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ABSTRACT

Switching techniques used in optically interconnected networks differ from those used
in classical electronically interconnected networks. This yields new communication
models. The aim of this chapter is to survey the results of communication mod-
els in three fields: the design of networks, the algorithmics of data communication
and the computational models of multiprocessor systems interconnected with optical
networks.

1 INTRODUCTION

Massively parallel computers are proposed as the solution for high performance
computing. However, parallel computing involves a lot of data communica-
tions between the processors that cooperate on the same computation. The
amount of time required to perform those communications is prohibitive to the
overall performance of the systems considered. As a consequence, dense in-
terconnection network design and fast collective communication protocols are
the keys for achieving expected performances. Indeed, multiprocessors systems
are made of independent processing units - equipped with a local memory -
exchanging data over an interconnection network. Two kinds of topologies are
used: point-to-point and multi-stage interconnection networks. For instance,
hypercubes and grids are popular point-to-point interconnection networks used
in parallel computers. Multi-stage interconnection networks were designed in
the case of telecommunication networks but are also relevant for workstation
based computing. In this case, a central switch provides a virtual complete
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graph topology. Moreover, as the existence of standard message passing li-
braries such as PVM and MPI makes it easier today to program such systems,
interconnections are getting more and more importance.

The impact of the optical technology on the network modeling is investigated
in the following. Three types of models are given: interconnection models
(topologies), communication models and computational models.

Usually a N nodes multiprocessor system is represented by a graph G = (V, E),
in which V is the set of nodes of the graph representing the processors (and
local memory associated to that processor) and E is the set of edges of the
graph representing the communication links between processors. The model is
accurate for parallel computers where processors are pair-wise connected, each
edge representing the connection between two neighbors. The communication
of data between two nodes is thus of the one-to-one type. In the case of optical
interconnection networks, it is “easy” to implement a one-to-many type of
communication, extending the concept of neighbors. This can be represented
by hypergraphs and will be developed in Section 3.

When one node has a piece of data to communicate to other nodes, the corre-
sponding message in which the data is encapsulated may have to switch through
intermediate nodes, thus introducing delay in the time required to deliver the
message to its destination node. Collective communications corresponds to the
case when the communication implies more than two nodes.

Two paradigms of elementary collective communications are usually considered:
broadcasting and gossiping. In broadcasting, one node has a piece of data it
would like to share with all the other nodes in the network. At the end of the
protocol, all the nodes must have that piece of data in their local memory. In
gossiping, all the nodes are performing a broadcast simultaneously. At the end
of the protocol, all the nodes have pieces of data originated in all the other
N — 1 nodes of the network considered.

Communication models are required in order to describe the algorithms and
the time complexity of communication algorithms. The main results in the case
of electronically interconnected networks can be found in [20,39]. The results
in the case of optically interconnected networks are given in Section 4.3.

Finally, two models of computation that take advantage of these communication
models are introduced in Section 5. These models can be seen as extensions of
the popular PRAM model.
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2 SWITCHING TECHNIQUES

The nodes communicate with their neighbors by exchanging messages through
channels. A channel is a one-way point-to-point connection between two nodes
connected by a physical link (arc of the graph). Several channels can share the
same physical link in the case of multiplering.

The communication features of the interface between the memory and the com-
munication links should also be characterized for each processor. During a com-
munication, if each node can only send or receive one message on one link at
a time, the communication is called 1-port. If, on the contrary, each node can
simultaneously use all its links, the communications are called A-port, where
A refers to the maximum degree of the nodes in the network.

When a message is transmitted between processors that are not directly linked,
the message must be routed through intermediate nodes and this routing is done
with the help of routers. A router is characterized by its switching time, also
called latency. Switching in a router consists of receiving a destination address,
decoding the address in order to determine the appropriate output channel,
and sending the message through this channel. Depending on the protocols
used, switching can also include physical connection of the input link with the
output link determined by the router. The latency can be only a few tens of
nanoseconds in case of hardware routing but can go beyond a microsecond in
the case of software routing.

2.1 Usual switching techniques

The various usual switching techniques are described by Kermani and Kleinrock
in [38]. They are as follows.

Circuit-switching

This is the principle of a telephone: a connection is established first (this means
reserving a sequence of channels) and the conversation begins after.

Message-switching

Messages move through the network towards their final destination by passing
through intermediate nodes. At each stage, the channel used is immediately
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freed. This technique is known under the name store-and-forward in the context
of distributed machines. One flaw of this technique is the necessity of large
registers for storing the message on the intermediate processors. In fact, such
messages are usually stored in the global memory. However, memory access
time, being proportional to the size of the messages, slow down communication
dramatically.

Wormhole routing

In the most recent distributed memory machines, the store-and-forward routing
mode was displaced by wormhole routing.

Contrary to the store-and-forward mode, in which messages (or packets) are
entirely stored in the memory of a processor before being transmitted to the
next processor, in the wormhole routing mode the messages proceed through
the processor network flit by flit (a flit — flow control digit — is the size of the
buffer of a channel), with the first flit containing the destination address. The
header, that is, the first flit, progress by a channel each time it is possible. The
rest of the message follows, freeing the last channel which contains the end of
the message. The last channel then becomes available for another message.

It is very important to distinguish this routing mode from routing by packet-
switching. In the latter, each packet contains the destination address in its
header and can be routed independently. In wormhole routing mode, only the
first flit contains the destination address.

Now the time required to send a message of size L over links having a constant
bandwidth L is considered.

In the case of store-and-forward, the transmission time of the message between
two neighboring processors is given by the sum of a start-up (or initialization)
time, denoted by (3, which is the time it takes to initialize the memory registers
and the time of receipt procedures, and a propagation time L7, which is directly
proportional to the length L of the message. Thus the cost of sending a message
of size L at distance d is d(8 + L7). This cost could be decreased if one allows
us to split the message in packets, and pipeline the packets along the path. For

2
an optimal size of packets the cost is decreased to [20]: (\/ Lt ++/(d—- 1),8) .

In the case of wormhole or circuit-switching, one can send a message directly
to a node at distance d with time a + d§ + L7, where the parameter « is the
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start-up time of the sending process and the delay 4 is the time required to
switch the router at each intermediate node.

In order to compare the last two models, observe that a distributed machine
with circuit-switching or wormhole routing can also communicate neighbor-to-
neighbor. Hence 8 =6 + a.

2.2 Wavelength Division Multiplexing

A new model of commutation is presented here, interested readers should refer
to [17,47] for an excellent introduction to the techniques. Only logical aspect
of the communication are considered and we keep the optical implementations
details to the minimum.

The large optical spectrum may be divided into numerous different channels,
and each is assigned a different wavelength. This approach is known as WDM:
Wayvelength Division Multiplexing. The limit on the number of wavelengths
available depends on the technology of lasers and optical filters. Technical de-
tails are out of the scope of this chapter. However, subcarrier multiplexing and
electronic Time Division Multiplexing could be used within each wavelength in
order to increase the number of different possible channels. This multiplexing
will not slow down the communications as the interfaces of the nodes are not
able to take full advantage of the bandwidth of optical fibers.

WDM lightwave networks are usually classified into broadcast-and-select net-
works and wavelength-routing networks. In both categories, single-hop and
multihop networks [45,46] could be considered. However, the models presented
here focus on broadcast-and-select networks.

In broadcast-and-select networks, N stations connected to the same network
use N different wavelengths to communicate via a passive network fabric (Star
coupler). Each station is equipped with at least one transmitter T and one
receiver R. The wavelength of each transmitter is broadcast to all receivers, see
Figure 1.

The right side of the figure is an example with 3 stations and each one is built
of one transmitter and one receiver. Every station emits its signal on its own
wavelength, and receive all the other signals.
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T17 Rl

Figure 1 Broadcast-and-select

Two types of transmitters/receivers are available: fixed or tunable wavelength
types. When fixed wavelength receivers are used, the transmitters have to be
tunable and should be tuned to the appropriate wavelength before each com-
munication. In the case of tunable transmitters and fixed wavelength receivers,
the source node selects the wavelength before the communication is established.
The last case is when both transmitters and receivers are tunable, the arbitra-
tion protocol usually uses a control channel. Fixed wavelength devices are often
chosen due to the prohibitive cost of tunable ones.

Most of the results described in the following section concern OPS based net-
works. Rainbow [36] is an example of a practical implementation of such net-
work.

Usually, the number of wavelengths available to build an interconnection net-
work is limited due to cost reasons, thus all the messages could not be delivered
in one hop. Messages transit through switches and networks are said to be
multi-hop. In the case of multi-hop networks, conversions from/to electronic
or photonic domain are required.

Possible multi-hop network topologies are described in Section 3, and corre-
sponding collective communication issues are given in Section 4.

The case of single-hop networks is presented in Section 4.3. These networks are
also known as all-optical networks as messages reach their destination in one hop
without being converted to electronical representation in between. When the
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number of wavelengths available is not sufficient to complete the data exchange
in one step, the number of additional steps required has to be minimized.

Others limitations could come from the optical power budget, indeed a min-
imum power is required at each receiver (dividing the signal may introduce
loss). The transmitter should have a higher power.

The communication algorithm will have to take into account these different
switching techniques.

3 TOPOLOGIES: FROM GRAPH TO
HYPERGRAPH MODELS

A graph representation of interconnection networks is considered and new re-
sults in the design of topologies motivated by optical devices are given. Indeed,
the way nodes are interconnected in a network is driven by technical constraints:
complete interconnection is limited to a small number of nodes as each I/O port
grows up the complexity of a node. Even optics has limits on the fan-out of
switches.

The following definitions will be used in this chapter.

3.1 Definitions

The usual notations are taken from [6].

> A directed graph (or simply a digraph) G = (V, A) where V is called the
vertex set and A, a multiset whose elements are from V x V| is called the

arc set. A symmetric digraph is a digraph such that if (u,v) € A(G) then
(v,u) € A(G).

> The number of vertices of the graph is called its order and is denoted by N.

> y is said to be a successor of z if there is an arc (z,y). The set of successors
of a vertex z is denoted by I'f;(z) and its cardinality, denoted by d*(z),
is called the outdegree of x. The set I';(x) of predecessors of z and the
indegree d~ (z) are defined similarly.
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> In many cases the distinction between initial and end vertices is irrelevant.
Thus the notion of an wundirected graph is introduced: an arc (z,y) is
replaced by the set consisting of the two vertices x and y, called an edge
of the graph and denoted by [z, y].

> Two vertices are adjacent or neitghbors if there exists an arc or edge be-
tween them.

> Given a vertex z of a graph G, the number of edges incident with z is called
the degree of z, denoted by dg(z) (or by d(z) if confusion is unlikely).

The maximum over the degrees of all vertices of G is called the mazimum
degree and is denoted by A(G), or simply A.

The minimum over the degrees of all vertices of G is called the minimum
degree and is denoted by §(G) or, simply, 4.

> A path between two vertices z and y (and denoted P(z,y)) of a graph G is
a sequence z1,Zs,..., T of vertices such that pairs of consecutive vertices
are adjacent while z; = x and zy = y. A dipath from node z to node y is
a directed path which consists of a set of consecutive arcs beginning in z
and ending in y.

A path using each vertex at most once is called elementary. In the fol-
lowing all the paths considered are elementary and elementary will not be
mentioned.

The length of a path (resp. dipath) is the number of edges (resp. arcs) in
it.

> Given two vertices  and y of a graph G, the distance between z and y is
the length of a shortest path between them and is denoted by §(z,y).

> The diameter of a graph G, denoted by D(G) or, simply, D, if the context
is clear, is the maximum of the distances d(z,y) over all pairs of vertices
of G.

> A cycle in a graph G is a path whose initial and end vertices are identified.
A cycle is usually meant an elementary cycle, that is, one using no vertex
more than once.

> The Cartesian sum, often called Cartesian product or box product, denoted
by GOG', of two graphs G = (V, E) and G' = (V', E'), is the graph whose
vertices are the pairs (z,z') where z is a vertex of G and z' is a vertex
of G'. Two vertices (z,z') and (y,y’) of GOG' are adjacent if and only if
either z = y and [z, y'] is an edge of G’, or ' = y' and [z, y] is an edge of
G.



Models for Optically Interconnected Networks 363

3.2 Degree vs Diameter

New optical devices, such as Optical Passive Stars (see Figure 1), bring new
interests in network topologies research. Signals are broadcast simultaneously
on different wavelengths and these devices could implement what is called a
bus network. A bus is a multiple access medium shared among two or more
nodes, whether it is based in electronics or optics (see [50] for a description
of possible implementations). These networks are modeled by hypergraphs
where vertices represent the processors and edges represent the buses. The
following construction methods of bus networks that connect a large number
of processors with a given maximum processor degree A, a maximum bus size
r, and a network diameter D are taken from [12]. Hypergraphs are used to
represent the underlying topology of the bus interconnection networks.

(A, D, r)-hypergraph problem

An (undirected) hypergraph H is a pair H = (V(H),E(H)) where V(H) is a
non-empty set of elements, called vertices, and £(H) is a finite set of subsets of
V(H) called edges. The number of vertices in the hypergraphisn(H) = |(V(H)|
and the number of edges is m(H) = |E(H)| where the vertical bars denote the
cardinality of the set. The degree of a vertex v is the number of edges containing
it and is denoted by Ag(v). The mazimum degree over all of the vertices in H
is denoted by A(H). The size of an edge E € £(H) is its cardinality, and is
denoted by |E|. The rank of H is the size of its largest edge, and is denoted
by r(H). A path in H from vertex u to vertex v is an alternating sequence of
vertices and edges u = vg, By, v1,- -+, Eg, v, = v such that {v;_1,v;} C E; for
all 1 <17 < k. The length of a path is the number of edges in it. The distance
between two vertices u and v is the length of a shortest path between them.
The diameter of H is the maximum of the distances over all pairs of vertices,
and is denoted by D(H).

An hypergraph with maximum degree A, diameter D, and rank r, is called
a (A, D,r)-hypergraph. An example of a (2,2, 5)-hypergraph is given in Fig-
ure 2. The problem on bus networks considered in the introduction is known as
the (A, D, r)-hypergraph problem and consists of finding (A, D, r)-hypergraphs
with the maximum number of vertices or finding large (A, D, r)-hypergraphs.
The maximum number of vertices in any (A, D, r)-hypergraph is denoted by
n(A,D,r).

In the case r = 2 (graph case), this problem has been extensively studied and is
known as the (A, D)-graph problem (see for example [10], [11]). The maximum
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number of vertices in any (A, D)-graph is denoted by n(A, D). See the table !
and construction of such graphs detailed in [10].

Finally, let us mention that the drawing of hypergraphs can be very complex
and therefore it is useful to represent an hypergraph H with a bipartite graph,

R(H) = (V1(R) UV:2(R),E(R))

called the bipartite representation graph. Every vertex v; in V(H) is represented
by a vertex v; in Vi (R) and every edge E; in £(H) is represented by a vertex
e; in Vo(R). An edge is drawn between v; € Vi(R) and e; € V»(R) if and only
if v; € E; in H.

Moore bound

A bound on the maximum number of vertices in a (A, D, r)-hypergraph (anal-
ogous to the the classical Moore bound [34]) can be easily calculated: Each
vertex belongs to at most A edges and each edge contains at most r vertices.
Thus there can be at most A(r — 1) vertices at distance one from any vertex.
More generally, the maximum number of vertices at distance i from any vertex
can be at most A(A — 1)~ (r — 1)%. Therefore

D—
n(A,D,r) <1+ A(r—1) > (A1) (r—1)%

=0

=

This bound is known as the Moore bound for undirected hypergraphs, and hy-
pergraphs attaining it are known as Moore geometries.

For D > 2, Moore geometries cannot exist, with the exception of the cycles of
length 2D + 1 (the case A = 2 and r = 2). For a comprehensive survey on
these results see [7]. Even for D = 2 and r = 2 (graph case), only four Moore
graphs can exist.

3.3 Directed hypergraphs

Now let us mention the directed vs undirected question. Indeed, a lot of work
has been done with undirected hypergraph models while actual problems deal
with either directed topologies or symmetric directed ones. The problem of

IThe table of the largest known (A, D)-graphs is maintained by the group of graph re-
searchers in Barcelona, at URL : http://www_mat.upc.es/grup_de_grafs/table_g.html
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global communications will be studied under the directed assumption and a
formal definition of directed hypergraphs will be given in the following. See
Section 5 for examples.

In the directed bus networks a bus is divided into two subsets. One subset of
nodes can use the bus only to send messages while the nodes of the other subset
can only receive messages from the bus.

Definition

A directed hypergraph H is a pair (V(H),E(H)) where V(H) is a non-empty set
of elements (called vertices) and E(H) is a set of ordered pairs of non-empty
subsets of V(H) (called hyperarcs). If E = (E—,E") is a hyperarc in £(H),
then the non-empty vertex sets E~ and E* are called the in-set and the out-set
of the hyperarc E, respectively. The sets E~ and E* need not be disjoint. |E~|
is the in-size, and |E™| is the out-size of hyperarc E. The mazimum in-size
and the mazimum out-size of a directed hypergraph H are, respectively,

s (H)= max |E7| and s"(H)= max |ET|.
Ec&(H) Ecé(H)

If s~ = st =1, a directed hypergraph is nothing more than a digraph.

Let v be a vertex in V(H). The in-degree of v is the number of hyperarcs that
contain v in their out-set, and is denoted by dj(v). Similarly, the out-degree
of vertex v is the number of hyperarcs that contain v in their in-set, and is
denoted by dz(v). The mazimum in-degree and the mazimum out-degree of H
are, respectively,

d—(H) = Ugb%) dy(v) and df(H)= Ugb%) di(v).

A walk in H from vertex u to vertex v is an alternating sequence of vertices
and hyperarcs u = v, By, vy, Es,v2,- -+, Eg, v = v such that v;_; € E; and
v; € E:r for each 1 < ¢ < k. The length of a walk is equal to the number
of hyperarcs on it. The distance and the diameter are defined analogously to
those in the undirected case.

The incidence relations between the vertices and hyperarcs in a directed hy-
pergraph H are represented using a bipartite digraph,

R(H) = (V1(R) UV:2(R),E(R))
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called the bipartite representation digraph. Every vertex v; in V(H) is repre-
sented by a vertex v; in V;(R) and every hyperarc E; in £(H) is represented
by a vertex e; in V»o(R). An arc is drawn from v; € Vi(R) to e; € Vo(R) if and
only if v; € E; in H, and an arc is drawn from e; € V»(R) to v; € Vi(R) if
and only if v; € E;r in H.

3.4 Practical topologies

Due to practical reasons, a good topology for an interconnection network is
rarely the largest known (A, D)-graph or (A, D, r)-hypergraph. Indeed, the
network has to be implemented with the available technology, and the design
should be scalable for economic reasons.

Parallel computers use to have electronic based interconnection networks. Pop-
ular topologies are hypercubic networks such as hypercubes, meshes, tori, or
more generally speaking k-ary-n-cubes [39]. They offer regularity, symmetry,
high connectivity, fault tolerance, simple routing and also reconfigurability. In
the case of the hypercube network, the logarithmic diameter is one attractive
feature of the topology. However, a major drawback is the scalability of the
networks: the node complexity (degree) increases with the total number of
nodes in the network.

By the way, low (and/or constant) degree and small diameter networks are
better candidates. This is the case for de Bruijn and Kautz graphs which are
among the best known with respect to the A and D parameters.

Once the problem is stated for graph models, one have to deal with hypergraph
models. What kind of topology is best suited for bus networks? Different net-
works were recently proposed that take advantage of the optical issues. Bus
networks are considered today because of the advantages of optics over elec-
tronics: high bandwidth, large fan-out and low signal crosstalk. In addition to
the hypergraphs presented here, interested readers should refer to the table in

[8).

Hypermeshes and hypercubes

Mesh is probably the most popular topology in many areas of interconnection
networks : VLSI routing, Wafer Scale Integration, arrays of processors, par-
allel computers, metropolitan networks. Main qualities are: scalability, sim-
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ple routing (including deadlock-free routing), natural embedding of numerical
structures (i.e. vector and matrices) on the topology, and also the easy layout
of the network with the current planar technology.

Let first define the n-dimensional mesh denoted by M (p1,p2,...,pn), as the
cartesian sum (see definition 3.1) of n paths on p; vertices, with ¢ =1,2,...,n
and p; > 2.
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Figure 2 Mesh M(4,5), Hypermesh HM (4, 5) and its bipartite representation

Each vertex will naturally be denoted by a n — tuple (i1,42,...,1,), i-e.,
V(M(plap% s 7pn)) = {(ilaiZa s ain)a 1 S ik S Pk,k = 1; . '7n}'

A particular case of this graph is the hypercube, when p; =2, =1,...,n. The
hypercube of dimension n, denoted by H(n), is a graph whose vertices are all
words of length n over the two-letter alphabet {0,1} and whose edges connect
two words which differ in exactly one coordinate. Vertex zizs:: ;- x, is
thus joined to vertices xyz2---Z;---x, witht =1,2,...,n.

This graph could be seen as the cartesian sum of n paths of length 2 i.e. an
dimensional mesh M(2,2,---,2).
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Note that people has also considered the graph based upon the cartesian sum
of n cycles which is called an n-dimensional torus.

Hypermeshes

Then, the hypermeshes proposed in [50] are defined with the notation of Sec-
tion 3.2 by:

> V(W(plap% v apn)) = V(M(plap2a ce 7pn))

> an edge contains the vertices which agree on all coordinates but one

In Figure 2 a M (4,5) is represented, and two pictures of the corresponding
HM (4,5) are given. In the bottom picture, each set of vertices (rows and
columns) is an hyperedge of HM (4,5), and we label from I to V and A to D
the set of hyperedges. In the bipartite representation on the left of the figure,
the left column represents the set of vertices and the right column represents
the set of hyperedges (crossbars). This representation is useful as it provides
us with a better image of the hypergraph (degree, diameter, routing, .. .).

The implementation nor the communication features of the network studied in
[50] are considered here. See the chapter 9 of T. Szymanski in this book for a
detailed presentation of the Hypermeshes.

Spanning bus hypercubes and dual bus hypercubes

Wittie [53] has defined two hypercube based bus networks, with generalization
to W-wide D-dimensional mesh (in the actual generalized hypercube, a W-
letter alphabet is used and the graph is defined as the iterated cartesian sum
of complete graphs over W vertices).

In a spanning bus hypercube all W nodes aligned in the same dimension are
interconnected with a bus. That is every node is connected to a different bus
in each dimension. This could be a strong limiting factor for implementation,
though P. Dowd [22] has described an efficient multiple access control to im-
plement these topologies. The media access control overcomes the large degree
of the graph.
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In a dual bus hypercube, some buses are removed from the network in order to
have only two (here dual stands for two and not duality) bus connections per
node.

Compound techniques

A general technique used to construct large (A, D,r)-hypergraphs is to start
from good ones for small values of A, D and r, then to combine them to build
larger ones [12]. A first combination is the cartesian sum, but other graph
products can also be used.

Optical Multimesh Hypercube (OMMH)

An OMMH [41] is characterized by a triplet (I,m,n) where [ and m represents
respectively the row and column dimensions of a torus, and n represents the
dimension of a binary hypercube. Recall a torus is similar to a mesh but defined
as the cartesian sum of cycles instead of paths (C;0C,, in the two dimensional
case).

The OMMH is actually the cartesian sum of a n-dimensional hypercube (H (n))
and a 2-dimensional torus TM (I,m): H(n)OTM(l,m). The aim is to find a
tradeoff between the hypercube (smalllog, N diameter but large log, N degree)
and the toroidal mesh (large v/N diameter but small constant degree).

In Figure 3 we show the example of H(3)OTM(2,3). The representation is
taken from [41]. Each dashed line represents a cycle in the torus and all the
vertices crossing the line belonging to it. A. Louri and H. Sung proposed a 3-
dimensional optical implementation of the network which is not a bus network,
but a complex interconnection network with an efficient optical implementa-
tion. The construction could easily be extended to an hypergraph network by
displacing the torus by an hypermesh of same order.

Partitioned Optical Passive Star (POPS)

The interconnection network is built up with several passive star couplers. A
(n,d,r) POPS consists in n nodes of degree d linked with a redundancy factor
r. The redundancy refers to the number of paths available between any pair of
nodes. Each path traverses exactly one coupler and all couplers have equal fan-
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3,2,3)

(

Figure 3 Optical Multimesh Hypercube

degree). The control and the construction

]

(in-degree and out

in
of such a network is described in [18

in and fan-out d

The n nodes are partitioned in groups. We will present the case of groups of

size d with redundancy r = 1, and d divides n. Each node is connected to every

star coupler in a perfect-shuffle way.

In Figure 4, the 9 nodes are partitioned in

3 groups, each group corresponding to 3 star couplers. The graph is represented

as a directed bipartite graph, with a repeated set of vertices to the left and to

the right of the couplers. One set represents the transmitters while the other

set represents the receivers, for every node in the graph.
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Figure 4 Partitioned Optical Passive Star (9, 3,1)

Stack-Graphs

Stack-graphs [16] are obtained by piling up copies of one original graph, and
by replacing each stack of edges by one hyperedge. An hyperedge contains all
the extremities of the copies of one original edge.

Let G = (V, E) be the original graph. The corresponding stack-graph ¢(G,m)
is defined as follows:

> V(g(G,m)) = {07"'7m_ 1} xV,m2>1

> E(¢(G,m)) = U(e,y)eEE(a,y) Where £, ) ={0,---,m — 1} x {z,y}
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This definition allows us to derive a directed hypergraph if the original graph
is a digraph.

Dual hypergraphs

The basic idea of the duality tool [12] is to take advantage of the properties of
the best point-to-point networks to construct bus networks.

The dual of an hypergraph H = (V(H),E(H)) is the hypergraph H* (=
(V(H*),E(H*))) where the vertices of H* correspond to the edges of H, and
the edges of H" correspond to the vertices of H. A vertex €] is a member of
an edge V;* in H* if and only if the vertex v; is a member of E; in H.

Consider a graph G = (V, E). If we define a bus as a set of processors in which
any pair of processors could communicate in one logical step, then it is natural
to think to a node v € V' as an hyperedge -of some hypergraph- containing all
the neighbors of v.

We give an example of this technique and detail the two graphs in Figure 5.
We take as an input graph an undirected de Bruijn UB(2,3) and give as an
output its dual hypergraph (see the bipartite representation on the right side
of the figure).

Figure 5 Binary de Brugjn network B(2,3) and its dual hypergraph
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The de Bruijn digraph (resp. graph), denoted by B(d, D) (resp. UB(d, D)), has
N = dP vertices with diameter D and in-degree and out-degree d (resp. degree
2d). The vertices correspond to the words of length D over an alphabet of d
symbols. The arcs (or edges) correspond to the shift operations: Given a word
X = z1---zp on an alphabet A of d letters, where z; € A,i=1,2,---, D, and
given )\ € A, the operation:

> xp---Tp —> To---TpA is called a left shift;

> xy---Tp — Axy---xp_1 is called a right shift.

In the de Bruijn digraph B(d, D), the successors are obtained by left-shift oper-
ations, whereas in the de Brugjn graph UB(d, D), the neighbors are obtained by
either left or right shift operations. An example of a de Bruijn digraph is given
in Figure 5. The corresponding undirected de Bruijn hypergraph is obtained
by transforming arcs to edges (i.e., removing the directions of the arcs). Here
we do not remove the redundant edges (i.e., those with multiple occurrences in
the graph, or those linking the same vertices).

Let us take the UB(2, 3) of Figure 5. If we consider it as an hypergraph of rank
2, then we label each edge of UB(2,3) with the following construction. For
every edge we consider the original arc which is coded on D = 3 digits, then
we add the suffix 0 or 1 of the corresponding left shift. This set of edges gives
the set of 16 vertices of the dual hypergraph UB*(2,3). The (hyper)edges of
UB*(2, 3) are made of the 8 vertices of UB(2, 3) and are represented with boxes
(O) in the bipartite representation of Figure 5. Note that each vertex belongs
to at most 2 (hyper)edges, and that will be the case in any dual construction.
The rank of the output hypergraph depends on the degree of the input graph.
In the case of the de Bruijn, any even r can be chosen.

The feasibility of such network topology with optical technology and the inte-
gration of fundamental optical operations to construct the network has been
investigated by A. Louri and H. Sung [40].

These hypergraphs (and also Kautz hypergraphs) were proposed for virtual
topologies of large optical networks by [37].
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Bus-Mesh networks

Tong et al [51] have proposed a network architecture which combines Time
and Wavelength Division Multiplexing. This network can be represented by a
directed hypergraph.

As the number of different wavelengths required for a large system is often larger
than what is technically available, and as tunable transmitters are capable of
tuning to only a small subset of wavelengths. The idea here is to design a
multihop network.

When a node needs to transmit a message to another node which is not directly
achievable (not tuned to the transmitter’s wavelength), the message is relayed
by intermediate nodes like in store-and-forward networks. If the number of
wavelengths required by the system is still too high, Time Division Multiplexing
can be used combined with each wavelength, by allocation of time slots.
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Figure 6 Bus-Mesh network (fixed wavelength transmitter/receiver)

We will illustrate that technique on the Bus-Mesh network. The network is
based on a passive star. Each node transmits and receives on two fixed different
wavelengths. The time domain is divided into time slots, each slot being large
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enough to contain a packet of data. We assume all the slots have the same size
and are infinitely repeated in a cycle.

Figure 6 shows 12 nodes using 4 wavelengths to communicate. Each node
can transmit on one wavelength and receive on a different one. The time
domain is divided into 3 slots. The table of transmission cycle indicates for
each time slot to, t;, and ts, which node is authorized to transmit on the
corresponding wavelength. The arrow indicates which stations are listening on
that wavelength. The bipartite directed hypergraph representation is given on
the right side of the figure. For the sake of clarity, we have duplicated the
vertices in two sets: transmitters and receivers.

to tl t2
w0 —~ 3, 6, 9|1 —~ 3 6, 9|2 — 3 6 9
wi |3 —» 0, 7, 104 —~ 0 7, 105 — 0 17 10
ws | 6 — 1, 4, 11| 7 — 1, 4, 11| 8 — 1, 4, 11
ws |9 —~ 2, 5 8|10 —~ 2 5 8|11 —~ 2, 5 8

Table 1 Transmission cycle of a 12 nodes, 4 wavelengths Bus-Mesh network

This scheduling of time slots creates a virtual topology. Each packet includes a
destination address. If node 4 wants to send a packet to node 6, it has to send
the packet at time ¢;, and only node 0 will relay the packet at time ¢g.

The model of this network is a directed hypergraph. Indeed we can think of 4
hyperedges (associated to the 4 different wavelengths), each edge being made

of an input set of vertices, and an output set of vertices.

The generalization of de Bruijn and Kautz directed hypergraphs is described
in [9].

4 COLLECTIVE COMMUNICATIONS

We already stated the problem of collective communications in conventional
point-to-point interconnection networks.

Assuming different cost functions of sending a message from an originator node
to a destination node at distance d from the originator, the problem is to min-
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imize the total cost of the protocol (broadcasting or gossiping). This problem
has been extensively studied in the case of parallel computers and interested
readers can refer to [20]. Off-line problems are considered (i.e. the communi-
cations patterns are known in advance).

4.1 Communication models for electronic
networks

Introduction to broadcasting with store-and-forward
switching

We assume that the protocol follows a step by step execution: during one
logical step, every vertex can send and/or receive one elementary packet of
data, according to either model 1 — port or A — port. The logical step ends
when all the transfers are done.

In the following, the hypothesis of store-and-forward switching is used. It is
easy to see that the broadcast time of an arbitrary vertex z of a graph G of
order N under the one-port full duplex constraint (denoted by Fj) satisfies
br, () > [logy, N]. Indeed, the number of vertices informed at time ¢ + 1 is at
most twice the number of vertices informed at time ¢.

Proposition 2 For N > 2, bp, (Kn) = [log, NT.

PrOOF. The vertices of K are numbered from 0 to N — 1, and we take
the vertex 0 as the source of the broadcast. Consider the following broadcast
protocol. At time ¢ > 1, an informed vertex p sends the message to the ver-
tex 2871 +p (if 271 + p < N). It is easy to see, by induction, that at time i
all the vertices from 0 to 2° — 1 are informed. This guarantees broadcasting
in [log, N time units. m|

Broadcasting in specific networks

Unfortunately, there is no general method for computing the minimum broad-
cast time of a graph in this model. Each new graph is a new special case.
Most of the graphs used as models of distributed architecture (meshes, tori,
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hypercubes, butterfly graphs, de Bruijn graphs, cube-connected-cycles graphs,
star-graph, and so on) have been studied and their broadcast times are known,
sometimes up to a constant. The following proposition and its corollary help
in finding an upper bound on broadcast time of any graph.

Proposition 3 In a p-ary tree of depth h, the broadcast time of the root, under
the constraint Fy, is at most p X h.

Corollary 2 Let G be a graph and h an integer. If there is, for each vertex x
of G, a p-ary tree spanning G, with root ¢ and of depth h, then bp,(G) < pxh.

In particular, if we can find, for each vertex in a graph of diameter D, a binary
spanning tree of depth D, then we obtain for this graph an upper bound of 2D
on its broadcast time, that is, twice the lower bound.

A-PORT

Under the A-port constraint (often called shouting and denoted F, when links
are full-duplex) each processor can communicate with all its neighbors at the
same time and so there is no problem in finding a broadcast algorithm for any
graph. When a vertex receives a message, it sends it to all its neighbors. Thus,
for a graph of diameter D we have

br,

*

(G) = D.

General techniques

A lot of work has been done on the problem of broadcasting and gossiping
in point-to-point interconnection networks. However we could point out two
general techniques.

In the case of store-and-forward, the general problem consists in finding the
maximum number of arc-disjoint spanning trees. Then the message is cut in
parts of equal sizes, and each part is “pipelined” on a different spanning tree
[20].

In the case of wormhole, one could use coding theory to find optimal covering
sets of the graph [21]. These sets represent the vertices that get the informa-
tion at every logical step of the algorithm. The minimum number of steps is
[loga; V| when A concurrent communications can occur at each step.
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We will see in the following that the problem is one more time different in the
case of bus networks and WDM routing.

4.2 Collective communications in bus
networks

We limit the study of collective communications in bus networks to the com-
munication models used in the literature.

Three types of buses are considered:

> One-to-one (OTO) bus. This is the electronic model of buses. At any time
two nodes belonging to the same bus could exchange data in one logical
step, as if they were neighbors in a usual graph topology.

Earlier designs of networks used this model (for instance the spanning bus
hypercube or dual bus hypercube described in 2).

> One-to-all (OTA) bus, or CREW (Concurrent Read Exclusive Write). This
is the motivation for bus networks: one node can broadcast its information
to all the other nodes of the bus in one logical step. This has been made
possible by the specificity of optical components that naturally broadcast
optical signals with a large fan-out.

Most of the models under study - such as hypermeshes - belong to that
model.

> All-to-all (ATA) bus, or CRCW (Concurrent Read Concurrent Write). In
this model, we suppose that all the nodes can exchange data concurrently,
thus performing a “gossip” in one step. It is possible when each station
connected to the bus has enough receivers (like it is the case in Lambdanet
[32]), but this could be costly.

Usually, buses are 1-port: a node can communicate with only one bus at the
same time even though the node could be connected to A buses.

The broadcasting problem is straightforward in the 1-port (OTA) model, and
some work has been done on gossiping in meshes by Sotteau and Hillis [33].
Fujita and Yamashita consider the gossiping problem in mesh-bus comput-
ers (similar to squared hypermeshes: n? nodes arranged on n x n array are
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connected by n column-buses and n row-buses. The algorithm completes the
gossiping in |n/2| + [log, n] + 1 steps. A lower bound on the number of steps
for this problem is shown to be |n/2| + [log, n] — 1, thus the protocol takes at
most 2 more steps than an optimal algorithm.

4.3 Collective communications in WDM
switched networks

We assess the gossiping problem in all-optical networks using wavelength di-
vision multiplexing access [17]. The problem considered is to minimize the
number of wavelengths required to perform a given communication pattern
between the nodes of the network using only one step (One hop problem). In-
deed, under the WDM switching assumption several messages can go through a
link until they do not use the same wavelength. Using the graph model, we can
think of permutations with color-disjoint channels. This could be seen as a gen-
eralization of previous models in the way that wormhole in the case of WDM
when the number of wavelengths (colors) equals 1, and store-and-forward in
the case when the path are restricted to edges.

Routing (one-to-one communication instance of the problem) is developed in
chapter 11 and the presentation here is restricted to the off-line problem, in
which communications are known before we decide which wavelength has to be
allocated.

Note also that we do not consider switches that use wavelength converters.
When converters are available, the color of an incoming path on the switch
could be changed to a different one at the output port (i.e. paths are multi-
colored).

In Figure 7 we give the example of five paths which have to be routed in a ring.
On the left side of the figure, it is easy to check that we need 3 colors while
only 2 colors are required on the right side, if we use two colors for path (4,1).
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Color 1 ——
Color2---
Color 3

Without converters with converters

Figure 7 Routing in a ring

Broadcasting and Gossiping in WDM networks

We take the notation of [4] from which the following results are quoted. The
network is modeled as a symmetric digraph.

Definition of the wavelength-routing problem

> A requestis an ordered pair of nodes (z, y) in G (corresponding to a message
to be sent from z to y).

> An instance I is a collection of requests. Note that a given request (z,y)
can appear more than once in an instance.

> A routing R for an instance I in G is a set of dipaths R = {P(z,y)|(z,y) €
I}.

> The conflict graph associated to a routing R is the undirected graph (R, E)
with vertex set R and such that two dipaths of R are adjacent if and only
if they share an arc of G.

In the example depicted in Figure 7, G = C; (ring of rank 5), I = {(i,7 +
2 mod 5),7 = 0.4}, and R is the set of paths represented with arrows in the
figure.

Let G be a digraph and I be an instance. The problem (G, I) asks for a routing
R for the instance I and assigning each request (z,y) € I a wavelength, so that
no two dipaths of R sharing an arc have the same wavelength.
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If we think of wavelengths as colors, the problem (G, I) is to find a routing
R and a vertex coloring of the conflict graph (R, E), such that two adjacent
vertices are colored differently.

We denote by W(G, I, R) the chromatic number of (R, E), and by w(G,I) (or
briefly just W if there is no ambiguity) the smallest W(G, I, R) over all routings
R. Thus w(G, I, R) is the minimum number of wavelengths for a routing R
and w(G, I) the minimum number of wavelengths over all routings for (G, I).

Any routing by undirected paths induces a routing by directed paths, and a
coloring of the undirected paths is also a coloring of the directed paths, as
two edge-disjoint paths will become two arc-disjoint dipaths. Hence W(G,I) <
w(@G, I) for any problem (G, I), and every upper bound on w is an upper bound
on w.

Off-line communication problems

As in the case of store-and-forward and wormhole models, the following special
instances of the routing problem are considered:

> The All-to-All instance, or gossiping instance, denoted Iara: IaTa =
{(z,y) |z € V(G), y e V(G),z # y}.

> The One—to-All instance, or broadcasting instance, denoted Iota: IoTa =
{(zo0,y) |y € V(G),y # xo}, where zg € V(G). A One-to—Many instance,
or multicasting instance is a subset of some instance Iota .

> A k-relation is an instance I in which each node is a source and a destina-
tion of no more than k requests. A 1-relation is also known as a permutation
instance. Note also that the instance I4 is an (N — 1)-relation.

The load parameter of a network

> Given a network G and a routing R for an instance I, the load of an arc
a € A(G) in the routing R, denoted by #(G, I, R, ), is the number of
dipaths of R containing a. The load (also called congestion) of G in the
routing R, denoted by #(G, I, R), is the maximum load of any arc of G in
the routing R, that is, 7(G, I, R) = max,c (@) 7(G, I, R, ).

> The load of G for an instance I, denoted by 7(G,I), or # if there is no
ambiguity, is the minimum load of G in any routing R for I, that is,
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#(G,I) = ming #(G, I, R). For the All-to—All instance Iata, 7(G, IaTa)
(respectively 7(G,IaTa)) is called the arc forwarding indez (resp. edge
forwarding indez, see [33,49]) of G.

The relevance to the problem of this parameter is shown by the following lemma:
Lemma 1 w(G,I) > #(G,I) for any instance I in any network G.

In other words, to solve a given problem (G,I) one has to use a number of
wavelengths at least equal to the maximum number of dipaths having to share
an arc.

In general, minimizing the number of wavelengths is not the same problem
than realizing a routing that minimizes the number of dipaths sharing an arc
(congestion). Indeed, the problem is made much harder due to the further
requirement of wavelengths assignment on the dipaths. In order to get equality
in Lemma 1, one should find a routing R such that 7#(G,I,R) = #(G, I), for
which the associated conflict graph is 7(G, I)-vertex colorable.

Question 4 Does there always exist a routing R such that the two conditions
hold simultaneously: #(G,I, R) = #(G,I) and w(G,I,R) = w(G,I)?

Theorem 5 ([5]) Determining #(G,I) in the general case is NP-complete.

Sketch of proof. First observe that determining #(G, I) is equivalent to
solving the integral multicommodity directed flow problem with constant ca-
pacities. It is shown in [25] that this problem is NP—complete even for two
commodities and all capacities equal to one. a

For some special cases, #(G, I) can be efficiently determined. This is obviously
the case for trees, where routing is always unique. This is also the case of the
One-to—Many instances where the problem can be reduced to a flow problem
(in the graph obtained from G by considering the sender node as the source,
giving a capacity 7 to each arc of G, and joining all the vertices of G to a sink
t with arcs of capacity 1).

The load 7(G, I) can be defined analogously for an undirected graph and it is
proven that #(G,I) < n(G,I) < 27(G,I). For One—to—Many instances I, one
can also show that #(G,I) = n(G, I).
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Question 6 Does the equality @(G, Iata) = [7(G, I1,1n)/2] always hold ¢

Arbitrary network topologies

Arbitrary instances

For a general network G and an arbitrary instance I, the problem of determining
w(@G, I) has been proved to be NP-hard in [23]. In particular, it has been proved
that determining W(G, I) is NP-hard for trees and cycles. In [24] these results
have been extended to binary trees and meshes. NP—completeness results in
the undirected model were known much earlier (actually, well before the advent
of the WDM technology). In particular, in [31] it is proved that the problem of
determining w(G, I) is NP—complete for trees. This result has been extended
in [23] to cycles, while in [24] it has been proved that the problem is efficiently
solvable for bounded degree trees.

In view of this last result and of the NP-hardness of determining w(G, I) for
binary trees, it might seem that the problem of computing W(G, I) is harder
than that of computing w(G,I). This is not true in general. For instance,
the determination of w(G,I) remains NP—complete when G is a star network,
whereas W(G, I) can be efficiently computed. Indeed, in the undirected model
this problem corresponds to an edge-coloring a multigraph [35], each node of
which corresponds to a branch in the star network. In the directed case, the
same problem becomes equivalent to an edge-coloring of a bipartite multigraph,
and the problem is efficiently solvable by Ko6nig’s theorem.

In [1] an upper bound in the undirected model is given, the same holds also in
the directed case:

Theorem 7 (Aggarwal et al. [1]). For any problem (G,I), where G has m
arcs, w(G,I) < 27(G, I)/m.

Let R be a routing for an instance I in a network G. Let L be the maximum
length of its dipaths and A the maximum degree of its conflict graph. It is clear
that A < L#(G, I, R). By a greedy coloring we know that (A + 1) wavelengths
are sufficient to solve the problem (G,I). Thus w = O(L#) and similarly
w = O(Lw). A set of critical undirected problems which reach asymptotically
this upper bound (and that of Theorem 7) has been given in mesh-like networks
(see [1]). By adapting their examples (orienting alternately the vertical links



384 CHAPTER 12

up and down), the same result is obtained for the general case (not symmetric)
digraphs:

Theorem 8 For every w and L, there exists a directed graph G and an instance
I such that 7(G,I) = 7, L = max(, ,)cr 0(%,y) and W(G,I) = Q(rL).

Question 9 Does Theorem 8 hold for symmetric digraphs?

Specific instances

The following theorem gives the exact value of W(G, IoTa) for a worst case
instance IoTa in various classes of important networks, namely the mazimally
arc connected digraphs, including the wide class of vertex transitive digraphs.
A digraph G is maximally arc connected if its minimum degree is equal to its
arc connectivity.

Theorem 10 (Bermond et al. [13]). For a worst case One-to-All instance
Iota in a mazimally arc connected digraph G of minimum degree d(G),

N -1
w(G, Iota) = 7(G, IoTa) = [ -‘

d(G)

In addition, an efficient network flow based algorithm is given to solve the
problem (G, I) with W(G,I) wavelengths, for any One—to—Many instance I in
any network G.

Theorem 11 (Beauguier et al. [5]). W(G,I) = (G, I), for any One-to—Many
instance I in any digraph G.

Many other instances are relevant of interest, however a lot of practical com-
munication problems have to deal with the on-line hypothesis, and efficient
algorithms have to be designed. The techniques used are different and are not
presented in this chapter.



Models for Optically Interconnected Networks 385

5 INTRODUCING OPTICAL
COMMUNICATIONS IN GENERAL
MODELS OF PARALLELISM

In this section, we review the different models of parallelism involved by using
optical technologies. These models are mainly derived from the PRAM model.
In the following, we recall what is the PRAM model and its optical extensions,
namely the OCPC model in Section 5.2 and the OPS model in Section 5.3.

5.1 The Parallel Random Access Machine

The PRAM model (Parallel Random Access Machine) was one of the first
model for designing parallel algorithms. It presents the parallel extension of the
sequential RAM model [2] in order to design parallel algorithms. The PRAM
model consists of P processors and M memory modules. In a unit time step,
all the processors can access the data in one of the memory modules (Read
operation), perform a simple computation on their local registers, and store
the result in one of the memory module (Write operation). Problems arise
when several processors want to access the same memory location. In 1982,
Snir proposed a classification of the PRAM models in terms of the possibility
of multiple reads and writes [48], namely, Ezculsive, when only one processor
can access to a Read or Write ressource at the same time, and Concurrent in
the other case. In case of concurrent multiple write, the result has to be clearly
specified [27]. Let note, for example, the COLLISION rule, where a special
character is put in a memory cell after a write conflict.

The PRAM model is indeed a theoretical model for a parallel machine. How-
ever, it does not take into account the physical network the parallel machine
uses to communicate. Several extensions such as the XRAM model solve par-
tially the problem [19].

5.2 The Optically Connected Parallel
Computer
In 1988, Anderson and Miller proposed another way of resolving the Write

conflicts, based on optical assumptions. The general model is as follows. The
Local Memory PRAM (3] consists of a collection of processors and a col-
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lection of memory modules. Each processor and each memory module has one
optical receptor and one optical transmitter. Each transmitter can be focused
on a receptor in one unit time. Two light beams do not interfere unless they
are focused on the same receptor.

Based on these assumptions, Valiant proposed the seclusive-PRAM [52] (S*-
PRAM). This model is now called the completely connected Optical Com-
munication Parallel Computer. Using this model, it is very easy to im-
plement an acknowledgment process. All the processors that have received a
message without error can send back an acknowledgment message to the origi-
nator. This latter message will reach its destination without any conflict since
processors send messages to a single destination. Thus, in a unit time, it can be
assumed that all the processors know whether they have succeeded in accessing
a memory module. The acknowledgment can also include the data that the
processor was asking for.

The power of this model has been widely discussed [3,26,28-30,52] and we will
review in the following some of the principal results of this model.

Relations with the PRAM models

The first problem when defining a new model is to compare it to the others
and to know where it stands in the model hierarchy. In this extent, MacKenzie
and Ramachandran [43] show that the OCPC is equivalent to the Exclusive
Read, Concurrent Write PRAM model, whenever the contention resolutions
are solved in the same way. This latter model has not been considered by Snir
in his classification [48], since the Read operation in a memory cell is usually
less constrained than the Write operations.

Valiant [52] described a simulation of an EREW PRAM on an OCPC. He gave
a constant delay simulation of BSP (Bulk Synchronous Parallel) computer on
the OCPC, connected to a randomized simulation of a n logn processor EREW
PRAM on a an n processor BSP. A direct simulation was given by Geréb-Grauss
and Tsantilas [26] with delay O(lognloglogn). Different works have provided
such a simulation in expected delay ©(loglogn), but they require nSM) storage
at each processor [42,44]. Goldberg, Matias and Rao found a randomized
simulation of an nloglogn processor EREW PRAM on an n processor OCPC
in O(loglogn) expected delay [30].
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The h-relation problem

In the h-relation problem, each processor has at most h messages to send and
h messages to receive. A 1l-relation is indeed a (partial) permutation, and can
be easily realized in one step on the OCPC model. When the communication
pattern is known a priori, the h relation can be decomposed into h partial
permutation and thus can be performed within A steps.

When studying the on-line problem, and probabilistic algorithms have to be
used in order to derive good bounds. In [29], Goldberg, Jerrum and MacKen-
zie show that the expected number of communication steps required to route
an arbitrary h relation is Q(h + 1/loglogn) on a n-processor OCPC. In [28],
Goldberg et al. solved this problem in time O(h + loglogn).

5.3 The Optical Passive Star

As shown previously, the OCPC model does not take into account all the capa-
bilities of the optical devices. Especially, this model is always a point-to-point
model, i.e., in a single step, a processor can send a message to only one receiver.
Using Optical Passive Stars, this constraint can be eliminated by defining the
OPS model [14]. Some variations on this model have been given, e.g., see [15].

Each processor in a OPS-based network consists of a receiver, a transmitter,
and a processing element with a memory unit. The transmitters and receivers
may tune to any one of a range of wavelengths. All the receivers and transmit-
ters are connected to an optical coupler, which is an all-to-all communication
device with broadcast capability. Thus broadcast becomes an elementary op-
eration, whereas in the point-to-point models such as the OCPC, this is an
elaborated operation. If several messages are transmitted simultaneously on
the same wavelength, then detectable “noise” is received. The abstract OPS
model comprises a finite number of processors and a finite number of wave-
lengths.

Readers are referred again to [45] for a comprehensive survey on the implemen-
tation of such a model. In the remainder of the section, we briefly present some
results on this model. Details can be found in [14].

In the following, we consider the OPS as a variant of the PRAM model with a
global memory of linear size. A OPS is said to be balanced if it has as many
available wavelengths as processors. Scaling problems towards realistic models
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is the point of Section 5.3, since we have seen in the previous sections that the
number of wavelengths is the critical resource of such a system.

The OPS in the PRAM hierarchy

This new abstraction of a PRAM, dealing with new means of communication
can be compared to usual models of CRCW PRAM. More precisely, it can be
stated the equivalence with the COLLISION CRCW PRAM. This shows that
the OPS is completely different from the OCPC model.

Theorem 12 ([14]) For integers n and m with 1 < m < n, the n processor
OPS with m wavelengths and the n processor COLLISION PRAM with m global
memory cells are equivalent, i.e., each machine can simulate the other one in
a step-by-step fashion with a constant slowdown. In particular, the balanced n
processor OPS an the balanced n processor COLLISION PRAM are equivalent.

Self simulation of the OPS model

The self-simulation of a parallel model is directly related to the efficiency and
ease of algorithm design: it is desirable that the algorithm designer may as-
sume that as many processors as required by his algorithm are simultaneously
available for his program. Once the algorithm designed for kn processors is
executed on a given machine with only n processors, a simulation of the kn
processor program should be done by the actual n processors. Moreover, con-
sidering the OPS model, the set of wavelengths should also be reduced, since
the wavelengths are considered as a scarce resource. Similarly, the communi-
cation carried out by the larger virtual machine has to be scaled down to the
smaller real machine.

The self-simulation is a step-by-step simulation, so that each (physical) proces-
sor simulates the operations of k fixed simulated (virtual) processors. Thus the
simulation of the tuning and computation phases of each step can be trivially
done in k steps of the simulating machine. The main problem that is addressed
in the following is to simulate the communication steps.

The main results in [14] show that the OPS does exhibit scalability properties,
i.e., a balanced kn processor OPS can be simulated by a balanced n processor
OPS in a step-by-step manner with a slowdown of O(k + log*n) with high
probability. The algorithm consists essentially of a randomized solution to a
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distributed load balancing problem, added to a deterministic self-simulation
algorithm that takes O(k?) steps in the worst case. From this randomized solu-
tion, we can derive a deterministic off-line algorithm which is able to complete
the self-simulation problem in O(k) steps.

Note that these solutions use some redirection of the messages in order to
balance the requests. If we consider only direct self-simulation, i.e., a mes-
sage must reach its final destination with no intermediate stop-overs, then the
slowdown is more important, even in the off-line case. In this particular case,
Q(min{k?, k + logn/loglogn}) is a lower bound, even in the off-line case, or
when the number of wavelengths in unbounded. A simple algorithm with slow-
down O(k3) can be established by scheduling all the possible combinations
independently.

6 CONCLUSION

Since the speed of parallel algorithms is mainly constrained by interprocessor
communications, models for communications must be established first in order
to provide abstract models of computation for parallel architectures. These
models are dictated by the underlying network topology and a great deal of
work has been undertaken in this area, motivated by the existence of parallel
computers.

Three aspects of interconnection networks models have been introduced in this
chapter: topologies, communications and computations. Our goal was to state
what changes in optical communication systems with respect to electronical
ones, and we were able to provide some answers.

Concerning topologies, a hypergraph model was introduced, that gives a better
representation of the network than the usual graph model. The communica-
tion models presented rely on the use of the wavelength division multiplexing
switching technique. The important parameter in all the communication prob-
lems under study is the number of different wavelengths required to perform
the communication. It is also the case for the computational models derived
from these communication models.
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