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Abstract. In prior work, we put forth a model of visual saliency moti-
vated by information theoretic considerations [1]. In this effort we consider
how this proposal extends to explain saliency in the spatiotemporal do-
main and further, propose a distributed representation for visual saliency
comprised of localized hierarchical saliency computation. Evidence for the
efficacy of the proposal in capturing aspects of human behavior is achieved
via comparison with eye tracking data and a discussion of the role of neu-
ral coding in the determination of saliency suggests avenues for future
research.
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1 Introduction

Certain visual search experiments demonstrate in dramatic fashion the imme-
diate and automatic deployment of attention to unique stimulus elements in
a display. This phenomenon no doubt factors appreciably into visual sampling
in general influencing fixational eye movements and our visual experience as a
whole. Some success has been had in emulating these mechanisms [2], repro-
ducing certain behavioral observations related to visual search, but the precise
nature of the principles underlying such behaviors remains unknown.

One recent proposal deemed Attention by Information Maximization (AIM) is
grounded in a principled definition for what constitutes visually salient content
derived from information theory, and has had some success in explaining certain
aspects of behavior including the deployment of eye movements [1] and other
visual search behaviors [3]. In this paper we further explore support for this
proposal through consideration of spatiotemporal visual stimuli. This includes
a comparison of the proposal against the state of the art in this domain. The
following discussion reveals the efficacy of the proposal put forth in AIM to
explain eye movements for spatiotemporal data and also describes how the model
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fits in with the big picture. Specifically, we address how the proposal fits with
distributed hierarchical attentional architectures of the sort put forth by Tsotsos
[4] for which favorable evidence has appeared in recent years.

2 AIM: Information Maximizing Saliency

In the following section, we briefly review the proposal put forth in [1], which
is applied to a set of neurons that code for content in space-time within the
evaluation included in this work. The following offers only a brief overview; for
a detailed account, readers should refer to [1].

The central premise of AIM is that saliency computation should serve to
maximize information sampled from one’s environment from a stimulus driven
perspective. Specifically, given an ensemble of neurons Ci,j that code for content
at spatial coordinates i, j with Ci,j,k, k = 1...N corresponding to the different
types of cells with receptive fields centered at i, j the self-information or surprisal
associated with Ci,j is given by −log(p(Ci,j)) with the likelihood determined by
observing the response of cells in the surround of Ci,j . Given the assumption of
independence on the response of different types of cells (an assumption made
reasonable by sparsity as discussed in the section that follows), this quantity
may be computed as

∑N
k=1 −log(Ci,j,k). Saliency in this context then amounts

to the surprisal or self-information of the response associated with a cell as
defined by its surround. In other words, saliency is inversely proportional to
the likelihood of predicting the response of any given neuron in observing the
response of neurons in its surrounding spatiotemporal context. For any given
cell type it is straightforward to derive a likelihood estimate by constructing a
probability density estimate based on cells of the same type in the surround. An
overview of the model with reference to the specifics of the implementation for
spatiotemporal stimuli is presented in the section that follows.

3 Extension to Space-Time

The general nature of the original proposal implies that it may be applied to
any set of neurons that constitute a sparse basis. For this reason, extension
to space-time is straightforward assuming the early coding of spatiotemporal
content observed in the cortex satisfies these criteria. There exist many efforts
documenting the relationship between early visual cortical neurons and coding
strategies that demonstrate that learning a sparse code for local grey-level image
content yields V1 like receptive fields similar to oriented Gabor filters [5,6]. Fur-
ther efforts have demonstrated this same strategy yields color-opponent coding
for spatiochromatic content [7] and also cells with properties akin to V1 for spa-
tiotemporal data [8]. We have employed the same data and strategy put forth
in [8] to learn a basis set of cells coding for spatiotemporal content. The data
described in [8] was subsampled taking every second frame to yield data at 25
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frames per second. The data set consists of a variety of natural spatiotemporal
sequences taken from various angles of a moving vehicle traveling in a typical
urban environment. Spatiotemporal volumes were then randomly sampled from
the videos to yield 11x11x6 (x,y,t) localized spatiotemporal volumes that served
as training data. Infomax ICA [9] was applied to the training set resulting in a
spatiotemporal basis consisting of cells that respond to various frequencies and
velocities of motion and for which the correlation between cell firing rates is mini-
mized. The basis resulting from dimensionality reduction via PCA retaining 95%
variance followed by ICA yields a set of 60 spatiotemporal cells. A subsample of
these (corresponding to 1st, 3rd and 6th frame of the volume) are shown in fig-
ure 1. Note the response to various angular and radial frequencies and selectivity
for different velocities of motion. Aside from the application to spatiotemporal
data and the different basis set, the saliency computation proceeds according to
the description put forth in [1].

An overall schematic of the model based on the learned spatiotemporal basis
appears in figure 2. A localized region from adjacent frames (3 of 6 shown)
are projected onto the learned basis. This yields a set of coefficients for the local
region that describes the extent to which various types of motion are observed at
the given location. The likelihood of each response is then evaluated by observing
the response of cells of the same type in the surround or in this implementation,
over the entire image. A sum of the negative log likelihood associated with all
of the coefficients corresponding to the given coordinate (pixel) location yields
a local measure of saliency.

Fig. 1. The receptive field profile of a subsample of the learned basis corresponding to
frames 1, 3 and 6 of the spatiotemporal volume. Note the selectivity for various angular
and radial frequencies and velocities and directions of motion.



Saliency in the Spatiotemporal Domain 101

Fig. 2. An overview of the computation performed by AIM. A spatiotemporal volume is
projected onto a learned basis based on independent component analysis. The likelihood
of any given cells firing rate may be estimated by observing the distribution of responses
associated with cells of the same type in the surround or over the entire image. A
summation of these likelihoods subjected to a log transform then yields a local measure
of information. For a complete description the reader should refer to [1].

4 Evaluation

An evaluation of the efficacy of the model in predicting spatiotemporal fixation
patterns is achieved via comparison with eye tracking data collected for video
stimuli. The eye tracking data employed for this study was that used in [10]
and performance evaluation was carried out according to the same performance
metric described in the aforementioned work.

The data consists of eye tracking data for a total of 50 video clips and from
8 subjects aged 22-32 with normal or corrected to normal vision. Videos consist
of indoor and outdoor scenes, news and television clips and video games. Videos
were presented at a resolution of 640x480 and at 60 Hz and consist of over 25
minutes of playtime. The total number of saccades included in the analysis is
12,211.
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For any given algorithm, one may compare the saliency at fixated locations
with randomly sampled locations. The Kullback-Leibler divergence of two dis-
tributions corresponding to these quantities is given by

DKL(P, Q) =
∑

P (i)log
P (i)
Q(i)

where P and Q correspond to the distribution of randomly sampled and at-
fixation sampled saliency values respectively based on 10 bin histogram esti-
mates. The KL-divergence offers a performance metric allowing comparison of

Fig. 3. Relative saliency of each pixel for a variety of frames from different videos
allowing a qualitative assessment of model performance

Fig. 4. A histogram representation comparing saliency values at fixated versus ran-
domly located display locations. KL-divergence is 0.328 as compared with 0.241 for
the algorithm presented in [10] and 0.205 for that appearing in [2].
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various algorithms. Results are compared against those put forth in [10] and
proceeds according to the same performance evaluation strategy.

Figure 3 demonstrates the relative saliency of pixel locations for a variety
of single frames from a number of videos. Note the inherent tradeoff between
moving and stationary content as observed for the running tap, and park scene
as well as the ability to detect salient patterns on a relatively low contrast
background (rightmost frame).

Figure 4 demonstrates a histogram of the saliency associated with the fixated
locations as compared with those from uniformly randomly sampled regions. Of
note is the shift of the distribution towards higher saliency values for the distribu-
tion associated with fixated relative to random locations. The KL-divergence of
the two distributions shown is 0.328. This compares favorably with the Surprise
metric of Itti and Baldi [10] which gives rise to a KL-divergence score of 0.241
and the saliency evaluation of Itti and Koch [2] which yields a KL-divergence
score of 0.205. This result demonstrates that relative to competing proposals the
saliency associated with fixated relative to random locations is greatest for AIM.

5 Surround Suppression, Gain Control and Redundancy

An important consideration in any model that posits a specific proposal for how
saliency computation is achieved, is that of a possible neural implementation.
Perhaps the foremost consideration pertaining to neural circuitry, is the extent
to which the proposal agrees with observations concerning cortical circuitry and
neurophysiology. To this end, this section reviews a variety of classic and recent
results derived from psychophysics and imaging experiments on the nature of
surround suppression within the cortex. Necessary conditions of an architecture
that seeks to maximize information in its control of neural gain are weighed
against the experimental literature in order to evaluate the plausibility of AIM
from the perspective of a possible neural basis for its implementation. As a whole,
the discussion establishes that a variety of peculiar and very specific constraints
imposed by the implementation show considerable agreement with the compu-
tation implicated in surround suppression further providing support for AIM,
and also offering some insight on the nature of computation responsible for iso-
orientation surround suppression in early visual cortex. Debate concerning the
specific nature and form of surround suppression has rekindled in recent years,
which has resulted in a large body of interesting results that further elucidate
the details of this process. The following discussion reviews these results and
offers further insight through a meta-analysis of recent studies. In each case,
experimental findings are contrasted against the computational constraints on
AIM to establish plausibility of the proposed computation.

5.1 Types of Features

A great deal of research has focused specifically on the suppression that arises
from introducing a stimulus in the surround of a localized oriented Gabor tar-
get. The specific nature of iso-orientation (iso-feature) surround suppression as
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dictated by the details of AIM includes two key considerations: 1. Suppression
of a cell whose receptive field lies at the target location should occur only for a
surround stimulus that is the effective stimulus for this cell. For example, for a
vertically oriented Gabor target, suppression of a cell that elicits a response to the
target will occur only by way of a similar stimulus appearing in the surround. Re-
call that a fundamental assumption is that the responses of different types of cells
at a given location are such that the correlation between their responses is mini-
mal and this is a phenomenon that is observed cortically. In the domain of studies
pertaining to surround suppression, the literature is undivided in its agreement
with this assumption. When considering the cell response or psychometric thresh-
old associated with a target patch, suppression from a surround stimulus is highly
stimulus specific and is at a maximum for a surround matching the target orien-
tation, with suppression observed only for a narrow orientation band centered
around the target orientation [11,12,13,14,15,16]. This is consistent with a local
likelihood estimate in which the independence assumption is implicit. 2. Suppres-
sion should be observed for all feature types, and the nature of, and parameters
associated with suppression should not differ across feature type. This is an im-
portant consideration since studies of this type have largely focused on oriented
sinusoidal stimuli but nevertheless similar suppression associated with color, or
velocity of motion for example, should also be observed and the nature of such
suppression should be consistent with that observed in studies involving oriented
sinusoidal target and surrounds. One recent effort provides strong evidence that
this is the case through single cell recording on macaque monkeys [14]. Shen et al.
demonstrate that centre-surround fields defined by a variety of features including
color, velocity and oriented gratings all elicit suppression and with suppression
at a maximum for matching centre and surround stimuli.

5.2 Relative Contrast

Given a cell with firing rate Ni,j that codes for a specific quantity at coordinates
i,j in the visual field (e.g. a cell selective for a specific angular and radial frequency
as part of a basis representation with its centre at location i,j), a density estimate
on the observation likelihood of the firing rate associated with Ni,j as discussed
earlier in this section is given by:

p(Ni,j) =
∑

∀s,t∈Ω

f(Ni,j − Ns,t) (1)

Where f is a monotonic symmetric kernel with its maximum at f(0) and Ω
the region over which the surround has any significant impact. For further ease
of exposition in observing the behavior of equation 1, assume without loss of
generality that f comprises a Gaussian kernel. Then equation 1 becomes:

1
σ
√

2π

∑

∀s,t∈Ω

e−(Nj,k−Ns,t)
2/2σ2

(2)

As there also exists a spatial component to this estimate, it may be more ap-
propriate to also include a parameter that reflects the effect of distance on the
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contribution of any given cell to the estimate of Ni,j which might appear as
follows:

1
σ
√

2π

∑

∀s,t∈Ω

Ψ(s, t)e−(Nj,k−Ns,t)
2/2σ2

(3)

Ψ drops off according to the distance of any given cell from the target location,
reflecting the decreasing correlation between responses. Assuming that surround
suppression is the basis for the computation involved in AIM equation 1 demands
a very specific form for the suppressive influence of a surrounding stimulus on
the target item. According to the form of equation 3, suppression depends on the
relative response of centre and surround stimuli and should be at a maximum for
equal contrast centre and surround stimuli: Raising or lowering the contrast of a
stimulus pattern will generally result in a concomitant increase in the response of
a cell for which the pattern in question is the effective stimulus. There is therefore
a direct monotonic (nonlinear) relationship between the firing rate attributed
to centre or surround, and their respective contrasts. Support for suppression
as a function of relative centre versus surround contrast is ubiquitous in the
literature [17,18,14,11,19,20,15,21] although there is as of yet no consensus on
why this should be the specific form for the suppressive influence of a surround
stimulus. There also exists a large body of prominent studies revealing that
this suppression is indeed at a maximum for equal contrast centre and surround
stimuli [17,18,14,11,15]. Note that this implies mathematical equivalence between
surround suppression and a likelihood estimate on a given cell’s response as
defined by the response of neighboring cells and implies divisive modulation of a
cells response by a function of its likelihood. This is an important consideration
as it offers insight on the role of surround suppression which has recently become
an issue of considerable dispute [16] and implicates surround suppression as
the machinery underlying the implementation of AIM. It is also worth noting
that the suppressive impact of cells in the surround is observed to drop off
exponentially with distance from the target giving the specific form of Ψ [16].

5.3 Spatial Configuration

For the sake of exposition, let us assume that the computation under discussion
is restricted to V1. From the perspective of efficient coding, no knowledge of
structure is available at V1 beyond that which lies within a region the size
of single V1 receptive field. A pure information theoretic interpretation of the
surprisal associated with a local observation as determined at the level of V1
should reflect this implying an isotropic contribution to any likelihood estimate
in the vicinity of the target cell, regardless of the pattern that forms an effective
stimulus for the cell in question. That is, for a unit whose effective stimulus
is a horizontal Gabor pattern, equidistant patterns of the same type in the
vicinity of the target should result in equal suppression regardless of where they
appear with respect to the target and this is reflected in the implementation
put forth in [1]. It is also expected that likelihoods associated with higher order
structure over larger receptive fields are mediated by higher visual areas either
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implicitly at the single cell level or explicitly via recurrent connections. In line
with the assumption that computation is on the observation likelihood of a
pattern within a given region, and that structures are limited to an aperture
no larger than a V1 receptive field, it is indeed the case that suppression from
the surround is isotropic with respect to the location of a pattern appearing in
the surround independent of target and surround orientations [16]. By virtue
of the same consideration, one would also expect the spatial extent of surround
suppression to be invariant to the spatial frequency of a target item. This is also a
consideration that is evident in the literature [16]. In consideration of observation
likelihoods associated with more complex patterns, it is interesting to consider
the nature of surround suppression among higher visual areas. Recent studies are
discovering more and more examples of suppressive surround inhibition among
higher visual areas with the same properties and divisive influence as those that
are well established in V1. Extrastriate surround inhibition of this form has
been observed at least among areas V2 [22,23], V4 [24,25], MT [26,27,28], and
MST [29]. This is suggestive of the possibility that saliency is represented within
a distributed hierarchy, with local saliency computation mediated by surround
suppression at various layers of the visual cortex.

5.4 Fovea versus Periphery

If the role of local surround suppression is in attenuating neural activation asso-
ciated with unimportant visual input and/or redirecting the eyes via fixational
eye movements one would expect the influence of such a mechanism to be promi-
nent within the periphery of the visual field. Petrov and McKee demonstrated
that surround suppression is in fact strong in the periphery and absent in the
fovea [16]. This is consistent, as Petrov and McKee point out, with a role of
this mechanism in the control of saccadic eye movements. Furthermore, there
are additional points they highlight that support this possibility, including the
fact that the extent of suppression is invariant to stimulus spatial frequency.
Also of note, is the fact that the inaccuracy of a first saccade is proportional to
target eccentricity and this correlates with the extent of surround suppression as
a function of eccentricity [16]. Note that the cortical region over which surround
suppression is observed does not vary with eccentricity implying that computa-
tionally, an equal number of neurons contribute to any given likelihood estimate
of the form appearing in equation 1. All of these considerations are in line with
a role of this mechanism in the deployment of saccades.

5.5 Summary

We have put forth the proposal that the implementation of AIM is achieved
via local surround circuitry throughout the visual cortex. As a whole, there ap-
pears to be considerable agreement with the proposal and the specific form of
surround suppression. The demonstration of equivalence of a likelihood estimate
on the surround of a cell with the apparent form of suppressive inhibition im-
plies modulation of cell responses at a single cell level through divisive gain as
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a function of the likelihood associated with that cell’s response. This provides a
more specific explanation for the nature of computation appearing in suppres-
sive surround circuitry and further bolsters the claim that saliency computation
proceeds according to a strategy of optimizing information transmission.

6 On the Role of Neural Encoding

As discussed, probability density estimation, or any sort of neural probabilistic
inference, requires an efficient representation of the statistics of the natural world
in order to meet computational demands. The specific nature of this representa-
tion within many biological brains seems to be an encoding of natural stimuli in
a manner that minimizes the correlation or mutual dependence between neurons
[30,31,32,33,34]. A consequence of this computationally is that likelihoods in re-
gard to a neural firing rate can be considered independent of the firing rates of
neurons that code for different features. In this regard, the pop-out versus serial
search distinction may be seen as an emergent property of this coding strategy.
Since likelihoods associated with orientation statistics are considered indepen-
dently of those that represent chromatic information, the conjunction of these
features fails to elicit pop-out [3]. It is also interesting to note in support of this
line of reasoning, that as radial and angular frequency are coded jointly within
the cortex, a unique item defined by a conjunction of spatial frequency and ori-
entation does result in a pop-out stimulus [35]. In light of this observation, it
may be said more generally, that the specific nature of neuron properties has a
considerable influence on the behavior that manifests. It is well established that
search efficiency is more involved than a simple dichotomy of serial versus paral-
lel searches [36]. It has been demonstrated that one can observe a wide range of
behaviors from very efficient to very inefficient depending on the chosen stimuli.
One might suggest that the extent to which a search may be carried out efficiently
reflects the complexity of the neural code corresponding to target and distractor
elements. For stimuli that are highly natural and may be represented by the re-
sponse of a small number of neurons, one might expect a far more efficient search
than that associated with a highly unnatural stimulus that gives rise to a widely
distributed neural representation. This may also extend beyond simple V1-like
features to explain the surprising efficiency with which some search tasks involv-
ing complex stimuli are completed, such as search tasks involving 3D-shape [37],
depth from shading [38] and even very complex forms such as faces [39] which
are known to have a highly efficient cortical representation within the primate
cortex [40,41,42]. Considerations pertaining to coding may also shed some light
on the role of novelty in determining search efficiency. Inter-element suppression
of stimulus items may occur more strongly for those representations that are
relatively efficient and carried by only a small number of cells. Behaviorally this
is consistent with visual search paradigms in which familiarity with distractors
yields a relatively efficient search [43,44] assuming familiarity with target items
leads to a more efficient or even template like representation of the relevant stim-
uli. As a whole, it may be said that the role that principles underlying coding
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within the visual cortex play within attention and visual search is an aspect of
the problem that has been underemphasized. Many behaviors, in particular the
specific efficiency with which a search is conducted, may be seen as properties
that surface from very basic principles underlying the neural representation of
visual patterns, and consideration of the specific role of coding in attention and
visual search should serve as a target for further investigation.

7 Towards a Hierarchical Representation of Saliency

The preceding results demonstrate that the proposal originally tested on spati-
ochromatic data extends well to explain spatiotemporal data. A question that
naturally follows from this, is the extent to which the proposal may extend to
capture more high-level behaviors associated with neurons coding for more com-
plex stimuli and appearing higher in the cortex. As the saliency associated with
a pixel location is a simple summation of the individual saliency attributed to
each cell for each location, it is evident that saliency may be evaluated at the
level of a single cell. It follows that the same proposal that has been depicted
in a form more akin to the traditional saliency map style representation may
also reside within a distributed hierarchical representation in which the repre-
sentation of saliency is implicit and computed via local modulation as opposed
to a single explicit topographical representation of saliency. Such a proposal is
in line with models of attention that posit a distributed hierarchical selection
strategy [4]. Additionally, as the constraints on the cells involved are satisfied
among higher visual areas, one might propose that the proposal put forth in AIM
extends to higher visual areas to explain some of the apparent high-level effects
documented in the previous section. For example, a hierarchical coding structure
combined with AIM should afford some of the pop-out effects associated with
high-level features such as depth from shading assuming an appropriate code for
such features among higher visual areas.

8 Conclusion

We have considered how AIM extends to capture behaviors associated with vi-
sual patterns distributed over space and time. The plausibility of the proposal
as a description of human behavior is validated through a comparison with eye
tracking data on a wide range of qualitatively different videos. The proposal
emerges as very effective in explaining the behavioral data as was demonstrated
for the spatiochromatic case. We have also described how the proposal put forth
in AIM is compatible with distributed architectures for attentional selection [4]
including related details pertaining to coding and neural implementation. This
is an important contribution as the topic of saliency [4] is seldom discussed in
a context independent of the assumption of an explicit topographical saliency
map. Future work will aim to further explore saliency computation as a pro-
cess involving attention acting on a distributed hierarchical representation with
saliency realized via localized modulation throughout the cortex.
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