One problem that has not yet been discussed, is that of how the self-information

of some local neighborhood (N in figure 4.4) can be computed in a general sense.

Consider first the data carried by a single pixel of a color image; the content of

the pixel is characterized by three numeric values corresponding to the red, green,

and blue content of the pixel. If one wishes to characterize the distribution of

pixel values in an entire image, this requires considering where all of the pixels
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lie in a three dimensional space of RGB values. This is not difficult to estimate,

but consider how the problem scales up to 2 pixels, or n pixels. In the case of 2

pixels, the distribution resides in a six dimensional space. In the case of n pixels,

the estimate resides in a 3*n dimensional space. Convergence of the estimate is

inversely proportional to the dimensionality of the space and grows exponentially

with dimensionality. To appreciate this problem consider the following: Choosing

100 values randomly on the unit interval [0,1] provides a reasonable covering of

the interval with a small distance on average between points. To achieve a sim-

ilar covering of a 48 dimensional space (the dimensionality of a 4x4 RGB image

patch) would require 1096 points, a quantity greater than estimates of the number

of particles in the universe! Chapter 6 explores this issue in much greater detail

than is presented here, including motivating this problem in a more formal setting,

examining how the brain resolves this issue, and proposing specific circuitry in this

regard. For now the discussion is restricted to a brief overview of the solution to this

problem in a computational sense with only a very brief mention of neuroanatomy.

There exist a variety of statistical techniques that seek to discover structure

in high-dimensional data. There also exists rather compelling evidence that the

human brain encodes visual content in a manner closely resembling the statistical

machinery underlying some of these techniques [13; 69]. One such approach that

appears to result in an especially close match to the encoding appearing in the vi-
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sual cortex of primates is Independent Component Analysis (ICA) [120]. ICA is a

method for reducing a data set to subcomponents that are statistically independent

and non-Gaussian. When applied to local patches drawn from natural images, ICA

learns basis functions that resemble orientation selective cells at various angular

and radial frequencies, color opponent cells, spatiotemporal receptive fields, and

disparity selective cells all very similar to those found in the primary visual cortex

of primates. These results strongly suggest that the primate visual system employs

a sparse representation of the type learned by ICA algorithms, which takes advan-

tage of redundancy in visual content. A few studies that consider the relationship

of ICA to the specific properties of cortical cells indicate that the tuning of indepen-

dent components learned from natural images is a good match with cortical neurons

including the representation of color opponency [35], luminance/chromaticity pref-

erence [35], peak orientation and orientation bandwidth [35; 233], peak spatial

frequency and spatial frequency bandwidth [35; 233], and aspect ratio [35; 233].

The most important property of a sparse representation, which will become

apparent in the sections that follow, is that the activation of different types of

cells are assumed to be mutually independent. For example, a cell that responds

optimally to a vertical edge will not respond to a horizontal edge. Having such an

independence assumption means that the distribution of each type of cell encoding

an image can be modeled independently, greatly reducing the data required for any
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estimate on the distribution of such variables. Specific details of the relation of this

operation to the representation of local image content is presented in the section

that follows.

4.4 The Model

In this section, the definition of saliency is given in more specific terms under the

assumption of a learned V1 like independent representation as discussed. Saliency

is determined by quantifying the self-information of each local image patch. To

reiterate the problem briefly, even for a very small image patch, the probability

distribution resides in a very high dimensional space. There is insufficient data

in a single image to produce a reasonable estimate of the probability distribution.

For this reason a representation based on independent components is employed for

the independence assumption it affords as discussed. ICA is performed on a large

sample of 11x11 RGB patches drawn from natural images to determine a suitable

basis. For a given image, an estimate of the distribution of each basis coefficient

is learned across the entire image through non-parametric density estimation. The

probability of observing the RGB values corresponding to a patch centred at any

image location may then be evaluated by independently considering the likelihood

of each corresponding basis coefficient. The product of such likelihoods yields the

joint likelihood of the entire set of basis coefficients. The overall architecture for this
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computation is depicted in figure 4.7. Elements depicted in the figure are as follows:

Each shaded rectangle depicts an operation involved in the overall computational

framework (For a more detailed description, refer to appendix A):

Infomax ICA: A large number of local patches are randomly sampled from a set

of approximately 4000 natural images. Based on these patches a sparse spatiochro-

matic basis is learned via infomax ICA. An example of a typical mixing matrix

labeled as A is shown for 7 x 7 windows.

Matrix Pseudoinverse: The pseudoinverse of the mixing matrix provides the

unmixing matrix which may be used to separate the content within any local region

into independent components. The functions corresponding to the unmixing matrix

resemble oriented Gabors and color opponent cells akin to those appearing in V1.

Matrix Multiplication: The matrix product of any local neighbourhood with the

unmixing matrix yields for each local observation a set of independent coefficients

corresponding to the relative contribution of various oriented Gabor-like filters and

color opponent type cells.

Density Estimation: Producing a set of independent coefficients for every local

neighborhood within the image yields a distribution of values for any single coeffi-

cient based on a probability density estimate in the form of a histogram or Kernel

density estimate.

Joint Likelihood : Any given coefficient may be readily converted to a probability
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by looking up its likelihood from the corresponding coefficient probability distri-

bution. The product of all the individual likelihoods corresponding to a particular

local region yields the joint likelihood.

Self-Information: The joint likelihood is translated into Shannon’s measure

of Self-Information by −log(p(x))). The resulting information map depicts the

Saliency attributed to each spatial location based on the aforementioned computa-

tion.

Details of each of the model components are as follows:

Projection into independent component space provides, for each local neighbor-

hood of the image, a vector w consisting of N variables wi with values vi. Each wi

specifies the contribution of a particular basis function to the representation of the

local neighborhood. As mentioned, these basis functions, learned from statistical

regularities observed in a large set of natural images, show remarkable similarity

to V1 cells [13; 69]. It is important to note that under certain conditions, ICA

is equivalent to Linsker’s infomax proposal [131], and certain algorithms [13; 120]

may be seen as heuristics that achieve Linsker’s original proposal. For a detailed

discussion of this issue, readers may wish to refer to [162].

The ICA projection then allows a representation w, in which the components wi

are as independent as possible. For further details on the ICA projection of local im-

age statistics see [26]. As discussed, salience may be defined based on a strategy for
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maximum information sampling. In particular, Shannon’s self-information measure

[205], −log(p(x)), applied to the joint likelihood of statistics in a local neighborhood

decribed by w, provides an appropriate transformation between probability and the

degree of information inherent in the local statistics. It is in computing the observa-

tion likelihood that a sparse representation is instrumental: Consider the probabil-

ity density function p(w1 = v1, w2 = v2, ..., wn = vn) which quantifies the likelihood

of observing the local statistics with values v1, ..., vn within a particular context. An

appropriate context may include a larger area encompassing the local neigbourhood

described by w, or the entire scene in question. The presumed independence of the

ICA decomposition means that p(w1 = v1, w2 = v2, ..., wn = vn) =
∏n

i=1 p(wi = vi).

Thus, a sparse representation allows the estimation of the n-dimensional space de-

scribed by w to be derived from n one dimensional probability density functions.

Evaluating p(w1 = v1, w2 = v2, ..., wn = vn) requires considering the distribution of

values taken on by each wi in a more global context. In practice, this might be de-

rived on the basis of a nonparametric or histogram density estimate. In chapter 6,

we demonstrate that an operation equivalent to a non-parametric density estimate

may be achieved using a suitable neural circuit.

One aspect lacking from the preceding description is that the saliency map fails

to take into account the dropoff in visual acuity moving peripherally from the fovea.

In some instances the maximum information accommodating for visual acuity may

98



Figure 4.7: The proposed model. For additional details refer to appendix A.
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correspond to the center of a cluster of salient items, rather than centered on one

such item. For this reason, the resulting saliency map is convolved with a Gaussian

with parameters chosen to correspond approximately to the dropoff in visual acuity

observed in the human visual system. This simply means that the information gain

in making a saccade reflects the dropoff in visual acuity thus resulting in an arguably

more appropriate representation for comparison with eye movements. This is an

issue that is revisited in more detail in the chapter that follows.

It is perhaps worth mentioning at this point some of the important contributions

of the model to the literature, since the preceding setup offers a greater sense of

how the model relates to the following subject matter relative to the more general

description that appeared in chapter 1:

1. A bottom-up model of overt attention with selection based on the self-information

of local image content.

2. A qualitative and quantitative comparison of predictions of the model with

human eye tracking data, contrasted against the model of Itti and Koch [98].

Some preliminary results are presented in this chapter to give some sense of

behavior on real data, and a more thorough analysis appears in chapter 5.

3. Demonstration that the model is neurally plausible via implementation based

on a neural circuit with properties akin to the circuitry involved in early visual

processing in primates. This is largely the subject matter of chapter 6. The
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focus is on how the model relates to neuroanatomy and circuitry.

4. Discussion of how the proposal generalizes to address issues that defy expla-

nation by existing saliency based attention models. This content is discussed

in chapter 8.

5. There are a variety of behaviors observed in primate psychophysics that are

nicely captured by the proposal of an information theoretic basis for atten-

tional selection. These are described in detail in chapter 7.

6. A role of the proposed saliency descriptor in machine vision. Focus is on the

selection of interest points and the possibility of the representation assumed

by the model to select interest points. This discussion appears in chapter 9.

It is also important to note that there are many aspects of visual perception that

are related to, but distinct from the proposal. For example, task and contextual

factors impact significantly on what is targeted by selective attention. It is impor-

tant to bear in mind that the focus of this dissertation is on modulation of cortical

activity associated with the properties of the visual stimulus itself. This is a prob-

lem distinct from task and context in general, and also distinct from other more

specific task related factors, such as the attenuation/alteration of neural signals to

subserve object representation as one example. This is a problem distinct from the

mechanism by which a subset of visual input is selected, and distinct from task or
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context related bias, with the focus on retaining information as inputs ascend the

visual hierarchy based solely on the properties of the stimulus itself.

4.5 A First Look at Model Behavior and Performance

The following section evaluates the output of the proposed algorithm as compared

with the bottom-up model of Itti and Koch [98]. The model of Itti and Koch is

perhaps the most popular model of saliency based attention and currently appears

to be the yardstick against which other models are measured. The results at this

stage are based on a first choice of parameters and are not intended to be an

exhaustive or thorough depiction of model behavior and performance but rather

are intended to provide some sense of how the model relates to the processing of

real image data with respect to predicting saccadic behavior. In the chapter that

follows, an exhaustive performance evaluation and exploration of the parameter

space is presented.

4.5.1 Experimental Eye Tracking Data

The data that forms the basis for performance evaluation is derived from eye track-

ing experiments performed by the author. Subjects observed 120 different color

images. Images were presented in random order for 4 seconds each with a mask

between each pair of images. Subjects were positioned 0.75m from a 21 inch CRT
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monitor and given no particular instructions except to observe the images. Images

consist of a variety of indoor and outdoor scenes, some with very salient items, oth-

ers with no particular regions of interest. The eye tracking apparatus consisted of

an ERICA workstation including a Hitachi CCD camera with an IR emitting LED

at the centre of the camera lens. The infrared light was reflected off two mirrors

into the eye facilitating segmentation of the pupil. Proprietary software from ABB

corporate research was used to analyze the data. The parameters of the setup are

intended to quantify salience in a general sense based on stimuli that one might

expect to encounter in a typical urban environment. Data was collected from 20

different subjects for the full set of 120 images.

The issue of comparing between the output of a particular algorithm, and the

eye tracking data is non-trivial. Previous efforts have selected a number of fixation

points based on the saliency map, and compared these with the experimental fixa-

tion points derived from a small number of subjects and images (7 subjects and 15

images in a recent effort [182]). As mentioned in chapter 3, there are a variety of

methodological issues associated with such a representation. The most important

such consideration is that the representation of perceptual importance is typically

based on a saliency map. Observing the output of an algorithm that selects fixation

points based on the underlying saliency map obscures observation of the degree to

which the saliency maps predict important and unimportant content and in partic-
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ular, ignores the determination of saliency levels away from highly salient regions.

Secondly, it is not clear how many fixation points should be selected. Choosing

this value based on the experimental data will bias output based on information

pertaining to the content of the image and may produce artificially good results.

The preceding discussion is intended to motivate the fact that selecting discrete

fixation coordinates based on the saliency map for comparison may not present

the most appropriate representation to use for performance evaluation. In this

effort, we consider two different measures of performance. Qualitative comparison

is based on the representation proposed in [112]. In this representation, a fixation

density map is produced for each image based on all fixation points, and subjects.

Given a fixation point, one might consider how the image under consideration is

sampled by the human visual system as photoreceptor density drops steeply moving

peripherally from the centre of the fovea. This dropoff may be modeled based on

a 2D Gaussian distribution with appropriately chosen parameters, and centred on

the measured fixation point. A continuous fixation density map may be derived

for a particular image based on the sum of all 2D Gaussians corresponding to each

fixation point, from each subject. The density map then comprises a measure of the

extent to which each pixel of the image is sampled on average by a human observer

based on observed fixations. This affords a representation for which similarity to a

saliency map may be considered at a glance. Quantitative performance evaluation
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is achieved according to the procedure of Tatler et al. discussed previously [213].

The saliency maps produced by each algorithm are treated as binary classifiers for

fixation versus non-fixation points. The choice of several different thresholds and

assessment of performance in predicting fixated versus not fixated pixel locations

allows an ROC curve to be produced for each algorithm.

4.5.2 Experimental Results

Figure 4.8 affords a qualitative comparison of the output of the proposed model

with the experimental eye tracking data for a variety of images. Also depicted is the

output of the Itti and Koch algorithm for comparison. Figure 4.9 demonstrates a

quantitative comparison based on ROC curves which yields areas of 0.753±0.00816

for self-information and 0.728 ± 0.00840 for Itti and Koch based on a very loose

upper bound for the variance associated with the area under the curve as suggested

in [43; 47] which is significant with p < 0.0001. Although in reality the error

bounds are likely to be much tighter than those mentioned, the preceding serves to

establish significance for the results shown without the need for computationally

intensive analysis required to establish tighter bounds.

In the implementation results shown, the ICA basis set was learned from a set

of 360,000 11x11x3 image patches from 3600 natural images drawn from the Corel

Stock Photo Database and using the Lee et al. extended infomax algorithm [120].

105



Figure 4.8: Results for qualitative comparison. Within each boxed region defined by

solid lines: (Top Left) Original Image (Top Right) Saliency map produced by Itti +

Koch algorithm. (Bottom Left) Saliency map based on information maximization.

(Bottom Right) Fixation density map based on experimental human eye tracking

data.
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Figure 4.9: ROC curves for AIM (red) and Itti and Koch (blue) saliency maps

along with 99% confidence intervals. Area under curves is 0.753 ± 0.00816 and

0.728± 0.00840 respectively based on a conservative upper bound for the variance

associated with estimates of the area under the ROC curves as in [43; 47].
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Processed images are 340 by 255 pixels. Ψ consists of the entire extent of the

image and w(s, t) = 1
p
∀ s, t with p the number of pixels in the image (340x255

in this example). One might make a variety of selections for these variables based

on arguments related to the human visual system, or based on performance and

these considerations are explored in detail in chapters that follow. In our case, the

values have been chosen on the basis of simplicity in order to obtain an early sense

of model performance. In particular, we wished to avoid tuning these parameters

to the available data set. The ROC curves appearing in figure 4.9 give some sense

of the efficacy of the model in predicting which regions of a scene human observers

tend to fixate. As may be observed, at this stage the predictive capacity of the

model is significantly better than the approach of Itti and Koch based on a more or

less random first choice of parameters and encoding of image content. Encouraging

is the fact that favorable performance is achieved using a method derived from a

principled definition, and with no parameter tuning or ad hoc design choices. An

independent comparison of these models has been conducted demonstrating the

superiority of this proposal on an additional dataset for a completely ad hoc choice

of parameters [99].
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4.6 Conclusion

We have described a strategy that predicts human attentional deployment on the

principle of maximizing information sampled from a scene. Although no computa-

tional machinery is included strictly on the basis of biological plausibility, neverthe-

less there are some interesting early parallels to the machinery that facilitates early

visual processing in primates including computational units that resemble those im-

plicated in early visual processing in primates and a model that has inhibition from

the surround as a central element of salience based processing. Comparison with

an existing attention model reveals the efficacy of the proposed model in predicting

salient image content. There are many issues that arise out of the discussion of this

chapter, and much more exploration required in order to evaluate the plausibility

and generality of the model. That said, preliminary results in predicting eye move-

ment patterns are very encouraging, as are early indicators of parallels between this

proposal and the structure of the primate visual cortex. Later chapters reveal a

deeper connection to psychophysics and neural circuitry as well as a more thorough

investigation of the model in characterizing eye movement patterns.
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5 Basis Functions, Context, and Overt selection

The ambition of chapter 5 is to validate the proposal put forth in chapter 4 for pre-

dicting eye movements and in addition, to explore aspects of the role of projection

pursuit in the representation of natural image content. There are various param-

eters involved in the model, and various choices for such parameters make sense

from biological or engineering vantage points. This chapter includes a systematic

exploration of the parameter space with consideration for algorithm performance

and biological plausibility. In each case, the model is compared with that of Itti and

Koch [98] according to the performance metric of Tatler et al. [213] demonstrating

the efficacy of the model (AIM) in predicting the locations of fixation points based

on a fixed 2D image with a fixed head position.

The following sections consider a variety of implementation details associated

with the basic framework put forth in AIM along with some related neurobiological

considerations. It is worth first observing the qualitative and quantitative results

associated with some of the better parameter choices to offer a sense of the efficacy
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of the proposal in predicting fixations on spatiochromatic data. Figures 5.1 and

5.2 offer a sense of the qualitative similarity of the model output to the fixation

density maps. The results shown correspond to the 31x31 receptive field size for

the Jade ICA algorithm with PCA preprocessing retaining 95% of the variance.

The Jade algorithm is discussed in the latter part of this chapter. The choice of

this particular parameter set is intended to offer a sense of performance for one

of the better choices of parameter sets and also to offer results that employ the

same conditions as the results on psychophysics paradigms considered in chapter 7

in light of the issues pertaining to color opponency discussed in this chapter. The

quantitative performance associated with this set of conditions appears in figure

5.3. Note the performance is significantly better than the Itti and Koch algorithm

as described in [98].

5.1 Dimensionality and Receptive Field Size

In the preceding chapter, the utility of a sparse representation with respect to den-

sity estimation was demonstrated. In machine vision applications, the use of ICA

to achieve a sparse representation is often preceded by Principal Component Anal-

ysis, a projection pursuit which selects axes that explain the most variance in the

data. This is an important step since in some cases the space or time complexity

of algorithms involved prohibits consideration of data sets above a certain dimen-

111



Figure 5.1: Qualitative comparison of the output of AIM, the algorithm of Itti and

Koch and the experimental data. From left to right: Original Image, AIM output,

Itti and Koch output, experimental density and the original image modulated by

the output of AIM via a product to offer a sense of the localization of saliency

related activation.
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Figure 5.2: Additional examples of the sort offered by figure 5.1.
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Figure 5.3: ROC curves for AIM (blue) and Itti and Koch (red). Area under the

curves is 0.781 for AIM and 0.728 for Itti and Koch.
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sionality. For this reason, it is sensible to consider dimensionality reduction as a

precursor to learning a sparse representation since it is possible in many instances

to capture an overwhelming proportion of the variance in the data using far fewer

dimensions provided axes are chosen correctly. This also makes sense in a biological

system in which energy and space are limiting factors. For example, if it requires

2000 neurons to adequately represent a particular state, it may be preferable to

instead represent 99.99% of the variance associated with that state using only say

200 neurons. This will have the effect of greatly reducing energy requirements and

boosting the representational capacity of the brain. It should be noted that there

does exist the possibility that the small variance carried by these lower components

may be important for certain tasks and that caution must be taken in reducing the

data in this manner. That said, as the results that follow in this chapter demon-

strate, it is possible to attain a significant savings in the data dimensionality at

only a small cost with respect to perceptual quality.

In order to test the impact of dimensionality reduction on performance in pre-

dicting eye movements, we have considered the data from appendix C which in-

cludes the raw performance associated with various choices for receptive field size,

dimensionality determined by variance captured, spatial scale at which processing

is performed and ICA algorithm. Results include preprocessing via PCA retaining

90%, 95%, 97.5%, 99%, 99.5% and 99.9%. In each case, factors (e.g. choice of ICA
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basis) are considered in isolation by averaging across all scores for dimensions not

under consideration. (e.g. to consider the impact of the basis used, scores are av-

eraged across variance retained, scale of processing and whether or not convolution

is performed)

It is natural to consider these results in combination with considering receptive

field size as dimensionality is a function of receptive field size. Furthermore, owing

to constraints imposed by memory and time complexity, it was not possible to run

all combinations of receptive field size and variance. Results include 11x11, 21x21

and 31x31 windows, a rather coarse sampling in space sufficient for determining the

impact of receptive field size on the determination of visual saliency. A first step

lies in determining the number of components that correspond to these choices of

variance retained. The choice of a lower cap of 90% was based on the observation

that below this level the visual reconstruction of the images in question became

severely degraded. Number of components to retain corresponding to the three

choices of window size are depicted in table 5.1. Note the diminishing returns as

additional components are added.

A complete picture is offered by figure 5.4 depicting the variance explained

versus number of components for each of the three choices of window size. Of note

is the rapid diminishing returns in retaining more components in addition to the

property of scale invariance. Of interest is the fact that scale invariance is preserved
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Var\RF 11x11 21x21 31x31

0.9 4 7 13

0.95 9 25 54

0.975 21 69 150

0.99 48 163 349

0.995 72 251 536

0.999 135 478 1021

Table 5.1: For various receptive field sizes, the number of basis functions required

to retain the desired variance.

for chromatic patches.

It is also interesting to consider how the perceptual quality of these represen-

tations varies with the number of principal components retained. Examples for a

variety of choices for number of principle components is depicted in figure 5.5. Note

once again the diminishing returns associated with the perceptual quality of these

representations in increasing the number of components retained. The examples at

the higher end of the spectrum are perceptually indistinguishable from the original

unprocessed image.

The ROC evaluation described in chapter 5 was performed for all the various

conditions described above and results are summarized in table 5.2 in the form of

the area under ROC curve scores associated with the various conditions.
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Figure 5.4: Variance explained versus number of principal components retained.

Note the rapid diminishing returns and scale invariance of this relationship. Curves

correspond to 11x11 windows (blue), 21x21 (green), 31x31 (red).
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Figure 5.5: An image reconstructed with Principal Components discarded leaving

(left to right, top to bottom) 99.9, 99.5, 99, 97.5, 95, and 90 percent of the local

variance respectively.
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Var\RF 11x11 21x21 31x31

0.9 0.719 0.732 0.749

0.95 0.732 0.755 0.769

0.975 0.738 0.758 N/A

0.99 0.735 0.755 N/A

0.995 0.731 N/A N/A

0.999 0.728 N/A N/A

Table 5.2: Demonstrates the effects of receptive field size and dimensionality re-

duction on area under ROC curve scores. N/A refers to conditions for which the

computational requirements associated with the ICA learning prevented learning

for the combination of variance retained and receptive field size in question.

120



The results shown in table 5.2 demonstrate some interesting aspects of the

saliency computation. With regards to the role of dimensionality reduction, there

is a large difference between a representation that retains 90% versus 95% of the

variance for all RF sizes, but there is much less of a difference among all other

categories. This suggests that above a certain level of variance retained, there

may be little benefit of dealing with a higher dimensionality representation and

also that 95% variance may be sufficient. This level of dimensionality reduction

presents considerable savings as compared with a lossless representation and is

worthy of inclusion in an implementation intended for machine vision applications.

The story concerning receptive field size is very different. In this case there appears

to be a considerable benefit of increasing the receptive field size. This no doubt

is related to the fact that features shift from including localized edge content to

larger blobs or patches of color. It is also evident from the unfilled locations in

table 5.2 that the strategy of learning a basis has inherent limitations owing to the

quadratic increase in dimensionality with receptive field size. One might expect

further improvement from a 41x41 or larger patch size, but hardware limitations

deny consideration of larger regions. For this reason, additional benefit may be

had with regard to performance in constructing an analytic basis with the desired

properties.

There are some important considerations with regard to any system that seeks
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to emulate aspects of human behavior especially those that claim to be biologi-

cally motivated/plausible. It is possible to make design decisions in line with the

macroscopic structure of a biological system that ignore some of the smaller de-

tails that have as emergent properties behavior that is misleading in the sense that

introducing some of these ostensibly lesser constraints can change the behavior of

the system entirely. One factor that may be suggested as falling into this category

is that of receptive field size. Many systems that claim biological plausibility tend

to overlook this consideration. In the model of Itti, Koch and Niebur, there is no

discussion of how the receptive field sizes employed in their implementation relate

to neurobiology. Owing to the pyramid representation employed in their implemen-

tation, some of the receptive fields employed are of a size more closely resembling

those appearing in higher visual areas. There is no discussion of the implications

of this from the perspective of how the model relates to a neurobiological analogue.

It is also unclear why some set of basic features should be the only factors that

contribute to the determination of saliency since the larger receptive fields seem to

imply the involvement of higher visual areas for which neurons code for a variety

of more complex features. These issues are further discussed in chapter 8 as more

general issues pertaining to modeling are addressed.
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5.2 Sparse Representation

The process of learning a sparse representation is not an exact science. Unlike

a projection pursuit based on principal components, there is not a closed form

solution to seeking components for which the optimality criterion is independence.

To satisfy ourselves that the choice of ICA basis is not an overwhelming factor in

the determination of saliency, we have chosen two of the more popular algorithms

as a basis for comparison. It is worth noting that two basis representations that

are both truly independent should yield the same result in the determination of

saliency and thus similar results from the two algorithms should afford at least

some confidence on the independence assumption inherent in the computation.

Independent component analysis proceeds according to the assumption that a

multivariate signal is comprised of an additive combination of subcomponents that

are mutually independent. The goal of such algorithms generally involves an itera-

tive procedure that seeks to maximize the statistical independence of the constituent

elements. There are a variety of criteria that are related to independence that are

exploited by these algorithms including seeking non-Gaussianity, high kurtosis and

minimizing mutual information.

Two commonly employed ICA algorithms, which are robust and produce stable

solutions across multiple runs are the infomax algorithm [120], and Jade [32]
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algorithm. A brief description of each algorithm and their differences follows:

The basic framework of ICA assumes the existence of n independent signals

s1(t), ..., sn(t) and n observations comprised of mixtures of the independent signals

x1(t), ..., xn(t) so that xi(t) =
∑n

j=1 aijsj(t). For convenience this can be repre-

sented more compactly as x(t) = As(t) and A is referred to as the mixing matrix.

ICA seeks to recover s(t) given only x(t) and the problem may be formulated as

finding a separating matrix B such that y(t) = Bx(t) where y(t) is an estimate of

s(t). Algorithms seeking independent components proceed by way of optimizing a

contrast function on the output y. That is, by optimizing a scalar measure of some

distributional property of the output y. Such contrast functions are abbreviated as

Φ(y).

5.2.0.1 Infomax

The infomax method proceeds according to maximizing the contrast function Φ[y] ≡

−H[g(y)] where H[.] denotes the Shannon entropy. This projection pursuit then

seeks a form for y that is effectively as uniform as possible.

5.2.0.2 Jade

The Jade algorithm is based on higher order statistics and involves observing cor-

relation beyond second order through consideration of cumulants. Although the
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details of this procedure are beyond the scope of this dissertation, it is worth noting

that the optimization is fundamentally tied to the kurtosis of the source distribu-

tions. In each case, optimization proceeds according to maximizing a function that

is correlated with the independence of the constituent elements.

5.2.1 Sparsity and ROC scores

The ROC scores averaged across all conditions for the two different ICA algorithms

are 0.7415 for Jade and 0.7423 for Infomax. Thus, there is no significant difference

associated with the choice of ICA algorithm and a detailed look at the data indicates

that for all choices of other parameters the ROC scores associated with the two

algorithms is very similar. This is an encouraging result, as any truly independent

basis should yield the same quantitative determination of visual saliency, and the

metrics based on these two algorithms are nearly identical.

One issue that is not addressed in the literature concerning ICA specific to chro-

matic content, is the extent to which the resulting representation of color opponency

is in agreement with that observed in the visual cortex. While a thorough analysis

of this problem is beyond the scope of this dissertation, anecdotal evidence in the

form of observations made in performing the experiments that appear in chapter 7

suggests that the representations learned via higher order cumulants given by the

Jade algorithm tends to yield a representation of color opponency that is closer to
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that which appears in the visual cortex.

5.3 Centre and Surround

Thus far we have considered only the case where the local context consists of the

entire image in question. In the chapter that follows the focus shifts to the im-

plementation including the plausibility of this account and possible cortical mech-

anisms for the proposed computation. It is worth however considering the scores

associated with a model in which the surround statistics are determined locally.

Unfortunately, in the absence of the sort of parallel hardware with which the brain

is equipped, this is a consideration that proves to require an overwhelming degree

of computation requiring a local density estimate to be performed for every local

neighbourhood. In the chapter that follows, a means of computing this quantity via

a simple circuit architecture is described which gives a sense of a possible cortical

analogue of this behavior. That being said, although an exhaustive determination

of performance based on local centre and surround regions proves computationally

prohibitive it is at least worth carrying out this performance evaluation for a single

sensible choice of these parameters motivated by biological observations.

The specific choice of parameters for this analysis are based on the data ap-

pearing in Figure 7 in [178] corresponding to a dropoff in surround modulation

by a factor of approximately 200 over approximately 5 degrees visual angle. The
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receptive field size relative to this surround varies with change in scale and was

fixed at 21x21 pixels corresponding to the Jade algorithm preserving 95% variance.

This yields an ROC score of 0.7472 for the image processed at full scale, and 0.7620

processed at half scale. In both cases these are once again significantly better than

the algorithm of Itti, Koch and Niebur, but fall short of the scores associated with

a more thorough optimization using a global context. In any case, it may be said

that this result suggests promise in regard to model performance based on local

center-surround interaction and a more exhaustive exploration of the parameter

space might bring scores in line with the global context case. It is also interest-

ing to note, that this particular form of computation would lend itself well to an

implementation in hardware.

5.4 Visual Acuity

The role of visual acuity within saliency computation is an issue that has for the

large part been ignored in computational modeling. There are many factors associ-

ated with the central proposal of this dissertation, and the issue of neuron density

in the cortical representation is a deep issue in itself that this document does not

seek to explore in detail. That being said, there are a few simple aspects of this

issue that deserve discussion.

In the chapter that follows, it is clear in the discussion of how the proposal of
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AIM relates to cortical circuitry that the proposal is amenable to an implementation

in which photoreceptor density is non-uniform. Thus from a theoretical perspective

the issue of non-uniformity in the underlying cortical representation is inherent

in the basic proposal, but for the sake of parsimony in computation and in the

complexity of the implementation, is not captured in the quantitative performance

metrics presented.

A secondary issue of interest pertaining to visual acuity concerns the role of

clustering of targets. Some behavioral experiments indicate that experimental par-

ticipants may direct saccades to the centre of a group of targets as opposed to any

single target suggesting that the determination of salient content may account for

photoreceptor density being sufficient to sample a number of targets in a single sac-

cade provided they are all within a localized region [83]. To determine whether this

consideration has any impact on the proposed saliency computation, the resulting

saliency landscape has been convolved with a Gaussian with parameters chosen to

approximately correspond to the dropoff in visual acuity observed from the fovea to

the periphery in order to determine the overall saliency associated with locations for

which no targets are present but for which a number of salient targets are nearby.

Average ROC scores associated with convolved versus non-convolved saliency maps

according to this metric are 0.7525 and 0.7313 respectively. Although there does

appear a small difference in the score for these two conditions computationally,
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it is worth noting that some mechanism that accounts for visual acuity would be

required to capture the results appearing in [83] and is a worthwhile consideration

in addressing clustering effects.

As a whole, the specific relationship between visual acuity, photoreceptor density

and cortical representation is an area that would benefit from further consideration

on the side of computational modeling, but any further consideration is beyond the

scope of this thesis.

5.5 Discussion

Performance metrics over all conditions vary from the low end of the spectrum with

scores in the ballpark of the algorithm of Itti and Koch [98] to performance signifi-

cantly greater at the high end. It is interesting to note that many of the parameters

have little effect on the determination of saliency scores and qualitatively on the

resulting saliency landscape. As a whole, the results demonstrate that the proposal

has the following advantages over its predecessors:

1. A principled proposal for the specific nature of cortical saliency computation.

This is in contrast to the model of Itti and Koch [98] in which the normal-

ization operator (which is the closest analogue of the proposed computation

within their model) is a crude approximation. This is arguably the most im-

portant portion of the computation specific to saliency when separated from
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other more pejorative elements such as the selection mechanism.

2. A saliency metric that outperforms any of its competitors in predicting eye

movement patterns in human observers.

3. A saliency metric with early indicators of biological plausibility owing to the

similarity of elements involved to cortical cells despite the motivation under-

lying its construction being a means of local likelihood evaluation achieved

by way of independence. It is revealed in the chapters that follow that this

computation has an even stronger relationship to cortical circuitry and has as

emergent properties, a variety of behaviors that agree well with a wide range

of psychophysics results.

In the chapters that follow, issues surrounding this basic architecture, including

its relationship to more general aspects of attention modeling are explored further,

underscoring the plausibility of the proposal.
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6 Efficient Coding and Density Estimation in

the Brain

In chapter 4 we employed the assumption of a transformation to a sparse repre-

sentation as a mathematical convenience in the context of the proposed model. In

this chapter we demonstrate why such a representation is a necessity rather than

a mere convenience. We highlight evidence for sparse coding in the primate brain

and further document the apparent ubiquity of sparse coding within the animal

kingdom. Following this, more formal discussion is put forth demonstrating the

necessity of sparsity from the perspective of complexity arguments.

The notion of neural representation of likelihoods is a necessary component for

any model of the brain that posits the involvement of statistical inference in decision

making. Assuming a sparse representation, we demonstrate that a simple neural

circuit may achieve neural density estimation to a great deal of precision. The key

to this lies in the fact that the likelihood of any individual neurons firing rate can

be estimated on the fly without an explicit representation of a probability density

131



function.

6.1 Why a Sparse Code?

The brain is required to encode incoming sensory patterns in addition to its internal

states through patterns of neuron firing. If each neuron in a particular represen-

tation is described as being either active or passive, this provides a simple means

of considering properties of the code. For example, how many units are active

on average in representing a particular stimulus or state? In a code where only

a single unit is active for any given stimulus or state, it is very easy to read the

representation in the brain, but the number of states that can be represented is

limited to the number of neurons. On the other hand if each possible stimulus or

state is represented by a large number of active neurons, this allows the possibility

for an enormous number of stimuli or internal states to be represented. That said,

a result of this dense code is that states are hard to learn and hard to read, with a

significant possibility of interference or producing an incorrect interpretation of the

brain state by virtue of the fact that many neurons are shared between different

representations. Foldiak provides a nice summary of the properties of these various

types of coding schemes in [71] and these are depicted in table 6.1.

Immediately evident in glancing at table 6.1, is that a sparse coding scheme

has some nice tradeoffs between local and dense coding schemes. The human brain
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Property \ Coding Scheme Local Sparse Dense

Representational Capacity very low high very high

Memory Capacity limited high low

Speed of Learning very fast fast slow

Generalization none good good

Interference none controlled strong

Fault Tolerance none high very high

Simultaneous Items unlimited several one

Table 6.1: A summary of the properties of various coding schemes. From [71].

requires a representation that includes a reasonable capacity for representation,

while being robust to interference and at the same time retaining the ability to

learn quickly, in some instances based on only a small number of exemplars.

For a dense code, the representational capacity is very high (2N in the binary

case). This is not especially useful since the representational capacity of any prac-

tical system will never approach the requirement of this many states. It is sufficient

to use an encoding in which a handful of units is active in representing a particular

state. This allows sufficient representational capacity while maintaining many of

the advantages that a sparse code affords. It is not worth considering all of these

properties exhaustively, but it is worth stating that sparse codes may allow suffi-

133



cient representational capacity for visual representation, are fast to learn, and are

reasonably tolerant to errors while maintaining strong generalization.

It is interesting to consider the precise criterion for the tradeoff between local

and dense codes. A large part of the gain from a sparse code comes from the

fact that representation takes advantage of the statistical properties of the patterns

under consideration. This was a sentiment expressed by Barlow in an important

piece of work in which he expressed the need for suspicious coincidences or sensory

cliches to be observed in order to allow efficient representation of content [11].

For example, since there exists a great deal of redundancy in the representation

that appears at the level of the retinal input, it makes sense to transform this data

in such a way that the redundancy in the resultant representation is minimized.

This is the reason why the visual system is very capable at distinguishing between

seemingly complex stimuli with subtle differences such as faces, relative to simpler

patterns such as random dots.

6.2 Physiological Evidence for Sparse Coding

With respect to efficient coding in the visual cortex, this is an area that has received

a great deal of attention in the past decade. In early work, Linsker demonstrated

that according to the infomax principle a layered network with Hebbian learning

across layers may result in self-organization into opponent-type [128], and oriented
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filters [129], as well as organization into cortical columns [130].

The mid 1990’s introduced some additional important computational work, fur-

ther demonstrating an explicit link between principles such as information transfer,

sparsity and neural encoding. Olshausen and Field [69] and Bell and Sejnowski

[13] published important work at this time demonstrating that learning an efficient

code based on minimizing redundancy, or maximizing independence gives rise to a

representation with properties very similar to neurons appearing in V1. That is,

the application of an approach such as independent component analysis to a large

set of local image patches gives rise to a basis that resembles a bank of gabor-like

filters. It is worth mentioning that in some cases, the algorithms in question may

be seen as an efficient means of learning an infomax relationship in accord with

Linsker’s proposal. [131]

Since this time, further efforts based on sparse coding have yielded models of

spatiotemporal cells in visual cortex [233], color-opponent cells [121; 212], disparity

selective cells [165] and also complex V1 cells [95] and cells coding for contours

[91] as well as simple V2 type cells [94]. All of this lends credibility to the claim

that the visual cortex appears to implement a sparse code of natural stimuli among

early visual areas and suggests that this sparsity may only deepen as one ascends

to higher visual areas.

On the side of human data, consideration of the extent to which sparse coding
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appears in the cortex has proven nontrivial. One obstacle lies in the difficulty of

physically recording across an ensemble of neurons over which sparseness might be

measured.

The most obvious observation that may be cited as evidence in favor of sparse

coding is that it is very difficult to find an effective stimulus for neurons appearing

in even intermediate visual areas and exceedingly difficult for areas such as IT. This

strongly suggests a sparse code in itself since it implies that only a small number of

units is active for any given stimulus as the sparseness across stimuli is equivalent

to the narrowness of tuning [71]. Even as early as V1 many units respond only

to a localized edge or grating and only if the stimulus has a specific orientation,

spatial frequency, direction of movement, or stereo disparity. Even at this stage

such a configuration is indicative of the fact that only a small number of units

will be active for a particular stimulus. In some interesting work by Vinje and

Gallant [237; 238] it was demonstrated that V1 neuron responses were sparse and

additionally stimulation of the non-classical receptive field resulted in decreased

correlation in neighboring neurons indicating whitening of the responses.

Units in higher areas such as IT often respond only to specific complex geo-

metrical patterns and are difficult to describe in terms of simple properties such as

color, orientation or motion. Baddeley et al. demonstrated sparse responses within

IT cells on par with the activity ratio observed in V1 [10].
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Arguments favoring sparsity also appeal to notions of energy use. For example,

it has been argued that the biochemical energy available for action potentials limits

the average firing rate of neurons to an amount less than 1 Hz [9], and furthermore

it has been argued that only 2 percent of any population of cortical neurons can

exhibit high firing rates on the basis of energy related arguments [122]. In addition

to the human visual system, there are a variety of examples in nature where sparse

coding has been observed. Examples include sparse coding in auditory neurons in

rats [53], olfactory neurons in insects [177], somatosensory neurons in rats [21]

and recordings from rat hippocampus [214]. Sparsity has also been observed in

prefrontal cortex in rhesus monkeys [1]. Sparsity is also observed among motor

neurons. Examples of this include include rabbit [14] and rat [22] motor cor-

tices. In the case of rats it was demonstrated that stimulating a single neuron was

sufficient to cause movement of a whisker.

An additional aspect of coding is that while principles such as minimizing redun-

dancy tend to produce a sparse code, sparsity in itself does not imply meaningful

features. That is, it might be possible to construct a random code with the same

sparsity as one designed according to some optimality criterion. The additional

advantage that comes from the latter scheme, is that units correspond to real phe-

nomena in the statistics and thus have intrinsic meaning. This allows consideration

of similarity among codes as well as the kind of similarity present. This is an im-
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portant consideration in a system in which simple primitive features are gradually

combined to form elements that code for more complex patterns in a possibly even

more sparse encoding. As a whole the evidence is suggestive of sparse coding as

ubiquitous in the visual cortex, and with units that represent meaningful elements

of visual content.

6.3 Sparse Coding and Computational Complexity

It is worth commenting on complexity as it pertains to coding in the context under

consideration. We are concerned specifically with how the brain performs infer-

ence based on quantities that rely on probability density functions. The following

demonstrates how the relationship between the data required for a probability den-

sity estimate and the dimensionality of the space is an exponential one. This im-

plies that a sparse representation is of utility for a system that scales up to realistic

problem sizes. Consider first the case of estimating a one dimensional probability

density function. Let us assume that the distribution is adequately described by k

points. Now consider the same estimate on a set of 2 variables that are pairwise

dependent. To achieve a similar covering of the PDF, one requires k2 points and

in general, a D dimensional space will require kD points where each point may

be assumed to correspond to a training sample or observation that informs on the

PDF. It is easy to appreciate how quickly this quantity grows. For example, let us
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consider the case mentioned in chapter 4. For a 4x4 RGB image patch (D = 48),

with k = 102 one requires 1096 samples to achieve the same covering of the space as

a 1D distribution. To put this number into perspective, estimates of the number of

particles in the universe are on the order of 1080 and in order to achieve a covering

of the desired precision for a 4x4 image patch one would have to experience 4.8

x 1087 training samples every second of their life assuming a lifespan of 66 years.

The reason this is not a problem in practice, is that the entire (in this case 48

dimensional) space is not interesting. In fact, only a small proportion of this space

corresponds to the sort of observations that exist in the real world. For this reason

it makes sense to i. encode content in a manner that exploits this property and ii.

have some degree of sparsity built in to the system since even for relatively small

degrees of dependencies between features, the training required becomes unfeasible.

6.4 Density Estimation in an Ensemble of Neurons

This section introduces a simple neural circuit that is equivalent to a non-parametric

density estimate based on any kernel function. The relationship between the re-

sulting circuitry and neural circuitry is considered. In particular, the structure of

the circuit is shown to be very similar to some well-established neural circuits, and

some additional requirements (e.g. long range lateral excitation) are also consis-

tent with its design. A corollary of the result is a circuit for entropy estimation.
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It is worth noting that similar computation might be achieved in the context of a

population coding scheme (e.g. [75; 102]) but that the proposed formulation has

the advantages of similarity to simple cortical circuits and additionally does not

require memory of the probability density distribution, but instead computes only

likelihoods of observed firing rates locally and based on the current state of neurons

involved in the estimate.

In this formulation, we demonstrate how a sparse representation lends itself

to density estimation based on simple circuitry acting on an ensemble of neurons.

The importance of such a circuit cannot be understated. The assumption that the

brain is capable of building probability densities is fundamental to many schools of

thought concerning how the brain functions (e.g. perception as Bayesian inference).

The following demonstrates how a sparse representation allows the estimate of the

likelihood of the firing rate associated with any given neuron to an arbitrary pre-

cision, and without the requirement of an explicit representation of the underlying

probability density function.

Definition Let N denote an arbitrary ensemble of n neurons in the brain with the

condition that N contains n distinct neurons that code for all types of features at

a specific position in space-time.

Definition Let Ω denote the set of neurons that comprise the context of N . That

is Ω codes for the same features as N but in the surrounding context. Returning
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to the visual analogue, one might consider Ω to be a set of adjacent hypercolumns

surrounding N . An additional possibility would be a non-spatial context for Ω.

For example, one might consider Ω to describe previous exemplars for the elements

of N drawn from a specific context. Experience with a tropical bird might result

in a variety of exemplars in which auditory neurons that code for high temporal

frequency are active, while those coding for low frequency signals remain relatively

inactive. One might also consider the possibility that the elements of Ω comprise

a summary of many exemplars stored in associative memory. The generality of Ω

is unlimited with the sole constraints being that it describes a context in which N

resides, and the Ωk ∈ Ω each contains the same n elements as N .

Definition Let ∆ be a function that minimizes mutual dependence among the

various Ni ∈ N and Ωk,i ∈ Ωk such that the assumption of independence between

Ni and Nj and between Ωk,i and Ωk,j is valid ∀i 6= j within some finite error

limit. One might liken this to the operation that a hypercolumn in the visual

cortex performs on incoming sensory input if searching for a neural analogue. It is

worth noting that this transformation is not a mathematical requirement for the

formulation that follows, but is necessary to overcome the combinatorial explosion

of connections associated with representations of higher dimensionality.

Definition Let us denote ∆(N) as N ′ and ∆(Ω) as Ω′. To avoid any confusion

based on notation, it should be noted that ∆(Ni) 6= N ′i but rather each N ′i is a
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mixture of all elements of N and Ω′k,i is a mixture of all Ωk.

Lemma 6.4.1 For a non-parametric density estimate based on a symmetric kernel

K, the contribution of Ω′k,i to the estimate of N ′i is equivalent to the contribution

of N ′i to the estimate of Ω′k,i.

Proof A kernel density estimate in this case is a function of the difference in firing

rate between N ′i and Ω′k,i. Let γ equal this distance. Since K is a symmetric kernel,

K(γ) ≡ K(−γ).

Lemma 6.4.2 The likelihood associated with the firing rate of Ni based on a kernel

density estimate with symmetric kernel K is given by
∑n

k=1K(N ′i − Ω′k,i).

Proof Assuming the Ni are mutually independent, the contribution of Ωk,j to the

likelihood estimate of Ni is 0 ∀j 6= i. Then a kernel density estimate corresponding

to the firing rate associated with Ni is given by K(Ω′1,i−N ′i) +K(Ω′2,i−N ′i) + . . .+

K(Ω′n,i−N ′i). By Lemma 6.4.1 this expression can be written as
∑n

k=1K(N ′i−Ω′k,i).

The last step in the proof of lemma 6.4.2 may seem unnecessary, but facilitates

translation to a neural circuit at a later stage.

Theorem 6.4.3

p(N) =
n∏
i=1

(
n∑
k=1

K(N ′i − Ω′k,i)
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Proof As ∆ merely transforms N without modifying its constituent elements,

p(N) = p(N ′). Since N ′ = (N ′1, N
′
2, ..., N

′
n), (p(N ′) = p((N ′1, N

′
2, ..., N

′
n)). Owing

to the independence assumption on the Nk this expression may be rewritten as∏n
k=1(p(Nk)). Lemma 6.4.2 then gives

∏n
i=1(

∑n
k=1K(N ′i − Ω′k,i))

Based on the form given in this equation, it is easy to see possibilities for the

layout of a neural circuit that evaluates p(N). Recall that this is a necessary step

in demonstrating the neural plausibility of the model proposed in chapter 4. The

resultant formulation captures the likelihood of firing rates within some neuronal

ensemble localized in time and/or space. Note that this allows an estimate to an

arbitrary level of precision of the firing rate associated with any neuron, without

requiring any explicit representation of the underlying probability density function.

6.5 An Example

To make the previous discussion more explicit, it may be instructive to provide an

example of how the preceding applies to a real scenario.

Let N be a local neighborhood of an image, comprised of a number of RGB

values on an nxn patch.

In the following formulation, we assume an estimate of the likelihood of the

components of N based on a Gaussian kernel density estimate. Any other choice
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of symmetric kernel may be substituted, with a Gaussian window chosen only for

its common use in density estimation and without loss of generality.

An independent representation of N may be achieved through an algorithm that

seeks such a transformation. In this example, we have employed the algorithm of

Lee et al [119] which performs independent component analysis. The basis set

is derived from a large number of natural image patches chosen at random from

images in the Corel stock photo data set.

Let Ni,j,k denote the set of independent coefficients based on the neighborhood

centered at j, k (i.e. ∆(N ′) note the reversal in notation). That is N consists of

a set of coefficients corresponding to the relative contribution of various oriented

gabor-like filters and red-green or blue-yellow color opponency at various spatial

scales. Note that in this example Ω is given by the set of all Ni,s,t ∀i and ∀s 6= j or

t 6= k An estimate of p(Ni,j,k) based on a Gaussian kernel is given by:

1

σ
√

2π

∑
∀s,t∈Ω

Ψ(s, t)e−(Ni,j,k−Ni,s,t)2/2σ2

(6.1)

with
∑

s,t Ψ(s, t) = 1. Ψ(s, t) describes the degree to which the coefficient N ′ at

coordinates s, t contributes to the probability density estimate. The inclusion of this

parameter reflects the fact that neurons may have a greater impact on the likelihood

estimate of neurons they are close to. The inclusion of such a parameter may be

appropriate in some instances and less so in others. On the basis of the form given

in equation 6.1 it is evident that this operation corresponds to the neural circuit
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depicted in figure 6.1. Note that in this case a logarithmic nonlinearity follows the

likelihood estimate yielding a measure of self-information. Figure 6.1 demonstrates

only coefficients derived from a horizontal cross-section. The two dimensional case

is analogous with parameters varying in i, j, and k dimensions. K consists of the

Kernel function employed for density estimation. In our case this is a Gaussian of

the form 1
σ
√

2π
e−x

2/2σ2
. Ψ(s, t) is encoded based on the weight of connections to K.

As x = Ni,j,k −Ni,s,t the output of this operation encodes the impact of the Kernel

function with mean Ni,s,t on the value of p(Ni,j,k). Coefficients at the input layer

correspond to coefficients of N . The logarithmic operator at the final stage might

also be placed before the product on each incoming connection, with the product

then becoming a summation. The similarity between independent components and

V1 cells, in conjunction with the plausible circuitry proposed here lends credibility

to the claim that information may contribute to driving overt attentional selection.

It is interesting to note that the structure of this circuit at the level of within

feature spatial competition is remarkably similar to the standard feedforward model

of lateral inhibition, a ubiquitous operation along the visual pathways thought to

play a role in attentional processing [30]. This consideration is revisited in the

section that follows, demonstrating an explicit relationship to cortical surround

suppression.
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Figure 6.1: A 1D depiction of the neural architecture that computes the self-

information of a set of local statistics. The operation is equivalent to a Kernel

density estimate. Coefficients correspond to subscripts of N ′i,j,k. The small black

circles indicate an inhibitory relationship and the small white circles an excitatory

relationship. κ indicates a symmetric Kernel function.
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With regard to the neural circuitry involved, we have demonstrated that self-

information may be computed using a neural circuit in the absence of a represen-

tation of the entire probability distribution and an updated version of the overall

model is shown in figure 6.2. Since entropy quantifies average self-information over

some domain, a corollary of this result is a circuit that computes entropy, simply

through the summation of many units that quantify self-information over some

domain (e.g. the surround).

6.6 Surround Suppression, Gain Control and Redundancy

Perhaps the foremost consideration pertaining to neural circuitry, is the extent

to which the proposal agrees with observations concerning cortical circuitry and

neurophysiology. To this end, this section reviews a variety of classic and recent

results derived from psychophysics and imaging experiments on the nature of sur-

round suppression within the cortex. Necessary conditions on an architecture that

seeks to maximize information in selection, are weighed against the experimen-

tal literature to determine a possible neural analogue for the implementation of

AIM. As a whole, the discussion establishes that a variety of peculiar and very

specific constraints imposed by the implementation show considerable agreement

with the computation implicated in surround suppression further providing support

for AIM, and also offering some insight on the nature of computation responsible
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Figure 6.2: The proposed model. Shown is the computation corresponding to three

horizontally adjacent neighbourhoods with flow through the network indicated by

the orange, purple, and cyan windows and connections. The connections shown

facilitate computation of the information measure corresponding to the pixel cen-

tered in the purple window. The network architecture produces this measure on

the basis of evaluating the probability of these coefficients with consideration to

the values of such coefficients in neighbouring regions.
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for iso-orientation surround suppression in early visual cortex. Debate concerning

the specific nature and form of surround suppression has rekindled in recent years,

which has resulted in a large body of interesting results that further elucidate the

details of this process. The following discussion reviews these results and offers fur-

ther insight through a meta-analysis of recent studies. In each case, experimental

findings are contrasted against the computational constraints on AIM to establish

plausibility of the proposed computation.

6.6.1 Types of features

A great deal of research has focused specifically on the suppression that arises from

introducing a stimulus in the surround of a localized oriented Gabor target. The

specific nature of iso-orientation (iso-feature) surround suppression as dictated by

the details of AIM includes two key considerations: 1. Suppression of a cell whose

receptive field lies at the target location should occur only for a surround stimulus

that is the effective stimulus for this cell. For example, for a vertically oriented

Gabor target, suppression of a cell that elicits a response to the target will oc-

cur only by way of a similar stimulus appearing in the surround. Recall that a

fundamental assumption is that the responses of different types of cells at a given

location are such that the correlation between their responses is minimal and this

is a phenomenon that is observed cortically. In the domain of studies pertaining to
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surround suppression, the literature is undivided in its agreement with this assump-

tion. When considering the cell response or psychometric threshold associated with

a target patch, suppression from a surround stimulus is highly stimulus specific and

is at a maximum for a surround matching the target orientation, with suppression

observed only for a narrow orientation band centered around the target orientation

[178; 207; 247; 253; 255; 257]. This is consistent with a local likelihood estimate in

which the independence assumption is implicit. 2. Suppression should be observed

for all feature types, and the nature of, and parameters associated with suppression

should not differ across feature type. This is an important consideration since stud-

ies of this type have largely focused on oriented sinusoidal stimuli, but nevertheless

similar suppression associated with color, or velocity of motion for example, should

also be observed and the nature of such suppression should be consistent with that

observed in studies involving oriented sinusoidal target and surrounds. One recent

effort provides strong evidence that this is the case through single cell recording on

macaque monkeys [207]. Shen et al. demonstrate that centre-surround fields de-

fined by a variety of features including color, velocity and oriented gratings all elicit

suppression and with suppression at a maximum for matching centre and surround

stimuli.
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6.6.2 Relative contrast

Given a cell with firing rate Ni,j that codes for a specific quantity at coordinates i,j

in the visual field (e.g. a cell selective for a specific angular and radial frequency as

part of a basis representation with its centre at location i,j), a density estimate on

the observation likelihood of the firing rate associated with Ni,j as discussed earlier

in the chapter is given by:

p(Ni,j) =
∑
∀s,t∈Ω

f(Ni,j −Ns,t) (6.2)

Where f is a monotonic symmetric kernel with its maximum at f(0) and Ω the

region over which the surround has any significant impact. For further ease of expo-

sition in observing the behavior of equation 6.2, assume without loss of generality

that f comprises a Gaussian kernel. Then equation 6.2 becomes:

1

σ
√

2π

∑
∀s,t∈Ω

e−(Nj,k−Ns,t)2/2σ2

(6.3)

As there also exists a spatial component to this estimate, it may be more appropriate

to also include a parameter that reflects the effect of distance on the contribution

of any given cell to the estimate of Ni,j which might appear as follows:

1

σ
√

2π

∑
∀s,t∈Ω

Ψ(s, t)e−(Nj,k−Ns,t)2/2σ2

(6.4)

Once again Ψ drops off according to the distance of any given cell from the target

location, reflecting the decreasing correlation between responses. Assuming that
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surround suppression is the basis for the computation involved in AIM, equation

6.4 demands a very specific form for the suppressive influence of a surrounding

stimulus on the target item. According to the form of equation 6.4, suppression

depends on the relative response of centre and surround stimuli and should be at

a maximum for equal contrast centre and surround stimuli: Raising or lowering

the contrast of a stimulus pattern will generally result in a concomitant increase

in the response of a cell for which the pattern in question is the effective stimulus.

There is therefore a direct monotonic (nonlinear) relationship between the firing

rate attributed to centre or surround, and their respective contrasts. Support for

suppression as a function of relative centre versus surround contrast is ubiquitous

in the literature [3; 30; 171; 207; 252; 255; 256; 257] although there is as of yet no

consensus on why this should be the specific form for the suppressive influence of

a surround stimulus. There also exists a large body of prominent studies revealing

that this suppression is indeed at a maximum for equal contrast centre and surround

stimuli [3; 171; 207; 255; 257]. Note that this implies mathematical equivalence

between surround suppression and a likelihood estimate on a given cell’s response

as defined by the response of neighboring cells and implies divisive modulation of

a cells response by a function of its likelihood. This is an important consideration

as it offers insight on the role of surround suppression which has recently become

an issue of considerable dispute [178] and implicates surround suppression as the
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machinery underlying the implementation of AIM. It is also worth noting that the

suppressive impact of cells in the surround is observed to drop off exponentially

with distance from the target giving the specific form of Ψ [178].

6.6.3 Spatial configuration

For the sake of exposition, let us assume that the computation under discussion is

restricted to V1. From the perspective of efficient coding, no knowledge of struc-

ture is available at V1 beyond that which lies within a region the size of single V1

receptive field. A pure information theoretic interpretation of the surprise associ-

ated with a local observation as determined at the level of V1 should reflect this

implying an isotropic contribution to any likelihood estimate in the vicinity of the

target cell, regardless of the pattern that forms an effective stimulus for the cell in

question. That is, for a unit whose effective stimulus is a horizontal Gabor pattern,

equidistant patterns of the same type in the vicinity of the target should result in

equal suppression regardless of where they appear with respect to the target and

this is reflected in the implementation put forth in [25]. It is also expected that

likelihoods associated with higher order structure over larger receptive fields are

mediated by higher visual areas either implicitly at the single cell level or explicitly

via recurrent connections. In line with the assumption that computation is on the

observation likelihood of a pattern within a given region, and that structures are
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limited to an aperture no larger than a V1 receptive field, it is indeed the case

that suppression from the surround is isotropic with respect to the location of a

pattern appearing in the surround independent of target and surround orientations

[178]. By virtue of the same consideration, one would also expect the spatial extent

of surround suppression to be invariant to the spatial frequency of a target item.

This is also a consideration that is evident in the literature [178]. In consideration

of observation likelihoods associated with more complex patterns, it is interesting

to consider the nature of surround suppression among higher visual areas. Recent

studies are discovering more and more examples of suppressive surround inhibition

among higher visual areas with the same properties and divisive influence as those

that are well established in V1. Extrastriate surround inhibition of this form has

been observed at least among areas V2 [18; 60; 92; 113; 203; 208; 211; 258]. This is

suggestive of the possibility that saliency is represented within a distributed hierar-

chy, with local saliency computation mediated by surround suppression at various

layers of the visual cortex. This issue is revisited in chapter 8 and weighed against

more general proposals concerning how attention is achieved within the primate

brain.
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6.6.4 Fovea versus Periphery

If the role of local surround suppression is in attenuating neural activation associ-

ated with unimportant visual input and/or redirecting the eyes via fixational eye

movements one would expect the influence of such a mechanism to be prominent

within the periphery of the visual field. Petrov and McKee demonstrated that sur-

round suppression is in fact strong in the periphery and absent in the fovea [178].

This is consistent, as Petrov and McKee point out, with a role of this mechanism

in the control of saccadic eye movements. Furthermore, there are additional points

they highlight that support this possibility, including the fact that the extent of

suppression is invariant to stimulus spatial frequency. Also of note, is the fact that

the inaccuracy of a first saccade is proportional to target eccentricity and this cor-

relates with the extent of surround suppression as a function of eccentricity [178].

Note that the cortical region over which surround suppression is observed does

not vary with eccentricity implying that computationally, an equal number of neu-

rons contribute to any given likelihood estimate of the form appearing in equation

6.4. All of these considerations are in line with a role of this mechanism in the

deployment of saccades.
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6.6.5 Summary

We have put forth the proposal that the implementation of AIM is achieved via

local surround circuitry throughout the visual cortex. As a whole, there appears to

be considerable agreement with the proposal and the specific form of surround sup-

pression. The demonstration of equivalence of a likelihood estimate on the surround

of a cell with the apparent form of suppressive inhibition implies modulation of cell

responses at a single cell level through divisive gain as a function of the likelihood

associated with that cell’s response. This provides a more specific explanation for

the nature of computation appearing in suppressive surround circuitry and further

bolsters the claim that saliency computation proceeds according to a strategy of

optimizing information transmission.

6.7 Ω and the Gist of a Scene

With respect to the context of a local neighbourhood, there is an additional school

of thought concerning visual analysis that is worth commenting on. In the example

given, the likelihood of N can be computed based on a context of cells that are

spatially proximal to N . Although there exist long range lateral connections in the

visual cortex, it is unclear whether the extent of such connections are sufficient to

explain behavior in certain psychophysics paradigms. In light of this consideration,
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we might consider a possibility that falls on the opposite extreme. Consider the

possibility that the visual system is able to form a general at a glance model of the

statistics of the scene. That is, the assumption that a preattentive representation,

albeit coarse, of the spatiochromatic profile and spatial frequency content of the

scene is available at a glance.

This is in fact a view that has become popular in recent years. Oliva et al.

have conducted a variety of work concerning what they call the gist of a scene (See

[167; 169]). This work is motivated by the observation that although the visual

system encodes visual content on the basis of localized receptive fields that respond

to specific stimulus patterns, some global properties of the scene may be observed

at a glance. Further, among this work it is established that global estimates of

scene properties are sufficient to describe context [218]. Among early informa-

tion that is available, is properties of spatial layout (such as openness, expansion,

mean depth) [168], surface properties (colors, textures and materials) and possibly

functional properties such as those of use for navigation or camouflage [77]. In

discrimination tasks between scene categories (desert vs. forest vs. waterfall etc.),

most judgements on the context could be made within 35 ms and judgements on

spatial layout and surface properties even more quickly (mostly on the order of 25

ms).

One interesting study that relates to this idea is that of Chong and Treisman
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[36]. In this work, subjects were presented with a variety of circles of varying size,

density and grouping. It was determined that some basic statistical properties could

be determined reliably and quickly over the display. Changes in frequency of sizes

or groupings did not have any significant effect on accurate estimation of mean size.

When circles were colored, average sizes based on color were also estimated to a

suprising degree of accuracy. This suggest that binding of color and size information

that one might expect for this task is unnecessary, but rather possibly preattentive

color based segmentation allows global statistics to be considered over a subset of

the display. All of this supports the notion that statistical estimates of certain

properties are computed in parallel over the display.

It is clear how the discussion of gist relates to discussion of the proposed model.

In lieu of local circuitry that computes a density estimate over some local surround,

the likelihood estimate might be based on a more general representation of the gist

of the scene. That is, an Ω that quantifies basic properties of the scene in order to

determine what is informative.

Of course a representation that is entirely global is lacking with respect to

certain behaviors one might predict. For example, consider figure 6.3. In figure

6.3 there is a tendency to fixate the green and red patches with surround of the

opposite color. That said, a global representation of the chromatic profile would

be insufficient to predict this result. For this reason, some locality is required.
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Figure 6.3: An example of why some locality is required. While the number of red

and green pixels is equal, the local arrangement of such elements is important.

Whether this is achieved via more global detectors that represent basic content on

larger neighborhoods while maintaining some locality, or through local circuitry in

a visual hierarchy remains to be determined. An additional possibility with respect

to gist is that it serves to provide an early determination of context so that visual

units can be adapted to processing said context. One might view this possibility

as selection through localized circuits but with a global tuning of thresholds on the

basis of the gist.

6.8 Discussion

With respect to the claim of a model for which the basis of selection is that of

maximizing a criterion based on information as signals flow through the visual
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hierarchy, the discussion of this chapter highlights some interesting points. The

self-information model began with a simple definition for what comprises salient

content, and the resulting mathematical framework ends up with an encoding of

local content based on a representation remarkably similar to V1. A close look

at density estimation yields circuitry with properties very similar to circuits that

implement a ubiquitous operation in visual processing. Additionally, physical re-

quirements of the circuitry appear to have a neuroanatomical analogue.
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7 Psychophysics and New Insights

7.1 Eye movements and Attention

A consideration that renders difficult any effort towards modeling attention, is that

there is as of yet no simple means of monitoring the position and scope of the

focus of covert attention. For this reason, many evaluations of attention models

are carried out in observing fixational eye movements under the assumption that

saccadic eye movements serve as an index for the focus of attention. This is an area

that is rife with controversy.

It is worth briefly reviewing current thinking associated with this topic in order

to establish the generality of claims that may be made based on eye tracking data

and also to consider alternatives in establishing plausibility. In recent years, sev-

eral researchers have proposed that fixational eye movements are related to shifts

in the covert focus of attention. Most of these efforts posit that covert shifts in

attention may be tracked through the observation of microsaccades [62; 80; 118].

The impetus for such claims derives from the premotor theory which claims that
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shifts in attention are accompanied by a cancelled saccade plan [206]. This claim

finds support in the work of Engbert and Kliegl who observed that microsaccades

recorded in a cueing task with a central fixation tended to be biased in the cued

direction [62]. That said, there are also a handful of studies in which no such

correlation was observed [74; 80; 117; 196]. Hafed and Clark posit that this may

be explained by a combination of microsaccades corresponding to shifts in atten-

tion and corrective saccades towards the point of fixation [80]. It has also been

noted that the time course associated with saccades away from a cued location is

consistent with inhibition of return [74]. An additional result that confuses mat-

ters demonstrates that the abrupt onset of a stimulus shows no correlation to the

spatial orienting of microsaccades. A recent effort of Horowitz et al. [90] attempts

to bring some lucidity to the discussion through an experiment involving cueing

alongside a target presentation requiring a manual response. The conclusion from

this study is that although many pathways are shared by fixation and the orienting

of attention, that the two are functionally separate. A commentary on this work

however reveals that there does exist correlation between microsaccades and atten-

tion albeit this relationship is weak. Clearly the existing body of evidence on this

issue leaves much to be desired. As an alternative means of assessing model plau-

sibility, it is perhaps worth considering predictions of AIM for visual search tasks

requiring shifts in the covert focus of attention with a central fixation location and
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comparing the behavior from such studies with model predictions. It is with this

consideration in mind that we revisit a large body of classic psychophysics results

many of which form the motivation for existing models to observe the extent to

which behavior is consistent with the behavior of AIM.

7.2 Attention and Visual Search

The study of visual search has been influential in shaping the current understanding

of computation related to attention and the determination of visual saliency. Owing

to the large body of psychophysics work within this area, in addition to some of

the peculiarities that are observed within the visual search paradigm, it is natural

to consider how model predictions measure up against the wealth of psychophysics

results in this area. It is with this in mind that we revisit a variety of classic results

derived from the psychophysics literature revealing that AIM exhibits considerable

explanatory power and offers some new insight on certain problem domains. Gen-

erally, models of attention assume that the focus of attention is directed according

to a competitive Winner-take-all process acting on some neural representation in

the cortex. An important element of this representation is the saliency of a tar-

get item relative to the saliency of the distractors since this is the determinant of

search efficiency according to various selection mechanisms [51; 98; 110; 228]. It

is assumed then throughout the discussion, that search efficiency is a function of
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the ratio of target to distractor saliency in line with other similar efforts [124].

This assumption allows the consideration of saliency to be disentangled from the

mechanisms that underlie attentional gating which remains a contentious issue.

7.3 Serial versus Parallel Search

An observation that has been influential in earlier models of attention, is that cer-

tain stimuli seem to be found effortlessly from within a display, while others require

considerable effort to be spotted seemingly requiring elements of the display to be

visited in turn. Consider for example figure 7.1. In the top left, the singleton

item distinguished by its orientation is found with little effort seemingly drawing

attention automatically. This phenomenon is sometimes referred to as “pop-out”.

Pop-out results in the immediate and automatic deployment of attention to items

defined by feature contrast associated with many basic features including orienta-

tion, color and motion [161]. The same may be said of the singleton defined by

color in the top-middle frame; however, the singleton in the top right frame requires

examining the elements of the frame in turn to locate the target. These observations

form the motivation for Treisman’s Feature Integration Theory [222], a seminal

work in attention modeling based on the observation that some targets are found

effortlessly and seemingly in parallel while others seem to require a serial search of

target items with the search time increasing as a linear function of the number of
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distracting elements. In particular, the distinction between these two cases is when

a target item is defined by a conjunction of features rather than a single feature.

On the bottom row of figure 7.1 is the output of AIM with the saliency scale shown

on the left hand side. Warmer colors are more salient, and this scale is used in

all examples scaled between the maximum and minimum saliency values across all

examples within an experiment. As can be seen in figure 7.1 the target relative to

distractor saliency is very high for the first two cases, but the target saliency is in-

distinguishable from that of the distractors in the third case, suggesting no guidance

towards the target item and hence requiring a visit of items in serial order. Thus,

the distinction between a serial and parallel search is an emergent property of as-

suming a sparse representation, and saliency based on information maximization.

Since the learned feature dimensions are mutually independent, the likelihood is

computed independently for uncorrelated feature domains implying unlikely stim-

uli for singletons based on a single feature dimension, but equal likelihood in the

case of a target defined by a conjunction. This behavior seen through the eyes of

AIM is then a property of a system that seeks to model redundancy in natural

visual content and overcome the computational complexity of probability density

estimation in doing so. To make clear the reason for this behavior, consider fig-

ure 7.2 which shows a probability density representation of the response of a small

number of hypothetical cells (idealized examples for the purpose of exposition) to

165



the stimuli appearing in figure 7.1. For the case shown in figure 7.1 (top left), a

large number of units respond to the stimuli oriented 15 degrees from vertical, and

only a small number to the bar 15 degrees from horizontal. On the basis of this,

the likelihood of the response associated with the singleton is lower and thus it is

more informative. Since an approximately equal number of units respond to both

green and red stimuli, this stimulus dimension dictates that all of the stimuli are

equally informative. The situation for the stimulus shown in figure 7.1 (top mid-

dle) is analogous except that color is the discriminating dimension and orientation

dictates all stimuli are equally salient. In the case of figure 7.1 (top right), there

is a singleton element, but the number of units responding to all four cell types is

approximately equal and as such, a serial search of the elements is required.

An additional example of a conjunction search is featured in figure 7.3: The

5’s that are small, rotated and red are easily spotted, but finding the 2 requires

further effort. It is worth noting that this account of visual search has been revised

to some extent with more recent experiments demonstrating an entire continuum

of search slopes ranging from very inefficient to very efficient [249]. This is a

consideration that is also supported by AIM as more complex stimuli that give

rise to a distributed representation may yield very different ratios of target versus

distractor saliency.
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Figure 7.1: Three stimulus examples wherein a singleton element is present. In

the top left case, defined by orientation, top middle by color and top right by a

combination of the two. Associated saliency appears in the corresponding maps on

the bottom. This result mimics the classic serial-parallel dichotomy that forms the

basis for some classic attention models.
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Figure 7.2: Hypothetical probability densities associated with the response of four

types of units. Shown are examples based on idealized units for the stimulus in

question and crafted to exemplify how the responses of the units in question give

rise to the observed effects.)
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Figure 7.3: An additional example of a conjunction search. The 5’s that are small,

rotated and red are immediately spotted, however the blue 2 requires effort to spot.

Right: Saliency associated with the stimulus pattern.

7.4 Target-Distractor Similarity

An additional area of psychophysics work that has been very influential is that

of observing the effects of target-distractor similarity on difficulty of search tasks.

Generally, as a target item becomes more similar in its properties to the distracting

items, the search becomes more difficult [59; 176]. An example of this modeled

on the experiment of Duncan and Humphreys appearing in [59] is shown in figure

7.4 (top). Moving from the top left to top right frame, a shift of the target away

from the distractors in color space occurs. The resulting saliency appears below

each example and the ratio of distractor to target saliency is 0.767, 0.637, 0.432
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and 0.425 respectively. There is one important element appearing in this example

that perfectly matches the data of Duncan and Humphreys: In the two rightmost

stimulus examples, the distractor to target saliency ratio remains the same. This

implies that beyond a certain distance for a particular feature dimension, a further

shift along this feature dimension makes no difference in search efficiency. This

is exactly the effect reported in [59]. In AIM, the effect emerges due to a single

neuron type responding to both target and distractor items. Once the target item

is far enough from distractors in feature space there is zero response in the unit

tuned to target properties as a result of the distractors regardless of the absolute

distance in feature space. Hence the specific effect observed in [59] also appears

as an emergent property of modeling redundancy and with saliency equated to

information. Interestingly, the resulting ratio of target to distractor saliency is

almost identical to the experimental results despite the simplifying assumptions in

learning the V1 like neural representation.

7.5 Distractor Heterogeneity

A question that follows naturally from consideration of the role of target-distractor

similarity is that of whether distractor-distractor similarity has any effect on search

performance. The most telling effect in this domain is that increasing the hetero-

geneity of the distractors yields a more difficult search [59; 152; 200]. Consider
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Figure 7.4: From left to right the distance in color space between target and distrac-

tors increases. Bottom: Resulting saliency from application of AIM to the stimulus

examples. Of note is that the target saliency increases to an extent, but remains

constant for the two rightmost conditions.
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for example figure 7.5. In the top left case, the item 15 degrees from horizontal

appears to pop-out. This effect is diminished in the top middle frame and severely

diminished in the top right frame. The saliency attributed to each of these cases

appears below each stimulus example. The finding that an increase of distractor

heterogeneity results in a more difficult search is consistent with AIM behavior.

Distributing the distractors over several different cell types rather than a single

type of neuron means that the distractors are considered less probable and hence

more informative thus decreasing the ratio of target to distractor saliency. There

is also a secondary effect in the example given of target distractor similarity since

broad tuning means that cells tuned to a particular orientation may respond weakly

to a distractor type other than that for which they are tuned, or the target. This

serves to highlight the importance of the specifics of a neural code in the determina-

tion of visual saliency and also offers insight on why the determination of efficiency

in visual search tasks may be difficult to predict. It is worth noting that this basic

effect captures behaviors that models based on signal detection theory [236] fail to.

For example, a horizontally oriented bar among distractors at 30 degrees is much

more salient than a horizontal bar among distractors 1/3 oriented at 30 degrees,

1/3 at 50 degrees and 1/3 at 70 degrees as observed in [198]. This is an important

peculiarity of visual search that is inherent in an information seeking model, but

absent from many competing models of saliency computation. These considerations
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Figure 7.5: Top: An example of increasing distractor heterogeneity from left to

right. The target at 15 degrees from horizontal becomes less salient in the pres-

ence of increasingly heterogeneous distractors. Bottom: Saliency associated with

the stimulus examples. This effect demonstrates the somewhat curious effect of

distractor heterogeneity in agreement with the results reported in [59].

are of course not limited to the orientation domain and may also be observed for

other feature domains, for example for colored stimuli as observed in figure 7.6.

7.6 Search Asymmetries

A stimulus domain that has generated a great deal of interest involves so-called

search asymmetries, due to their potential to reveal peculiarities in behavior that

may further our understanding of visual search. One asymmetry that has received

173



Figure 7.6: Increased distractor heterogeneity in color space (top) and correspond-

ing saliency maps (bottom).

considerable attention is an asymmetry attributed to presence vs. absence of a

feature as in figure 7.7 [223]. In this example, a search for a dash among plus signs

is much more difficult than the converse. In examining the associated saliency

maps as computed by AIM, it is evident that this behavior is also inherent in the

information based definition. Note that this is simply a specific case of a more

general phenomenon and the same might be observed of a Q among O’s or any

instance where a singleton is defined by a feature missing as opposed to its pres-

ence. This phenomenon can be explained by the fact that in the feature present

case, the feature that distinguishes the target is judged to be improbable and hence

informative. In the case of the feature absent, there is nothing about the location
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that distinguishes it from background content in the context of the missing feature

since the background regions also elicit a zero response to the “missing” feature.

Rosenholtz reveals an additional class of asymmetries, which she points out are

examples of poor experimental design as opposed to true asymmetries [199]. An

example of such a stimulus appears in figure 7.8 (top). Rosenholtz points out that

the asymmetry appearing in figure 7.8 which corresponds to the task of finding a

red dot among pink being easier than the converse (top left and top second from

left) may be attributed to the role of the background content [200]; a change in

background color (top right and top second from right) causes a reversal in this

asymmetry. From the resultant saliency maps, it is evident that AIM output also

agrees with this consideration (figure 7.8 bottom). Reducing the contrast between

the background and the target/distractors would also be expected to give rise to

a more pronounced asymmetry as the response of a cell to target/distractors and

background become less separable. This is indeed the behavior reported in [200].

An important point to note is the fact that viewed in the context of AIM; the color

background asymmetry arises from the same cause as the feature presence-absence

asymmetry, both a result of the role of the background in determining feature like-

lihood. In each case, it is the role of the background content in determining the

likelihood associated with any particular firing rate. In the colored background

examples, the background causes greater suppression of the target or distractors
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depending on its color. One example Rosenholtz describes as an asymmetry in ex-

perimental design is that of a moving target among stationary distractors versus a

stationary target among moving distractors, suggesting that the design be rectified

by ensuring the motion of the distractors is coherent [197]. Under these condi-

tions, the stationary search becomes more efficient but still remains significantly

less efficient than the moving target case which it is suggested may be attributed

to a basic asymmetry in processing motion. Viewed in the context of AIM, an

additional possibility arises: If there exist units that elicit a response to non-target

background locations and also to the stationary target this may have an effect of

suppressing target saliency that will be absent in the moving target case. As such,

a truly symmetric experiment would call for the case where the entire background

elicits a response from the motion sensitive neurons in question with a localized re-

gion remaining stationary, along with the converse case. This might be tested using

random textured stimuli rather than independent dots on a white background.

7.7 Basic Asymmetries

An additional aspect pertaining to asymmetric behavior in visual search paradigms

corresponds to what are often described as “Basic Asymmetries” [197]. For exam-

ple, a bar oriented at 15 degrees from vertical among vertical orientation distractors

is a very easy search whereas the converse is more difficult. Additional examples of
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Figure 7.7: An experimental asymmetry. The task of locating the plus among

dashes is easier than the dash among pluses. Bottom: Saliency associated with the

two stimulus examples. This effect demonstrates a specific example of a general

asymmetry related to feature presence versus absence as reported in [223].
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Figure 7.8: Top row: An asymmetry in experimental design as described in [200].

The red target pink distractor case is easier than the converse; a change in back-

ground color results in a reversal of the effect. Bottom row: Saliency based on

model output.
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this include a red target among orange distractors and a fast moving target versus

slow moving distractors. Figure 7.9 demonstrates an example of this first case, and

the corresponding saliency as determined by AIM. It may be somewhat surprising

that the model output again agrees with what is observed behaviorally. This is an

interesting result and demonstrates a behavior that heretofore has lacked a suitable

explanation. Close inspection of the underlying basis reveals the explanation for

this behavior: As vertically oriented structure is overrepresented in natural statis-

tics, it is also given greater representation in the resulting neural encoding. As such,

tuning for vertical orientation is stronger and additionally suppression associated

with such cells is stronger. This presents an interesting avenue for further explo-

ration, specifically to observe the extent to which these basic asymmetries may be

explained by bias in the statistics of the natural environment and moreover, what

predictions may be made with regard to searches that may fall in this category.

7.8 Visual Field Anisotropies and Neural Coding

The preceding explanation for so-called Basic asymmetries as being attributed to

bias in coding warrants some further consideration. In particular, it is worth con-

sidering the extent to which bias in natural statistics exhibits behavioral correlates.

A byproduct of this analysis may be additional support for the efficient coding hy-

pothesis assuming any bias in statistics is reflected directly in coding. Prior work
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Figure 7.9: Top row: An example of a basic asymmetry in which the visual search for

a target oriented 15 degrees from vertical is easily spotted among vertical distractors

while the converse is not a pop-out task.
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on natural image statistics has shown that a sparse code for local neighborhoods

tends to yield cells with properties akin to those appearing in the visual cortex.

If this claim is true, one would also expect that any variation in local statistics

across the visual field would be reflected in the underlying neural hardware. In the

following discussion this possibility is investigated at the level of whether there is

support for this consideration since there are a variety of psychophysics paradigms

for which performance varies with position in the visual field. Although the results

can hardly be stated as conclusive from the perspective of causality, support for ef-

ficient coding does appear in the form of visual field anisotropies. For the purposes

of supporting the efficient coding hypothesis, this is sufficient.

It has long been apparent that there exist anisotropies in human visual pro-

cessing. For example, performance in various psychophysical tasks is much better

for grating stimuli oriented horizontally or vertically than for the same stimuli pre-

sented at oblique orientations (See [37] for a review). This phenomenon has been

termed the oblique effect. Previous efforts have considered a statistical basis for

this effect and others, and in the case of the oblique effect, there does exist a bias

in image content in favor of vertically and horizontally oriented edges [48]. In

this work, we examine a different set of anisotropies, namely, domains for which

performance varies as a function of position of stimulus in the visual field. Stud-

ies concerning laterality make up the bulk of psychophysical results fitting this
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category, with performance differences for stimulus presentation in left and right

visual field considered. Much of the literature considers the interaction between

visual field and spatial frequency of stimuli, with a right visual field advantage for

high spatial frequency content and a left visual field advantage for low spatial fre-

quency content. There also exist upper-lower visual field asymmetries that have

received relatively less attention in the literature. Articles describing upper-lower

visual field asymmetries typically read very similar to a standard visual field lat-

erality study with the exception that the visual world is rotated 90 degrees [64].

That is, left-right asymmetries manifest in very similar behavioral benefits/deficits

to upper-lower asymmetries, with stimuli appearing in the upper and right visual

fields showing similar performance benefits/deficits, and lower and left visual fields

exhibiting similar benefits/deficits. Another interesting anisotropy concerns the

so-called radial organization of the visual system. A variety of studies have found

that judgments related to line orientation are best for lines oriented towards the

centre of the visual field and worst for lines orthogonal to the centre. For example,

in the lower left quadrant of the visual field performance for judgments on lines

oriented at 45 degrees is best and lines oriented at 135 degrees is worst [81; 133].

It has been suggested that upper-lower visual field asymmetries might arise from

the difference in statistics between sky and ground [64]. This claim has not been

validated through consideration of actual scene statistics. Furthermore, there does
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not exist a consensus on the origin of lateral asymmetries, or the so-called radial

organization of the visual system. In the sections that follow, each of these effects

is considered in the context of local statistics, with the aim of determining whether

there might exist a statistical basis for such effects.

7.8.1 A Look At the Statistics

Explanations for the cause of visual field anisotropies are sparse in the literature,

with the majority of work describing what is observed rather than why. The fol-

lowing effort aims at observing the manner in which angular and radial frequency

statistics vary across the visual field, and evaluating these observations in the con-

text of existing psychophysical results. In this light, we seek a local representation

of statistics that allows observation of angular and radial frequency content as such

content varies across the visual field (image), and lends itself well to qualitative

analysis (i.e. orientation and spatial frequency statistics are directly observable).

A common representation that adheres to these properties most often employed in

the domain of signal processing, is the power spectrum of a signal (an image in this

case). The power spectrum of an image I is given by P (u) = |F (u)|2, the square

of the magnitude of the Fourier transform of I. Although the frequency domain

representation of an image affords observation of the appropriate orientation and

spatial frequency content, the manner in which such content varies across space
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is not directly observable. However, the power spectrum need not necessarily be

computed over the entire image. If one divides the image into smaller subimages

and computes local power spectra of each subimage, this affords direct observa-

tion of angular and radial frequency content as a function of position in the visual

field without the need for discrete sampling in frequency. Although this offers only

coarse discrete sampling over space, the resolution should be sufficient to make in-

ferences concerning the plausibility of statistics as a basis for visual anisotropies.

It is worth noting that one might also perform this analysis based on a locally

windowed wavelet style representation which might allow more detailed analysis

including consideration of quantitative aspects of the features present. That be-

ing said, the local representation is sufficient for the qualitative observation of the

quantities of interest. Fig. 7.10 demonstrates a representation of a single image

(left) using the proposed local power spectra representation (right). It is clear that

the angular and radial frequency content are directly observable over various sec-

tions of the visual field. The first attempt in this work at observing statistics in

general, was made through considering an average of the representation of the form

depicted in fig. 7.10 obtained from 3600 different natural images, and normalized

over each window to give a sense of the relative proportion of high and low spatial

frequency content within each section of the visual field. Images were 1408x896

pixels, and were divided into 77 (11 by 7) 128x128 windows. Figure 7.11a. demon-

184



strates the local power spectra averages from the 3600 images. Qualitative biases

visible in such a representation are marginal as demonstrated in figure 7.11a with

a strong bias for low spatial frequency content over the entire visual field. How-

ever, given what is observed in figure 7.11a it is clear that an overall bias for low

spatial frequency content may mask any subtle asymmetries existent in the local

power spectra. We overcome this difficulty in figure 7.11b, by demonstrating the

difference between each of the spectra depicted in figure 7.11a, and the average

local power spectrum derived from every local window over the entire image. This

offers an idea of the difference in shape of local power spectra across the visual

field and the local statistics as compared with other regions of the visual field, and

makes visible the subtleties present in the statistics. The spectra depicted in figure

7.11b are histogram equalized to make the relative presence of structure at vari-

ous frequencies more evident. Since this does not affect the relative rank of such

components, this is sufficient for our purposes.

7.8.1.1 The Oblique Effect

Previously we described the oblique effect, a performance deficit for orientation dis-

crimination for oblique orientations relative to horizontal and vertical orientations.

Recent efforts indicate that this effect persists over the entire visual field [81; 143].

As may be seen in figure 7.11a. there is a significant bias in the statistics in favor of
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Figure 7.10: Representation of local orientation and spatial frequency content of

an image based on the proposed local power spectra representation.

horizontally and vertically oriented structure across a wide range of spatial frequen-

cies. This effect has been previously demonstrated through observation of power

spectra obtained from entire images, but not locally as depicted in this case. The

statistics suggest that there is a bias in favor of horizontally and vertically oriented

edges over the entire image in agreement with psychophysical results [81; 143].

7.8.1.2 Lateralized and Upper/Lower Visual Field Asymmetries

As one might expect, there appears to be a significant difference in the statistics

of upper versus lower visual field, with a bias in favor of high spatial frequency

content in upper visual field. In contrast, there is no such bias across the vertical

meridian. This calls into question the argument that basic sensory anisotropies

arise from structure in the statistics since the upper-lower and left-right asymme-
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Figure 7.11: a. Average of local power spectra obtained from 3600 natural images.

b. Difference between each spectrum depicted above, and average local power

spectrum derived from every local neighbourhood of each image.
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tries seem to manifest in very similar performance benefits/deficits. This conflict

may be resolved by considering a few more recent experiments. Mondor and Bry-

den investigated the effect of varying SOA for a task requiring letter identification

and lexical decisions for stimuli presented to left or right visual field [192]. A right

visual field advantage was observed only in the case that the time between onset

of cue and onset of stimulus (SOA) was sufficiently short. Rhodes and Robertson

considered the effect of rotating the display during a typical laterality experiment.

They found that left-right asymmetries persisted in the reference frame of the dis-

play rather than a retinal frame of reference [243]. One might conclude from these

observations that lateral asymmetries arise from the manner in which the output

of basic sensory channels is handled. In contrast, upper-lower asymmetries seem to

manifest from more primitive factors such as the relative contribution of magnocel-

lular and parvocellular pathways to the processing of stimuli in the upper and lower

visual fields. There is evidence that the parvocellular pathway projects preferen-

tially to visual areas corresponding to upper visual field and magnocellular layers

to areas corresponding to lower visual field [64]. This effect has not been observed

for left versus right visual cortices. Maehara et al. observed that a red background,

thought to attenuate magnocellular pathways, relative to a green background gave

rise to a greater deficit in detecting spot stimuli in the lower visual field than in the

upper visual field [244]. Each of these results are suggestive of a primitive neural
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basis for upper-lower visual field asymmetries existent in early visual areas. That

said, more work is needed in comparing left-right to upper-lower asymmetries to

resolve this issue.

7.8.1.3 Radial Organization of the Visual Field

We have described the apparent radial organization of the human visual system,

wherein judgments on structure oriented towards the centre of the visual field tend

to be best (of obliques) and structure orthogonal to the centre tend to give rise to

the worst performance [81; 133]. Whether there exists a statistical basis for this

effect may be determined in observing the orientation statistics as they vary across

the image. As is seen in figure 7.11b, a somewhat surprising anisotropy is observed

in the orientation statistics, with an apparent bias over the visual field for lines

oriented toward the centre. One possibility for this observation, is that this effect

arises as a result of geometric perspective, with edges in the visual field appearing

to fade to the point of fixation on the visual horizon. Figure 7.12 demonstrates

an image for which this effect is especially apparent along with its local power

spectra. Whether this is truly the basis for the orientation anisotropy remains

to be determined. That said, the proposed relationship marks the first possible

explanation for this effect having an environmental and hence statistical backing.

We have demonstrated that in the case of basic sensory visual field anisotropies,
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Figure 7.12: An image (left) for which the described perspective effect is particularly

strong, along with its local power spectral representation (right).

there does appear to be a statistical basis for such effects. Further, we have pre-

sented an argument dissociating upper-lower visual field asymmetries from lateral

asymmetries, in agreement with more recent psychophysical results. Finally, we

have put forth a possible explanation for the apparent radial organization of the

visual system, suggesting that geometric perspective may produce a sufficient sta-

tistical bias to account for this effect. These results speak to the role of anisotropic

coding in regards to observed behavior in visual search paradigms. It appears that

there does exist a basis for the basic orientation asymmetry and the preceding

highlights an important additional avenue for assessing the nature of unexpected

behaviors emergent from visual search psychophysics.
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7.9 Discussion

In further support of the proposal put forth in AIM, it has been demonstrated that

there exists a considerable range of basic behaviors observed in visual search that

appear as emergent properties of the proposal. This incorporates an unprecedented

range of effects including pop-out, the role of target distractory similarity, distractor

heterogeneity, and various asymmetries that appear in the experimental literature.

Finally, some novel results concerning efficient coding bolster the claim that cer-

tain basic asymmetries may occur by virtue of the fact that neural circuitry forms

an efficient representation of natural image statistics, which includes anisotropic

incidence of certain frequencies. Importantly all of these observations are emergent

from the basic assumption of selection based on information and a detailed account

of a specific component of saliency related processing.
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8 Complex Features and a Hierarchical

Representation of Saliency

Saliency based models assume that somewhere in the brain there must exist a

topographical representation of the relative importance of different visual stim-

uli. This chapter also considers an alternative possibility in which saliency does

not require an explicit topographical representation, since most areas of the brain

seem to encode the strength of certain features (e.g. a horizontal edge, or a con-

vex surface, or a face) and not their relative importance. A scheme is presented

in which combining the circuitry that facilitates likelihood estimation, with tradi-

tional winner-take-all type selection produces information based selection without

an explicit topographical representation of saliency. The contribution is perhaps

not the proposed circuitry per se, but rather a demonstration that in combining

the traditional school of thought concerning saliency, with a disjunctive class of

models that consider only selection, the two may be achieved simultaneously with-

out the requirement of a single topographical representation of saliency. That said,
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the focus is on consolidating different schools of thought concerning attention, in a

manner that is largely consistent with ideas derived from each.

As we have described in earlier chapters, there is evidence that suggests the

possibility that the primate visual system may consist of a multi-layer sparse coding

architecture [13; 69]. The proposed algorithm quantifies information on the basis

of a neural circuit, on units with response properties corresponding to neurons

appearing in the primary visual cortex. However, given an analogous representation

corresponding to higher visual areas that encode form, depth, convexity etc. the

proposed method may be employed without any modification. Since the popout

of features can occur on the basis of more complex properties such as a convex

surface among concave surfaces [93], this is perhaps the next stage in a system that

encodes saliency in the same manner as primates. Given a multi-layer architecture,

the mechanism for selecting the locus of attention becomes less clear. In the model

of Itti, Koch and Niebur, a multi-layer winner-take-all network acts directly on the

saliency map and there is no hierarchical representation of image content. There are

however attention models that subscribe to a distributed representation of saliency

(e.g. [228]) that may implement attentional selection with the proposed neural

circuit encoding saliency at each layer. These issues are discussed in section 8.5.

A great deal of research effort is currently being placed on unsupervised learning

of hierarchies of features towards representations amenable to application to object
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recognition and visual representation in general. A claim made in this chapter is

that the proposal put forth by AIM may be applied within a distributed hierarchical

representation and section 8.5 offers a sketch of the details of this. That being said,

as the research in this area remains in its infancy, it is difficult to offer an existence

proof in the form of an implementation in this regard. As a compromise, the

following discussion aims to show the generality of the proposal via consideration

of the operation of AIM using a different basis set and employing very different

eye tracking data than that presented in chapters 4 and 5. An additional example

is provided by way of an analytic spatiotemporal basis, further establishing the

generality of the approach. Although this falls short of a complete demonstration

of hierarchical operation, it offers at least a demonstration of how the proposal

may be applied to any sparse basis and also further establishes the efficacy of the

proposal in explaining human eye tracking data through consideration of a very

different eye tracking data set and also demonstrates that the application of the

proposal is not limited to a learned basis but may have utility for analytic models

also. It should be stated that the important component of this with respect to

its extension to a hierarchical representation derives from the fact that saliency

related modulation may occur at the level of a single cell in the absence of any

explicit topographical representation of saliency. That being said, the reader is

encouraged to bear this in mind in considering the various components that follow
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in this chapter.

8.1 Spatiotemporal Saliency

The general nature of the original proposal implies that it may be applied to any set

of neurons that constitute a sparse basis. For this reason, extension to space-time

is straightforward assuming the early coding of spatiotemporal content observed in

the cortex satisfies these criteria. There exist many efforts documenting the rela-

tionship between early visual cortical neurons and coding strategies that demon-

strate that learning a sparse code for local grey-level image content yields V1 like

receptive fields similar to oriented Gabor filters [13; 170]. Further efforts have

demonstrated this same strategy yields color-opponent coding for spatiochromatic

content [241] and also cells with properties akin to V1 for spatiotemporal data

[233]. We have employed the same data and strategy put forth in [233] to learn a

basis set of cells coding for spatiotemporal content. The data described in [233]

was subsampled taking every second frame to yield data at 25 frames per second.

The data set consists of a variety of natural spatiotemporal sequences taken from

various angles of a moving vehicle traveling in a typical urban environment. Spa-

tiotemporal volumes were then randomly sampled from the videos to yield 11x11x6

(x,y,t) localized spatiotemporal volumes that served as training data. Infomax ICA

[120] was applied to the training set resulting in a spatiotemporal basis consisting
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of cells that respond to various frequencies and velocities of motion. The basis re-

sulting from dimensionality reduction via PCA retaining 95% variance followed by

ICA yields a set of 60 spatiotemporal cells. A subsample of these (corresponding

to 1st, 3rd and 6th frame of the volume) are shown in figure 8.1. Note the response

to various angular and radial frequencies and selectivity for different velocities of

motion. Aside from the application to spatiotemporal data and the different basis

set, the saliency computation proceeds according to the description put forth in

chapter 4.

An overall schematic of the model based on the learned spatiotemporal basis

appears in figure 8.2. A localized region from adjacent frames (3 of 6 shown) are

projected onto the learned basis. This yields a set of coefficients for the local

region that describes the extent to which various types of motion are observed at

the given location. The likelihood of each response is then evaluated by observing

the response of cells of the same type in the surround or in this implementation,

over the entire image. A sum of the negative log likelihood associated with all of

the coefficients corresponding to the given coordinate (pixel) location yields a local

measure of saliency.
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Figure 8.1: The receptive field profile of a subsample of the learned basis. Each

dotted box depicts the receptive field in space corresponding to frames 1, 3 and 6

of the spatiotemporal basis volume associated with one basis function. Note the

selectivity for various angular and radial frequencies and velocities and directions

of motion.
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Figure 8.2: An overview of the computation performed by AIM. A spatiotemporal

volume is projected onto a learned basis based on independent component analysis.

The likelihood of any given cells firing rate may be estimated by observing the

distribution of responses associated with cells of the same type in the surround

or over the entire image. A summation of these likelihoods subjected to a log

transform then yields a local measure of information.
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8.2 Evaluation

An evaluation of the efficacy of the model in predicting spatiotemporal fixation

patterns is achieved via comparison with eye tracking data collected for video stim-

uli. The eye tracking data employed for this study was that used in [96] and

performance evaluation was carried out according to the same performance metric

described in the aforementioned work.

The data consists of eye tracking data for a total of 50 video clips and from 8

subjects aged 22-32 with normal or corrected to normal vision. Videos consist of

indoor and outdoor scenes, news and television clips and video games. Videos were

presented at a resolution of 640x480 and at 60 Hz and consist of over 25 minutes

of playtime. The total number of saccades included in the analysis is 12,211.

For any given algorithm, one may compare the saliency at fixated locations with

randomly sampled locations. The Kullback-Leibler divergence of two distributions

corresponding to these quantities is given by

DKL(P,Q) =
∑

P (i)log
P (i)

Q(i)

where P and Q correspond to the distribution of randomly sampled and at-fixation

sampled saliency values respectively based on 10 bin histogram estimates. The KL-

divergence offers a performance metric allowing comparison of various algorithms.

For more details on KL-Divergence, readers may refer to appendix B. Results
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are compared against those put forth in [96] and proceeds according to the same

performance evaluation strategy.

Figure 8.3 demonstrates the relative saliency of pixel locations for a variety of

single frames from a number of videos. Note the inherent tradeoff between moving

and stationary content as observed for the running tap as well as the ability to

detect salient patterns on a relatively low contrast background.

Figure 8.4 demonstrates a histogram of the saliency associated with the fixated

locations as compared with those from uniformly randomly sampled regions. Of

note is the shift of the distribution towards higher saliency values for the distri-

bution associated with fixated relative to random locations. The KL-divergence

associated with this evaluation is 0.328. This is a 36 percent improvement over

the Surprise model of Itti and Baldi with a KL score of 0.241 and a 60 percent

improvement over the saliency model of Itti and Koch [98] with a KL score of

0.205. Importantly, this apparently strong performance comes from the same bi-

ologically plausible setup that yielded favorable performance for spatiochromatic

data, without modification or any additional assumptions required for considera-

tion of spatiotemporal neurons. This evaluation supports the claim of generality of

information as a strategy in saliency computation and additionally offers a means

of characterizing spatiotemporal saliency. Additionally, no prior model of scene

content or memory is involved as in [96], but rather the prediction is based on the
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Figure 8.3: Sample frames from a number of different videos in the data set (left of

each pair) and their associated saliency (right of each pair). Note the robustness to

a variety of differing data and favorable performance even for low contrast struc-

ture, crowded scenes as well as the inherent weighting of moving versus stationary

content.
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current state of neurons that code for spatiotemporal content. Overall, the results

provide further support of the generality of AIM in predicting fixation and visual

search related behaviors and demonstrates the efficacy of the proposal in predicting

fixation patterns on a qualitatively different data set than that comprised of still

images.

8.3 Types of Motion Salience

It is also interesting to consider how the model responds to different categories of

spatiotemporal stimuli, such as those described in [245] including a moving target

on a moving background, scintillation and flicker. Figure 8.5 demonstrates frames

from a variety of qualitatively different types of spatiotemporal stimuli and their

associated salience. In figure 8.5a, a fast moving target is followed by the camera

resulting in a fast moving structured background. Although the target is relatively

more stationary than the background due to the panning of the camera, the running

target is nevertheless considered salient. In figure 8.5b, scintillation on the surface

of a lake results in a diffuse judgement of salience, which becomes localized upon

emergence of a bubble on the same surface. In the case of figure 8.5c, a brief flash of

lightning appears for only a few frames but is considered salient on the basis of this

brief appearance. These examples serve to demonstrate the variety of possibilities

in considering spatiotemporal patterns and that the salience associated with said
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Figure 8.4: a. Saliency values corresponding to locations sampled randomly (green)

and at fixations (blue) as produced by AIM. There is a tendency to fixate points that

correspond to higher saliency values. The KL-divergence of the two distributions is

0.328 +/- 0.009 as compared with 0.241 +/- 0.006 for the Surprise metric [96] and

0.205 +/- 0.006 for the Saliency metric [98]. b. The same quantitative performance

evaluation for the Saliency and Surprise metrics (reproduced from [96]).
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categories appears to agree at an intuitive level with ones expectation.

8.4 An Analytic Basis

Perhaps the most influential parameter in the evaluation described in chapter 5

is the role of receptive field size on the resulting saliency determination. Recall

that a limitation of an unsupervised learning approach is that the dimensionality

of the problem prohibits receptive fields beyond a certain size. Fortunately unlike

the spatiochromatic domain, there exists considerable prior work on analytic bases

directed towards the representation of spatiotemporal content. For this reason, it

is worth considering the extent to which such a representation lends itself towards

saliency computation under the operation of AIM.

One such representation that is suitable for the purposes of this exercise and

a natural choice owing to its widespread use and favorable properties is that of

Adelson and Bergen [2]. A representation of this form has shown efficacy in

the qualitative analysis of motion [246] and additionally has served a precursor

to the determination of spatiotemporal saliency [245]. In the implementation

results, a spatial Gaussian pyramid was constructed from the video stream yielding

spatiotemporal volumes at 4 spatial scales. Subsequently, separable steerable filters

were employed along x-t and y-t dimensions at each layer of the pyramid and

saliency determined by AIM acting on the responses of spatiotemporal filters. An
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Figure 8.5: Examples of various qualitatively different categories of moving stimuli

and associated salience for certain frames: a. A fast moving target is followed by a

panning camera resulting in a structured and moving background. b. Scintillation

on the surface of a lake results in a salience judgement that is diffuse. Emergence

of a bubble on the surface results in the suppression of this diffuse salience in favor

of the bubble. c. A very briefly flashed lightning bolt is judged as salient, despite

its appearance for only a few frames and without any directional motion.
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Levels of Gaussian Pyramid Considered ROC Area

1 0.2217

2 0.2582

3 0.2711

4 0.2316

1-2 0.2505

1-3 0.2727

1-4 0.2867

2-3 0.2837

2-4 0.2926

3-4 0.2732

Table 8.1: Demonstrates the effects of receptive field size and dimensionality re-

duction on area under ROC curve scores.

overall information score was determined by considering a subset of scale space

corresponding to some subset of the layers of the Gaussian pyramid. Layer 1 refers

to the most detailed or highest frequency processing and layer 4 to the coarsest

level of processing. Saliency scores corresponding to these various conditions are

shown in table 8.1.

Table 8.1 reveals some interesting aspects pertaining to the saliency computa-

tion at hand. The first point of interest is that the saliency scores associated with
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the mid-range levels of the Gaussian pyramid are superior to those at the very

high and very low ends of the frequency range. An additional aspect of interest is

that the saliency scores associated with representations that span scale space are

superior to any of those that correspond to a narrow frequency band. This is a

result of interest for saliency computation at large and lends credence to the use of

a basis representation in the computation of visual saliency in lieu of an ad hoc set

of arbitrary features. In further consideration of this observation it is interesting to

consider possible differences in the magnitude spectra of fixated versus non-fixated

locations. Eye tracking data was collected for the purpose of considering the extent

to which local spatial frequency content informs on salient visual content. Data was

collected for a set of 250 grayscale images, from 10 subjects each viewing 50 images

(5 sets of 50 images, with 2 subjects viewing each set). Images were randomly

chosen from the Corel stock photo database and presented in random order for 4

seconds each with a mask between each pair of images for 2 seconds. Analysis was

based on the glint-pupil vector data obtained from an Arrington Research View-

Point EyeTracker. Images were presented on a 21 inch CRT monitor at a resolution

of 1024 x 768, with participants positioned at a distance of 70 cm. Participants

were naive to the purpose of the study and were instructed simply to observe the

images. A 120x120 window centred at each of the approximately 3000 fixation

points was extracted and an average magnitude spectrum computed based on these
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local regions. A template magnitude spectrum was derived from selecting 120x120

regions from 62,500 randomly sampled locations from the same image set. Fig-

ure 8.6 reveals the difference between local magnitude spectra sampled at fixation

points and the average template local spectrum sampled from random locations.

In confirmation of the scale space observations described here, it may be said that

fixated points have a greater presence of mid-range frequencies with very low and

very high frequency components relatively under-represented at fixation.

One final aspect of the spatiotemporal saliency computation that may be of

interest in a machine vision context concerns camera movement or the movement

of a robotic head. The nature of the computation performed results in movement

associated with camera movement essentially being cancelled out. That is, a figure

that is stationary in the scene being followed by a camera may be judged salient

relative to the moving background. As a whole, these results further demonstrate

the generality of the proposal and illustrate some interesting aspects of computation

as it pertains to coding and scale space.

8.5 Towards a Hierarchical Representation of Saliency

It is interesting to consider how the content discussed in the previous sections fits

in with the big picture as far as attention modeling is concerned. There are a

variety of different schools of thought on the computational structure underlying
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Figure 8.6: Two views of the difference between the average magnitude spectrum

of fixated points versus the average of nonfixated regions. The centre hole corre-

sponds to the origin and the elongated peaks moving to higher spatial frequencies

correspond to vertical and horizontal structure.

209



attentional selection in primates ranging from those that posit the existence of a

saliency map [98; 110; 124] in the cortex to those that claim a distributed repre-

sentation over which winner-take-all behavior or competitive interaction facilitates

attentional selection [51; 228]. Thus far we have depicted saliency in a manner

more consistent with the former of these categories demonstrating the total infor-

mation at any spatial location as the sum of information attributed to all cells that

code for content at that location. The correspondence between the proposal and

models based on a saliency map can then be thought of as considering the aver-

age gain across a cortical column corresponding to a particular location. What is

perhaps more interesting is the relationship between the proposal and distributed

models of attention. It is evident that as the observation likelihood is computed

at the level of a single cell, it is possible that this signal is used to control its gain

at the single cell level in accord with neurophysiological observations. It is evident

that the proposal put forth is amenable to a saliency map style representation, but

it is our opinion that recent results are more consistent with a distributed selec-

tion strategy in which gating is achieved via localized hierarchical winner-take-all

competition and saliency related computation achieved via local modulation based

on information. In this vein, the following discussion considers evidence in favor of

a distributed representation for attentional selection as put forth in [228] and the

relationship of such a representation to the proposal put forth by AIM. Visual pro-
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cessing appears to constitute a dichotomy of rapid general perception on one hand

versus slower detailed processing on the other. For example, it is possible to miss

large changes in a scene when the changes are masked by an intermediate frame in

the absence of focal attention. This phenomenon is referred to as change blindness

[190]. Many studies demonstrate that certain quantities are readily available from a

scene at a glance such as [65; 92] while other judgments require considerably more

effort. This is evidently a product of a visual hierarchy in which receptive fields

cover vast portions of the visual field and representations code for more abstract

and invariant quantities within higher visual areas. Attentional selection within

the model of Tsotsos et al. proceeds according to this assumption with attentional

selection implemented via a hierarchy of winner-take-all processes that gradually

recover specific information about an attended stimulus including the specific con-

junction of features present and, in particular, the precise location of a target item.

In line with this sort of architecture, recent studies have shown that a variety of

judgements can be made on a visual stimulus with a time course shorter than that

required for localization of a target item [65; 92]. The early access to general

statistics associated with stimuli within the display is also encouraging, as this is a

requirement for the computation performed in AIM. It should be noted that within

the traditional saliency map paradigm, there is nothing inherent in the structure

of the model that is consistent with this consideration as spatial selection forms
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the basis for determining the locus of attention. Furthermore, the forest before

trees priority in visual perception appears to be general to virtually any category

of stimulus including the perception of words preceding that of letters [103] and

scene categories more readily perceived than objects [15] in addition to a more

general global precedence effect as demonstrated by Navon [155]. As a whole,

the behavioral studies that observe early access to general abstract quantities prior

to more specific simple properties such as location seem to support an attentional

architecture that consists of a hierarchical selection mechanism with higher visual

areas orchestrating the overall selection process. Further evidence of this arrives in

the form of studies that observe pop-out of high-level features such as depth from

shading [184], facial expressions [164], 3D features [63], perceptual groups [19],

surface planes [84], and parts and wholes [248]. As mentioned, the important prop-

erty that many of these features may share is an efficient cortical representation.

Furthermore, pop-out of simple features may be observed for features that occupy

regions far greater than the receptive field size of cells in early visual areas. It is

unclear then, how a pooled representation in the form of a saliency map mediating

spatial selection can explain these behaviors unless one assumes that it comprises

a pooled representation of activity from virtually every visual area. The circuitry

required to implement AIM is consistent with the behavior of local surround sup-

pression with the implication that surround suppression may subserve the local

212



modulation involved in saliency computation in line with recent suggestions [178].

The only requirement on the neurons involved is sparsity and it may be assumed

that such computation may act throughout the visual cortex with localized saliency

computation observed at every layer of the visual hierarchy in line with more gen-

eral models of visual attention. There also exists considerable neurophysiological

support in favor of this type of selection architecture. In particular the response

of cells among early visual areas appears to be affected by attention at a relatively

late time course relative to higher visual areas [135; 160; 195] and furthermore the

early involvement of higher visual areas in attention related processing is consistent

with accounts of object based attention [209; 215]. In a recent influential result,

it was shown that focused attention gives rise to an inhibitory region surrounding

the focus of attention [89]. This result is a prediction of a hierarchical selection

architecture [228] along with the ability to attend to arbitrarily sized and shaped

spatial regions [142]; these considerations elude explanation within the traditional

saliency map paradigm in its current form and are more consistent with a dis-

tributed hierarchical selection strategy [105]. The preceding discussion serves to

establish the generality of the proposal put forth by AIM. The portion of saliency

computation that is of interest is the normalization or local gain control observed

as a product of the context of a stimulus. This is an aspect of computation that

is only a minor consideration within other models and accounted for based on a
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crude or general mechanism within a normalization operation with only loose ties

to visual circuitry [98].

8.6 Discussion

We have put forth a proposal for saliency computation within the visual cortex

that is broadly compatible with more general models concerning how attention is

achieved. In particular, the proposal serves to provide the missing link in observing

pop-out behaviors that appear within models that posit a distributed strategy for

attentional selection; a subset of attention models for which favorable evidence is

mounting. The proposal is shown to agree with a broad range of psychophysical

results and allows the additional possibility of simulating apparent high-level pop-

out behaviors. The model demonstrates considerable efficacy in explaining fixation

data for a qualitatively different data set than that considered in earlier chapters

demonstrating the plausibility of a sampling strategy based on information seeking

as put forth in this dissertation. We have also demonstrated the potential utility of

an analytic basis in exploring additional issues pertaining to saliency computation

highlighting the importance of consideration of scale-space and coding. Finally, it is

stressed that although results of prior chapters are displayed in a manner consistent

with traditional saliency map style models, this may be thought of as a summary

of the average local gain for each spatial location. The estimate of saliency resides
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at the level of a single cell and this signal may be employed locally for gain control

allowing saliency related computation while preserving a hierarchical representation

on which attentional selection operates. This should be seen as an important step

in moving forwards towards a definition of saliency that operates throughout the

cortex and in addition allows hierarchical selection in space and features along the

lines of that put forth in distributed models of attentional selection [228] that

demonstrate greater accord with recent imaging and psychophysics results.
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9 AIM in Machine Vision

In the computer vision literature, the selection of points, and regions of interest

as a front-end to various machine vision tasks is a domain that has reached some

maturity. The majority of techniques in this area are designed with invariance to

various forms of deformations including zoom, rotation, viewpoint changes, blur,

illumination and noise as their central design criterion. It is less clear to what

extent the points selected correspond to content of interest to an observer. It is

of interest then, given the proposal put forth in the earlier chapters, to consider

the extent to which AIM may be applied in the domain of selecting points or

regions of interest and its stability in this regard. Favorable results from a stability

perspective imply an operator with desirable dual properties of selecting salient

points, in addition to such points being stable across various deformations and

hence amenable to machine vision applications. The current chapter evaluates

AIM within this context, presenting a comprehensive comparison of the model

across various forms of deformations as compared with the state of the art in this
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area from the machine vision literature.

9.1 Interest Operators

The focus on selection in a machine vision context involves the selection of a variety

of local regions of varying scale. This set of locations may then be used in object

recognition, robot navigation, scene classification or a variety of other tasks. The

use of interest points (or regions) in computer vision actually dates back to 1965

[194] with early influential work on interest operators by Moravec following in 1979

[147]. A surge in the popularity of this approach in a variety of machine vision

tasks has been seen in recent years.

Owing to the purpose for which these interest points are employed, the selec-

tion of regions/locations often proceeds to satisfy a variety of criteria. The most

obvious element that is important is that in looking at an object/landmark from

a variety of different viewpoints, it is desirable to have the same interest points

selected provided such locations are visible. For this reason, a primary goal in

producing algorithms that select interest points is invariance to rotation, scaling

or affine transformations. Other important elements of interest points include the

distinctiveness of the features underlying selection, the accuracy of localization, and

that the selection criteria allow a sufficient number of keypoints to be detected.

There is a long history of detecting interest points with some early efforts focused
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on choosing interest points based on the detection of corners, blobs or edgels. The

focus has now shifted in favor of scale and affine invariant local features. Of these

early approaches, one that appears frequently in the modern literature is the Harris

corner detector [82]. The Harris detector chooses points on the basis of two large

eigenvalues in the autocorrelation matrix. Although the invariance of the basic

operator to rotation, noise and changes in illumination is good, the approach is not

robust to scale changes. It is interesting to note that in general, corners are also

established as salient regions according to the definition of AIM.

Various extensions of the Harris detector have been proposed that incorpo-

rate different approaches to including scale invariance. An early blob based ap-

proach proposed by Lindeberg involves detecting blobs by applying a Laplacian-of-

Gaussian operator at several spatial scales [125]. Selection of the maximum across

scale provides scale invariance and the circular symmetry of the operator implies

rotation invariance.

There has been considerable work devoted to affine invariant operators. Gener-

ally such approaches are based on similar ideas to the scale invariant operators but

with some assumptions relaxed. As with the scale invariant operators the basis for

affine invariant operators is typically based on detection algorithms that look for

corners [5; 229] or blobs [12; 126] but in an algorithm robust to affine deformation.

In this chapter we compare the performance of AIM against a variety of affine
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invariant region detectors comprised of the state of the art in this area as demon-

strated by the evaluation of Mikolajczyk et al. [141]. Performance is evaluated

according to the same evaluation described in [141] which is described in the sec-

tion that follows. The remainder of this section is devoted to providing a brief

description of the algorithms involved in the comparison.

9.1.1 Maximally Stable Extremal Region Detector (MSER)

MSER is based on connected components established in the intensity domain. That

is, for a thresholded image, one may establish regions based on connected sets of

pixels for which a collection of local adjacent pixels is either darker or brighter than

all pixels in its surround. The algorithm includes a means of optimal threshold se-

lection which forms the basis for its success as an affine region detector. Given

thresholding, a monotonic change in image intensity means that the regions are

perfectly preserved. Geometric changes should also imply that pixels belonging to

a single connected component remain so. The threshold may be chosen so that

the change in the area of connected components relative to the threshold is mini-

mized. That is MSER implies that regions of interest correspond to those for which

conversion to a binary image is locally stable over a wide range of thresholds.
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9.1.2 Intensity Extrema-Based Region Detector (IBR)

IBR is based on detecting intensity extrema that persist across scale. Points de-

termined in this process are then bound to an elliptical region by exploring the

surrounding structure. Specifically, given a local intensity extremum, rays project-

ing from the locus of the extremum are extracted and the intensity profile along

such rays is considered according to the function:

fI(t) =
|I(t)− I0|

max(
∫ t
0 |I(t)−I0|dt

t
, d)

where I(t) is the intensity at position t, I0 is the intensity at the extremum and

d a small constant. Maxima on rays originating from the extremum are used to

bound an affine covariant region.

9.1.3 Harris Affine (HarAff) and Hessian Affine (HesAff) Detectors

The Harris and Hessian Affine detectors both borrow ideas from earlier corner

and blob based detectors encompassing the behavior of the Harris corner detector

[82] and Lindeberg’s blob based selection [127] in a single selection strategy. The

premise of these operators lies in maximizing the stability of image regions to various

deformations. The two algorithms are in essence corner detectors based on Harris’

suggestion of corners as invariant features under various forms of image transfor-

mations. Scale selection in each case is based on the Laplacian and the shape of the
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associated elliptical region determined by observing the second moment matrix of

the intensity gradient: M = µ(x, σI , σD) = σ2
Dg(σ1)∗

 I2
x(x, σD) IxIy(x, σD)

IyIx(x, σD) I2
y (x, σD)

.

Image derivatives are computed locally based on a Gaussian kernel of scale σD.

An average of derivatives over the local neighborhood is computed via convolution

with a Gaussian with scale σI . A strong response implies signal strength across two

orthogonal directions which implies stability across certain transformations. The

Harris detector is based on this principle. An additional idea explored in the paper

of Mikolajczyk et al. [141] is based on the Hessian matrix: H = H(x, σD) = Ixx(x, σD) Ixy(x, σD)

Ixy(x, σD) Iyy(x, σD)


Second derivatives in the matrix tend to correspond to blobs and ridges. Scale

selection is incorporated via the characteristic scale as described by Lindeberg.

This is the scale at which similarity between the feature detection operator and

local image structure is at a maximum. Given selection of characteristic scale,

iterative estimation of elliptical affine regions is achieved according to the algorithm

of Lindeberg and Garding [127]. For a more detailed description of the details of

these elements, readers should refer to [127] and [141].
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9.1.4 AIM adapted to select ROIs

As results demonstrated in earlier chapters typically depict the saliency associated

with AIM as a continuous surface, it is necessary to describe its extension to se-

lection regions of interest. The first point of note is that the basis derived from

ICA training yields a representation that is inherently invariant albeit over a small

sampling of scale space. The basis employed in experimental results within this

chapter was derived from the Jade algorithm with PCA preprocessing retaining

95% variance. While some range of scale space is captured in the raw basis, this

falls well short of the size of regions selected by the abovementioned algorithms.

For this reason, AIM is applied using the 21x21 sized ICA basis with the image

resampled at several spatial scales. (From 100% down to 25% by increments of 5%).

At each spatial scale, non-maximal suppression is applied over a radius of 4 pixels

and remaining extrema are recorded to establish a raw set of interest points. The

resulting point set is ranked on the basis of associated saliency values at extremum

points, and the points corresponding to the top 4.5% are kept for each image as the

final set of interest points associated with that image. In the absence of specific

analysis on the features resulting from the ICA basis, there is no simple means of

assigning a dominant orientation in the absence of further analysis of local image

properties. For this reason, a circular region of support is established and the ra-
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dius of this region set to correspond to the spatial extent of the window of analysis

for the scale under consideration. For example, for the full scale image the radius

of a local region of support extends 10 pixels in each direction from the extremum.

For the lowest scale, the radius associated with an ROI is 40 pixels. The result

of this process is a set of interest points at several spatial scales corresponding to

the regions that are determined to be most salient at that scale. It is worth noting

that for viewpoint changes that involve considerable affine transformations of scene

content, there is an inherent cap on the amount of overlap among selected regions

and also a base error associated with overlap scores depending on the extent of

affine deformation over various regions of the image. Nevertheless, this analysis

should serve to allow assessment of the stability of AIM as applied at multiple spa-

tial scales and subject to various forms of deformation as compared with the best

affine invariant operators defined for this purpose.

Some simple qualitative results reveal that this method is sufficient to provide

region of interest selection with dominant scales ranking highest as depicted by

the regions appearing in figures 9.1 and 9.2. Figure 9.1 depicts the 8 most salient

regions and indicates appropriate selection of scale for the salient items. Figure 9.2

shows the regions associated with a more typical application which gives some sense

of the preservation of selection of similar features across scale and deformations in

a single image albeit with some differences as the dolls are hand painted and differ
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Figure 9.1: An example of appropriate selection of scale for regions of interest

selected by the modified AIM algorithm.

in exact detail. Nevertheless this suggests some qualitative evidence of agreement

in feature selection across scale as similar sections of the dolls heads are selected

across scale.

9.2 Evaluation Methodology and Results

The image set employed for evaluation purposes is that used in the study of Miko-

lajczyk et al. [141] and consists of examples of 5 different types of changes in

imaging conditions over 8 image sets. Among these are two examples of viewpoint

changes, two examples of scale changes consisting of combined rotation and zoom,
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Figure 9.2: An example of selection of a large number of regions at several scales

for an image of dolls with similar features but of different sizes.
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two examples of image blur, one example of illumination variation, and one example

of jpeg compression. Examples of these images are shown in figure 9.3.

Viewpoint changes vary from a fronto-parallel view to a view at 60 degrees

resulting in significant foreshortening. Scale and blur are the result of systematic

changes in the zoom and focus of the camera. JPEG compression corresponds to

the xv image utility and results from varying the quality parameter from 40 down

to 2%. Finally, illumination variation corresponds to varying the aperture of the

camera.

The main evaluation criterion as put forth by Mikolajczyk et al., is that of

repeatability. That is, the extent to which regions appearing within one image,

are repeated in a corresponding image subject to the associated affine transforma-

tion. Regions are considered to be corresponding if the overlap associated with two

regions is sufficiently large. That is, if:

1−
Rµα

⋂
RHTµβH

Rµα

⋃
RHTµβH

< ε0

where Rµ corresponds to the region defined by xTµx = 1, and H the homog-

raphy between the two images. To avoid bias based on region size, all regions are

first normalized to a radius of 30. In the results shown by Mikolajczyk et al., re-

peatability rates are shown for an overlap error of 40% with the authors noting

that even regions with a 50% overlap error can be matched successfully with a

robust descriptor. Note that in the figures shown, the labels haraff, hesaff, mseraff,
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Figure 9.3: An example of the various transformations used for stability testing of

the operators described in the previous section. Examples shown include blur (A:

bikes, B: trees), JPEG compression (C: UBC), change in illumination (D: leuven),

combined rotation and zoom (E: boat, F: bark), and change of viewpoint (G: graffiti,

H: wall).
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ebraff, and aimaff refer to the Harris Affine, Hessian Affine, MSER, EBR and AIM

algorithms respectively.

Figures 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10 and 9.11 demonstrate a comparison of

AIM for the 40% overlap rate as compared with the algorithms described in the

preceding section.

Figures 9.4, and 9.5 correspond to the bikes and trees images respectively and

show the consistency of ROI selection across varying degrees of camera blur. As

may be seen from these examples, the interest points selected by AIM exhibit a far

greater degree of repeatability relative to all of the affine invariant operators.

Figure 9.6 corresponds to the UBC image and demonstrates repeatability scores

associated with various degrees of jpeg compression. Once again, the AIM algo-

rithm exhibits a very high degree of repeatability across all conditions of JPEG

compression, retaining more than 95% of interest points for compression as ex-

treme as 2% of original image size. In applications where image compression is

common (e.g. search for trademark infringements on the web), the multiscale AIM

selection algorithm may provide a natural means of obtaining interest points for

matching.

Figure 9.7 corresponds to the leuven image and demonstrates scores associated

with the change in illumination condition. In the case of varying illumination,

the AIM algorithm is bested by the maximally stable extremal region algorithm
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and to a small extent, by the Hessian-Affine algorithm. This is perhaps unsurpris-

ing as the MSER algorithm is by construction invariant to monotonic changes in

image intensity. The AIM algorithm still elicits very reasonable performance in

this domain, besting the oft used Harris-Affine algorithm. It is worth noting that

the training set employed in constructing the ICA basis consists entirely of images

captured during the daytime in plain light. It is possible that in training on a set

that involves variation in illumination, that the AIM algorithm might become more

robust to changes along this feature dimension. It is also worth noting, that one

might achieve success via application of AIM for selection on an analytic basis that

generalizes better under varying illumination conditions.

Figures 9.9 and 9.8 correspond to the boat and bark images that consist of

examples of combined zoom and rotation. For the sequence involving the rotation

and zoom of a texture (Figure 9.8) AIM proves superior for small deformations,

while demonstrating slightly inferior repeatability to the Hessian-Affine algorithm

across all other zoom conditions. This is a promising result as by construction

AIM selects those regions that are most informative or salient while not explicitely

seeking regions that are invariant to deformation. That being said, the nature of

the basis itself has inherent invariance to such properties by virtue of its repre-

sentation of orientation and scale space. In the case of figure 9.9 the results are

very interesting. This image consists of a very large change in scale on a natural
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scene. The repeatability rate is comparable to most of the other algorithms for the

smallest zoom factor, but drops off severely in zooming out from the scene. This is

almost certainly attributed to an important consideration that is currently absent

from discussion of interest operators. At the closest scale, the boat fills much of the

scene and many features on the boat itself are clearly visible and salient items. At

the furthest degree of zoom, only the macroscopic features of the boat are clearly

visible in the distance. While a persons face may be salient at a distance, a closer

view may result in the eyes, nose or facial features becoming the salient items in

the scene. This is an issue that is absent from the Affine-Invariant operators, but

appears in the behavior of AIM by virtue of the premise underlying its construc-

tion. It is unclear whether this should be interpreted as a negative result since it is

quite possible that while the overall repeatability of regions is reduced in the AIM

result, there may actually be a greater correspondence of regions associated with

items of interest at the current scale. In the case of recognizing objects, one may

well be interested in only regions that correspond to salient items such as objects

that are clearly visible at the scale under consideration. This line of reasoning

receives support from the more robust repeatability associated with the textured

(Bark) example, for which there is less change in the interpretation of the scene

with change of zoom, and also a more uniform transformation of scale space.

Figures 9.10 and 9.11 correspond to the graffiti and wall images and comprise a
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viewpoint change from frontoparallel to a view at approximately 60 degrees. The

foreshortening in the graffiti example is sufficiently large that it is not possible for

a circular region chosen in two views to match at a greater than 40% rate for the 50

and 60 degree angles. For this reason results in the graffiti condition are restricted

to viewing angles of 10,20,30 and 40 degrees. The MSER algorithm exhibits the

greatest performance in the case of the graffiti experiment, with the Hessian-Affine

and AIM algorithms next in performance. It is worth noting that there is some

baseline penalty associated with the selection of circular regions that increases

with increases in viewpoint angle non-uniformly over the scene. It is foreseeable

then that an AIM algorithm constructed in the manner described that includes

further analysis to select elliptical regions may present the possiblity of trumping

performance of the other algorithms across viewpoint. In the non-textured graffiti

image case, there is once again the issue that the definition of what is salient

changes across viewpoint: For example the appearance of grass or trees beyond the

wall at oblique views might be interpreted as salient within the context in question.

The important implication of this is that the raw repeatability scores should be

taken with a grain of salt as these results may be misleading depending on the

application in question. It is also perhaps worth mentioning that employing a

likelihood estimate based on natural image statistics in general as opposed to those

corresponding to a single scene may imply greater stability across these sorts of
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deformations for the purposes of a task such as localization or viewpoint matching.

In the case of the wall (textured example) the performance of AIM for smaller

viewpoint changes is overwhelmingly better than its competitors. The inherent

penalty associated with selection of circular regions is evident at larger viewpoint

angles as demonstrated by the severe drop-off at the most severe deformation levels.

It is also instructive to demonstrate the nature of regions selected across de-

formation. To give some sense of the qualitative match among regions, figure 9.12

depicts a selection of regions for two different views of the graffiti data set for this

purpose. Note that the parameters associated with these examples provide a greater

spread and smaller number of regions than those depicted in the quantitative results

for the purposes of exposition.

9.3 General Discussion

In either the case of a considerable zoom and rotation, or change of viewpoint, the

AIM algorithm is average for the textured examples while dropping off significantly

for more severe deformations in the case of structured natural scenes. This is as

discussed a result of the change in profile of what is deemed salient at a particular

scale across such deformations, which has little effect in the case of a textured scene.

That being said, as discussed this is not necessarily a negative result as repeatability

means little for a task such as object recognition if none of the regions correspond to
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Figure 9.4: Repeatability scores for the bikes sequence which consists of varying

degrees of blur.
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Figure 9.5: Repeatability scores for the trees sequence which consists of varying

degrees of blur.
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Figure 9.6: Repeatability scores for the UBC sequence which consists of varying

degrees of JPEG compression.
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Figure 9.7: Repeatability scores for the leuven sequence which consists of varying

illumination.
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Figure 9.8: Repeatability scores for the bark sequence which consists of a combined

rotation and zoom.
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Figure 9.9: Repeatability scores for the boat sequence which consists of a combined

rotation and zoom.
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Figure 9.10: Repeatability scores for the graffiti sequence which consists of a large

change in viewpoint angle.
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Figure 9.11: Repeatability scores for the wall sequence which consists of a large

change in viewpoint angle.
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Figure 9.12: Selection of regions associated with two different views of the graffiti

example.
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relevant objects at the current viewing scale. A remedy for this issue in the context

of viewpoint changes may arrive by way of employing a general model of likelihoods

based on the statistics of all natural images as opposed to those associated with a

single scene for additional tasks such as viewpoint matching or localization. In all

of the deformations that should not imply a significant change in what is salient

or imply a strong penalty associated with circular as opposed to affine regions,

AIM is a favorable choice. As a whole, the results demonstrate on the basis of

the proposed algorithm, considerable applicability of the salience operator for the

sake of selecting regions of interest, and also that with additional investigation,

one may achieve superior performance across all experimental conditions including

severe affine deformations. It would also be interesting to consider performance

of the algorithms considered in the context of detection of objects for the sake of

considering the applicability of regions selected to this task.
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10 Conclusions and Future Directions

In this dissertation, various aspects of saliency computation were explored in the

context of human vision and to a lesser extent, machine vision. The claim that

saliency serves to maximize information sampled from one’s environment in a

bottom-up sense was put forth and evidence presented in this regard. In the section

that follows, a summary of this investigation is put forth highlighting results and

corresponding evidence.

10.1 Summary of Dissertation

The central premise of the body of work put forth in this dissertation, is that

bottom-up saliency computation corresponds to a strategy that results in the prop-

agation of informative signals up the visual hierarchy. Saliency is defined according

to the Shannon self-information or surprisal associated with local content in a gen-

eral sense. Comparison with eye tracking data demonstrates greater correlation

with fixational eye movements than its predecessors, additionally offering the ad-
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vantage of being built upon a principled definition. Analysis of various aspects of

saliency computation highlight the role of receptive field size and scale space in the

corresponding computation. It is also shown that the model may be implemented

by way of neural circuitry exhibiting a close correspondence with observations con-

cerning cortical surround inhibition. This applies to the nature of features involved,

the spatial extent, the role of relative contrast and the emphasis on peripheral sup-

pression observed in this computation. Further support for the model arrives in

juxtaposing model behavior with a variety of classic visual search results from the

behavioral psychophysics literature. It is demonstrated that a wide range of behav-

iors appear as emergent from the model, and the role of natural image statistics

on this encoding is made clear. Discussion of more general architectures for atten-

tional selection reveals that the model may be interpreted in a manner that allows

its consideration in proposals that posit a distributed attentional selection strategy.

It follows that various visual search behaviors that were heretofore lacking from the

description of such distributed selection strategies, may be observed in a distributed

paradigm along with other desirable behaviors that such models present. A further

validation of the model in the context of predicting fixation behavior is put forth

through consideration of eye tracking in a spatiotemporal context, demonstrating

a greater agreement with the human data than existing models in this domain.

Finally, the promise of this definition of saliency within a machine vision context
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is considered, establishing the stability of the proposed saliency computation and

offering a possibly promising component for various machine vision applications.

10.2 Future Directions

Many aspects of saliency computation have been considered for both biological

and machine vision. That said, the basic framework put forth in this dissertation

presents many promising avenues for future research efforts. The following outlines

a variety of possible future directions of interest pertaining to this body of work.

10.2.1 Biological Vision

The most notable avenue for future research effort in the context of biological vision,

is perhaps further consideration of the operation of saliency computation within a

hierarchy comprised of simple features at early layers and more complex features

associated with larger receptive fields and various forms of invariance at later layers.

A strategy that consists of localized saliency related computation that results in the

preservation of information above raw signal strength as visual input ascends the

hierarchy may be of great benefit in establishing a general vision system capable of

more complex vision tasks such as recognition.

A secondary consideration that is lacking from any existing biologically moti-

vated vision system, is that of computation on a representation that is foveated.
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This is a rather important consideration, and while the research presented within

this dissertation employs relatively low resolution processing in an attempt to cap-

ture some element of this aspect of computation, it remains to be determined via

a detailed analysis, what implications foveation has in regards to saliency related

processing and the design of a vision system, either biological or for machine vision

applications.

The claims made with regard to coding present a natural avenue for further

investigation in order to establish the specific nature of surround inhibition in the

cortex. Specifically it may be of interest to consider the role of infomax related

local interactions at the level of the LGN and V1 as a means of distinguishing

between cross-orientation and iso-orientation surround effects. An additional nat-

ural question in regards to the role of relative contrast lies in the determination

of whether inhibition operates according to a sum of differences or a difference of

sums according to the local neuronal responses.

It may also be interesting to consider the design of visual search paradigms on

the basis of their predicted complexity as a means of further validating the model

on the behavioral front.
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10.2.2 Machine Vision

As the focus of this dissertation leans in favor of biological vision, there remains

many possible avenues for future research efforts on the front of machine vision.

One possibly salient avenue in the case that visual content is coded within an

invertible basis representation, is the use of AIM in a denoising or enhancement

context. Modulation of cells within a basis representation based on their local

context might allow a reconstruction that is perceptually superior, or less noisy

than the image under consideration.

A second possible consideration in regards to machine vision, concerns the pos-

sibility of incorporating context into the evaluation of saliency related likelihoods.

In chapter 6, it was noted that the context of a neuron need not be limited to its

local spatial or spatiotemporal context, but might be considered on the basis of a

more general definition incorporating natural statistics in general, or the statistics

associated with a specific context such as a forest or urban environment. In regards

to this possiblity, the work of Tishby et al. [216] may be especially relevant pre-

senting a means of interpreting Shannon information in a manner that incorporates

the notion of relevance of said information.

Lacking specific knowledge of feature properties in employing an ICA basis,

detection of affine invariant regions is restricted to circular regions of support.

247



A natural extension of this work, would be consideration of features with known

properties in order that a dominant orientation may be established. This may serve

to further improve the results presented in chapter 9 and may also afford additional

application specific advantages. It may also be possible to extend the methodology

put forth in a manner specific to developing invariance to affine deformations, but

the exact nature of such a process is less clear.

While the consideration of a hierarchical representation of visual content is of

import, this consideration is also true in a machine vision context. An appropriate

selection strategy combined with localized saliency computation within a visual

hierarchy may be a considerable step towards the development of a system capable

of achieving general machine vision.

Finally, there are many areas in which a more thorough analysis may be carried

out in order to determine the impact of various properties on performance in the

prediction of fixation points and also points of stability. A natural starting point

may be consideration of different basis sets within this context.

As a whole, there are a great deal of starting points for promising research that

emerge from the work put forth in this dissertation including avenues of interest to

those involved in machine vision, computational neuroscience, psychophysics and

neurobiology.
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A Components of AIM

The following outlines the details of the various components depicted in figure 4.7.

Infomax ICA: A large number of local patches are randomly sampled from a

set of 3600 natural images. Images are drawn from the Corel photo database and

consist of a variety of photographs of outdoor natural scenes captured in a variety

of countries. In total, 360,000 patches form the training set for ICA based on the

random selection of 100 patches from each image. Infomax or Jade ICA is applied

to the data in order to learn a sparse spatiochromatic basis. In the results shown

in chapters 4 and 5 patches are learned based on 11x11, 21x21 and 31x31 windows.

Matrix Pseudoinverse: The pseudoinverse of the mixing matrix provides the

unmixing matrix which may be used to separate the content within any local region

into independent components. For each local neighbourhood one arrives at a set of

coefficients that represents the relative contribution of the various basis functions in

representing the local neighbourhood. The functions corresponding to the unmixing

matrix resemble oriented Gabors and color opponent cells akin to those appearing
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in V1.

Matrix Multiplication: The matrix product of any local neighbourhood with the

unmixing matrix yields for each local observation a set of independent coefficients

corresponding to the relative contribution of various oriented Gabor-like filters and

color opponent type cells.

Density Estimation: For each local neighbourhood of the image, the product of a

neighbourhood with the unmixing matrix yields a set of coefficients. Observing any

individual coefficient independently in an area surrounding any given patch yields

an estimate of the probability density function associated with the coefficient in

question within the surrounding region. This allows an estimate of the likelihood

associated with the coefficient value corresponding to the central patch.

Joint Likelihood : Any given coefficient may be readily converted to a probability

by looking up its likelihood from the corresponding coefficient probability distri-

bution. The product of all the individual likelihoods corresponding to a particular

local region yields the joint likelihood.

Self-Information: The joint likelihood is translated into Shannon’s measure

of Self-Information by −log(p(x))). The resulting information map depicts the

Saliency attributed to each spatial location based on the aforementioned computa-

tion.
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B Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is a principled measure of distance between

two probability distributions P and Q [114; 115]. The term divergence rather than

distance refers to the fact that the measure is not symmetric and thus DKL(P‖Q) 6=

DKL(Q‖P ). Typically P is thought of as the true probability distribution and Q

an approximation of P , with the KL-divergence affording a measure of the quality

of the approximation. For probability densities P and Q, the Kullback-Leibler

divergence of Q from P is given by:

DKL(P‖Q) =
∑
i

P (i)log(P (i)/Q(i))

for a distribution on a discrete random variable, and by

DKL(P‖Q) =

∫ ∞

−∞
P (x)log(P (x)/Q(x))dx

for a distribution on a continuous random variable.

KL-divergence is related to a variety of other information theoretic measures.

For example, the KL-divergence of a distribution pi from the Kronecker delta rep-
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resenting the relationship i = m corresponds to self-information. That is

DKL(δim‖(pi))

dictates the number of additional bits needed to identify i assuming the receiver

has knowledge of pi.

Similar relations between KL-divergence and other information theoretic mea-

sures such as entropy, mutual information and conditional entropy also exist.

252



C ROC Areas for Different Parameters on

Spatiochromatic Data

The following appendix contains the raw results corresponding to an exploration

of the parameter state space in the determination of spatiochromatic saliency. The

basis indices referred to in the raw data correspond those listed in table C.1, orga-

nized in two columns showing the index and corresponding basis respectively. The

parameters of each basis are given by the width, the algorithm (Jade or infomax)

used for ICA training, and the variance explained as a numerator out of 1000.

Following this are the ROC areas associated with the various parameter sets.

In the raw data, quantities associated with each parameter set are as follows:

1. AREA: Area under the ROC curve for all images with the parameters that

follow.

2. resize: Proportion of original image size (681x511) via bicubic downsampling.

3. convolve: Convolved with a Gaussian modeling the dropoff in visual acuity to
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Basis Index [wid][alg][var] Basis Index [wid][alg][var]

1 31infomax900 12 21infomax990

2 31infomax950 13 11jade990

3 31jade900 14 11jade995

4 31jade950 15 11infomax900

5 11infomax999 16 21jade900

6 21infomax900 17 11infomax950

7 11jade900 18 21jade950

8 21infomax950 19 11infomax975

9 11jade950 20 21jade975

10 21infomax975 21 11infomax990

11 11jade975 22 11infomax995

Table C.1: Indices associated with the various learned basis sets referenced in the

raw data. Columns containing a string correspond to the width of the window size,

the algorithm used and the variance captured (/1000) respectively.
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simulate clustering behavior. This is a binary quantity.

4. scaling: 1 if density estimation is on an independent scale for each feature

type, 2 if density estimate is on the same scale for all features.

5. basis: The specific basis employed for this condition. Refer to table C.1.

AREA: 0.789602 resize: 0.25 convolve: 0 scaling: 1 basis: 12
AREA: 0.788785 resize: 0.25 convolve: 0 scaling: 2 basis: 12
AREA: 0.787520 resize: 0.25 convolve: 1 scaling: 1 basis: 12
AREA: 0.787355 resize: 0.25 convolve: 1 scaling: 2 basis: 12
AREA: 0.785635 resize: 0.25 convolve: 1 scaling: 2 basis: 10
AREA: 0.785399 resize: 0.25 convolve: 1 scaling: 1 basis: 10
AREA: 0.782930 resize: 0.25 convolve: 1 scaling: 2 basis: 20
AREA: 0.782537 resize: 0.25 convolve: 0 scaling: 1 basis: 10
AREA: 0.782122 resize: 0.50 convolve: 1 scaling: 1 basis: 2
AREA: 0.782108 resize: 0.50 convolve: 1 scaling: 2 basis: 2
AREA: 0.782059 resize: 0.25 convolve: 1 scaling: 1 basis: 20
AREA: 0.781626 resize: 0.25 convolve: 0 scaling: 2 basis: 10
AREA: 0.780675 resize: 0.25 convolve: 1 scaling: 2 basis: 2
AREA: 0.780611 resize: 0.50 convolve: 1 scaling: 2 basis: 4
AREA: 0.780476 resize: 0.50 convolve: 1 scaling: 1 basis: 4
AREA: 0.779513 resize: 0.25 convolve: 1 scaling: 1 basis: 2
AREA: 0.778958 resize: 0.25 convolve: 1 scaling: 2 basis: 4
AREA: 0.777305 resize: 0.25 convolve: 1 scaling: 1 basis: 4
AREA: 0.777284 resize: 0.25 convolve: 0 scaling: 1 basis: 20
AREA: 0.777084 resize: 0.25 convolve: 0 scaling: 2 basis: 2
AREA: 0.776768 resize: 0.25 convolve: 0 scaling: 1 basis: 2
AREA: 0.776447 resize: 0.25 convolve: 0 scaling: 2 basis: 20
AREA: 0.774282 resize: 0.50 convolve: 0 scaling: 1 basis: 2
AREA: 0.773077 resize: 0.25 convolve: 1 scaling: 2 basis: 21
AREA: 0.772723 resize: 0.25 convolve: 0 scaling: 1 basis: 4
AREA: 0.772696 resize: 0.50 convolve: 0 scaling: 2 basis: 2
AREA: 0.772451 resize: 0.25 convolve: 1 scaling: 1 basis: 21
AREA: 0.772421 resize: 0.25 convolve: 0 scaling: 2 basis: 4
AREA: 0.772003 resize: 0.25 convolve: 1 scaling: 2 basis: 13
AREA: 0.771163 resize: 0.25 convolve: 1 scaling: 1 basis: 13
AREA: 0.770698 resize: 0.25 convolve: 1 scaling: 2 basis: 8
AREA: 0.770653 resize: 0.50 convolve: 0 scaling: 1 basis: 4
AREA: 0.770086 resize: 0.25 convolve: 1 scaling: 2 basis: 18
AREA: 0.769795 resize: 0.25 convolve: 1 scaling: 2 basis: 22
AREA: 0.769191 resize: 0.50 convolve: 0 scaling: 2 basis: 4
AREA: 0.769159 resize: 0.25 convolve: 1 scaling: 1 basis: 8
AREA: 0.769142 resize: 0.25 convolve: 1 scaling: 1 basis: 22
AREA: 0.768848 resize: 0.50 convolve: 1 scaling: 2 basis: 8
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AREA: 0.768647 resize: 0.25 convolve: 1 scaling: 1 basis: 18
AREA: 0.768388 resize: 0.50 convolve: 1 scaling: 2 basis: 10
AREA: 0.768299 resize: 0.25 convolve: 1 scaling: 2 basis: 19
AREA: 0.768257 resize: 0.50 convolve: 1 scaling: 1 basis: 8
AREA: 0.768188 resize: 0.50 convolve: 1 scaling: 2 basis: 18
AREA: 0.768148 resize: 0.50 convolve: 1 scaling: 1 basis: 10
AREA: 0.767980 resize: 0.25 convolve: 1 scaling: 2 basis: 11
AREA: 0.767681 resize: 0.50 convolve: 1 scaling: 1 basis: 18
AREA: 0.767591 resize: 0.50 convolve: 1 scaling: 2 basis: 20
AREA: 0.767398 resize: 0.25 convolve: 1 scaling: 2 basis: 14
AREA: 0.767318 resize: 0.50 convolve: 1 scaling: 1 basis: 20
AREA: 0.767153 resize: 0.25 convolve: 1 scaling: 1 basis: 19
AREA: 0.767087 resize: 0.25 convolve: 1 scaling: 1 basis: 14
AREA: 0.766990 resize: 0.25 convolve: 1 scaling: 1 basis: 11
AREA: 0.764797 resize: 0.25 convolve: 1 scaling: 2 basis: 5
AREA: 0.764692 resize: 0.25 convolve: 1 scaling: 1 basis: 5
AREA: 0.763804 resize: 0.25 convolve: 0 scaling: 1 basis: 22
AREA: 0.763729 resize: 0.25 convolve: 0 scaling: 1 basis: 5
AREA: 0.762278 resize: 0.25 convolve: 0 scaling: 1 basis: 21
AREA: 0.762035 resize: 0.25 convolve: 0 scaling: 2 basis: 22
AREA: 0.761972 resize: 0.25 convolve: 0 scaling: 1 basis: 8
AREA: 0.761452 resize: 0.25 convolve: 0 scaling: 2 basis: 5
AREA: 0.760921 resize: 0.25 convolve: 0 scaling: 2 basis: 8
AREA: 0.760897 resize: 0.25 convolve: 0 scaling: 1 basis: 13
AREA: 0.760665 resize: 0.50 convolve: 0 scaling: 1 basis: 10
AREA: 0.760149 resize: 1.00 convolve: 1 scaling: 2 basis: 1
AREA: 0.760129 resize: 0.25 convolve: 0 scaling: 1 basis: 18
AREA: 0.760070 resize: 0.25 convolve: 0 scaling: 2 basis: 21
AREA: 0.759965 resize: 1.00 convolve: 1 scaling: 2 basis: 2
AREA: 0.759923 resize: 0.50 convolve: 1 scaling: 2 basis: 1
AREA: 0.759693 resize: 1.00 convolve: 1 scaling: 1 basis: 1
AREA: 0.759682 resize: 1.00 convolve: 1 scaling: 2 basis: 4
AREA: 0.759611 resize: 1.00 convolve: 1 scaling: 1 basis: 2
AREA: 0.759496 resize: 1.00 convolve: 1 scaling: 1 basis: 4
AREA: 0.759484 resize: 0.50 convolve: 1 scaling: 2 basis: 3
AREA: 0.759481 resize: 1.00 convolve: 1 scaling: 2 basis: 3
AREA: 0.759179 resize: 0.50 convolve: 1 scaling: 1 basis: 1
AREA: 0.759137 resize: 0.25 convolve: 0 scaling: 2 basis: 13
AREA: 0.758984 resize: 0.50 convolve: 0 scaling: 2 basis: 10
AREA: 0.758964 resize: 0.25 convolve: 0 scaling: 2 basis: 18
AREA: 0.758853 resize: 1.00 convolve: 1 scaling: 1 basis: 3
AREA: 0.758746 resize: 0.50 convolve: 1 scaling: 1 basis: 3
AREA: 0.758632 resize: 0.25 convolve: 0 scaling: 1 basis: 14
AREA: 0.758569 resize: 0.50 convolve: 1 scaling: 1 basis: 12
AREA: 0.758201 resize: 0.50 convolve: 0 scaling: 1 basis: 12
AREA: 0.758073 resize: 0.50 convolve: 0 scaling: 1 basis: 20
AREA: 0.758061 resize: 0.50 convolve: 1 scaling: 2 basis: 12
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AREA: 0.757429 resize: 0.25 convolve: 0 scaling: 2 basis: 14
AREA: 0.756800 resize: 0.50 convolve: 1 scaling: 2 basis: 11
AREA: 0.756779 resize: 0.50 convolve: 1 scaling: 2 basis: 19
AREA: 0.756306 resize: 0.50 convolve: 1 scaling: 1 basis: 19
AREA: 0.756161 resize: 0.50 convolve: 1 scaling: 1 basis: 11
AREA: 0.756065 resize: 0.50 convolve: 0 scaling: 2 basis: 12
AREA: 0.756016 resize: 0.50 convolve: 0 scaling: 2 basis: 20
AREA: 0.755003 resize: 0.50 convolve: 1 scaling: 2 basis: 17
AREA: 0.754899 resize: 0.25 convolve: 1 scaling: 2 basis: 9
AREA: 0.754598 resize: 0.25 convolve: 1 scaling: 2 basis: 17
AREA: 0.754302 resize: 0.50 convolve: 1 scaling: 2 basis: 9
AREA: 0.753916 resize: 0.25 convolve: 1 scaling: 2 basis: 1
AREA: 0.753878 resize: 0.50 convolve: 1 scaling: 1 basis: 17
AREA: 0.753706 resize: 0.25 convolve: 1 scaling: 1 basis: 9
AREA: 0.753551 resize: 0.25 convolve: 1 scaling: 1 basis: 17
AREA: 0.753544 resize: 0.50 convolve: 1 scaling: 1 basis: 9
AREA: 0.753272 resize: 0.25 convolve: 1 scaling: 2 basis: 3
AREA: 0.752974 resize: 1.00 convolve: 1 scaling: 2 basis: 8
AREA: 0.752860 resize: 1.00 convolve: 1 scaling: 2 basis: 18
AREA: 0.752379 resize: 1.00 convolve: 1 scaling: 1 basis: 8
AREA: 0.752285 resize: 1.00 convolve: 1 scaling: 1 basis: 18
AREA: 0.752271 resize: 0.50 convolve: 0 scaling: 1 basis: 8
AREA: 0.752074 resize: 0.25 convolve: 0 scaling: 1 basis: 19
AREA: 0.751636 resize: 0.25 convolve: 1 scaling: 1 basis: 1
AREA: 0.751525 resize: 1.00 convolve: 0 scaling: 1 basis: 2
AREA: 0.751416 resize: 0.50 convolve: 0 scaling: 1 basis: 18
AREA: 0.751391 resize: 0.25 convolve: 0 scaling: 1 basis: 11
AREA: 0.750890 resize: 0.25 convolve: 1 scaling: 1 basis: 3
AREA: 0.750137 resize: 1.00 convolve: 1 scaling: 2 basis: 6
AREA: 0.749987 resize: 0.50 convolve: 0 scaling: 2 basis: 8
AREA: 0.749927 resize: 1.00 convolve: 0 scaling: 1 basis: 4
AREA: 0.749819 resize: 1.00 convolve: 1 scaling: 2 basis: 16
AREA: 0.749647 resize: 0.25 convolve: 0 scaling: 2 basis: 11
AREA: 0.749562 resize: 1.00 convolve: 0 scaling: 2 basis: 2
AREA: 0.749501 resize: 0.25 convolve: 0 scaling: 2 basis: 19
AREA: 0.749257 resize: 1.00 convolve: 1 scaling: 1 basis: 6
AREA: 0.749237 resize: 0.50 convolve: 0 scaling: 2 basis: 18
AREA: 0.748950 resize: 1.00 convolve: 1 scaling: 1 basis: 16
AREA: 0.747708 resize: 0.50 convolve: 1 scaling: 2 basis: 13
AREA: 0.747624 resize: 1.00 convolve: 1 scaling: 2 basis: 7
AREA: 0.747595 resize: 1.00 convolve: 0 scaling: 2 basis: 4
AREA: 0.747565 resize: 0.25 convolve: 0 scaling: 1 basis: 1
AREA: 0.747422 resize: 0.50 convolve: 1 scaling: 2 basis: 21
AREA: 0.747411 resize: 1.00 convolve: 1 scaling: 2 basis: 15
AREA: 0.747373 resize: 0.50 convolve: 1 scaling: 1 basis: 21
AREA: 0.747317 resize: 0.50 convolve: 1 scaling: 2 basis: 6
AREA: 0.747253 resize: 0.25 convolve: 0 scaling: 2 basis: 1
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AREA: 0.747233 resize: 1.00 convolve: 1 scaling: 1 basis: 7
AREA: 0.747198 resize: 0.50 convolve: 1 scaling: 2 basis: 16
AREA: 0.747131 resize: 0.50 convolve: 1 scaling: 1 basis: 13
AREA: 0.746830 resize: 1.00 convolve: 1 scaling: 1 basis: 15
AREA: 0.746205 resize: 0.50 convolve: 1 scaling: 1 basis: 16
AREA: 0.746076 resize: 0.25 convolve: 0 scaling: 1 basis: 3
AREA: 0.745946 resize: 0.50 convolve: 1 scaling: 1 basis: 6
AREA: 0.745531 resize: 0.25 convolve: 0 scaling: 2 basis: 3
AREA: 0.743623 resize: 0.50 convolve: 0 scaling: 1 basis: 1
AREA: 0.743243 resize: 0.50 convolve: 1 scaling: 2 basis: 7
AREA: 0.742547 resize: 0.50 convolve: 0 scaling: 1 basis: 3
AREA: 0.742524 resize: 0.50 convolve: 1 scaling: 2 basis: 15
AREA: 0.742186 resize: 0.50 convolve: 1 scaling: 1 basis: 7
AREA: 0.741991 resize: 0.50 convolve: 1 scaling: 1 basis: 15
AREA: 0.741609 resize: 0.50 convolve: 0 scaling: 2 basis: 1
AREA: 0.741163 resize: 0.25 convolve: 1 scaling: 2 basis: 16
AREA: 0.741116 resize: 0.25 convolve: 1 scaling: 2 basis: 6
AREA: 0.741024 resize: 1.00 convolve: 1 scaling: 2 basis: 17
AREA: 0.740714 resize: 0.50 convolve: 0 scaling: 2 basis: 3
AREA: 0.740661 resize: 1.00 convolve: 1 scaling: 2 basis: 9
AREA: 0.740318 resize: 1.00 convolve: 1 scaling: 1 basis: 17
AREA: 0.740274 resize: 1.00 convolve: 1 scaling: 2 basis: 20
AREA: 0.739804 resize: 1.00 convolve: 1 scaling: 1 basis: 20
AREA: 0.739648 resize: 1.00 convolve: 1 scaling: 1 basis: 9
AREA: 0.739553 resize: 0.25 convolve: 1 scaling: 1 basis: 6
AREA: 0.739535 resize: 0.25 convolve: 1 scaling: 1 basis: 16
AREA: 0.739211 resize: 0.50 convolve: 1 scaling: 2 basis: 14
AREA: 0.739062 resize: 0.50 convolve: 1 scaling: 2 basis: 22
AREA: 0.739026 resize: 1.00 convolve: 1 scaling: 2 basis: 10
AREA: 0.738744 resize: 0.50 convolve: 1 scaling: 1 basis: 14
AREA: 0.738521 resize: 1.00 convolve: 1 scaling: 1 basis: 10
AREA: 0.738442 resize: 0.50 convolve: 1 scaling: 1 basis: 22
AREA: 0.737737 resize: 1.00 convolve: 0 scaling: 1 basis: 1
AREA: 0.736418 resize: 1.00 convolve: 0 scaling: 1 basis: 3
AREA: 0.734786 resize: 1.00 convolve: 0 scaling: 2 basis: 1
AREA: 0.733983 resize: 1.00 convolve: 0 scaling: 2 basis: 3
AREA: 0.733076 resize: 0.25 convolve: 1 scaling: 2 basis: 7
AREA: 0.732781 resize: 1.00 convolve: 1 scaling: 2 basis: 11
AREA: 0.732482 resize: 1.00 convolve: 1 scaling: 2 basis: 19
AREA: 0.732369 resize: 0.25 convolve: 1 scaling: 2 basis: 15
AREA: 0.732296 resize: 0.25 convolve: 1 scaling: 1 basis: 7
AREA: 0.732036 resize: 1.00 convolve: 1 scaling: 1 basis: 19
AREA: 0.731884 resize: 1.00 convolve: 1 scaling: 1 basis: 11
AREA: 0.731806 resize: 0.25 convolve: 0 scaling: 1 basis: 17
AREA: 0.731330 resize: 0.50 convolve: 1 scaling: 2 basis: 5
AREA: 0.731244 resize: 0.25 convolve: 1 scaling: 1 basis: 15
AREA: 0.731110 resize: 0.25 convolve: 0 scaling: 1 basis: 9
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AREA: 0.730543 resize: 0.50 convolve: 1 scaling: 1 basis: 5
AREA: 0.730322 resize: 0.50 convolve: 0 scaling: 1 basis: 19
AREA: 0.729843 resize: 0.50 convolve: 0 scaling: 1 basis: 11
AREA: 0.729649 resize: 0.50 convolve: 0 scaling: 1 basis: 21
AREA: 0.728732 resize: 0.50 convolve: 0 scaling: 1 basis: 13
AREA: 0.727833 resize: 0.25 convolve: 0 scaling: 1 basis: 6
AREA: 0.727802 resize: 0.25 convolve: 0 scaling: 2 basis: 9
AREA: 0.727771 resize: 1.00 convolve: 0 scaling: 1 basis: 18
AREA: 0.727715 resize: 0.50 convolve: 0 scaling: 2 basis: 19
AREA: 0.727700 resize: 1.00 convolve: 0 scaling: 1 basis: 8
AREA: 0.727277 resize: 0.25 convolve: 0 scaling: 2 basis: 17
AREA: 0.727019 resize: 0.50 convolve: 0 scaling: 2 basis: 11
AREA: 0.727005 resize: 0.50 convolve: 0 scaling: 2 basis: 21
AREA: 0.726861 resize: 0.25 convolve: 0 scaling: 1 basis: 16
AREA: 0.726467 resize: 0.50 convolve: 0 scaling: 2 basis: 13
AREA: 0.725943 resize: 0.25 convolve: 0 scaling: 2 basis: 6
AREA: 0.725210 resize: 1.00 convolve: 0 scaling: 2 basis: 18
AREA: 0.725146 resize: 1.00 convolve: 0 scaling: 2 basis: 8
AREA: 0.725023 resize: 0.50 convolve: 0 scaling: 1 basis: 22
AREA: 0.724569 resize: 1.00 convolve: 1 scaling: 2 basis: 12
AREA: 0.724495 resize: 0.25 convolve: 0 scaling: 2 basis: 16
AREA: 0.724102 resize: 1.00 convolve: 1 scaling: 1 basis: 12
AREA: 0.723031 resize: 0.50 convolve: 0 scaling: 1 basis: 14
AREA: 0.722990 resize: 0.50 convolve: 0 scaling: 1 basis: 6
AREA: 0.722738 resize: 1.00 convolve: 0 scaling: 1 basis: 10
AREA: 0.722629 resize: 0.50 convolve: 0 scaling: 2 basis: 22
AREA: 0.722430 resize: 1.00 convolve: 0 scaling: 1 basis: 20
AREA: 0.722307 resize: 0.50 convolve: 0 scaling: 1 basis: 16
AREA: 0.720982 resize: 0.50 convolve: 0 scaling: 1 basis: 5
AREA: 0.720625 resize: 0.50 convolve: 0 scaling: 2 basis: 14
AREA: 0.720126 resize: 1.00 convolve: 0 scaling: 2 basis: 20
AREA: 0.720091 resize: 1.00 convolve: 0 scaling: 2 basis: 10
AREA: 0.719642 resize: 0.50 convolve: 0 scaling: 1 basis: 17
AREA: 0.719415 resize: 0.50 convolve: 0 scaling: 1 basis: 9
AREA: 0.719200 resize: 1.00 convolve: 1 scaling: 2 basis: 13
AREA: 0.718839 resize: 0.50 convolve: 0 scaling: 2 basis: 6
AREA: 0.718788 resize: 1.00 convolve: 1 scaling: 2 basis: 21
AREA: 0.718418 resize: 1.00 convolve: 1 scaling: 1 basis: 13
AREA: 0.718347 resize: 0.50 convolve: 0 scaling: 2 basis: 16
AREA: 0.718334 resize: 0.50 convolve: 0 scaling: 2 basis: 5
AREA: 0.717762 resize: 1.00 convolve: 1 scaling: 1 basis: 21
AREA: 0.715829 resize: 0.50 convolve: 0 scaling: 2 basis: 9
AREA: 0.715761 resize: 0.50 convolve: 0 scaling: 2 basis: 17
AREA: 0.715082 resize: 1.00 convolve: 0 scaling: 1 basis: 12
AREA: 0.713733 resize: 1.00 convolve: 1 scaling: 2 basis: 14
AREA: 0.712555 resize: 1.00 convolve: 1 scaling: 2 basis: 22
AREA: 0.712544 resize: 1.00 convolve: 1 scaling: 1 basis: 14
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AREA: 0.712476 resize: 1.00 convolve: 0 scaling: 2 basis: 12
AREA: 0.712016 resize: 1.00 convolve: 0 scaling: 1 basis: 16
AREA: 0.711860 resize: 1.00 convolve: 0 scaling: 1 basis: 6
AREA: 0.711359 resize: 1.00 convolve: 1 scaling: 1 basis: 22
AREA: 0.710016 resize: 1.00 convolve: 1 scaling: 2 basis: 5
AREA: 0.709067 resize: 0.25 convolve: 0 scaling: 1 basis: 7
AREA: 0.708838 resize: 1.00 convolve: 1 scaling: 1 basis: 5
AREA: 0.708805 resize: 0.25 convolve: 0 scaling: 1 basis: 15
AREA: 0.707771 resize: 1.00 convolve: 0 scaling: 2 basis: 16
AREA: 0.707229 resize: 1.00 convolve: 0 scaling: 2 basis: 6
AREA: 0.704829 resize: 0.25 convolve: 0 scaling: 2 basis: 7
AREA: 0.703827 resize: 0.25 convolve: 0 scaling: 2 basis: 15
AREA: 0.702021 resize: 0.50 convolve: 0 scaling: 1 basis: 15
AREA: 0.701501 resize: 0.50 convolve: 0 scaling: 1 basis: 7
AREA: 0.697054 resize: 0.50 convolve: 0 scaling: 2 basis: 7
AREA: 0.696877 resize: 0.50 convolve: 0 scaling: 2 basis: 15
AREA: 0.696188 resize: 1.00 convolve: 0 scaling: 1 basis: 17
AREA: 0.695392 resize: 1.00 convolve: 0 scaling: 1 basis: 9
AREA: 0.694133 resize: 1.00 convolve: 0 scaling: 1 basis: 19
AREA: 0.693837 resize: 1.00 convolve: 0 scaling: 1 basis: 11
AREA: 0.691657 resize: 1.00 convolve: 0 scaling: 2 basis: 17
AREA: 0.691156 resize: 1.00 convolve: 0 scaling: 2 basis: 9
AREA: 0.691145 resize: 1.00 convolve: 0 scaling: 2 basis: 19
AREA: 0.690956 resize: 1.00 convolve: 0 scaling: 2 basis: 11
AREA: 0.689389 resize: 1.00 convolve: 0 scaling: 1 basis: 15
AREA: 0.688779 resize: 1.00 convolve: 0 scaling: 1 basis: 7
AREA: 0.687758 resize: 1.00 convolve: 0 scaling: 1 basis: 21
AREA: 0.686888 resize: 1.00 convolve: 0 scaling: 1 basis: 13
AREA: 0.685376 resize: 1.00 convolve: 0 scaling: 1 basis: 22
AREA: 0.684926 resize: 1.00 convolve: 0 scaling: 2 basis: 21
AREA: 0.684657 resize: 1.00 convolve: 0 scaling: 1 basis: 14
AREA: 0.684451 resize: 1.00 convolve: 0 scaling: 2 basis: 13
AREA: 0.684367 resize: 1.00 convolve: 0 scaling: 2 basis: 7
AREA: 0.684259 resize: 1.00 convolve: 0 scaling: 1 basis: 5
AREA: 0.683811 resize: 1.00 convolve: 0 scaling: 2 basis: 15
AREA: 0.682738 resize: 1.00 convolve: 0 scaling: 2 basis: 22
AREA: 0.682295 resize: 1.00 convolve: 0 scaling: 2 basis: 5
AREA: 0.681919 resize: 1.00 convolve: 0 scaling: 2 basis: 14
AREA: 0.751636 resize: 0.25 convolve: 1 scaling: 1 basis: 1
AREA: 0.779513 resize: 0.25 convolve: 1 scaling: 1 basis: 2
AREA: 0.750890 resize: 0.25 convolve: 1 scaling: 1 basis: 3
AREA: 0.777305 resize: 0.25 convolve: 1 scaling: 1 basis: 4
AREA: 0.764692 resize: 0.25 convolve: 1 scaling: 1 basis: 5
AREA: 0.739553 resize: 0.25 convolve: 1 scaling: 1 basis: 6
AREA: 0.732296 resize: 0.25 convolve: 1 scaling: 1 basis: 7
AREA: 0.769159 resize: 0.25 convolve: 1 scaling: 1 basis: 8
AREA: 0.753706 resize: 0.25 convolve: 1 scaling: 1 basis: 9
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AREA: 0.785399 resize: 0.25 convolve: 1 scaling: 1 basis: 10
AREA: 0.766990 resize: 0.25 convolve: 1 scaling: 1 basis: 11
AREA: 0.787520 resize: 0.25 convolve: 1 scaling: 1 basis: 12
AREA: 0.771163 resize: 0.25 convolve: 1 scaling: 1 basis: 13
AREA: 0.767087 resize: 0.25 convolve: 1 scaling: 1 basis: 14
AREA: 0.731244 resize: 0.25 convolve: 1 scaling: 1 basis: 15
AREA: 0.739535 resize: 0.25 convolve: 1 scaling: 1 basis: 16
AREA: 0.753551 resize: 0.25 convolve: 1 scaling: 1 basis: 17
AREA: 0.768647 resize: 0.25 convolve: 1 scaling: 1 basis: 18
AREA: 0.767153 resize: 0.25 convolve: 1 scaling: 1 basis: 19
AREA: 0.782059 resize: 0.25 convolve: 1 scaling: 1 basis: 20
AREA: 0.772451 resize: 0.25 convolve: 1 scaling: 1 basis: 21
AREA: 0.769142 resize: 0.25 convolve: 1 scaling: 1 basis: 22
AREA: 0.753916 resize: 0.25 convolve: 1 scaling: 2 basis: 1
AREA: 0.780675 resize: 0.25 convolve: 1 scaling: 2 basis: 2
AREA: 0.753272 resize: 0.25 convolve: 1 scaling: 2 basis: 3
AREA: 0.778958 resize: 0.25 convolve: 1 scaling: 2 basis: 4
AREA: 0.764797 resize: 0.25 convolve: 1 scaling: 2 basis: 5
AREA: 0.741116 resize: 0.25 convolve: 1 scaling: 2 basis: 6
AREA: 0.733076 resize: 0.25 convolve: 1 scaling: 2 basis: 7
AREA: 0.770698 resize: 0.25 convolve: 1 scaling: 2 basis: 8
AREA: 0.754899 resize: 0.25 convolve: 1 scaling: 2 basis: 9
AREA: 0.785635 resize: 0.25 convolve: 1 scaling: 2 basis: 10
AREA: 0.767980 resize: 0.25 convolve: 1 scaling: 2 basis: 11
AREA: 0.787355 resize: 0.25 convolve: 1 scaling: 2 basis: 12
AREA: 0.772003 resize: 0.25 convolve: 1 scaling: 2 basis: 13
AREA: 0.767398 resize: 0.25 convolve: 1 scaling: 2 basis: 14
AREA: 0.732369 resize: 0.25 convolve: 1 scaling: 2 basis: 15
AREA: 0.741163 resize: 0.25 convolve: 1 scaling: 2 basis: 16
AREA: 0.754598 resize: 0.25 convolve: 1 scaling: 2 basis: 17
AREA: 0.770086 resize: 0.25 convolve: 1 scaling: 2 basis: 18
AREA: 0.768299 resize: 0.25 convolve: 1 scaling: 2 basis: 19
AREA: 0.782930 resize: 0.25 convolve: 1 scaling: 2 basis: 20
AREA: 0.773077 resize: 0.25 convolve: 1 scaling: 2 basis: 21
AREA: 0.769795 resize: 0.25 convolve: 1 scaling: 2 basis: 22
AREA: 0.747565 resize: 0.25 convolve: 0 scaling: 1 basis: 1
AREA: 0.776768 resize: 0.25 convolve: 0 scaling: 1 basis: 2
AREA: 0.746076 resize: 0.25 convolve: 0 scaling: 1 basis: 3
AREA: 0.772723 resize: 0.25 convolve: 0 scaling: 1 basis: 4
AREA: 0.763729 resize: 0.25 convolve: 0 scaling: 1 basis: 5
AREA: 0.727833 resize: 0.25 convolve: 0 scaling: 1 basis: 6
AREA: 0.709067 resize: 0.25 convolve: 0 scaling: 1 basis: 7
AREA: 0.761972 resize: 0.25 convolve: 0 scaling: 1 basis: 8
AREA: 0.731110 resize: 0.25 convolve: 0 scaling: 1 basis: 9
AREA: 0.782537 resize: 0.25 convolve: 0 scaling: 1 basis: 10
AREA: 0.751391 resize: 0.25 convolve: 0 scaling: 1 basis: 11
AREA: 0.789602 resize: 0.25 convolve: 0 scaling: 1 basis: 12
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AREA: 0.760897 resize: 0.25 convolve: 0 scaling: 1 basis: 13
AREA: 0.758632 resize: 0.25 convolve: 0 scaling: 1 basis: 14
AREA: 0.708805 resize: 0.25 convolve: 0 scaling: 1 basis: 15
AREA: 0.726861 resize: 0.25 convolve: 0 scaling: 1 basis: 16
AREA: 0.731806 resize: 0.25 convolve: 0 scaling: 1 basis: 17
AREA: 0.760129 resize: 0.25 convolve: 0 scaling: 1 basis: 18
AREA: 0.752074 resize: 0.25 convolve: 0 scaling: 1 basis: 19
AREA: 0.777284 resize: 0.25 convolve: 0 scaling: 1 basis: 20
AREA: 0.762278 resize: 0.25 convolve: 0 scaling: 1 basis: 21
AREA: 0.763804 resize: 0.25 convolve: 0 scaling: 1 basis: 22
AREA: 0.747253 resize: 0.25 convolve: 0 scaling: 2 basis: 1
AREA: 0.777084 resize: 0.25 convolve: 0 scaling: 2 basis: 2
AREA: 0.745531 resize: 0.25 convolve: 0 scaling: 2 basis: 3
AREA: 0.772421 resize: 0.25 convolve: 0 scaling: 2 basis: 4
AREA: 0.761452 resize: 0.25 convolve: 0 scaling: 2 basis: 5
AREA: 0.725943 resize: 0.25 convolve: 0 scaling: 2 basis: 6
AREA: 0.704829 resize: 0.25 convolve: 0 scaling: 2 basis: 7
AREA: 0.760921 resize: 0.25 convolve: 0 scaling: 2 basis: 8
AREA: 0.727802 resize: 0.25 convolve: 0 scaling: 2 basis: 9
AREA: 0.781626 resize: 0.25 convolve: 0 scaling: 2 basis: 10
AREA: 0.749647 resize: 0.25 convolve: 0 scaling: 2 basis: 11
AREA: 0.788785 resize: 0.25 convolve: 0 scaling: 2 basis: 12
AREA: 0.759137 resize: 0.25 convolve: 0 scaling: 2 basis: 13
AREA: 0.757429 resize: 0.25 convolve: 0 scaling: 2 basis: 14
AREA: 0.703827 resize: 0.25 convolve: 0 scaling: 2 basis: 15
AREA: 0.724495 resize: 0.25 convolve: 0 scaling: 2 basis: 16
AREA: 0.727277 resize: 0.25 convolve: 0 scaling: 2 basis: 17
AREA: 0.758964 resize: 0.25 convolve: 0 scaling: 2 basis: 18
AREA: 0.749501 resize: 0.25 convolve: 0 scaling: 2 basis: 19
AREA: 0.776447 resize: 0.25 convolve: 0 scaling: 2 basis: 20
AREA: 0.760070 resize: 0.25 convolve: 0 scaling: 2 basis: 21
AREA: 0.762035 resize: 0.25 convolve: 0 scaling: 2 basis: 22
AREA: 0.759179 resize: 0.50 convolve: 1 scaling: 1 basis: 1
AREA: 0.782122 resize: 0.50 convolve: 1 scaling: 1 basis: 2
AREA: 0.758746 resize: 0.50 convolve: 1 scaling: 1 basis: 3
AREA: 0.780476 resize: 0.50 convolve: 1 scaling: 1 basis: 4
AREA: 0.730543 resize: 0.50 convolve: 1 scaling: 1 basis: 5
AREA: 0.745946 resize: 0.50 convolve: 1 scaling: 1 basis: 6
AREA: 0.742186 resize: 0.50 convolve: 1 scaling: 1 basis: 7
AREA: 0.768257 resize: 0.50 convolve: 1 scaling: 1 basis: 8
AREA: 0.753544 resize: 0.50 convolve: 1 scaling: 1 basis: 9
AREA: 0.768148 resize: 0.50 convolve: 1 scaling: 1 basis: 10
AREA: 0.756161 resize: 0.50 convolve: 1 scaling: 1 basis: 11
AREA: 0.758569 resize: 0.50 convolve: 1 scaling: 1 basis: 12
AREA: 0.747131 resize: 0.50 convolve: 1 scaling: 1 basis: 13
AREA: 0.738744 resize: 0.50 convolve: 1 scaling: 1 basis: 14
AREA: 0.741991 resize: 0.50 convolve: 1 scaling: 1 basis: 15
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AREA: 0.746205 resize: 0.50 convolve: 1 scaling: 1 basis: 16
AREA: 0.753878 resize: 0.50 convolve: 1 scaling: 1 basis: 17
AREA: 0.767681 resize: 0.50 convolve: 1 scaling: 1 basis: 18
AREA: 0.756306 resize: 0.50 convolve: 1 scaling: 1 basis: 19
AREA: 0.767318 resize: 0.50 convolve: 1 scaling: 1 basis: 20
AREA: 0.747373 resize: 0.50 convolve: 1 scaling: 1 basis: 21
AREA: 0.738442 resize: 0.50 convolve: 1 scaling: 1 basis: 22
AREA: 0.759923 resize: 0.50 convolve: 1 scaling: 2 basis: 1
AREA: 0.782108 resize: 0.50 convolve: 1 scaling: 2 basis: 2
AREA: 0.759484 resize: 0.50 convolve: 1 scaling: 2 basis: 3
AREA: 0.780611 resize: 0.50 convolve: 1 scaling: 2 basis: 4
AREA: 0.731330 resize: 0.50 convolve: 1 scaling: 2 basis: 5
AREA: 0.747317 resize: 0.50 convolve: 1 scaling: 2 basis: 6
AREA: 0.743243 resize: 0.50 convolve: 1 scaling: 2 basis: 7
AREA: 0.768848 resize: 0.50 convolve: 1 scaling: 2 basis: 8
AREA: 0.754302 resize: 0.50 convolve: 1 scaling: 2 basis: 9
AREA: 0.768388 resize: 0.50 convolve: 1 scaling: 2 basis: 10
AREA: 0.756800 resize: 0.50 convolve: 1 scaling: 2 basis: 11
AREA: 0.758061 resize: 0.50 convolve: 1 scaling: 2 basis: 12
AREA: 0.747708 resize: 0.50 convolve: 1 scaling: 2 basis: 13
AREA: 0.739211 resize: 0.50 convolve: 1 scaling: 2 basis: 14
AREA: 0.742524 resize: 0.50 convolve: 1 scaling: 2 basis: 15
AREA: 0.747198 resize: 0.50 convolve: 1 scaling: 2 basis: 16
AREA: 0.755003 resize: 0.50 convolve: 1 scaling: 2 basis: 17
AREA: 0.768188 resize: 0.50 convolve: 1 scaling: 2 basis: 18
AREA: 0.756779 resize: 0.50 convolve: 1 scaling: 2 basis: 19
AREA: 0.767591 resize: 0.50 convolve: 1 scaling: 2 basis: 20
AREA: 0.747422 resize: 0.50 convolve: 1 scaling: 2 basis: 21
AREA: 0.739062 resize: 0.50 convolve: 1 scaling: 2 basis: 22
AREA: 0.743623 resize: 0.50 convolve: 0 scaling: 1 basis: 1
AREA: 0.774282 resize: 0.50 convolve: 0 scaling: 1 basis: 2
AREA: 0.742547 resize: 0.50 convolve: 0 scaling: 1 basis: 3
AREA: 0.770653 resize: 0.50 convolve: 0 scaling: 1 basis: 4
AREA: 0.720982 resize: 0.50 convolve: 0 scaling: 1 basis: 5
AREA: 0.722990 resize: 0.50 convolve: 0 scaling: 1 basis: 6
AREA: 0.701501 resize: 0.50 convolve: 0 scaling: 1 basis: 7
AREA: 0.752271 resize: 0.50 convolve: 0 scaling: 1 basis: 8
AREA: 0.719415 resize: 0.50 convolve: 0 scaling: 1 basis: 9
AREA: 0.760665 resize: 0.50 convolve: 0 scaling: 1 basis: 10
AREA: 0.729843 resize: 0.50 convolve: 0 scaling: 1 basis: 11
AREA: 0.758201 resize: 0.50 convolve: 0 scaling: 1 basis: 12
AREA: 0.728732 resize: 0.50 convolve: 0 scaling: 1 basis: 13
AREA: 0.723031 resize: 0.50 convolve: 0 scaling: 1 basis: 14
AREA: 0.702021 resize: 0.50 convolve: 0 scaling: 1 basis: 15
AREA: 0.722307 resize: 0.50 convolve: 0 scaling: 1 basis: 16
AREA: 0.719642 resize: 0.50 convolve: 0 scaling: 1 basis: 17
AREA: 0.751416 resize: 0.50 convolve: 0 scaling: 1 basis: 18
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AREA: 0.730322 resize: 0.50 convolve: 0 scaling: 1 basis: 19
AREA: 0.758073 resize: 0.50 convolve: 0 scaling: 1 basis: 20
AREA: 0.729649 resize: 0.50 convolve: 0 scaling: 1 basis: 21
AREA: 0.725023 resize: 0.50 convolve: 0 scaling: 1 basis: 22
AREA: 0.741609 resize: 0.50 convolve: 0 scaling: 2 basis: 1
AREA: 0.772696 resize: 0.50 convolve: 0 scaling: 2 basis: 2
AREA: 0.740714 resize: 0.50 convolve: 0 scaling: 2 basis: 3
AREA: 0.769191 resize: 0.50 convolve: 0 scaling: 2 basis: 4
AREA: 0.718334 resize: 0.50 convolve: 0 scaling: 2 basis: 5
AREA: 0.718839 resize: 0.50 convolve: 0 scaling: 2 basis: 6
AREA: 0.697054 resize: 0.50 convolve: 0 scaling: 2 basis: 7
AREA: 0.749987 resize: 0.50 convolve: 0 scaling: 2 basis: 8
AREA: 0.715829 resize: 0.50 convolve: 0 scaling: 2 basis: 9
AREA: 0.758984 resize: 0.50 convolve: 0 scaling: 2 basis: 10
AREA: 0.727019 resize: 0.50 convolve: 0 scaling: 2 basis: 11
AREA: 0.756065 resize: 0.50 convolve: 0 scaling: 2 basis: 12
AREA: 0.726467 resize: 0.50 convolve: 0 scaling: 2 basis: 13
AREA: 0.720625 resize: 0.50 convolve: 0 scaling: 2 basis: 14
AREA: 0.696877 resize: 0.50 convolve: 0 scaling: 2 basis: 15
AREA: 0.718347 resize: 0.50 convolve: 0 scaling: 2 basis: 16
AREA: 0.715761 resize: 0.50 convolve: 0 scaling: 2 basis: 17
AREA: 0.749237 resize: 0.50 convolve: 0 scaling: 2 basis: 18
AREA: 0.727715 resize: 0.50 convolve: 0 scaling: 2 basis: 19
AREA: 0.756016 resize: 0.50 convolve: 0 scaling: 2 basis: 20
AREA: 0.727005 resize: 0.50 convolve: 0 scaling: 2 basis: 21
AREA: 0.722629 resize: 0.50 convolve: 0 scaling: 2 basis: 22
AREA: 0.759693 resize: 1.00 convolve: 1 scaling: 1 basis: 1
AREA: 0.759611 resize: 1.00 convolve: 1 scaling: 1 basis: 2
AREA: 0.758853 resize: 1.00 convolve: 1 scaling: 1 basis: 3
AREA: 0.759496 resize: 1.00 convolve: 1 scaling: 1 basis: 4
AREA: 0.708838 resize: 1.00 convolve: 1 scaling: 1 basis: 5
AREA: 0.749257 resize: 1.00 convolve: 1 scaling: 1 basis: 6
AREA: 0.747233 resize: 1.00 convolve: 1 scaling: 1 basis: 7
AREA: 0.752379 resize: 1.00 convolve: 1 scaling: 1 basis: 8
AREA: 0.739648 resize: 1.00 convolve: 1 scaling: 1 basis: 9
AREA: 0.738521 resize: 1.00 convolve: 1 scaling: 1 basis: 10
AREA: 0.731884 resize: 1.00 convolve: 1 scaling: 1 basis: 11
AREA: 0.724102 resize: 1.00 convolve: 1 scaling: 1 basis: 12
AREA: 0.718418 resize: 1.00 convolve: 1 scaling: 1 basis: 13
AREA: 0.712544 resize: 1.00 convolve: 1 scaling: 1 basis: 14
AREA: 0.746830 resize: 1.00 convolve: 1 scaling: 1 basis: 15
AREA: 0.748950 resize: 1.00 convolve: 1 scaling: 1 basis: 16
AREA: 0.740318 resize: 1.00 convolve: 1 scaling: 1 basis: 17
AREA: 0.752285 resize: 1.00 convolve: 1 scaling: 1 basis: 18
AREA: 0.732036 resize: 1.00 convolve: 1 scaling: 1 basis: 19
AREA: 0.739804 resize: 1.00 convolve: 1 scaling: 1 basis: 20
AREA: 0.717762 resize: 1.00 convolve: 1 scaling: 1 basis: 21
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AREA: 0.711359 resize: 1.00 convolve: 1 scaling: 1 basis: 22
AREA: 0.760149 resize: 1.00 convolve: 1 scaling: 2 basis: 1
AREA: 0.759965 resize: 1.00 convolve: 1 scaling: 2 basis: 2
AREA: 0.759481 resize: 1.00 convolve: 1 scaling: 2 basis: 3
AREA: 0.759682 resize: 1.00 convolve: 1 scaling: 2 basis: 4
AREA: 0.710016 resize: 1.00 convolve: 1 scaling: 2 basis: 5
AREA: 0.750137 resize: 1.00 convolve: 1 scaling: 2 basis: 6
AREA: 0.747624 resize: 1.00 convolve: 1 scaling: 2 basis: 7
AREA: 0.752974 resize: 1.00 convolve: 1 scaling: 2 basis: 8
AREA: 0.740661 resize: 1.00 convolve: 1 scaling: 2 basis: 9
AREA: 0.739026 resize: 1.00 convolve: 1 scaling: 2 basis: 10
AREA: 0.732781 resize: 1.00 convolve: 1 scaling: 2 basis: 11
AREA: 0.724569 resize: 1.00 convolve: 1 scaling: 2 basis: 12
AREA: 0.719200 resize: 1.00 convolve: 1 scaling: 2 basis: 13
AREA: 0.713733 resize: 1.00 convolve: 1 scaling: 2 basis: 14
AREA: 0.747411 resize: 1.00 convolve: 1 scaling: 2 basis: 15
AREA: 0.749819 resize: 1.00 convolve: 1 scaling: 2 basis: 16
AREA: 0.741024 resize: 1.00 convolve: 1 scaling: 2 basis: 17
AREA: 0.752860 resize: 1.00 convolve: 1 scaling: 2 basis: 18
AREA: 0.732482 resize: 1.00 convolve: 1 scaling: 2 basis: 19
AREA: 0.740274 resize: 1.00 convolve: 1 scaling: 2 basis: 20
AREA: 0.718788 resize: 1.00 convolve: 1 scaling: 2 basis: 21
AREA: 0.712555 resize: 1.00 convolve: 1 scaling: 2 basis: 22
AREA: 0.737737 resize: 1.00 convolve: 0 scaling: 1 basis: 1
AREA: 0.751525 resize: 1.00 convolve: 0 scaling: 1 basis: 2
AREA: 0.736418 resize: 1.00 convolve: 0 scaling: 1 basis: 3
AREA: 0.749927 resize: 1.00 convolve: 0 scaling: 1 basis: 4
AREA: 0.684259 resize: 1.00 convolve: 0 scaling: 1 basis: 5
AREA: 0.711860 resize: 1.00 convolve: 0 scaling: 1 basis: 6
AREA: 0.688779 resize: 1.00 convolve: 0 scaling: 1 basis: 7
AREA: 0.727700 resize: 1.00 convolve: 0 scaling: 1 basis: 8
AREA: 0.695392 resize: 1.00 convolve: 0 scaling: 1 basis: 9
AREA: 0.722738 resize: 1.00 convolve: 0 scaling: 1 basis: 10
AREA: 0.693837 resize: 1.00 convolve: 0 scaling: 1 basis: 11
AREA: 0.715082 resize: 1.00 convolve: 0 scaling: 1 basis: 12
AREA: 0.686888 resize: 1.00 convolve: 0 scaling: 1 basis: 13
AREA: 0.684657 resize: 1.00 convolve: 0 scaling: 1 basis: 14
AREA: 0.689389 resize: 1.00 convolve: 0 scaling: 1 basis: 15
AREA: 0.712016 resize: 1.00 convolve: 0 scaling: 1 basis: 16
AREA: 0.696188 resize: 1.00 convolve: 0 scaling: 1 basis: 17
AREA: 0.727771 resize: 1.00 convolve: 0 scaling: 1 basis: 18
AREA: 0.694133 resize: 1.00 convolve: 0 scaling: 1 basis: 19
AREA: 0.722430 resize: 1.00 convolve: 0 scaling: 1 basis: 20
AREA: 0.687758 resize: 1.00 convolve: 0 scaling: 1 basis: 21
AREA: 0.685376 resize: 1.00 convolve: 0 scaling: 1 basis: 22
AREA: 0.734786 resize: 1.00 convolve: 0 scaling: 2 basis: 1
AREA: 0.749562 resize: 1.00 convolve: 0 scaling: 2 basis: 2
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AREA: 0.733983 resize: 1.00 convolve: 0 scaling: 2 basis: 3
AREA: 0.747595 resize: 1.00 convolve: 0 scaling: 2 basis: 4
AREA: 0.682295 resize: 1.00 convolve: 0 scaling: 2 basis: 5
AREA: 0.707229 resize: 1.00 convolve: 0 scaling: 2 basis: 6
AREA: 0.684367 resize: 1.00 convolve: 0 scaling: 2 basis: 7
AREA: 0.725146 resize: 1.00 convolve: 0 scaling: 2 basis: 8
AREA: 0.691156 resize: 1.00 convolve: 0 scaling: 2 basis: 9
AREA: 0.720091 resize: 1.00 convolve: 0 scaling: 2 basis: 10
AREA: 0.690956 resize: 1.00 convolve: 0 scaling: 2 basis: 11
AREA: 0.712476 resize: 1.00 convolve: 0 scaling: 2 basis: 12
AREA: 0.684451 resize: 1.00 convolve: 0 scaling: 2 basis: 13
AREA: 0.681919 resize: 1.00 convolve: 0 scaling: 2 basis: 14
AREA: 0.683811 resize: 1.00 convolve: 0 scaling: 2 basis: 15
AREA: 0.707771 resize: 1.00 convolve: 0 scaling: 2 basis: 16
AREA: 0.691657 resize: 1.00 convolve: 0 scaling: 2 basis: 17
AREA: 0.725210 resize: 1.00 convolve: 0 scaling: 2 basis: 18
AREA: 0.691145 resize: 1.00 convolve: 0 scaling: 2 basis: 19
AREA: 0.720126 resize: 1.00 convolve: 0 scaling: 2 basis: 20
AREA: 0.684926 resize: 1.00 convolve: 0 scaling: 2 basis: 21
AREA: 0.682738 resize: 1.00 convolve: 0 scaling: 2 basis: 22
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