
The SLOOP project�

Simulations� Parallel Object�Oriented Languages�

Interconnection Networks

Fran�coise Baude� Fabrice Belloncle� Jean�Claude Bermond� Denis Caromel�

Olivier Dalle� Eric Darrot� Olivier Delmas� Nathalie Furmento� Bruno Gaujal� Philippe Mussi�

St�ephane Perennes� Yves Roudier� G�unther Siegel� Michel Syska

I�S�CNRS � Univ	 de Nice Sophia Antipolis � INRIA

Rte des Colles� B	P	 
���


��
� Sophia Antipolis Cedex� France

fFirst	Last�Nameg�inria	fr

� Introduction
We give an overview of the SLOOP project� A syn�

thetic view of its organization� and each component
are presented� This presentation however� primarily
focuses on the parallel object�oriented language and
simulation aspects�

� The SLOOP project
Our group �INRIA�I�S�CNRS�Univ� of Nice

Sophia Antipolis	 works in three main areas


�� parallel and distributed discrete event simula�
tions�

�� parallel object�oriented languages�

�� interconnection networks�

These three di
erent research goals articulate one
with another in the construction of the Sloop system

each level uses the primitives and possibilities of the
layer just underneath� Figure � summarizes the system
structure and topics�

The bottom layer deals with
 communication algo�
rithms� mapping strategies �both static and dynamic	�
and overlapping communication�computations�

These primitives are used to de�ne and program
the middle layer� a parallel object�oriented language
�C����� an extension of C��	� which in turn o
ers

reusability� �exibility� and extensibility in concurrent
programming� We achieve these features with poly�
morphism between objects and processes
 a variable
statically de�ned with an object type �not a process	
can dynamically reference a process�

Finally� the third level de�nes in C���� a library
of classes to program the model to simulate� which
provides a distributed execution of the simulation�

Altogether� SLOOP is not a self�contained project
since we are using external components in order to
program each level� At the bottom� the interconnec�
tion network layer uses communicationprimitives such
as pvm ����� and hardware speci�c primitives for e��
ciency �shared memory� etc�	� The simulations envi�
ronment layer requires a statistics library in order to
analyze results� persistence of data� Finally� the par�
allel object�oriented language level would bene�t from
replication for e�ciency and possibly for resilience�
atomicity� and transactions�

Our system uses such primitives� components� or
libraries for its implementation� but in order to be as
�exible as possible� we try to give the �nal user some
control over the building blocks� and algorithms being
used � in order to map the system on a speci�c archi�
tecture for instance� This trend is sometimes referred
to under the name open implementation �����

� Parallel and Distributed Discrete
Event Simulation

The simulation layer o
ers a set of simulation and
modeling C�� classes �simulation classes are those
dealing with the simulation phase whereas modeling
classes are those used to build the model	� To mask
the simulation paradigm to the �nal user of the sim�
ulator� a programmer can de�ne a set of classes for a
speci�c �eld of application� These classes� gathered in
libraries� allow to build a model at a higher description
level than the one corresponding to the simulation par�
adigm� eg� by manipulating cashiers instead of fifo



servers in a supermarket simulation� This possibility
to de�ne high level libraries is crucial if we want the
simulator to be usable by engineers of the simulation
domain� In fact� the simulation paradigm itself is con�
tained in the description and code of the simulation
classes� and hence hidden� At the end� the model is
built by describing a main class made of instances of
user�de�ned and system classes�

Mapping

Communications

Load Balancing

Parallelization

ReusabilityDistribution

Distributed

C++//

Replicated
Generic 

Environment

for Discrete

Event

Simulations

Simulations

Parallel 

Parallel 

Oriented

Object-

Languages

Connection
Inter-

Networks

Eiffel//

Primitives and

Communication

Protocols

Figure �
 The SLOOP project

In other simulation systems� the user describes a
simulation model as being a set of servers which ��	
execute some kind of service on the customers they re�
ceive� and then� ��	 forward the customers to another
server� Active entities in the model are the servers�
they decide what to do with the customer they are
processing� The path of customers inside the model
can be obtained only by analyzing all server descrip�
tions to retrieve information about customer transit�
this structuring can be named the server architecture�

In our system� we decided to revert the control of
execution from the server to the customer
 the cus�
tomers are active entities in the model� they decide
themselves their path of transit in the set of servers�
In a more object�oriented fashion� the user programs
the customer with a behavior method that is activated
for each instantiation of a customer of that type� we
call this structuring a customer architecture by oppo�
sition to the usual server�oriented architecture�

For instance� in a supermarket simulation� the ob�

jects entrance� shelving�� ���� shelvingN� exit being
servers� the behavior method of a customer �a super�
market client in that case	 will be de�ned as


class Client� public Customer�

���

public�

Void behavior ����� �

entrance��enter �����	

shelving
��serve �����

���

shelvingN��serve �����	

exit��exiting �����	

�

���

We believe this inversion to allow for more reusability�
For instance� the servers do not have the path fol�
lowed by the customers embedded within their code�
making both customers and servers classes more self�
contained� and thus more reusable� Another im�
portant issue in simulation being statistics collection
�server� end�to�end� and client statistics	� the cus�
tomer architecture provides the user a frame where
client measurement can be placed
 the client itself�
With the server architecture� these measure points
have to be placed into the code of service methods of
server objects� which is again incompatible with self�
contained clients and servers�

Regarding the parallel and distributed execution�
both Time�Warp and Chandy�Misra time manage�
ment methods can be used� Parallelism is imple�
mented in a transparent manner for the simulation
programmers
 their simulation classes do not have to
take it into account at the modeling stage� The choice
of sequential or parallel execution is only made at a ��
nal stage� thanks to some prede�ned classes which per�
mit to obtain parallel execution when inheriting from
them� These prede�ned classes and parallel behav�
ior are programmed using the parallel object�oriented
language described in the next section�

� Parallel Object�Oriented Language
We de�ned an extension of C�� called C�����

this work extends the work done with the design of
Ei
el�� ����� While Ei
el�� o
ers a speci�c model of
parallel programming� we de�ned with C���� a �rst
layer which is a set of language primitives� indepen�
dent of any parallel paradigm� and which permits us
to build libraries of nearly all concurrent programming
models� Indeed� such language primitives are a Meta�
Object Protocol �mop	�

There are various mops� with various goals� com�
pile and run�time costs� and various levels of expres�



siveness� Within our context� we propose a re�ection
mechanism which uses rei�cation� Rei�cation is sim�
ply the action of transforming a call issued to an ob�
ject into an object itself� we say that the call is �rei�
�ed�� From this transformation the call can be manip�
ulated as a �rst class entity
 stored in a data structure�
passed as parameter� sent to another process� etc�

A mop mechanism for C�� being de�ned� various
libraries of concurrent programmingmodels can be de�
signed and implemented� In the remainder of this sec�
tion� we do not detail the mop� but we just give an
overwiew of the parallel library we use for most of our
applications� and especially for programming the sim�
ulation classes and their parallel execution�

Processes

This library implements a MIMD model� with se�
quential processes� asynchronous communications�
wait�by�necessity ���� �implicit futures	� and without
shared objects� It is based on the introduction of a
Process class�

All objects which are an instance of a class which
publicly inherits from the Process class are processes
�active object � process	� Passive objects �ie� objects
which are not active	 belong at run�time to a process
object� thus giving a distributed structure of active
objects encapsulating passive objects�
Syntax�

class Parallel�A � public A
 Process�

���

Parallel�A� p	

p � New Parallel�A � ��� �	

Communication

A communication between active objects is simply
programmed as an asynchronous member function
call�

The function calls between processes are implicitly
�by default	 asynchronous� thus allowing and encour�
aging parallel execution of objects �although a syn�
chronous method call is also supplied but must be
stated explicitly in the function call itself or in the
process de�nition	� Function calls between passive ob�
jects are implicitly �by default	 synchronous as hap�
pens in standard sequential C���
Syntax�

p �� f � parameters �	

Synchronization

A simple rule permits to deal with asynchronous func�
tion calls
 wait�by�necessity� This mechanism is an
implicit �user transparent	 future mechanism�

When starting an asynchronous function call� the
caller does not wait for the return value until it is ex�
plicitly used for some computation� Should the value
not have been returned at this point� a wait is auto�
matically triggered until a value has been returned�
This mechanism implicitly adds synchronization be�
tween processes� Two primitives �Wait and Awaited	
provide for explicit synchronization�
Syntax�

v � p �� f � parameters �	

���

v�foo	 ��Triggers a wait if awaited

if � Awaited �v� � � ��Test the status

Wait �v�	 ��Triggers a wait if awaited

Sharing

The semantics of communication between processes
is a copy semantics for passive objects
 all parame�
ters are automatically transmitted by copy from one
process to another� Of course� active objects are sub�
ject to a reference semantics
 all processes are trans�
mitted by reference from one process to another� As a
consequence� shared objects �ie� passive objects which
are shared between active objects	 are not allowed as
such� The implicationof this is that any passive object
which is to be shared between several active objects
must be made an instance of a process heir� This is
simply achieved by inheriting from the process class�
which also provides an automatic fifo synchroniza�
tion�

All the features of this library are programmed on
top of the mop we de�ned for C��� without any com�
piler modi�cation�

� Interconnection Networks
The interconnection network layer is in charge of

the actual transmission of messages �objects in fact�
due to the rei�cation mechanism	 from one process to
another� or one machine to another machine on the
network�

We are currently merely using the PVM system�
However� the intended goal is to de�ne more sophis�
ticated communication policies in order to take ad�
vantage of hardware capabilities� For instance� we
are working on the de�nition and implementation of
communication algorithms adapted to various net�
work topologies and hardware� automatic or semi�
automatic mapping and load balancing strategies� and
overlapping of communication�computations�

The mop mechanism makes it possible to incorpo�
rate such optimisations within the libraries in a trans�
parent manner for the �nal user�



� Conclusion
The SLOOP project o
ers at the top a generic en�

vironment for distributed discrete event simulation�
However� the two other parts of this three�layer sys�
tem are also available as stand alone tools
 the parallel
object�oriented language C����� and� in the future�
a library of communication routines and mapping�

References
��� I� Attali� D� Caromel� and M� Oudshoorn� A for�

mal de�nition of the dynamic semantics of the Eif�
fel language� In Sixteenth Australian Computer Sci�
ence Conference �ACSC����� pages ��	
���� Febru�
ary �		��

��� I� Attali� D� Caromel� and A� Wendelborn� A formal
semantics and an interactive environments for sisal� In
Amr Zaky� editor� Tools and Environments for Par�
allel and Distributed Systems� Kluwer Academy Pub�
lishers� �		
� pp ��������

��� F� Baude� N� Furmento� and D� Lafaye de Micheaux�
Managing true parallelism in ada through pvm� In
First European PVM Users� Group Meeting� Rome�
�		��

��� J��C� Bermond and P� Fraigniaud� Broadcasting and
gossiping in de Bruijn networks� SIAM Journal on
Computing� ���������
���� �		��

��� J�C� Bermond� P� Fraigniaud� and J� Peters� Ante�
penultimate broadcasting� Networks� �
�������
����
�		��

�
� J�C� Bermond� L� Gargano� S� Perennes� A� Rescigno�
and U� Vaccaro� E�cient collective communications
in optical networks� Technical Report 	��
�� I�S�
�		
� to appear ICALP	
�

��� J�C� Bermond� L� Gargano� A� Rescigno� and U� Vac�
caro� Fast gossiping by short messages� In Proc	

nd
ICALP��� Szeged� Hungary� volume 	��� pages ���

��
� Lecture Notes in Computer Science� Springer
Verlag� �		��

��� J��C� Bermond� P� Hell� A� L� Liestman� and J� G� Pe�
ters� Broadcasting in bounded degree graphs� SIAM
Journal on Discrete Mathematics� �������
��� �		��

�	� J�C� Bermond and S� Perennes� E�cient broadcasting
protocols on de bruijn and similar networks� In Proc	
Conference SIROCCO�� Olympie June ��� Carleton
U� Press� �		��

���� J�C� Bermond� P� Michallon� and T� Trystram� Broad�
casting in wraparound meshes with parallel monodi�
rectional links� Parallel Computing� ���
�	

��� �		��

���� D� Caromel� Service� asynchrony and wait�by�
necessity� Journal of Object�Oriented Programming�
�������
��� November �	�	�

���� D� Caromel� Concurrency and reusability� From se�
quential to parallel� Journal of Object�Oriented Pro�
gramming� �������
��� September �		��

���� D� Caromel� Programming abstractions for concur�
rent programming� In Technology of Object�Oriented
Languages and Systems �TOOLS Paci
c����� pages
���
���� November �		��

���� D� Caromel� Towards a method of object�oriented
concurrent programming� Communications of the
ACM� �
�	��	�
���� September �		��

���� D� Caromel� Abstract control types for concur�
rency� position statement for the panel � How could
object�oriented concepts and parallelism cohabit � � In
IEEE ICCL���� International Conference on Com�
puter Languages� pages ���
���� August �		��

��
� D� Caromel� F� Belloncle� and Y� Roudier� The c����
system� In G� Wilson and P� Lu� editors� Parallel
Programing Using C��� MIT Press� �		
�

���� C�Gavoille and S�perennes� Memory requirement for
routing in distributed networks� Technical Report 	��
��� I�S� �		�� to appear PODC	
 �best student awrd
paper��

���� P� Ferrante� P� Mussi� G� Siegel� and L� Mallet� Ob�
ject oriented simulation� Highlights on the PROSIT
parallel discrete event simulator� In Western Simu�
lation Conference ����� Tempe �AZ�� SCS� January
�		��

��	� B� Gaujal� A�G� Greenberg� and D�M� Nicol� A sweep
algorithm for massively parallel simulation of circuit�
switched networks� Journal of Parallel and Distrib�
uted Computing� �		��

���� G� Kiczales� Why are black boxes so hard to reuse�
Towards a new model of abstraction in the engineer�
ing of software� In OOPSLA���� Invited talk� �		��

���� L� Mallet and P� Mussi� Object oriented parallel dis�
crete event simulation� The PROSIT approach� In
Modelling and Simulation FSM ��� june ���� LYON�
SCS� June �		��

���� Philippe Mussi and Hery Rakotoarisoa� Parseval �
A workbench for queueing networks parallel simula�
tion� In Modelling and Simulation FSM ��� Society
for Computer Simulation� �		��

���� J� G� Peters and M� Syska� Circuit�switched broad�
casting in torus networks� Technical Report CMPT
TR 	����� Simon Fraser University� �		�� to appear in
IEEE Transactions on Parallel and Distributed Sys�
tems�

���� J� De Rumeur� R�eseaux d�interconnection� Masson�
dec �		�� to be translated�

���� V� Sunderam� PVM� A Framework for Parallel Dis�
tributed Computing� Concurrency� Practice and Ex�
perience� ����� December �		��


