
IS
S

N
 0

24
9-

08
03

appor t
 t e chn ique

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Mascopt - A Network Optimization Library:
Graph Manipulation

Jean-François Lalande — Michel Syska — Yann Verhoeven

N° 0293

Avril 2004

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Mascopt - A Network Optimization Library:

Graph Manipulation

Jean-François Lalande, Michel Syska, Yann Verhoeven

Thème 1 � Réseaux et systèmes
Projet Mascotte

Rapport technique n° 0293 � Avril 2004 � 25 pages

Abstract: This report introduces a Java� library whose objective is to provide tools
for solving some network optimization problems and that may be used to write prototype
software. We describe here the �rst step of the development which concerns algorithmic
graph problems. This open source library named mascopt includes an implementation of a
generic model of graph. This library has been designed with an object-oriented model and
aims to be user friendly rather than focusing on speed of execution. We show how the model
can be extended and dedicated to a user application by using simple object mechanism. We
also present a basic description of the mascopt functionalities so that developers, who are
familiar with objects, can use e�ectively for their own experimentations.

Key-words: Optimization, Graphs, Networks, Java, XML

Work partially funded by the European project Crescco.

Mascopt - Une Bibliothèque d'Optimisation de Réseaux :

Manipulation de Graphes

Résumé : Dans ce rapport nous introduisons une bibliothèque Java� dédiée aux pro-
blèmes d'optimisation dans les réseaux, notamment pour l'écriture de prototypes logiciels.
Nous présentons la première étape de développement qui concerne les problèmes algorith-
miques sur les graphes. Cette bibliothèque open source appelée mascopt (contraction de
Mascotte et d'optimisation) o�re l'implémentation d'un modèle générique de graphe. La
bibliothèque a été conçue dans l'esprit des modèles orientés objet et privilégie l'accessibilité
et la facilité d'utilisation plutôt que la vitesse d'exécution des programmes. Nous montrons
aussi comment ce modèle de graphes peut être étendu et spécialisé à des cas d'utilisation
particuliers en utilisant des mécanismes objets simples. En�n, une description rapide des
fonctionnalités de mascopt est présentée. Ainsi, les développeurs familiers avec les concepts
objets pourront commencer à l'utiliser pour leurs propres expérimentations.

Mots-clés : Optimisation, Graphes, Réseaux, Java, XML

Mascopt 3

Contents

1 Introduction . 4
2 Existing Libraries . 4
3 The mascopt Graphs Object Oriented Model 5
4 Architecture . 7

4.1 Packages . 7
4.2 Main Classes Description . 8

5 Manipulation of Objects . 9
5.1 Valuation System . 9
5.2 Internal Built Information . 9
5.3 Sets . 10
5.4 Genericity and Factories . 10
5.5 Shared Mode . 11

6 A Short Case Study . 12
7 File Saving . 12

7.1 mgl Format . 12
7.2 How to Extend a Format: the mgx Example 13

8 Graphical User Interface . 14
8.1 The Editor . 14
8.2 The Viewer . 14

9 Future Work . 15
10 Acknowledgment . 15

A Multicommodity Flow with cplex 19

B DTD 23

RT n° 0293

4 Lalande, Syska, Verhoeven

1 Introduction

Several graph libraries have been written
but dedicated to precise types of problems.
These libraries provide e�cient functional-
ities mainly based on the fact that their
implementations match the speci�c problem
they intend to solve. mascopt1 is an Open
Source2 library for general network optimiza-
tion problems in which networks are mod-
eled as graphs. This library is based on our
experience on the rnrt project porto [1]
which was dedicated to solve dimensioning
problems on wdm networks. This document
presents the phases of the mascopt develop-
ment project which aims to provide graphs
manipulation tools so that one could eas-
ily implement any algorithm on graphs (see
the workplan in section 9). As this presen-
tation does not include the network model-
ing, �mascopt library� will refer to the mas-
copt's graph workpackage in the remainder
of this paper.
Compared to the leda platform [10][6],

which is the main reference for graph li-
brary implementation, we propose an open
source platform whose main goal is to be eas-
ily understandable and to take advantage of
the broad range of classes provided by the
Java� language [7]. Whereas the leda sys-
tem guarantees an e�cient manipulation of
the components of graphs, mascopt focuses
on the object-oriented way of implementing
our model of graphs. We want to insure that
the model stays as generic as possible but
still provides facilities for special usage and
each of its components is reusable. In this
way, our development is mainly driven by the
consideration of concepts described in [8].

1http://www-sop.inria.fr/mascotte/mascopt
2 Inter Deposit Digital Number at Program Pro-

tection Agency: IDDN . FR . 001 . 100002 . 000 . S

. P . 2004 . 000 . 31235.

2 Existing Libraries

As previously said, mascopt is not a rewrite
of leda in the Java� language. It di�ers also
from the gtl (Graph Template Library [5])
which is an extension of the c++ Standard
Template Library to graphs and fundamen-
tal graph algorithms. Indeed, gtl does not
allow easy deriving of graph classes (objects
are attached to nodes with the use of stl
maps), and neither leda nor gtl are free
(mascopt is under the lgpl license) and
written in Java� (which allows a di�erent
type of e�ciency : maybe not at runtime but
while writting the application).

Although others Java� libraries have been
developped and delt well with the implemen-
tation of graphs, these libraries are not al-
ways dedicated to graphs such as jdsl [4]
which is more a generic data structure im-
plementation. Actually, we have found three
main libraries which are really close to mas-
copt in terms of functionalities. The �gure 1
presents the features of jdsl, gfc [2], Open-
JGraph [9], and mascopt.

As mascopt is Open Source, and written
in Java�, it is quite easy to call external li-
braries or Java� bytecode classes. We give
an example in appendix A of how to inter-
face mascopt with the cplex solver, which
is a commercial tool from ilog widely used
to solve linear programs (lp) and integer lin-
ear programs (ilp) as well. To illustrate that
feature, we present in section 6 the concrete
example of solving the multicommodity �ow
problem in a network modeled by a graph
valuated with capacities on edges. If the
data cannot be accessed directly in memory
by an external program, we also provide a
possibility to dump the data in a xml �le, a
quite readable and understandable standard
format (see section 7).

INRIA

Mascopt 5

jdsl gfc ojg mascopt

Open Source
p p

Graphs
p p p

Directed Graphs
p p p p

Sets
p p p

Chains
p p

Traversals
p p p

Trees
p p

Priority Queues
p

Heaps
p p

Shared Mode
p p p

File Saving
p p p

Valuation System
p

Visualization
p p p

Editor
p p

Drawing Alg.
p p

Figure 1: Comparison between di�erent graph libraries

3 The mascopt Graphs

Object Oriented Model

The graph description of mascopt is based
on the standard mathematical de�nition of
graphs. A graph G = (V;E) is composed of
a vertex set V = fv1; : : : ; vng and an edge set
E = fe1; : : : ; emg. Each element of V or E
must be instantiated by the user giving the
possibility to freely manipulate vertices and
edges. G is a valid formed graph if V and E
are coherent as de�ned in de�nition 1.

De�nition 1 E and V are coherent i� 8e =
(v1; v2) 2 E; v1 2 V; v2 2 V

This mathematical model of the mascopt
graph library is using extensively the possi-
bilities of object management. No general
object is representing a graph environment
where graphs or elements of graphs are cre-
ated. For example, we want to avoid the con-

struction of node (vertex 3) by the graph as
it is done in leda. Given a graph G:

Listing 1: Creation of a node in leda

node u = G.new_node();

The consequence of giving the direct ac-
cess to nodes (vertices) and edges to the user
is that, �rst, the user has to build the sets
in order to build the �nal graph. It can ap-
pear less practicable to have to build V and
E but in that way, the user gains the ability
to reuse those sets in another graph. For ex-
ample, we are then able to build two graphs
G1 = fV1; E1g and G2 = fV1; E2g that share
a vertex set. The use of E1 and E2 does not
forbid to add the same ei in these sets which
means that the two graphs are not di�erent
by their vertex or edge objects but only con-
sidering their vertex and edge sets: in the
previous case, the edge sets are di�erent but

3In mascopt nodes are elements belonging to a

network while vertices are elements belonging to a

graph that may represent that network topology.

RT n° 0293

6 Lalande, Syska, Verhoeven

the vertex sets are the same (see section 5.5
for more details).

For each type of element (graph, vertex,
edge. . .) we have grouped the common
attributes and methods in abstract classes.
This way, we try to take full advantage of the
inheritance principle. Another advantage of
this method of building graphs is that the
user has the possibility to write his own ver-
tex and edge classes. Then the graph and sets
objects do not have to be rewritten but sim-
ply derived from the mascopt classes. The
user only have to write a factory for its new
objects: he is able to use all the already im-
plemented mascopt algorithms that use fac-
tories (see section 5.4 for a more detailed pre-
sentation of factories).

We show a diagram of the implementation
of our model in �gure 2. This �gure presents
the abstract classes which model graphs and
paths construction with the notion of sets,
vertices, and edges. We brie�y detail how
each abstract class works and interact with
others.

An AbstractGraph represents a graph.
It needs coherent AbstractVertexSet and
AbstractEdgeSet (see de�nition 1). The
AbstractVertexSet (resp. Abstract-
EdgeSet) contains the vertices (resp. edges)
of the graph, implemented byAbstractVer-
tex (resp. AbstractEdge). Abstract-
Path is a special AbstractGraph which
builds a path on a graph.

Along with these base abstract classes,
we provide two di�erent implementations
of graphs: the class Graph which repre-
sents a valued undirected graph and Di-
Graph which represents a valued directed
graph. Graphs and Digraphs classes have
no real functionalities. It just provides a
user friendly and comprehensive access to the
graph, wrapping the abstract classes. Note

Listing 2: Creation of a DiGraph

import mascoptLib.graphs.*;

public class Sample {
public static void main (String[] args){

Vertex n0 = new Vertex();
Vertex n1 = new Vertex();
Vertex n2 = new Vertex();
Arc a0 = new Arc(n0,n2);
Arc a1 = new Arc(n1,n2);

VertexSet V = new VertexSet();
V.add(n0); V.add(n1); V.add(n2);

ArcSet E = new ArcSet(V);
E.add(a0); E.add(a1);

DiGraph G0 = new DiGraph(V,E);
}

}

also that it gives the ability to the user to im-
plement his own type of graphs overloading
the �ve main classes. The last classes con-
cern the factories, described in section 5.4.
We just present a basic example of how to

build a digraph in listing 2. This example
may seem to be a little bit longer than the
code required by some other graph library,
but we think that it is quite natural to build
elementary objects �rst (vertices and edges)
and to �nish by building the graph G0, which
is drawn in �gure 3 (the values drawn are
explained in section 5.1).

a0

a1

capacity(G0): 1.0
capacity:6.8

V2

V1

V0

Figure 3: Valued Graph G0

INRIA

Mascopt 7

AbstractGraph

AbstractEdge

AbstractEdgeSet

Classes

Interfaces

DiGraphFactory

GraphFactory

AbstractGraphFactory

NodeSet

Edge

Arc

AbstractEdgeSetFactory

EdgeSetFactory

ArcSetFactory

EdgeSet

ArcSet

DiGraph

Graph

Path

DiPath

Vertex

2 1

1 1

11

11

**

* *

11

MascoptObjectInterface

Observer

Collection

Set

MascoptSet

MascoptObject

AbstractPath

AbstractVertex

AbstractVertexSet

AbstractVertexSetFactory

NodeVertexFactory

Figure 2: Class diagram of mascopt graph library

4 Architecture

4.1 Packages

mascopt consists of eight Java packages.
Each package provides several interfaces
leading the user to build classes similar to
the one that are provided.

� mascopt.abstractGraph: package of
abstract graph library. It implements
most of the functionalities of the classes
shown in �gure 2.

� mascopt.algos.abstractalgos: pack-
age which provides generic algo-
rithms mainly on AbstractGraph
and other objects of the mas-
copt.abstractGraph package.

� mascopt.graphs: package for graph
and digraph.

� mascopt.gui: Graphical User Inter-
face. This package is a graphic
layer which is plugged over the mas-
copt.abstractGraph package.

RT n° 0293

8 Lalande, Syska, Verhoeven

� mascopt.io.graph: package of in-
put/output capabilities. Several formats
are provided to store objects of package
mascopt.graphs.

� mascopt.io.util: utilities to ma-
nipulate �les written by the mas-
copt.io.graph package.

� mascopt.util: utilities and algorithms
which are not dedicated to graphs.

4.2 Main Classes Description

To simplify the reading, we do not present
the abstract classes but the main classes of
the mascopt.graphs package only (see the
corresponding javadoc and the web site for
an exhaustive documentation).

Simple Elements

MascoptObject implements the valua-
tion system to store String, Double and
Integer. The valuation system is detailed
in section 5.1.

Vertex object is the most basic element
which can be built. A Vertex provides in-
formation about its neighbors, its degree, the
edges or arcs exiting or entering it. It de-
rives from AbstractVertex and Mascop-
tObject.

Edge and Arc. An Edge object is built
using two Vertex objects. Given one vertex,
the Edge object provides facilities to pass
through this edge when covering a Graph.
Edge is derivated from AbstractEdge and
MascoptObject. The Arc class is de-
rived from AbstractEdge and implements
directed edges.

Sets

MascoptSet is derived from MascoptO-
bject. It implements the Set and Collec-
tion interfaces. It provides an e�cient im-
plementation of HashSet characteristics. It
adds extra functionalities to perform opera-
tions on valuation of objects in sets.

VertexSet. The VertexSet class is de-
rived from AbstractVertexSet and Mas-
coptSet. It allows to group Vertex objects
into a set.

EdgeSet and ArcSet. The EdgeSet and
ArcSet class are derived from Abstract-
EdgeSet and MascoptSet. It allows to
group Edge objects, respectively Arc ob-
jects, into a set.

Graph and DiGraph

The Graph class constructs a non directed
graph using a vertex set and an edge set.
It guaranties that, at any time, the Edge-
Set and VertexSet objects stay coherent
as de�ned in de�nition 1. It provides fa-
cilities to copy graphs and construct sub-
graphs. The DiGraph class constructs di-
rected graph with VertexSet and ArcSet
objects. Graph and DiGraph derive from
AbstractGraph.

Path and DiPath

A Path object gives the ability to build a
path over aGraph. The path can be merged
with another path with same start and end
vertex, giving a multi-path. The path can
be covered through the graph. The path is
also considered as a graph and derives from
Graph. The DiPath object is a directed
Path. It derives from DiGraph.

INRIA

Mascopt 9

5 Manipulation of Objects

In order to make the use of the library easy,
not only mascopt provides a set of methods
enabling to manipulate the objects provided,
but also internal mechanisms ensuring that
any object behaves as expected.

5.1 Valuation System

As previously said, mascopt deals mainly
with two types of objects, �rstly simple ob-
jects which derive from the class Mascop-
tObject and secondly sets which contain the
former objects, deriving from the classMas-
coptSet. Of course all the methods needed
in the process of writing algorithms are pro-
vided.
The main characteristic of the simple ob-

jects deriving fromMascoptObjects is that
they can have multiple values associated with
them. At the time of writing, these values
can only be of type String, Integer orDou-
ble. All the accessors needed to access and
modify the values are provided, their names
trying to be intuitive for a Java� user. Thus,
the accessor for a value of type Integer is
called getIntegerValue. For an easy use of
the di�erent types of values we implemented
an accessor for each data type and the user
must know the type of the stored value or use
the method giving that information, namely
getValueDataType. The default accessor
is getValue which outputs a String such
that any data type can be represented.
We choose to restrict the types of the val-

ues in order to guarantee that the informa-
tion about the type is not lost during the pro-
cess of dumping the graph objects in the �le.
An illustration of this feature is presented in
section 7.1. These methods are common to
all the inherited members of the class Mas-
coptObject but for every class some meth-

Listing 3: Valuation of vertex v0 and arc a0

v0.setValue("function","start");
a0.setDoubleValue("capacity", new Double(6.8));
a0.setIntegerValue("length", new Integer(110));

ods are implemented to access the speci�c at-
tributes. For example it is possible to ask a
Vertex for its coordinates with the methods
getX and getY and you can ask an Edge
about its extremities with methods such as
getVertices that outputs a set containing
the vertices linked by that edge.

As an example, if we want to associate val-
ues to some of the previously constructed ver-
tices and arcs, we just have to write the fol-
lowing (listing 3) to obtain the valued graph
of �gure 3. Nevertheless, thanks to the ob-
ject oriented design of mascopt any user can
rede�ne its own objects and store their own
values, of any chosen type.

5.2 Internal Built Information

As the mascopt library is designed to be
useful when writing graph algorithms pro-
grams, we provide standard methods to ask
structure information to the objects of the
library. For example, when asking for the
neighbors of a vertex u, the library returns
the vertex set vs(u) to the user. We choose
here to give a quick access to the data vs(u)
by pre-building the set. This is really dif-
ferent from building �on-the-�y� information
which will need some time before returning
the data, which could be a problem when the
information is often accessed in the program.
Nevertheless, some time is lost when building
objects and when updating the internal data
(as ns(u)) e.g. when modifying a graph (as
inserting some edges). As a result, the ob-

RT n° 0293

10 Lalande, Syska, Verhoeven

jects take more space in memory, which can
be seen as a strong limitation. However, all
the computable information is directly avail-
able in objects and we think it is worth doing
it. Moreover, as usual, a tradeo� had to be
found between space and time.

5.3 Sets

As mascopt is meant to deal with combina-
torial structures such as graphs and in order
to do so, it must be able to store objects rep-
resenting the various elements in sets. Thus a
complete hierarchy deriving from a base class
named MascoptSet has been developped.
The methods accessible from this class re-
�ect the fact that sets are an implementa-
tion of HashSet class. Indeed the user can
add, remove, test the belonging of objects
with standard functions of Java�. Moreover
some more speci�c methods have been im-
plemented. As for any object deriving from
MascoptObject, values can be assigned to
sets but some speci�c methods enable the
user to manage all the elements of a set at
once, e.g. a same value can be assigned at
once to all the elements of a set with setVal-
ueForAllElements. As previously, each de-
riving class implements particular methods
that enable the user to access to speci�c at-
tributes. As an example, a set containing
some vertices requires some di�erent meth-
ods than a set containing some edges. Even
if in mascopt the names are the same, the
methods add and remove present in each
set are di�erent because some speci�c check-
ings have to be done in each case.
As sets are an important part of mascopt,

the notion of subset is also implemented. But
then some new problems arise such as the one
of coherence between sets (as de�ned in def-
inition 1). Indeed we must guarantee that a
set (of any sort) that is de�ned as the subset

of another one will stay so, whatever opera-
tion is applied to it or to its superset. Thus,
if the user has de�ned the VertexSets VS1
and VS2, VS2 being a subset of VS1, a new
vertex can be added in VS2 if and only if it
already belongs to VS1. Moreover, deleting
a vertex in VS1 will automatically delete this
vertex from VS2. Of course there are equiv-
alent behaviour for all kind of sets, thanks
to the inheritance of methods in the model.
Since the class Graph relies on the classes
VertexSet and EdgeSet, the coherence is
naturally insured between a graph and its
sub-graph.

This feature is implemented via basic mes-
sage passing between di�erent objects and
works e�ciently.

5.4 Genericity and Factories

Some algorithms are based only on generic
properties of graphs and don't take into ac-
count particularities of the di�erent struc-
tures such as the fact that a graph is di-
rected or not. Without a special mechanism,
the implementation of the algorithm has to
be rewritten for each kind of structure since
some structures are independant. This can
be avoided in mascopt for two main rea-
sons, �rst because the object oriented simi-
lar structures share a common ancestor and
secondly because we use the concept of fac-
tory [11]. This latter concept is directly
taken from the design pattern theory where
it is often used.

The code of the algorithm is written into
the common ancestor and can be used in any
derived class where a factory class has been
implemented. Of course, this is possible only
if the algorithm uses only generic attributes,
but this is often the case with graph algo-
rithms.

INRIA

Mascopt 11

G2

G1

Figure 4: Share of vertices and edges between graphs G1 and G2

G1

ES1

ES2

G2

VS1

Figure 5: Share of the set of vertices V S1 with two di�erent edge sets, ES1 and ES2

5.5 Shared Mode

The way we choose to build graphs gives
the user the ability to share objects between
graphs or sets. This possibility avoids the
duplication of shared objects, for example,
when constructing a lot of paths on a graph:
the vertices and edges are the same objects in
all paths. Nevertheless, some disadvantages
appear: when asking to a vertex its exiting
edges, the user has to precise the graph it
considers, because the vertex may appear in
several graphs.

The �gure 4 presents two graphs sharing
three vertices and one edge (this edge is dis-
played two times in the �gure). The �g-

ure 5 shows a more complex example: the
VertexSet object V S1 is shared by the two
graphs G1 and G2. It allows to build two
di�erent graphs not duplicating all vertices.
Note that the edge sets are di�erent. No
more than nine edges are instanciated and
seven are shared by ES1 and ES2.

As a concrete example, we can now create
in listing 4 a graphG3 represented in �gure 6,
using objects created in section 3. Note that,
as a consequence of listing 3, v0 and a0 are
also valued for G3.

RT n° 0293

12 Lalande, Syska, Verhoeven

Listing 4: Creation of DiGraph G3

ArcSet E3 = new ArcSet(V);
Arc a2 = new Arc(v0,v1);
E3.add(a0); E3.add(a2);

DiGraph G3 = new DiGraph(V,E3);

a0
capacity: 6.8

length: 110

function: "start"

a2

V2

V1

V0

Figure 6: Valued Graph G3

6 A Short Case Study

We give a short example of a use of mascopt
in a network optimization problem: we show
how to implement a routing algorithm with
multicommodity �ow. We use the network
model described in [3]. The input data of the
problem is a valued digraphD = (V;ED) and
some requests between pairs of verstices of V .
These requests are stored in a graph R whose
vertex set is shared withD, i.e. R = (V;ER).

The output of the problem is a set of paths
satisfying the request i.e. giving for a certain
amount of �ow the route to use to go from
the start vertex of the request to the end ver-
tex. All these paths are DiPath objects and
are based on the graph D which means pre-
cisely that they share the same vertex set and
that the edge set of each path is a sub-set
of the edge set of D. Note that if an arc
of D is removed, all the paths using this arc
die because of the coherence guarantee of the
model: a path must stay connected and all its
edges must belong to the underlying graph.

In order to implement this problem with
mascopt, one has to implement the algo-
rithm given in [3] which computes �ow on D.
That is, for each request r = (vs; vt) 2 ER,
we extract a set of paths which leads, us-
ing di�erent routes, all the �ow from vs to
vt. Next we aggregate all those paths in one
multi-path by merging them in a special Di-
Path object, and make sure that the merge
is correct. And �nally we just need to plug
our algorithm to the I/O classes so we can
choose a �le containing a graph and give it
as an input to the algorithm and save the re-
sult in a �le. We can also visualize directly
the result.

The main work for the user is then to write
the algorithm of his choice using the di�er-
ent objects provided by mascopt; the rest
of the program consists in calling the right
methods.

7 File Saving

7.1 mgl Format

mascopt provides several input and output
formats. We only present mgl and mgx

which means Mascopt Graph Library and
Mascopt Graph Extended. mgl format is
the mascopt's native format and is based
on the xml standard, controled by a dtd

(see appendix B for more details). It provides
a readable description of mascopt's objects
which can be easily extended for the user's
own objects or specializations: as the mgl
reader parse an xml �le, it can also read a
derived �le, containing new tags.

One can create his own format implement-
ing the interface WriterInterface which
consists only in two methods: an add
method to add objects to write and a write
method to physically write the �le. The �le

INRIA

Mascopt 13

is quite understandable. The information
contained in a mgl �le re�ects the oriented-
object structure of mascopt. This is a sim-
ple manner to enable the sharing of objects.
The listing 5 presents the code of the digraph
created in listing 2, 4, and valued in listing 3.

Listing 5: mgl File for G0 and G3

<?xml version="1.0" ?>
<!DOCTYPE OBJECTS SYSTEM "ftp://ftp�sop.

inria.fr/mascotte/mascopt/dtd/mgl_v1.2.dtd">

<OBJECTS>
<VERTICES>
<VERTEX id="V0">
<POSITION>
<X>50.0</X> <Y>0.0</Y>

</POSITION>
<VALUE type="function" dataType="String"> node0

</VALUE>
</VERTEX>
<VERTEX id="V1">
<POSITION>
<X>10.0</X> <Y>50.0</Y>

</POSITION>
</VERTEX>
<VERTEX id="V2">
<POSITION>
<X>0.0</X> <Y>0.0</Y>

</POSITION>
</VERTEX>
</VERTICES>

<LINKS>
<ARC id="AE1">
<VERTEX_REF idref="V1"/>
<VERTEX_REF idref="V2"/>
</ARC>
<ARC id="AE0">
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V2"/>
<VALUE type="Capacity" dataType="Double"> 6.8

</VALUE>
<VALUE type="length" dataType="Integer"> 110 </

VALUE>
</ARC>
<ARC id="AE2">
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V1"/>
</ARC>
</LINKS>

<SETS>
<VERTEX_SET id="VS0">
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V1"/>
<VERTEX_REF idref="V2"/>
</VERTEX_SET>
<ARC_SET id="AES0">
<ARC_REF idref="AE0"/>

<ARC_REF idref="AE1"/>
</ARC_SET>
<ARC_SET id="AES3">
<ARC_REF idref="AE0"/>
<ARC_REF idref="AE2"/>
</ARC_SET>
</SETS>

<GRAPHS>
<DIGRAPH id="G0">
<VERTEX_SET_REF idref="VS0"/>
<ARC_SET_REF idref="AES0"/>
</DIGRAPH>
<DIGRAPH id="G3">
<VERTEX_SET_REF idref="VS0"/>
<ARC_SET_REF idref="AES3"/>
</DIGRAPH>
</GRAPHS>
</OBJECTS>

7.2 How to Extend a Format:

the mgx Example

We give an example of how to extend the
graph model when it is required by the user
application. mgx is an extended version of
mgl. It solves the following problem: as all
objects are shared between graphs, the val-
uation of an object may di�er between one
graph and another. In section 5.2, the arc
a0 is valued with Capacity = 6:8 and this
value is the same in all graphs containing this
edge. As a result, we introduce the notion of
context, which specify the context where the
value is valid. The simplest way of using con-
text is to put the graph itself as context. It
expresses directly that a value is valid only
in this graph.

With the two graphs G0 and G3 we can
now add contexted values named "Capacity"
on arc a0 as shown in listing 6. Then, the
di�erences between mgl and mgx �les are
shown in listing 7. Note that the default
value 6:8 is kept on a0: without context, the
valuation system gives this value. The �g-
ure 7 shows the resulting two graphs.

RT n° 0293

14 Lalande, Syska, Verhoeven

Listing 6: Valuation of arc a0 with contexts

a0.setDoubleValue("Capacity",G0, new Double(1.0));
a0.setDoubleValue("Capacity",G3, new Double(3.2));

Listing 7: Modi�ed part of listing 5

<ARC id="AE0">
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V2"/>
<VALUE type="Capacity" dataType="Double"> 6.8 </

VALUE>
<VALUE type="Capacity" dataType="Double" context=

"G0"> 1.0 </VALUE>
<VALUE type="Capacity" dataType="Double" context=

"G3"> 3.2 </VALUE>
</ARC>

a0

a1

capacity(G0): 1.0
capacity: 6.8

V2

V1

V0

a0
capacity(G3): 3.2

a2

capacity: 6.8
V2

V1

V0

Figure 7: G0 and G3 with contexted values

8 Graphical User Interface

Two graphic tools have been developed with
mascopt over the core library. The �rst tool
is a simple editor which enables the graphical
creation and edition of graphs, and the sec-
ond is a full-featured graph viewer, designed
to display complex graphs.

Figure 8: The viewer displaying a graph of
some French telecommunication network

8.1 The Editor

The editor allows the addition or removal of
vertices and edges for a graph or a digraph.
Then, the user can add values on vertices or
edges as done with the valuation system by
the code. The graph is stored in a �le with
mgl format or can be exported as an image
in the PNG format. Note also that one can
of course import a graph from a mgl �le.

8.2 The Viewer

The viewer is a multi-layered and multi-view
graphical interface. The user can have some
views opened on di�erent graphs. The user
can also have, in the same view, several
graphs displayed at the same time. To hide
and display groups of graphs in a view (for
example, several paths on a graph), we intro-
duced layers in views which are piled up and
can be hidden or displayed independently.

INRIA

Mascopt 15

WPX Workpackage Description

WP1 Graphs Modeling and processing of graphs
WP2 Networks Modeling and processing of networks
WP3 Virtual networks Interaction between di�erent types of networks
WP4 Linear Programming Linear optimization in networks
WP6 Experimental data's Realistic data for network experiments
WP7 Graphical User Interface Display of graphs and networks
WP8 Input/Output graphs and tools XML Modeling, Export formats
WP9 Algorithms on graphs or digraphs Well known algorithms for graphs

Figure 9: mascopt's Workplan

The viewer displays String labels on vertices
and edges, which can contain values stored
by the valuation system. Note also that you
can import a collection of graphs from a mgl
�le and put each graph in di�erent layers or
views.

The viewer is not only graphically usable.
It has been designed to be controlled with
Java� code and called to display the results
of user's algorithm. The user can instan-
tiate a MascoptViewer object which con-
trols all the graphical objects that are use-
ful. This class is a link between basic objects
of mascopt and their graphical representa-
tion. It computes automatically the graphi-
cal updates when some objects of the library
changes. With this system, the views are not
a static representation of graphs. For exam-
ple, if a value on a vertex is displayed and
is changed by an algorithm, the label of the
vertex in the graphical interface is also up-
dated.

9 Future Work

Our work in mascopt is divided in sev-
eral workpackages, shown in �gure 9. The
�rst public release (1.1) of mascopt con-
tains mainly WP1 and a signi�cant part of

WP7 and WP8. The next step of our work-
plan is to implement data structure for net-
works, based on the packages contained in
WP1. Other workpackages will be developed
concurrently to explore our research topics,
including:

� Data model of the network and the de-
mands.

� Routing end to end connections in a net-
work with capacity limitations.

� Routing under vulnerability constraints
(protection and restoration).

� Grooming multiplex (eg. SDH over
WDM).

10 Acknowledgment

We would like to thank all the people who ac-
tively participated to the mascopt project.

� Main authors: Bruno Bongiovanni,
Sébastien Choplin, Jean-François La-
lande, Michel Syska, Yann Verhoeven

� Contributors: Séverine Petat, Smita Rai

RT n° 0293

16 Lalande, Syska, Verhoeven

INRIA

Mascopt 17

Bibliography

[1] Project rnrt porto. http://www.telecom.gouv.fr/rnrt/projets/pporto.htm.

[2] IBM alphaWorks. Graph foundation classes for java.
http://www.alphaworks.ibm.com/tech/gfc.

[3] M. Bouklit, D. Coudert, J-F. Lalande, C. Paul, and H. Rivano. Approximate multicom-
modity �ow for WDM networks design. In J. Sibeyn, editor, SIROCCO 10, number 17
in Proceedings in Informatics, pages 43�56, Umea, Sweden, 2003. Carleton Scienti�c.

[4] Roberto Tamassia et al. An overview of jdsl 2.0, the data structures libary in java.
Technical report, 2003.

[5] M. Forster, A. Pick, M. Raitner, and C. Bachmaier. gtl : Graph template library.
University of Passau. http://infosun.fmi.uni-passau.de/GTL.

[6] Algorithmic Solutions Software GmbH. Leda. http://www.algorithmic-
solutions.com/enleda.htm.

[7] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Java Series. Sun
Microsystems, 1996.

[8] David R. C. Hill. Object-Oriented Analysis and Simulation. Addison-Wesley Longman,
1996.

[9] Jesus M. Salvo Jr. Openjgraph - java graph and graph drawing project.
http://openjgraph.sourceforge.net/.

[10] Kurt Mehlhorn, Stefan Naher, and Christian Uhrig. The LEDA platform of combinato-
rial and geometric computing. In Automata, Languages and Programming, pages 7�16,
1997.

[11] Theo D. Meijler, Serge Demeyer, and Robert Engel. Making design patterns ex-
plicit in FACE - A framework adaptive composition environment. In M. Jazayeri and
H. Schauer, editors, Proceedings of the Sixth European Software Engineering Confer-
ence (ESEC/FSE 97), pages 94�110. Springer�Verlag, 1997.

RT n° 0293

18 Lalande, Syska, Verhoeven

[12] A. Ouorou, P. Mahey, and J.-P. Vial. A survey of algorithms for convex multicommodity
�ow problems. Technical report, Switzerland, 1997.

INRIA

Mascopt 19

Appendix A

Multicommodity Flow with cplex

We present a short presentation of a solution for the multicommodity �ow problem [12]. It
is commonly used when computing some paths for some requests in a network, as presented
in section 6. The solution we give here uses the Ilog cplex Concert API. It shows how our
library can be interfaced with other Java� code.
We consider a graph G = (V;E), where E contains edges with capacities ec. On this

graph, we consider the set of request D(G) which contains requests d adding �ow of size
size(d) in v+d and removing this �ow in v�d . Let us note xe;d the amount of �ow used on
edge e for request d, adj(v+) and adj(v�) the set of edges exiting and entering the vertex v.
The problem is the direct expression of the well known integer or real �ow commod-

ity problem where the objective is to minimize
P

d2D(G);e2E xe;d. This objective function
computes the total capacity used in the network to satisfy all the requests. The following
constraints model the integrity of capacity and the fact that the �ow is well distributed.

8e 2 E
P

d2D(G) xe;d � ec (A.1)

8d 2 D(G);8v 2 V; v =2 fv+d ; v
�

d g
P

e�2adj(v�);e+2adj(v+) xe�;d � xe+;d = 0 (A.2)

8d 2 D(G)
P

e+2adj(v+
d
) xe+;d = size(d) (A.3)

8d 2 D(G)
P

e�2adj(v�
d
) xe�;d = size(d) (A.4)

8e 2 E;8d 2 D(G) xe;d � 0 (A.5)

RT n° 0293

20 Lalande, Syska, Verhoeven

Listing A.1: Flow conservation code

/**
* Adds a �ow system on the network.
*/
public void createFlow(AbstractGraph g_, DiGraph requests_, IloCplex cplex)
{
try

{
// For all requests
Iterator itArcRequest = requests_.iterator();
while (itArcRequest.hasNext())
{
// Getting request r
Arc r = (Arc)itArcRequest.next();
AbstractVertex n_start = r.getSource();
AbstractVertex n_end = r.getTarget();
double r_size = 0;

// Getting the request size
r_size = r.getDouValue(REQUEST_SIZE);

// For all vertices
Iterator itVertex = g_.getAbstractVertexSet().iterator();
while (itVertex.hasNext())
{
// Getting vertex n
AbstractVertex n = (AbstractVertex)itVertex.next();

// Flow entering the vertex
Iterator itEdge = n.getIn(g_).iterator();
IloLinearNumExpr in = cplex_.linearNumExpr();
while (itEdge.hasNext())
{
AbstractEdge edgeHere = (AbstractEdge)itEdge.next();
in.addTerm(1.0, getVarEdgeReq(edgeHere,r));

}

// Flow exiting the vertex
itEdge = n.getOut(g_).iterator();
IloLinearNumExpr out = cplex_.linearNumExpr();
while (itEdge.hasNext())
{
AbstractEdge edgeHere = (AbstractEdge)itEdge.next();
out.addTerm(1.0, getVarEdgeReq(edgeHere,r));

}

// Case of the start
if (n == n_start)
{
cplex_.addEq(out, r_size);
cplex_.addEq(in, 0);

}
else if (n == n_end) // Case of the end
{
cplex_.addEq(in, r_size);
cplex_.addEq(out, 0);

}
else // Normal case
{
cplex_.addEq(in, out);

}
}

}

INRIA

Mascopt 21

// Solving
cplex.solve();

}
catch (IloException exception)
{
System.err.println("Error in Cplex constraints " + exception);

}
}

To implement this linear program with Ilog Cplex, we use the Concert API which
provides a Java� wrapper to the functions of Cplex. Each equation is implemented with
overlapped while statements, one block covering the requests and the other covering the
vertices. Then, for each vertex, an other while loop covers the edges entering or exiting this
vertex. The listing A.1 shows how to program equations A.2, A.3, and A.4. This code needs
a function called getVarEdgeReq(AbstractEdge e, Arc r) which gives the cplex variable
corresponding to an edge e and a request r. The most basic way of implementing this is to
create a �rst HashMap containing, for each edge e, a second HashMap that contains, for
each request r, the Cplex variable. We do not show how to implement equations A.1, A.5
and the objective function because the code is quite similar.
After the call of Cplex solver, which try to solve the implemented linear program, we

have to read the solution. We can build on the graph the paths covering the �ow solutions
(several paths per �ow and commodity). This part is shown in listing A.2.

Listing A.2: Build of a path for a request r

/**
* Builds a paths covering a part of the �ow.
*/
public AbstractPath buildPath(AbstractGraph g_, Arc r)
{
AbstractVertex n_start = r.getSource();
AbstractVertex n_end = r.getTarget();
AbstractVertex n_current = n_start;
double maxFlowAllocated = MAX_FLOW_PER_REQUEST;
AbstractPath result = g_.getFactory().newAbstractPath(g_.getAbstractEdgeSet());

// While the path has not reached the end vertex
Iterator itArc = g_.getAbstractEdgeSet().iterator();
while (n_current != n_end)
{
AbstractEdge candidate = null; AbstractEdge loopCandidate = null;
double tryFlowAllocated = 0; double tryLoopFlowAllocated = 0;

// We search for the best edge to continue the path
Iterator itEdgeOut = n_current.getOut(g_).iterator();
while (itEdgeOut.hasNext())
{
AbstractEdge eOut = (AbstractEdge)itEdgeOut.next();
double cplexValue = getCplexValue(eOut,r); // Getting the result value of Cplex
double reserved = eOut.getDouValue("pathConstructionReserved");
AbstractVertex destOut = n_current.getConnected(eOut);

// Searching the best candidate
if (cplexValue � reserved > tryFlowAllocated && !result.getAbstractVertexSet().contains(destOut))

RT n° 0293

22 Lalande, Syska, Verhoeven

{
tryFlowAllocated = cplexValue � reserved;
candidate = eOut;

}

// Searching the best loop candidate
if (cplexValue � reserved > tryLoopFlowAllocated)
{
tryLoopFlowAllocated = cplexValue � reserved;
loopCandidate = eOut;

}
}

// If the path can be constructed
if (candidate != null)
{
maxFlowAllocated = Math.min(maxFlowAllocated, tryFlowAllocated);
result.concatAbstractEdge(candidate);
n_current = n_current.getConnected(candidate);

}
else // Removing a found loop
{
n_current = this.removeLoop(result, loopCandidate, r);

}
}

// Update of the reserved value on this path
AbstractVertex vertex_covering = result.getAbstractStart();
while (vertex_covering != result.getAbstractEnd())
{
AbstractEdge edge_parcours = result.nextAbstractEdge(vertex_covering);
double reserved = edge_parcours.getDouValue("pathConstructionReserved");
edge_parcours.setDouValue("pathConstructionReserved", reserved + maxFlowAllocated);
vertex_covering = result.nextAbstractVertex(vertex_covering);

}

// Storing the �ow value of this computed path
result.setDouValue("�owAllocated", maxFlowAllocated);

return result;
}

INRIA

Mascopt 23

Appendix B

DTD

We formerly wrote the dtd which validates the mgl �les that are read. We give the possi-
bility to disable the validation, but the use of dtd is a strong guaranty that the �le is well
formed. The listing B.1 shows the DTD which controls mgl format. Then, the listing B.2
shows how to build the mgx dtd which inherits of the mgl one.

Listing B.1: DTD of mgl format: mgl_v1.2.dtd

<!ELEMENT OBJECTS (VERTICES, LINKS, SETS, PATHS?, GRAPHS)>

<!�� Groups ��>

<!ELEMENT VERTICES (VERTEX*)>
<!ELEMENT LINKS (EDGE*, ARC*)>
<!ELEMENT SETS (VERTEX_SET*, EDGE_SET*, ARC_SET*)>
<!ELEMENT PATHS (CHAIN*, PATH*)>
<!ELEMENT GRAPHS (GRAPH*, DIGRAPH*)>

<!�� Infos ��>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT VALUE (#PCDATA)>
<!ATTLIST VALUE type CDATA #REQUIRED>
<!ATTLIST VALUE dataType (String|Integer|Double) "String">

<!ELEMENT POSITION (X, Y)>

<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>

<!�� Objects ��>

<!ELEMENT VERTEX (NAME?, POSITION?, VALUE*)>
<!ATTLIST VERTEX id CDATA #REQUIRED>

<!ELEMENT EDGE (NAME?, VERTEX_REF, VERTEX_REF, VALUE*)>
<!ATTLIST EDGE id CDATA #REQUIRED>

<!ELEMENT ARC (NAME?, VERTEX_REF, VERTEX_REF, VALUE*)>
<!ATTLIST ARC id CDATA #REQUIRED>

RT n° 0293

24 Lalande, Syska, Verhoeven

<!�� Sets ��>

<!ELEMENT VERTEX_SET (NAME?, VERTEX_REF*, VALUE*)>
<!ATTLIST VERTEX_SET id CDATA #REQUIRED>

<!ELEMENT EDGE_SET (NAME?, VERTEX_SET_REF, EDGE_REF*, VALUE*)>
<!ATTLIST EDGE_SET id CDATA #REQUIRED>

<!ELEMENT ARC_SET (NAME?, VERTEX_SET_REF, ARC_REF*, VALUE*)>
<!ATTLIST ARC_SET id CDATA #REQUIRED>

<!�� Paths ��>

<!ELEMENT CHAIN (NAME?, EDGE_REF*, VALUE*)>
<!ATTLIST CHAIN id CDATA #REQUIRED>

<!ELEMENT PATH (NAME?, ARC_REF*, VALUE*)>
<!ATTLIST PATH id CDATA #REQUIRED>

<!�� Graphs ��>

<!ELEMENT GRAPH (NAME?, VERTEX_SET_REF, EDGE_SET_REF, VALUE*)>
<!ATTLIST GRAPH id CDATA #REQUIRED>

<!ELEMENT DIGRAPH (NAME?, VERTEX_SET_REF, ARC_SET_REF, VALUE*)>
<!ATTLIST DIGRAPH id CDATA #REQUIRED>

<!�� Pointers ��>

<!ELEMENT VERTEX_REF EMPTY>
<!ATTLIST VERTEX_REF idref CDATA #REQUIRED>

<!ELEMENT EDGE_REF EMPTY>
<!ATTLIST EDGE_REF idref CDATA #REQUIRED>

<!ELEMENT ARC_REF EMPTY>
<!ATTLIST ARC_REF idref CDATA #REQUIRED>

<!ELEMENT VERTEX_SET_REF EMPTY>
<!ATTLIST VERTEX_SET_REF idref CDATA #REQUIRED>

<!ELEMENT EDGE_SET_REF EMPTY>
<!ATTLIST EDGE_SET_REF idref CDATA #REQUIRED>

<!ELEMENT ARC_SET_REF EMPTY>
<!ATTLIST ARC_SET_REF idref CDATA #REQUIRED>

<!ELEMENT SUPER_SET_REF EMPTY>
<!ATTLIST SUPER_SET_REF idref CDATA #REQUIRED>

<!ELEMENT SUPER_GRAPH_REF EMPTY>
<!ATTLIST SUPER_GRAPH_REF idref CDATA #REQUIRED>

INRIA

Mascopt 25

Listing B.2: DTD of MGX format: mgx_v0.3.dtd

<!ENTITY % mgldtd SYSTEM "mgl_v1.2.dtd">

%mgldtd;

<!�� Extended ��>

<!ATTLIST VALUE context CDATA #IMPLIED >

RT n° 0293

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

