Traffic Grooming in WDM Networks with Multi-Layer Switches

G. Huiban, S. Pérennes and M. Syska Mascotte project I3S/CNRS-INRIA Sophia Antipolis FRANCE

WDM network model

Fiber
(Wave)Band
Wavelength

WDM network problem

Traffic demands:

(3)

Functional model of nodes

Layered WDM network model

G: physical net.
Node cost: function of the OXC's degrees

Capacity:
W=1
$\mathrm{B}=2$
$\mathrm{~F}=2$

Pipe definition

- A continuous path within the same optical layer
- Recursive definition
- A pipe in layer i is a sequence of pipes in layer $i+1$
- Example

Grooming example (cont'd)

Grooming (b)

Grooming problem

- Input:
- set of potential priced pipes candidates for being used at layer $i+1$
- set of unitary demands: pipes in layer i
- Output:

A min-cost pipes set of layer $i+1$ that can transport pipes of layer i subject to capacities constraints

- Defined over two layers only: multi-stage grooming if \#layers > 2 (iterate)
- Simple model compare to the complete detailed ILP formulation, but:
Flexible cost objective function and cost for pipes that could be adapted to real cases

Grooming problem complexity

- The set of elementary dipaths in the network may have exponential size, but a lot of these are useless:
\rightarrow Use sub paths of demands routes only
(A dipath of size d has at most $(d(d+1)) / 2$ subdipaths)
- Example:

Demands:

Pipes:

Useless!

ILP complexity

- Notations:
- L is the maximum length of a path
- r is the number of demands
- p is the number of pipes
- m is the number of edges
. \# equations: $O\left(p L^{2}\right)$
- \# variables: $O(r(m+p))$

This is polynomial but still large

\rightarrow How can we reduce it?

Large demands \& split number

- Use weighted instead of unitary demands
- Allows splitting in a maximum number of parts
- Perform also greedy grooming by respect to the pipe size

Pipes filtering

- Decreases the number of potential pipes: suspect long pipes (waste capacities + integer/real numbers issues)

ILP performances

The improved ILP program raise good and quite fast solutions on our test bed

We also propose a fast greedy algorithm based on the grade of pipes (a feasible solution should exists with all pipes lengthen to 1, i.e. no grooming at all)

Numerical results

Implementation: CPLEX/C++ within the cadre of RNRT PORTO (French funding ALCATEL/France Telecom R\&D/INRIA)

Experimentation:

 COST239, French optical backbone (FT R\&D), rings, grids ...

Cost function for pipes

- Each pipe has a capacity and a cost:
$\operatorname{Cost}\left(p_{i}\right)=\alpha_{l}+\beta_{l} n$ in our tests

Special case : $\beta_{l} \ll \alpha_{l}$
(minimize \# pipes)

α / β tradeoff

Average length of pipes

α / β tradeoff

Filtering

Conclusion

- Accurate and general model for grooming in layered networks
- Efficient solutions with ILP or heuristics for real case studies
- Perspectives:
- Mixing routing AND grooming
- Approximation algorithms for specific instances
- Experimental studies of the grading technique
- Pipe selection and generating columns in the LP

