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Abstract—The identification of Internet applications is impor-
tant for ISPs and network administrators to protect the network
from unwanted traffic and prioritize some major applications.
Statistical methods are widely used since they allow to classify
applications according to their statistical signatures. They com-
bine the statistical analysis of flow parameters, such as packet
size and inter-packet time, with machine learning techniques.
Previous works are mainly based on the packet size and the
directions of the packets.

In this work we make a complete study about the inter-
packet time to prove that it is also a valuable information
for the classification of Internet traffic. We discuss how to
isolate the noise due to the network conditions and extract
the time generated by the application. We present a model to
preprocess the inter-packet time and use the result as input to
the learning process. We discuss an iterative approach for the
on line identification of the applications and we evaluate our
method on two different real traces. The results show that the
inter-packet time is an important parameter to classify Internet
traffic.

I. INTRODUCTION

Internet Service Providers (ISPs) and network administra-
tors are more and more interested in identifying the appli-
cations behind Internet traffic to protect the network from
unwanted traffic and to prioritize some major applications.
The recognition of applications should help to take the right
decision for the control of the quality of service and for the
dimensioning of the network.

The recognition of applications in IP traces becomes in-
creasingly complex. Historically, this recognition was based
on static and standard port numbers in the transport header,
but the use of dynamic port numbers or of standard ports to
hide other applications causes this solution to be ineffective.
Current techniques of “Deep Packet Inspection” (DPI) [1]
make it possible to go further in the identification of the
applications but they require a complete and costly exploration
of the payload of the packets. This induces an important load
and is not practical when packets are encrypted.

Statistical techniques [2]–[8] seem to be today a promising
alternative. They allow to recognize and to classify the applica-
tions according to their statistical signatures. These signatures
can be data volume (e.g., number of bytes) per connection,
connection duration, rate, inter-packet delay, packet size, and
direction. Most of the papers in the literature rely on the packet
size to identify the applications.

Several papers [5]–[8] discuss that inter-packet time is not
a good information to differentiate between applications as it
depends on the network status. [5] shows that using the size
and the direction for the first four packets is a good method
to differentiate between applications and that we cannot rely
on inter-packet time because this dependency on the network
conditions. [6] also discusses that the parameters based on
the packet size are preferred to the parameters based on
the inter-packet time. [8] shows that using the inter-packet
time does not cause a significant increase in the precision
of the classification. In our previous work [9], we find that
the precision of our iterative classification method decreases
when we use the inter-packet time jointly to the packet size
comparing to the precision while using the packet size alone.

This the starting point of our work in studying the inter-
packet time and analyzing the causes of the decrease in
performance. Our intent is to extrapolate relevant information
from the inter-packet time and use it as a feature to help
the classification of the Internet traffic. We believe that any
data, such as inter-packet time, packet size, and direction of
the packets, is relevant to identify an application if we can
properly extract the information to characterize the behavior
of the application.

In this paper we present a complete study about the inter-
packet time. We first propose a model for the inter-packet time
to analyze which factors contribute to the inter-arrival time
between two packets. We then propose a solution to distinguish
the network delays from the application time. We use our iter-
ative method developed in [9] to classify the Internet traffic on
line. Our statistical method is able to extend the classification
to any number of inter-packet times per flow, compared to the
majority of previous works that require to reach the end of
the flow before taking the decision, which could be too late
for some applications related to network administration. We
consider inter-packet times separately from each other which
has the main advantage of reducing the problem complexity
at the expense of a small loss in performance caused by the
correlation that might exist among inter-packet times. This
separation is necessary in order to consider more inter-packet
times than the very few ones at the beginning of the flow.

We evaluate our method on two different real traces and
we discuss the results when we preprocess the inter-packet
times without filtering the network delays and when they are
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Fig. 2: Inter-packet times.

filtered out. We show that the inter-packet time is a meaningful
parameter to identify applications and that the precision of the
classification increases from 80% to 98% for all applications
after filtering the noise.

The rest of the paper is organized as follows. Section II dis-
cusses the inter-packet time and present our model. Section III
review our method and its application to the inter-packet time.
Section IV and Section V describe the traces and the evaluation
results respectively. Section VI concludes the paper.

II. MODEL DESCRIPTION

In this section we analyze the inter-packet time and its use
as parameter to classify Internet applications. Most of the
recent literature in traffic classification [5]–[8], [10] argues
that the inter-packet time is not an informative parameter
to characterize and distinguish between applications. Indeed,
the timing between subsequent packets is not only function
of the application data availability, but also of the size of
the TCP congestion window and the network conditions.
Starting from these observations, we interpret the inter-packet
time and model it to filter out the noise and to extract the
time introduced by an application. This latter component is
specific to each application and should resist better to network
conditions. We present our model for a TCP connection, which
can also be applied to UDP Internet traffic. We discuss possible
differences at the end of the section.

In our model and without loss of generality we consider a
monitoring point at the edge of the network, located in the
ISP network, as shown in Figure 1. The monitor passively
captures the flows between any two users; a flow consists of
the packets with the same 5-tuple (IP source and destination,
port source and destination, IP protocol). For each flow, we
consider a client and a server, and we assume that the client is
the user who initiates the connection, e.g., by sending the SYN
packet for TCP. The packets of this same flow are inspected to
extract the statistical properties to identify the application. In
the following we model the system by considering the position
of the user with respect to the monitor. Then we analyze
the different cases when the host close to the monitor (A in
Figure 1) acts as a client or as a server.

Figure 1 shows the three entities and their relative positions
where A is the user behind the local network, B is an Internet
user far from the local network, and M is the monitoring point.
We define TAM as the time taken by a packet to travel between
the local user A and the monitoring point M and TMB as the
time between the monitoring point M and the user B. These
times are shown in Figure 1.

The inter-packet time is characterized by the network, the
size of the congestion window, and the time required by the
application to generate and push the data to the transport layer.
The inter-packet time computed at the monitor between any
two packets of the same flow can take one of these four
different forms, as shown in Figure 2:

• TCC is the time between two consecutive packets gener-
ated by the client;

• TCS is the time between a packet from the client and a
packet from the server;

• TSC is the time between a packet from the server and a
packet from the client;

• TSS is the time between two consecutive packets gener-
ated by the server.

We can now define the time taken by the application at
the hosts A and B to generate the packets: TC and TS are
the time due to the application at the client and server side
respectively. The time due to the change of the network
conditions, e.g., variable queueing time, between subsequent
packets is accounted as ε.

Let’s first consider the communication between a client and
a server, when the client is the entity A in Figure 1, i.e.,
located close to the monitor. From Figure 2, we can calculate
the inter-packet times. TCC is equal to the time TC , taken by
the application to generate the data, plus the time εC due to
possible changes of the network conditions between the client
and the monitoring point. TCS is equal to the application time
at the server TS plus twice TMB , the time for the packet
to travel between the monitoring point and the server, and
εS , which accounts for possible variations in the network
conditions. The other times can be computed in a similar
manner.

TCC = TC + εC

TCS = TS + (2 ∗ TMB) + εS (1)
TSC = TC + (2 ∗ TAM ) + εC

TSS = TS + εS

When the monitor is located close to the server and the client
is the entity B of Figure 1, we calculate the inter-packet times
in the same way.

TCC = TC + εC

TCS = TS + (2 ∗ TAM ) + εS (2)
TSC = TC + (2 ∗ TMB) + εC

TSS = TS + εS

The equations (1) and (2) show that many components con-
tribute to the inter-packet time. This increases the complexity
in creating a statistical signature of an application solely on the
inter-packet time. Indeed, the time required by an application
to generate and transfer packets to the transport layer is
masked by the fact that additional time is added due to the
network conditions and the TCP layer.

We are now interested to isolate the time due to the applica-
tion, which we have identified as TC and TS in equations (1)
and (2). We assume that the time due to the changes of
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network conditions between two consecutive packets εC or
εS is negligible. We are aware that the network is not stable
and that the queueing time at the routers might change or the
packets might follow different paths, but we assume that the
times, that add or subtract, compensate each other.

Finally we quantify the time between the entity A and the
monitoring point, TAM , and the time between the entity B and
the monitoring point, TMB . We only discuss the case when the
monitoring point is located close to entity A; the other case
is similar. If we consider that the monitoring point is located
close to the gateway router of the ISP, then TAM is half the
local round-trip time that a connection experiences within the
components inside the ISP. TMB is half the remote round-
trip time over the wide area Internet from the monitoring
point to the server [11]. Now the final question remains the
estimation of the local and remote RTT to compute TAM and
TMB . We compute the remote RTT from the TCP three-way
handshake to establish the session. We use the time between
the SYN and the SYNACK packets, as this time is independent
from the application, and we assume that it is constant for the
duration of the session. Possible variations of the remote RTT
are accounted in εS . The local RTT can be estimated from
the SYNACK and ACK packets (or DATA packet in case of
piggybacking).

Assuming that εC and εS are negligible, we can filter any
possible noise. Indeed, we can compute TC and TS from
equations (1) and (2) to characterize an application and to
classify the Internet traffic. Note that the same model applies
to UDP traffic when we can estimate the local and remote
RTT for a connection between the client and the server.

III. METHOD DESCRIPTION

Our purpose for the classification of Internet traffic is to
detect online which flow belongs to which application. We use
a statistical and iterative method that computes the probability
that packets are generated by an application. We have defined
and used this method to classify Internet traffic based on the
size of the packets [9]. When applied to inter-packet time, the
method allows an iterative classification of the flows for each
inter-packet time independently. It considers more inter-packet
times until the classifier reaches a predefined threshold. Each
flow corresponds to a sequence of N+1 packets Pktk, where
k indicates the position of the packet in the flow independently
of its direction. IPTk with 1 ≤ k ≤ N represents the inter-
arrival time between Pktk−1 and Pktk.

In this section we first propose an overview of our method
and then we detail its application and extension to the inter-
packet time, which we use as a feature for determining an
application signature. The method consists of three main
phases which are detailed in the following sections: the model
building phase, the classification phase, and the application
probability or labeling phase.

A. Model building and classification phase
We use K-Means as supervised machine learning algorithm

to partition the input in a predefined number of clusters. Given

the number of clusters, K-Means assigns each input feature to
a cluster so as to minimize the Euclidian distance of each input
from the centroid of the cluster.
IPTk denotes the inter-packet time, i.e., the observations,

and for each inter-packet time we train separately K-Means
to obtain different set of classes. Each observation is pre-
processed to determine the features in accordance with the 4
different types of inter-packet time defined in Section II: TCC ,
TCS , TSC , and TSS . Figure 3 shows the observations as points
in a two dimensional plane, where the X and Y coordinates
indicate the first packet Pktk−1 and the second packet Pktk
that determine the inter-packet time respectively. The absolute
value of the point coordinates is equal to IPTk. The sign
of each coordinate depends on the type of inter-packet time:
positive sign when one of the two packets that determines the
inter-packet time is sent by the client; negative sign in case the
packet is originated by the server. As a result of this processing
phase, each feature is a 2-dimensional vector.

In the learning algorithm, every class is affected by all
applications with different probabilities proportional to the
number of flows from each application present in the class.
Hence, each class defines the probability that the elements
within this class are generated by the applications.

The model building consists of constructing these sets of
classes (clusters) by using a training data set, described in
Section IV. This learning phase is used to compute Pr(i/I),
the per-class (i) probability knowing the application (I). We
build a separate model, i.e., set of classes, for every inter-
packet time noted by IPTk and we use these classes for the
classification phase.

The classification consists of using the classes defined in the
learning phase to test and assign the Internet flows to a class.
The test is performed by computing the Euclidian distance
that separates the point defined by the feature extracted from
the inter-packet time IPTk and the centroid of each class
determined for the k-th inter-packet time. We affect the point
to the closest class. The test is repeated for all the inter-
packet times of a flow iteratively until we reach a predefined
threshold. The classification’s result consists in the probability
that the IPTk identifies an application and it is given as input
to a labeling function described in the following section.

B. Application probability or labeling phase

In the labeling phase we assign a flow to an application
knowing the result of the classification. We combine iteratively
the results of the classification for each single inter-packet time
and we calculate the probability (Pr(I/Result)) that a flow
belongs to an application I given the classification results of
the first N inter-packet times (i.e., class i(1) for the first inter-
packet time, class i(2) for the second inter-packet time and so
on).

Pr(I/Result) =
Pr(I) ∗∏N

k=1 Pr(i(k)/I)∑A
I=1 Pr(I) ∗

∏N
k=1 Pr(i(k)/I)

(3)

Pr(I) is the probability that any flow randomly selected comes
from application I . The network administrator can set this
value if he wants to put confidence on the classification derived
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Fig. 3: Types of inter-packet
time IPTk as input to K-Means

TABLE I: Traces Description

Trace Name Source and Time of capture Application # of training flows # of testing flows
Trace I Brescia University - 2006 [4] HTTP 1,700 4,056

SMTP 1,700 17,949
POP3 1,700 8,321

Trace II INRIA Laboratory- Spring 2008 HTTP 500 2,000
SMTP 500 2,000
HTTPS 500 2,000

SSH 500 2,000
IMAP 500 2,000

by other techniques, such as port number classification. In
our study, we consider this probability to be uniform for all
applications. Pr(i(k)/I) is the probability that IPTk of a flow
belongs to the class i knowing the application I . A is the total
number of applications. We call this probability the assignment
probability and we use it to decide on how well the profile of
an inter-packet time of a new flow fits some application I . We
calculate this probability for every inter-packet time computed
after capturing packets from a flow. We stop this iterative
process when the highest assignment probability is above a
predetermined threshold or the maximum allowed number of
tests is reached. This way the threshold is seen as a way to
leave the classification phase earlier when we are sure about
the flow.

IV. TRACE DESCRIPTION

In our analysis we use two real traces, see Table I. The first
trace, noted Trace I, has been collected at the edge gateway of
the Brescia University’s campus network [4] and the second
trace, noted Trace II, has been collected at the edge of the
INRIA Sophia Antipolis Network. The traces already indicate
the type of application associated with each flow. In this way
we can calibrate our supervised machine learning algorithm
and we can evaluate our method. Trace I uses a method
based on deep packet inspection to infer the real application.
For Trace II, we separately collect the traffic from servers
dedicated to unique applications hosted at the INRIA Network.
For the evaluation of our method we only use the applications
available in these traces, reported in Table I. However, our
model is general and it can be applied to any application.

The flows of the traces are divided into a training and a
testing set. The training set is used in the learning phase to
construct the model and the testing set is used to evaluate
how well our iterative method behaves in identifying the
application. Note that we use the same number of flows per
application to ensure that there is no bias in our learning phase.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the overall performance of
our method while using the inter-packet time as a feature to
classify the Internet traffic. We use the traces described in
Section IV and we model the inter-packet time as discussed
in Section II. The monitoring point is close to the client for
Trace I and close to the server for Trace II, see Figure 2. We
initially test the inter-packet time without filtering the noise
and then we compare these results with the ones obtained by
filtering the remote round-trip time from the TCS (Trace I)
or the TSC (Trace II). We consider the local round-trip time

negligible because the traces are collected at the campus router
for Trace I and at the servers for Trace II. The metrics used
for the evaluation are:

• False Positive (FP) rate is the percentage of flows of other
applications classified as belonging to an application I .

• True Positive (TP) rate is the percentage of flows of
application I correctly classified.

• Precision is the ratio of flows that are correctly assigned
to an application, TP/(TP +FP ). The overall precision
is the weighted average over all applications given the
number of flows per application.

We run the test for all the available inter-packet times to
test its significance as a feature for identifying applications.
We set the number of clusters equal to 400 for K-Means. We
have tested the supervised machine learning algorithm with
different number of clusters and 400 gives the best results as
it allows to group the features in small clusters and account
for possible noise in the observations. The number of flows
per application used for training and testing the algorithm are
reported in Table I. We report the detailed results of the test
conducted on the Trace I and only a summary of the results
on Trace II for comparison.

Figure 4 shows the TP rate for the HTTP, POP3, and SMTP
applications (Trace I) as a function of the number of inter-
packet times considered for the classification without filtering
the remote RTT. We can notice that the TP rate increases as
we use more inter-packet times for the identification of the
application for HTTP and SMTP traffic. However, the TP rate
for POP3 traffic does not show any improvement, if not the
results are worse after the IPT8. The variability of the TP
rate for the first packets is associated with the noise added to
the inter-packet time by the network conditions and the TCP
behavior, as explained in Section II.

In Figure 5 we plot the FP rate for the traffic of Trace I
as a function of the number of inter-packet times. We can
observe that the FP rate drops below 5% when we use more
IPTs for POP3 and SMTP traffic, and it remains around 20%
for the HTTP traffic. This means that some of the traffic of
other applications is classified as HTTP. In particular, we can
conclude from Figures 4 and 5 that part of the POP3 traffic
is classified as HTTP traffic. Indeed, the IPTk, with k ≥ 8,
does not add significant information and the distribution of the
inter-packet time for HTTP might have similar characteristics
as for the POP3 traffic.

Now we preprocess the inter-packet time to filter the remote
RTT and to eliminate part of the noise caused by the network.
We test the method on the same traces (Trace I). Figure 7
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Fig. 10: Precision (Trace II)

shows the TP rate and Figure 8 the FP rate. We can clearly
see that the TP rate keeps increasing for all the applications
when we add more IPTs to the classification and approaches
97% after 12 IPTs. There is a significant improvement for the
POP3 application already from the first few IPTs and after
6 IPTs we classify correctly more than 90% of the flows.

The FP rate also improves significantly for all applications
and it equals 5% already after the IPT6, see Figure 8. If we
use more inter-packet times for the classification then the FP
rate keeps decreasing and approaches 1% for all applications
when we use all available IPTs. This shows the efficacy
of our filtering operation. Thus, we can conclude from this
preliminary analysis that filtering the network noise from the
inter-packet time is an important parameter to differentiate
between applications.

In Figures 6 and 9 we plot the precision of our method for
Trace I before and after filtering the RTT respectively. We first
compute the precision per application and then we calculate
the overall precision by weighting the single precision by the
number of flows per application. Figure 6 shows that the
precision of our method approaches 80% for HTTP traffic
while it is around 95% for SMTP and POP3 traffic. This is
justified by the low false positive rate obtained for these two
applications (see Figure 5). After filtering the RTT we achieve
a precision of 99% in all cases, see Figure 9.

We conclude the evaluation by testing our method on Trace
II, see Table I. We plot in Figure 10 the precision of our
method before (a) and after (b) filtering the RTT value. The
results confirm the strength of our model in extracting relevant
information from the inter-packet time to identify Internet
applications. Finally, we can notice that filtering the RTT
improves significantly the classification and we are able to

have a precision above 90% already after few IPTs.

VI. CONCLUSION AND FUTURE WORKS

In this paper we study the inter-packet time and we analyze
how it can be used to identify Internet applications. We model
the different components of the inter-packet time and we
propose to filter the noise due to the network delay to extract
relevant features for the classification. We then present our
iterative method [9] already used for the classification based
on the packet size and apply it to the inter-packet time.

We evaluate our solution on two different real traces and the
results show that the inter-packet time is a relevant parameter
to identify Internet traffic after some appropriate processing.
In particular, when we filter the network noise from the inter-
packet time, our method reaches a total precision of 99%
for the classification of all applications. For future work, we
want to test our method on other applications and we plan
to combine the classification based on the packet size and
the inter-packet time to build a very robust method for the
identification of Internet traffic.
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