WP4: Algorithmic Solutions and Technical Recommendations for Optical Networks I

Critical Resource Sharing for Cooperation in Complex System

presented by Michel Syska, I3S CNRS University of Nice

All-Optical Network: Wavelength Assignment Problem

- Communications are routed along colordisjoint *lightpaths*
- Let π(G,I) be the minimum load for routing a given set of communication I
- Let w(G,I) be the minimum number of wavelengths for a solution

what is the relation between π(G,I) and w(G,I)?

Conflict Graph: coloring problem

Example where $\vec{\mathbf{w}}$ is not equal to $\vec{\pi}$

$\pi = 2$ and w = |I|

New results for WAP

Design and routing algorithms for multifiber networks

- conflict hypergraphs model
- coloring of hypergraphs (NP-complete)
 - randomized approximation algorithm
 - integer linear programming formulation
- combine routing and wavelength assignment
 - randomized rounding of the fractional multicommodity flow solution

New results for WAP

Tree and ring topologies

- class of greedy algorithms using randomization
 - lower bounds and a 7w/5 + o(w) algorithm on binary trees of depth o(L^{1/3}) with high probability
- randomized WAP
 - randomized rounding on fractional path coloring
- polynomial time algorithms that compute almost optimal fractional path colorings in bounded degree trees and rings (including multifiber rings)

Traffic Grooming

(ist)

Multi-Layer model

Multi-Layer model

Results

- New model of pipes for multi-layer switches
 - ILP formulation
 - Efficient heuristics with a cost function on pipes
 - Experimental results

 Case for ATA traffic in SDH/SONET rings

> Some optimal solutions by using results of design theory

> > Example: for C=3 the problem consists in covering the ring with triangles

Improved resources allocation algorithms

- Packing problem
 - approximation algorithm
 - application to edge congestion problem in multicasting

Station Placement Problem

 dynamic programming algorithm (trees) and approximation algorithm : multicast, wavelength converters?

List coloring problem

bounds for bi-partite graph

Conclusion

- Identification of important techniques for allocation problem
 - Graph theory
 - LP-relaxation + randomization
 - Approximation algorithms
- Publications :
 - Theoretical computer science and Networks conferences
- Emergence of a new model: virtual topologies

Future work

- Survivability
 - Protection and restoration
- Dynamic traffic
- Experimentation / validation of algorithms

