Traffic Grooming in WDM Networks with Multi-Layer Switches

G. Huiban, S. Pérennes and M. Syska Mascotte project I3S/CNRS-INRIA Sophia Antipolis FRANCE

WDM network model

WDM network problem

Traffic demands:

Functional model of nodes

Layered WDM network model

Pipe definition

- A continuous path within the same optical layer
- Recursive definition
 - A pipe in layer *i* is a sequence of pipes in layer *i*+1
 - Example

Grooming problem

Input:

- set of potential priced pipes candidates for being used at layer *i+1*
- set of unitary demands:
 pipes in layer *i*

Output:

A *min-cost* pipes set of layer *i*+1 that can transport pipes of layer *i* subject to capacities constraints

- Defined over two layers
 only: multi-stage grooming
 if #layers > 2 (iterate)
- Simple model compare to the complete detailed ILP formulation, but:

Flexible cost objective function and cost for pipes that could be adapted to real cases

Grooming problem complexity

The set of elementary dipaths in the network may have exponential size, but a lot of these are useless:

➔ Use sub paths of demands routes only

(A dipath of size *d* has at most (d(d+1))/2 subdipaths)

• Example:

ILP complexity

Notations:

- L is the maximum length of a path
- r is the number of demands
- *p* is the number of pipes
- *m* is the number of edges
- # equations: $O(pL^2)$
- # variables: O(r(m+p))

This is polynomial but still large

\rightarrow How can we reduce it?

Large demands & split number

- Use weighted instead of unitary demands
- Allows splitting in a maximum number of parts
- Perform also greedy grooming by respect to the pipe size

Pipes filtering

Decreases the number of potential pipes: suspect long pipes (waste capacities + integer/real numbers issues)

ILP performances

The improved ILP program raise good and quite fast solutions on our test bed

We also propose a fast greedy algorithm based on the grade of pipes (a feasible solution should exists with all pipes lengthen to 1, i.e. no grooming at all)

Numerical results

Implementation: CPLEX/C++ within the cadre of RNRT PORTO (French funding ALCATEL/France Telecom R&D/INRIA)

Cost function for pipes

Each pipe has a capacity and a cost:

 $Cost(p_i) = \alpha_l + \beta_l n$ in our tests

Special case : $\beta_l \ll \alpha_l$ (minimize # pipes)

α/β tradeoff

Conclusion

- Accurate and general model for grooming in layered networks
- Efficient solutions with ILP or heuristics for real case studies
- Perspectives:
 - Mixing routing AND grooming
 - Approximation algorithms for specific instances
 - Experimental studies of the grading technique
 - Pipe selection and generating columns in the LP

