
Non-Rigid Registration meets Surface Reconstruction

Mohammad Rouhani, Edmond Boyer, Angel D. Sappa

To cite this version:

Mohammad Rouhani, Edmond Boyer, Angel D. Sappa. Non-Rigid Registration meets Surface
Reconstruction. 3DV 2014 - International Conference on 3D Vision, Dec 2014, Tokyo, Japan.
2014. <hal-01063513v2>

HAL Id: hal-01063513

https://hal.inria.fr/hal-01063513v2

Submitted on 19 Sep 2014 (v2), last revised 21 Jan 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

Non rigid registration is an important task in computer

vision with many applications in shape and motion model-

ing. A fundamental step of the registration is the data as-

sociation between the source and the target under consid-

eration. Such association proves difficult in practice, due to

the discrete nature of the information and its corruption by

various types of noise, e.g. outliers and missing data. In

this paper we investigate the benefit of the implicit repre-

sentation multi-level Partition of Unity (MPU) for the reg-

istration of 3D point clouds from coarse to fine resolutions.

Using this flexible surface representation, the discrete asso-

ciation between the source and the target can be replaced

by a continuous distance field induced by this implicit in-

terface. This significantly eases the registration by avoiding

direct association between points. Moreover, by combining

this distance field with a proper deformation term, the reg-

istration energy can be expressed in a linear least square

form that is easy and fast to solve. Experimental results are

provided for point clouds from multi-view data sets. The

qualitative and quantitative comparisons show the outper-

formance and robustness of our framework in presence of

noise and outliers.

1. Introduction

Point set registration is a fundamental issue in shape

modeling with several applications in computer vision,

robotics or computer graphics. This is particularly true in

the recent years, as the expansion of affordable 3D sen-

sors and of efficient point based reconstruction techniques

have made point cloud processing a popular research do-

main. Registering two point clouds consists in finding the

best deformation that aligns the two sets. Existing works

that solve this problem can be classified with respect to the

deformation model they consider to transform point sets and

also to the distance they use to measure the similarity be-

tween point sets. In the resulting optimization formulation

of the registration problem, the earlier defines a solution

space while the latter is used to build an objective func-

tion to be minimized. Hence both have a strong influence

on the convergence to a meaningful solution. In this paper

we particularly focus on the distance term and investigate

the benefit of distance fields in the case of non-rigid regis-

tration.

Independently of the deformation model, that can exhibit

various type of rigidity from (rigid to non-rigid), the dis-

tance measure between two point clouds fundamentally re-

lies on the point association scheme that is devised and over

which point distances are evaluated. Most of the existing

strategies in that respect are based on discrete point asso-

ciations. Some use the Euclidean distance and associate

closest points in a deterministic way, as in ICP [3], or in

a probabilistic way, as in [14]. Others better approximate

the real distances between the associated shapes by consid-

ering normal and curvature information as in [23]. All these

distance estimations are very sensitive to noise and outliers

and they are prone to errors with missing parts. Moreover,

the minimization of these distance approximations often get

trapped in local minima.

In this work we experiment a flexible interface (Fig.1(b))
for non-rigid registration with the objective to alleviate the

need for discrete point associations. This interface is an im-

plicit function that can define a distance field around the tar-

get point set. Interface representations have been success-

fully used to rigidly register two point sets, e.g., [24] and

we consider here their extension to the non-rigid case. The

interface induces a gradient field hence relaxing the con-

straint for explicit point correspondences (see Fig.1(c)). In

addition, the interface representation can be implemented

in a coarse-to-fine manner in order to avoid local minima.

Figure1(c)− (d) illustrates this principle with first a coarse

implicit interface that captures the global shape information

and then gradually switches to a finer interface that accounts

for more details of the shape. The main features of our ap-

proach are the following:

1. A new efficient formulation that solves non-rigid regis-

tration problem without requiring any correspondence.
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(a) (b) (c) (d)

Figure 1. Using implicit interface for registration: (a) initial pose of the source and target sets; (b) source patches and the local quadrics

representing the target; (c) the blended MPU induces a gradient field; (d) deformed source patches fitting the MPU; a coarse-to-fine

interface has been used in (c)− (d).

2. The proposed representation allows for coarse to fine

strategies.

3. The resulting optimization can be performed by itera-

tively solving sparse linear system of equations.

4. The approach challenges traditional techniques that

consider time consuming discrete point associations

are prone to errors with noise, outliers and missing data

The remainder of the paper is as follows. Section 2 dis-

cusses related works in surface registration. The approach

is detailed in Section 3 . Section 4 presents results and com-

parisons on public data sets.

2. Related Works

Point set registration consists in finding the best transfor-

mation that align two point sets in the same pose and in a

single coordinate system. As mentioned earlier, the prob-

lem relies on two main aspects, namely the deformation

model and the distance measurement. In this section the

related works are presented with respect to these aspects.

Deformation model: such model should be defined prior

to any rigid or non-rigid registration. Its importance comes

from the fact that it defines the parameter space within

which the optimization will be performed. It can be simply

rigid or affine transformations that are linear with respect to

the parameter vector allowing hence for only a few degrees

of freedom. When it comes to non-rigid deformation trans-

formations must be more elaborated in order to capture dif-

ferent motions while maintaining surface properties. These

transformations can be divided in two main categories: the

extrinsic and intrinsic deformations.

In the extrinsic deformation models, the whole space

where the object is embedded deforms and the object fol-

lows that deformation consequently as a specific part of

the space. For instance, In Thin-Plate Spline (TPS) [5],

the space is deformed by changing the control weights of

some radial basis functions and in FFD [27] a mapping is

provided by controlling the B-spline basis functions. Both

transformations are widely used to model the deformation

especially for medical imaging applications, where some re-

gion based information is available. The rigidity of these

transformations is controlled by a quadratic regularization

term that may penalize many natural motions.

In contrast, the intrinsic deformation models, only con-

sider the manifold itself. Changes are therefore applied di-

rectly on the points over the surface instead of the whole

space. Laplacian deformation is one the most popular tech-

niques in this category [28] that is widely used in motion

capture applications, e.g. [1]. It extracts local geometric

properties at each vertex that are assumed to be preserved

by transformations. Skinning methods like [17] use embed-

ded skeleton and preserve the distances to the bone during

the deformation, while [25] and [12] try to preserve isomet-

ric distances between the points.

In our approach, following [6] and [2], the non-rigid

deformation is modeled as a combination of locally rigid

transformations, which are applied to patches defined on the

object shape. However, in order to reach a meaningful re-

sult, the compatibility of these local rigid patches must be

maintained by some regularization term. For instance, [2]

uses a naive stiffness term that imposes the similarity be-

tween the neighboring affine matrices. Instead, we consider

a very simple rigidity term, proposed in [6], that checks the

transformation effects of each patch on its neighbors. This

choice hands over a quadratic deformation term that forces

the patches to move together, as it is explained in Section 3.

Data association: this is another major aspect to be con-

sidered since it defines the distance between the source and

target, which has to be minimized during the registration. It-

erative Closest Point (ICP) [3] is the most popular technique

in that respect, where every source point is paired with its

closest corresponding point in the target set and for which

the accumulated distance must be minimized in the param-

eter space. This distance might not be very accurate due to

missing points for instance. In [8] and [22] additional local

geometric information that includes normals and curvatures

are exploited for better distance estimations.



Distance fields are also frequently used in order to pre-

compute the distance (and its derivatives) in a regular grid

of voxels [10], [11]. This pre-computation is still based on

discrete point associations and the accuracy depends largely

on the grid size. Moreover, distance fields may fail in the

presence of noise and missing parts. Probabilistic models,

like Gaussian Mixture Model (GMM), are also widely used

for point associations [14, 15]. In these models every point

cloud is seen as a probabilistic distribution and the distance

is defined as the correlation of two densities. This can be

viewed as a kind of soft-assignment (e.g., RPM [9]) where

many points in the target set are considered as the potential

(weighted) correspondences of a single source points.

In our approach an implicit interface is used both for rep-

resenting the target set and speeding up the distance com-

putation. This work extend the rigid registration techniques

in [24] and [31] to the non-rigid case by using a powerful

implicit representation as the interface [21] in addition to a

flexible deformation model as well. Unlike the aforemen-

tioned techniques, the proposed method does not require

any correspondence search, which reduces the computa-

tional cost. It is also robust to noise that is handled twice,

during the surface reconstruction and again during the dis-

tance estimation. In addition, using the interface allows to

perform coarse-to-fine estimations.

Optimization: Computational aspects of the opimization

that is performed are also critical for the performance of the

registration. Essentially, the optimization allows to move

in the deformation parameter space and to search for the

best parameters. The complexity of optimization technique

changes based on the model. In [10] a distance field has

been used to estimate the distance during the rigid registra-

tion. The outcome is a distance in a non-linear least squares

form that is solved through the Levenberg-Marquadt al-

gorithm. In [26], the optimal TPS parameters are esti-

mated through solving a non-linear system of equations that

are obtained by computing some proper integrals over the

mesh.

Variational methods are also used to solve the registra-

tion problem as an energy minimization problem. In [18] a

finite-element method is used to solve a PDE of the warping

field. Euler-Lagrange formulation has been used in [31] to

reach a smooth gradient field induced by an implicit poly-

nomial. Gradient descent is one of the common techniques

to find the optimal deformation in the nonlinear cases [16],

[19]. Probabilistic approaches can be seen as an energy

minimizing model as well; but, they use a different opti-

mization framework. EM-like algorithm has been used in

[20] to align two GMMs.

Linear least squares form, on the other hand, is one the

simplest techniques in optimization that results in a closed

form solution. In [23] a linear framework for registration

is presented by using a curvature based distance estimation,

but it still requires a discrete point association. In the cur-

rent work, we aim at modeling the registration optimization

in a least squares form that is the simplest model for opti-

mization. The proposed technique does not need any dis-

crete point association due to the use of implicit interface.

Both data term and the deformation energy are chosen in the

way that can be easily optimized using a sparse system of

linear equations; and at the same time, the local minimums

can be avoided using the coarse-to-fine interfaces.

3. Non-rigid Registration using Implicit Inter-

face

In this section the proposed linear framework for

correspondence-free non-rigid registration is presented.

First, the implicit interface and its induced gradient field

are introduced and its description flexibility in different res-

olutions is highlighted. Then, we explain how this interface

can benefit the non-rigid registration by providing a new

data term. Finally, a sparse system of equation is derived in

order to solve our linear least squares function.

3.1. Implicit Interface

Implicit functions are among the most flexible represen-

tations for surface reconstruction that do not require any

parameterization on the point cloud. These functions de-

scribe the objects of interest through their zero sets and

provide further information around the objects. The de-

scription used in this work is based on the small quadratic

patches that are reconstructed over the cells of an oct-tree.

The partition of unity technique is applied afterwards in or-

der to provide a global implicit function that is smooth over

the space [21]. This interface provides high-level represen-

tations from coarse-to-fine, where each of them induces a

continuous gradient field that can be exploited for registra-

tion (Fig. 2).

Having reconstructed the small quadratic functions

{f1, f2, ...} over the volumetric oct-tree, a smooth global

function F can be reconstructed by blending these patches:

F(x) =
∑

i∈Nx

ŵi(x)fi(x) (1)

where N x refers to the set of cells in the neighborhood of x.

The weighting functions ŵi(x) are designed using a radial

function of the distance from the center of the cell. These

weights must be normalized in order to sum up to one at

any point. The global function F can be viewed as a con-

vex combination of the quadratic patches that are blended

smoothly. The influence of neighboring cells can be eas-

ily controlled through the blending radius defined in the

weights [21]. Figure 2 illustrates how the quadratic patches

are blended smoothly in different resolutions. In this work,

we are not interested in the visualization power of this re-

construction technique. We, instead, use this tool to obtain



Figure 2. Using MPU to describe a point cloud: (left) small quadratic patches; the rest: the global blending of the local patches in different

resolution (coarse-to-fine); (right) the induced gradient field.

a continuous alternative to discrete point association. As

illustrated in Fig.2, this function induces a smooth gradi-

ent field whose vectors are pointing toward the object in

proportion to the distances. Taubin in [29], presents a good

distance approximation that can be used in registration [24]:

Edata(T ) =
∑

x∈S

(

F(T (x))

‖∇F(T (x))‖

)2

(2)

where T is the optimal deformation to be applied on the

source set. Instead of minimizing this non-linear term,

[31] considers the integral form of this summation and ap-

plies calculus of variation resulting in the following gradient

field:

g(x) = −γ
F(x)

‖∇F(x)‖2
∇F(x). (3)

Then, every point is associated with a vector along ∇F ,

which is orthogonal to the iso-surface, and its length is pro-

portional to its distance from the zero set. This vector field

can be exploited for developing a correspondence-free non-

rigid registration method.

3.2. Non­Rigid Registration

Correspondence-free registration based on the implicit

interface has been already used in [24] and [31]. In these

works only the rigid registration problem is considered,

while we present a linear formulation for solving the ”non-

rigid” case using a highly flexible interface. Our formu-

lation also allows a coarse-to-fine approach in order to

avoid local minimums. This is accompanied with a flexi-

ble patch-based deformation model whose rigidity can be

controlled by a quadratic term. As a consequence, a sparse

system of linear equations can be derived to solve our

correspondence-free non-rigid registration.

A non-rigid deformation can be simply modeled as

a combination of local rigid transformations applied on

the surface patches [2]. Indeed, the template surface is

firstly clustered into small patches using a geodesic distance

(Fig.1(b)). Let’s ci denote the center of the i-th patch. Then,

non-rigid deformations can be easily modeled by applying

local rigid transformations Ti(x) = Rix + ti over these

patches. During the registration these rigid parameters can

be updated through an affine perturbation that can be cap-

tured with 6 parameters denoted as ωi = (ui,vi):

T̂i(x) = Ti(x) +Kiωi (4)

where T̂i is the perturbed value of Ti and Ki is the skew-

symmetric matrix of β = Ri(x− ci) concatenated with the

identity matrix [6].

In the rest of this section we show how to find the affine

parameters ωi and update the rigid parameters minimizing

the data and deformation energy terms.

Data term: Thanks to the linear form of the update vec-

tor, the data term can be designed in the least squares form

that is favorable for optimization. In the current work the

gradient field in (3), induced by the implicit interface, is ex-

ploited to update the local rigid transformations. In fact, the

source point in the current position Ti(x) must move along

the gradient vector g(Ti(x)) by minimizing the following

term:

Edata(s) = ‖Kiωi − g(Ti(x))‖
2. (5)

This quadratic term is equivalent to imposing three lin-

ear constraints on every source point: Kiωi = g(Ti(x)).
These constraints are only applied on those source points

whose orientation in the current pose is similar enough to

the gradient vector ∇F at that point. This normal compat-

ibility check avoids incompatible correspondences. More-

over, through the distance estimation d = |f |/‖∇f‖ at ev-

ery source point, those points with the distance bigger than

2σd (standard deviation) are discarded as well.

Deformation term: The local rigid transformations can

make a meaningful non-rigid deformation as long as the

deformation energy can be controlled. Similar to [6] we

penalize the incompatibility of any two neighboring rigid

transformations as follows:

Edeform(x) =
∑

(Pi,Pj)∈N ,

∑

x∈Pi∪Pj

Eij(x) (6)

where N is the set of all possible neighboring patches and

each summand is defined for the points on the pair:

Eij(x) = ‖T̂i(x)− T̂j(x)‖
2. (7)



This term, in fact, measures the similarity of predictions be-

tween the rigid transformation of each patch and its neigh-

boring patches. Following the notation in (4), this term can

be described in the least squares form:

Eij(x) = ‖Kiωi −Kjωj − (Tj(x)− Ti(x))‖
2. (8)

Sparse system: In each iteration we aim at finding the best

6NP affine parameters concatenated in the affine vector ω.

The data and deformation terms are both in the quadratic

form of ω; hence, minimizing the total energy (Edata +
λEdeform) is equivalent to solving an over-determined sys-

tem of equations. The matrix of data term, A1, includes

the entries of Ki and and the right-hand value b1 contains

the coordinates of the gradient field g(Ti(x)). Similarly,

another sparse matrix A2 is constructed to express the de-

formation constraints for every point in a pair of patches

and b2 includes the difference in predictions. Finally, the

following system of linear equations must be solved to find

the update vector:

[

A1

A2

]

ω =

[

b1

b2

]

. (9)

After finding this vector, we apply SVD decomposition on

the covariance matrix between the current points T (S) and

updated position T̂ (S)1. Then, every affine update Kiωi

can be approximated by the proper rigid parameters (R̂i, t̂i)
to update the patch parameters:

Ri := R̂iRi, ti := R̂iti + t̂i. (10)

4. Experimental Results

The proposed framework has been employed for differ-

ent non-rigid registration and surface tracking problems.

The data sets used in this section are either public [30]

or obtained through a multi-view camera environment; the

point clouds are equipped with normal vectors as well. The

interfaces are reconstructed by the partition of unity weight-

ing technique [21] applied on the quadrics acquired by the

3L algorithm [4]. The implicit interfaces are represented

through an oct-tree of depth 6 ∼ 8; the data sets are nor-

malized to lie in the unit cube and the offsets are at the dis-

tance of δ = 0.01. Figure 3 illustrates the implicit surfaces

describing different frames that are used to avoid point cor-

respondence during the surface tracking. It should be high-

lighted that the interface can be reconstructed very fast (less

than 1 second for 3K points).

Figure 4 shows another example of surface tracking for

different frames including: 44, 47, 49, 55, 75. The sur-

face template for frame 44 is firstly constructed through the

geodesic distance as explained in Section 3.2. Then, im-

plicit interfaces are constructed for the rest in order to lead

1T (S) = {Ti(x),x ∈ S}; T̂ (S) = {Ti(x) +Kiωi,x ∈ S}

the deformation. Each frame contains a cloud of 30K points

that are sub-sampled to 3K. Note that this sub-sampling is

only applied to save memory for the deformation term; the

MPU interface is able to describe the point clouds of high

volume. As illustrated in Fig.4(bottom) these patches de-

form rigidly following the gradient field induced by these

interfaces. It should be highlighted that in this example our

method is able to register the first frame directly with the

last one without tracking the surfaces in between.

The registration results by the proposed framework are

compared with four other methods. Table 1 shows the num-

ber of iterations and the accumulated error for all these

methods. The first column corresponded to the result of

DT-FFD [13], where Free-Form Deformation (FFD) is used

to model the transformation. In this method, each data set

is described by a discrete distance transform that is con-

structed for a grid of 803 voxels. This method is very slow

since it has to compute volume integrals over the distance

transforms in order to compute the data term. Moreover,

due to the low accuracy of distance transform and the gradi-

ent descent method for optimization, there is oscillation in

the error values.

Iterative Closest Point (ICP) has been used for compar-

ison in Table 1 for two different deformation and distance

estimation models. In the second column a tangent based

estimation is used for distance measurement together with

FFD [23]. This estimation is used to find the best FFD pa-

rameters, while in the third column, ICP is used to find the

local rigid parameters [6]. Our experiments show that the

ICP-based distance estimation are very likely to get trapped

in local minimums. Moreover, as shown in Table 1 the lo-

cally rigid deformation, used in our framework, improves

the results of ICP-FFD. It is due to the use of a flexible in-

trinsic deformation instead of warping the whole space.

As the final comparison, we use Gaussian Mixture

Model that is a probabilistic approach for point set registra-

tion [15]. This method avoids explicit point association by

applying an EM-like algorithm. In our implementation we

use this approach together with TPS warping, which uses

the source points as the control point (resulting in 3× 3000
parameters). The result obtained by this method is com-

pared with our approach in Table 1. Note that in each it-

eration of GMM, 8 EM iterations are applied to update the

TPS warping. This method is quite robust to noise but it is

very slow and it converges linearly.

Table 1. shows how our method outperforms in terms

of error and number of iterations. The accomulated errors

in the last three rows are easily calculated since the ground

truth correspondences are provided by [30]. For the first

two rows, we use the distance from every target point to the

tangent plane of its closest source point; it can be better es-

timated by using curvature information though [22]. The

main important point about our approach is to be indepen-



Figure 3. Using MPU interface for surface tracking: (top) the MPU interfaces describing different frames 2, 3, 4, 5, 6; (bottom) the

deformed source patches; notice the patch colors to figure out the correspondences.

Figure 4. 3D point registration using the proposed approach: (top) the MPU interfaces describing different frames 44, 47, 49, 55, 75;

(bottom) the deformed source patches.

dent of point cloud representation. As an example, in Fig.5,

the implicit interface can easily tackle noise and missing

data such that it interpolate the parts where no data is avail-

able. Moreover, the interface can be provided in different

resolutions; in Fig.6(b) − (c), for instance, a coarser inter-

face has been used at first, replaced with a finer one after 10
iterations.

A qualitative comparison between different methods is

presented in Fig. 5 for a quite challenging pose where the

source is orthogonal to the template. Therefore it is very

likely that local methods get stuck in some local minimum.

The last three examples in this figure use the same defor-

mation model ending with different results though. The EM

algorithm has shown a similar result to our approach after

500 iterations while our framework has converged in only

30 iterations. In order to handle our correspondence-free

algorithm we initialize a very coarse interface and switched

to a coarser one after 15 iterations.

5. Conclusions

In this paper a novel approach for non-rigid registra-

tion between two clouds of points has been proposed. The

main contribution of this work is to consider the problem in

higher level representations, where the source set is clus-

tered into small patches that can deform rigidly, and the

target is reconstructed by an implicit interface. Hence,

the original problem in the point level is converted into a

patches-to-interface problem without requiring any explicit

point correspondence. Moreover, the use of implicit inter-

face allows a coarse-to-fine approach that avoids local min-

imums. The presented method converges in few iterations,

in which a sparse system of equations must be solved. The

experimental results also illustrates the outperformance in

the convergence and the robustness to the noise, outliers and

missing parts in the target set.



Figure 5. Tackling missing data; (a) the initial pose; (b) MPU interface replaces the target set; (c) the source patches are moved toward

the MPU; (d) the converged pose of source patches.

Figure 6. 3D point registration using the proposed approach: (top) the MPU interfaces describing different frames 46, 50, 56, 76, 91;

(bottom) the deformed source patches.
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