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Chapter 1

Introduction

The study of human bioelectricity was initiated with the discovery of electrocar-
diography at the turn of the twentieth century, followed by electroencephalography
(EEG) in the 1920’s, magnetocardiography in the 1960’s, and magnetoencephalog-
raphy (MEG) in the 1970’s. Biomagnetic and bioelectric fields have the same bio-
logical origin: the displacement of charges within active cells called neurons [13].

Nowadays, EEG is relatively inexpensive and used commonly to detect and
qualify neural activities (epilepsy detection and characterisation, neural disorder
qualification, Brain Computer Interfaces, . . . ). MEG is, comparatively, much more
expensive as SQUIDS work in very challenging conditions (at liquid helium tem-
perature) and as a specially shielded room must be used to separate the signal of
interest from the ambient noise. However, as it reveals a complementary vision to
that of EEG and as it is less sensitive to the head structure, it also bears great
hopes and more and more MEG machines are installed throughout the world.

There are several scales at which bioelectricity can be described and measured:
the microscopic scale, with microelectrodes placed inside or in a very close vicinity
to neurons, and the mesoscopic scale, with intracortical recording of local field
potentials (i.e. the electric potential within the cortex), below a square millimeter.
Non-invasive measurements of the electric potential via EEG or the magnetic field
via MEG are taken on the scalp, and the spatial extent of brain activity to which
these measurements can be related has not yet been elucidated, but lies between a
square millimeter and a square centimeter. Given the size of the head, and the time
scale of interest - the millisecond - the quasistatic approximation can be applied to
the Maxwell equations [10]. The electromagnetic field is thus related to the electric
sources by two linear equations: the Poisson equation for the electric potential, and
the Biot-Savart equation for the magnetic field.

MEG and EEG can be measured simultaneously and reveal complementary
properties of the electrical fields. The two techniques have temporal resolutions
of about the millisecond, which is the typical granularity of the measurable elec-
trical phenomenons that arise in the brain. This high temporal resolution is what
makes MEG and EEG attractive for the functional study of the brain. The spatial
resolution, on the contrary, is somewhat poor as only a few hundreds of simulta-
neous data points can be acquired simultaneously (about 300-400 for MEG and up
to 256 for EEG). MEG and EEG are somewhat complementary with fMRI and
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6 CHAPTER 1. INTRODUCTION

SPECT in that those provide a very good spatial resolution but a rather poor tem-
poral one (about the second for fMRI and the minute for SPECT). Contrarily to
fMRI, which “only” measures an haemodynamic response linked to the metabolic
demand, MEG and EEG also measure a direct consequence of the electrical activity
of the brain: it is admitted that the MEG and EEG measured signals correspond
to the variations of the post-synaptic potentials of the pyramidal cells in the cortex.
Pyramidal neurons compose approximately 80% of the neurons of the cortex, and
it requires at least about 50,000 active such neurons to generate some measurable
signal.

Reconstructing the cortical sources from the electromagnetic field measured on
EEG and MEG sensors requires that the inverse problem of MEG and EEG (denoted
collectively as MEEG for short) be solved. It is a difficult problem because it is ill-
posed, and this has led to a large body of literature, concerning both theoretical [3, 5]
and computational aspects [2, 6, 8].

There are two main domains of application for EEG and MEG: clinical applica-
tions and the study of cognition.

Clinical research in neurophysiology aims at understanding the mechanisms lead-
ing to disorders of the brain and the central nervous system, in order to improve
diagnosis and eventually propose new therapies. The clinical domains in which
EEG and MEG are most routinely used include epilepsy, schizophrenia, depression,
attention deficit disorders. Clinicians are especially interested in the time courses of
the measured signals: their experience in the visual analysis of superimposed sen-
sor time courses allows them to detect abnormal patterns. The source localization
performed by clinicians is generally limited to simple dipole scanning methods.

EEG and MEG rely on passive measurements, with no applied electromagnetic
field. In contrast, active techniques using bioelectric stimulation, are currently
being developed and tested on patients, to treat disorders such as Parkinson’s dis-
ease, chronic pain, dystonia and depression. Implanted intracortical or extradural
electrodes can deliver a electrical stimulation to specific brain areas (Deep Brain
Stimulation or DBS). Less invasive, Transcranial Magnetic Stimulation (TMS), uses
a time-varying magnetic field to induce a current within the cortex. All of these
techniques can be studied with the same equations, models, and numerical tools as
the ones used for MEEG. Moreover, in order to understand the physiological mech-
anisms triggered by these stimulations, simultaneous TMS/EEG and DBS/MEEG
can be performed and analyzed [16].

In cognitive neuroscience, much of our knowledge of the brain has been acquired
from intracortical recordings in cat and monkey brains, as well as peroperative
recordings on human brains. Although the advent of functional Magnetic Resonance
Imaging (fMRI) in the 1980’s has opened a unique perspective on the localization of
human brain cognitive function, timing issues remain difficult to resolve. Because of
their high time resolution, EEG and MEG are very useful for analyzing oscillatory
activity, and the timings of activations between different brain regions. And because
of its strictly non-invasive nature, MEEG is also well-suited to the study of the
development of human brain function, from infancy to adulthood.

This class material is divided in two parts: the first on models for MEG and
EEG, which goes into details in explaining geometrical, physiological and numerical
models used in this field. The second part deals with the analysis of functional
imaging data, coming from fMRI or from MEG/EEG.
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Chapter 2

Electromagnetic propagation

Neuronal currents generate magnetic and electric fields according to principles
stated in Maxwell’s equations. The neural current distribution can be described
as the primary current, and viewed as the “battery” in a resistive circuit. The
postsynaptic currents in the cortical pyramidal cells are the main primary currents
which give rise to measurable MEEG signals.

2.1 Maxwell equations

2.1.1 Current density

The current density J represents the current crossing a unit surface normal to J.
Its unit is A ·m−2. The total intensity crossing an oriented surface S is

I =

∫

S

J · n ds .

The electric charge conservation principle attributes the variation of charge inside a
closed surface exclusively to exchanges with the outside medium. Let ρ denote the
volumic charge density. For a closed surface, the orientation convention is for the
normal vector to point outward. The charge conservation principle implies that, if
Ω is a volume with boundary ∂Ω,

d

dt

∫

Ω

ρ dr = −
∫

∂Ω

J · n ds (2.1)

For a fixed volume Ω,

d

dt

∫

Ω

ρ dr =

∫

Ω

∂ρ

∂t
dr (2.2)

The Green identity implies that

∫

∂Ω

J · n ds =

∫

Ω

∇ · J dr (2.3)

9



10 CHAPTER 2. ELECTROMAGNETIC PROPAGATION

and replacing (2.2) and (2.3) in (2.1),
∫

Ω

∂ρ

∂t
dr = −

∫

Ω

∇ · J dr

As this is true for any fixed volume Ω, we obtain the local charge conservation
equation:

∇ · J = −∂ρ
∂t

(2.4)

2.1.2 Maxwell-Gauss equation

The electric field generated at a position M by a single charge qi at position Pi is
equal to

1

4πε0
qi

−−→
PiM

‖PiM‖3

where ε0 is the electrical permitivity of the vacuum. The flow of the electric field
across a surface S is defined by ψ =

∫

S
E · n ds. The electric flow on S due to a

charge q positioned at P (coordinate p) is hence equal to

ψ =
q

4πε0

∫

S

r − p

‖r − p‖3
· n ds =

q

4πε0
Ω

where Ω is the solid angle spanning S from position P .
For a closed surface S, Ω = 0 if P is outside S, and Ω = 4π if P is inside S.

The electric flow generated on a surface S by a set of charges qi is, by summation,
equal to

ψ =
1

4πε0

∑

qi Ωi

where Ωi is equal to 0 (resp. 4π) if the corresponding charge is outside (resp. inside)
S. This result leads to the Gauss theorem:

∫

∂Ω

E · n ds =
Qint

ε0
=

∫

Ω

ρ

ε0
dr

where ρ is the (volumic) charge density. Using the Green identity, the above relation
becomes

∫

Ω

∇ · E dr =

∫

Ω

ρ

ε0
dr ,

which provides, in its local version, the Maxwell-Gauss equation:

∇ · E =
ρ

ε0
. (2.5)

2.1.3 Maxwell-Ampere equation

Ampere’s law is first established for a time-invariant setting. Given a closed loop
enclosing an open surface S, the magnetic field integrated along ∂S is proportional
to the current I crossing S:

∫

∂S

B · −→dl = µ0I .
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The coefficient µ0 is the magnetic susceptibility of the vacuum (ε0 and µ0 statisfy
the relation ε0µ0c

2 = 1). Using Green’s (Stokes) theorem and introducing the
current density J, the above relation becomes

∫

S

∇× B · n ds = µ0

∫

S

J · n ds

As this must hold for any open surface S, this implies the local relationship:

∇× B = µ0J . (2.6)

As a consequence, the current density must be divergence-free:

∇ · J = 0 .

We have seen in 2.1.1 that the charge conservation principle implies

∇ · J = −∂ρ
∂t

.

Using the Maxwell-Gauss equation (2.5),

∇ · J = −∇ · ε0
∂E

∂t

In the time-variant case, the quantity which is divergence-free is no longer the
current density, but

J + ε0
∂E

∂t
.

Ampere’s law (2.6) must be adapted to account for the additional term ε0
∂E
∂t

, some-
times called “displacement current”. This leads to the Maxwell-Ampere equation:

∇× B = µ0

(

J + ε0
∂E

∂t

)

(2.7)

2.1.4 Maxwell-Faraday equation

The Maxwell-Faraday equation is a structural relationship between the electric and
magnetic fields. Consider the electric force

e(t) =

∫

∂S

E · −→dl

induced by a magnetic field B on a lineic circuit enclosing an open surface S. The
law of induction states that

e(t) = −dφ
dt

where

φ(t) =

∫

S

B · n ds.

The Green (Stokes) theorem provides the local form of the induction theorem, called
the Maxwell-Faraday equation:

∇× E = −∂B
∂t

(2.8)
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2.1.5 Maxwell-Gauss equation for magnetism

The last Maxwell equation is a conservation equation for the magnetic field, which
basically states the absence of magnetic monopoles. In its local form, it is writeen
as:

∇ · B = 0 . (2.9)

The integral form of this equation being:

∫

∂Ω

B · n ds = 0 .

2.1.6 Summary

The local and integral forms of the Maxwell equations are summarized in table:

Name Differential form Integral form

Gauss’s law ∇ · E = ρ
ε0

∫

∂Ω
E · n ds =

∫

Ω
ρ
ε0
dr

Gauss’s law for magnetism ∇ · B = 0
∫

∂Ω
B · n ds = 0

Faraday’s law ∇× E = −∂B
∂t

∫

∂S
E · −→dl = −

∫

S
∂B
∂t
ds

Ampère’s circuital law ∇× B = µ0

(

J + ε0
∂E
∂t

) ∫

∂S
B · −→dl = µ0

∫

S

(

J + ε0
∂E
∂t

)

· n ds

2.2 Quasistatic approximation

The Maxwell equations were presented above in a general, time-varying, setting.
For EEG and MEG modeling, the spatial scale, the frequencies, and the medium
properties make it possible to neglect the inductive, capacitive and displacement
effects, and to effectively omit the time-derivatives in (2.7) and (2.8). Omitting
the time-derivatives in (2.7) is called quasi-stationariry while omitting the time-
derivatives in both (2.7) and (2.8) is called the quasistatic regime. This considerably
simplifies the resulting system, because the magnetic and electric fields become
uncoupled, and can be solved separately.

Let us briefly justify the quasistatic assumption. We note that, in a magnetic
medium free of charges or current generators, the volumic current density J is the
sum of an volumic ohmic current and a polarization current:

J = σE +
∂P

∂t
(2.10)

where P = (ǫ − ǫ0)E is the polarization vector, ǫ the permittivity of the medium,
and σ the conductivity.

Let us examine the Maxwell-Ampere equation (2.7). Using (2.10), we are able
to express the right-hand side as a function of E only:

∇× B = µ0

(

σE + ε
∂E

∂t

)
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Let us further assume that the electrical field can be modelled using a planar wave-
form at frequency f , E(r, t) = E0e

i(ωt−k·r), with ω = 2πf and the added condition
E0 · k = 0.

Using this model, we have:
∂E

∂t
= iωE

and
∥

∥

∥

∥

ε
∂E

∂t

∥

∥

∥

∥

= ωε‖E‖

‖σE‖ = σ‖E‖

The term ε∂E
∂t

is negligible compared to σE, at a frequency f , if

2π f ε

σ
≪ 1 .

For the brain, σ = 0.3Ω−1m−1, the permittivity ε is of the order of 105ε0 =
8.8510−7, and the frequencies of interest are typically lower than f = 100 Hz. With
these values, 2π f ε

σ
is of the order of 2 · 10−3. Therefore, the time derivative in (2.7)

can be neglected. The Maxwell-Ampere equation becomes time-invariant:

∇× B = µ0J , (2.11)

and the current density is consequently divergence-free

∇ · J = 0 . (2.12)

To show that the time-derivative can be neglected in (2.8), we compute the
rotational of this equation. The left hand side becomes:

∇× (∇× E) = ∇(∇ · E) − ∆E .

But with our choice for E, we have:

∇ · E = E0∇ei(ωt−k·r) = −iE0 · kei(ωt−k·r) = 0 .

Thus:

∇× (∇× E) = −∆E = −‖k‖2E = − ∂

∂t
∇× B

= −µ0
∂

∂t

(

σE + ε
∂E

∂t

)

= −µ0iω(σ + εiω)E

Consequently, we get: ‖k‖2 = |µ0iω(σ + εiω)| and the corresponding wavelength is
λ = 1

‖k‖ = 1√
|µ0iω(σ+εiω)|

. For the head, this quantity is equal to 65m ≫ ∅head.

This means that the time-derivative can be neglected in (2.8), leading to the time-
invariant Maxwell-Faraday equation

∇× E = 0 . (2.13)
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2.2.1 Poisson equation

A consequence of the time-invariant Maxwell-Faraday equation (2.13) is that the
electric field E derives from a potential, which we call the electric potential and
denote V :

E = −∇V .

It is useful to divide the current density J, into two components: the passive ohmic

or return current σE and the remaining primary current Jp

J = −σ∇V + Jp. (2.14)

Although this equation holds at different scales, it is not possible to include all
the microscopic conductivity details in models of MEEG activity and thus σ refers
to macroscopic conductivity with at least 1mm scale. The division of neuronal
currents to primary and volume currents is physiologically meaningful. For instance,
chemical transmitters in a synapse give rise to primary current mainly inside the
postsynaptic cell, whereas the volume current flows passively in the medium, with a
distribution depending on the conductivity profile. By finding the primary current,
we can locate the active brain regions.

The current density is divergence-free, and using the decomposition (2.14) shows
that the electric potential and the primary current are related by a simple equation,
called a Poisson equation:

∇ · (σ∇V ) = ∇ · Jp . (2.15)

2.2.2 Biot and Savart law

We derive in this section the Biot and Savart law, relating the magnetic field to the
current density. Recall the time-invariant Maxwell-Ampere equation

∇× B = µ0 J

and take its curl:

∇×∇× B = µ0 ∇× J . (2.16)

The left-hand side can be rewritten

∇×∇× B = −∆B + ∇(∇ · B)

where the Laplacian acts coordinatewise on the vector field B. Since ∇ · B = 0
(Maxwell equation expressing absence of magnetic charges), (2.16) rewrites:

−∆B = µ0∇× J .

Recalling that a fundamental solution fo the Laplacian in R3 is − 1
4π‖r‖ (see ap-

pendix A.1.2), in the sense that

∆

(

− 1

4π‖r‖

)

= δ0
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this implies that

B =
µ0

4π

∫

∇× J(r′)
1

‖r − r′‖ dr
′ + BH

where BH is a harmonic function, i.e. such that

∆BH = 0 .

With the condition that B vanishes at infinity, the harmonic term can be discarded,
an integration by parts leads to the Biot and Savart law:

B =
µ0

4π

∫

J(r′) × r − r′

‖r − r′‖3
dr′ . (2.17)

Replacing the total current J by its decomposition (2.14), the Biot-Savart law
becomes

B = B0 −
µ0

4π

∫

σ∇V × r − r′

‖r − r′‖3
dr′ , (2.18)

where B0 is the contribution to the magnetic field coming from the primary current:

B0 =
µ0

4π

∫

Jp × r − r′

‖r − r′‖3
dr′ .

Note: if the medium is infinite, with homogeneous conductivity σ, a simplification
occurs in the Biot-Savart equation, since

∇× J(r′) = ∇× (Jp − σ∇V ),

and in a homogeneous medium, ∇× (σ∇V ) = σ∇×∇V = 0. The magnetic field
hence becomes independent of the ohmic contribution:

B = B0 =
µ0

4π

∫

Jp × r − r′

‖r − r′‖3
dr′ . (2.19)

2.3 Neural current sources

2.3.1 Action potentials and postsynaptic potentials

Electric signals propagate within the brain along nerve fibers (axons) as a series of
action potentials (APs). The corresponding primary current can be approximated
by a pair of opposite current dipoles, one at the depolarization and one at the
repolarization front (figure), and this quadrupolar source moves along the axon
as the activation propagates. The separation of the two dipoles depends on the
duration of the AP and on the conduction velocity of the fiber. For a cortical axon
with a conduction speed of 5 m/s, the opposite dipoles would be about 5mm apart.

In synapses, the chemical transmitter molecules change the ion permeabilities
of the postsynaptic membrane and a postsynaptic potential (PSP) and current
are generated. In contrast to the currents associated with an action potential, the
postsynaptic current can be adequately described by a single current dipole oriented
along the dendrite. The magnetic field of a current dipole falls off with distance
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Figure 2.1: The organisation of the cortex.

more slowly (in order 1/r2) than the field associated with the quadrupolar AP
currents (in order 1/r3).

Furthermore, temporal summation of currents flowing in neighboring fibers is
more effective for synaptic currents, which last up to tens of milliseconds, than
for the about 1 ms-long action potentials. Thus the electromagnetic signals ob-
served outside and on the surface of the head seem to be largely due to the synaptic
current flow. In special cases, currents related to action potentials might also signif-
icantly contribute to cortical MEG and EEG signals, such as, e.g., high-frequency
somatosensory responses.

The pyramidal cells are the principal types of neurons in the cortex, with their
apical dendrites oriented parallel to each other and perpendicular to the cortical
surface. Since neurons guide the current flow, the resultant direction of the electrical
current flowing in the dendrites is also perpendicular to the cortical sheet of gray
matter.

2.3.2 Estimates of dipole strengths

Each PSP may contribute as little as a 20 fAm current dipole, probably too small to
measure in MEEG. The current dipole moments required to explain the measured
MEEG fields outside the head are on the order of 10 nAm[?]. This would corre-
spond to about a million of synapses simultaneously active during a typical evoked
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response. Although such a synchronous activity only forms a part of the total activ-
ity, it can be functionally highly important. For example, invasive recordings from
monkeys have shown suprisingly large temporal overlap of neuronal firing in many
visual cortical areas (Schmolesky et al, 1998). Epileptic discharges also are typically
associated with strong current densities due to highly synchronous activity.
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Chapter 3

Geometric modeling of the
head

3.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) was developed from knowledge gained in the
study of nuclear magnetic resonance. The acronym NMR (Nuclear Magnetic Reso-
nance) is still often used to describe the technique.

3.1.1 Basic principle of NMR

MRI relies (most often) on the relaxation properties of excited hydrogen nuclei in
water. Since hydrogen nuclei have a single proton, they have a spin, which is an
intrinsic angular moment. It can be associated with a magnetic dipole moment:
each hydrogen nucleus behaves as a tiny magnet, with the north/south axis parallel
to the spin axis. The sum of the moments of a sample of molecules is zero in the
absence of a magnetic field. When an object to be imaged is placed in the powerful,
uniform magnetic field B0, the spins of the nuclei within the tissue precess around
the direction of B0. The resulting magnetic moment of a sample is oriented in the
direction of B0. The frequency ν0 (Larmor frequency) of the precession is linearly
related to the field by the gyromagnetic ratio γ, whose value depends on the nature
of the nuclei.

ν0 = γ|B0| (3.1)

Besides the precession of the nuclei, a second phenomenon is important to us:
the relaxation of the nuclei. In the presence of a constant field B0, the spin axes
of the nuclei slowly tend to align with B0. The Radio Frequency pulse (RF pulse)
technique consists in applying in addition to B0 a transient field pulse B1, orthog-
onal to B0, rotating at the resonance frequency of the nuclei ν0, and several orders
of magnitude smaller. When such an RF pulse is applied the resulting moments M
of the nuclei are flipped (usually by 30 or 90 degrees, according to the duration of
the pulse). After the pulse, M precesses around B0 and finally aligns with B0: the
transient transversal moment iMT also called Free Induction Decay (FID) cancels
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Precession RelaxationRF ExcitationEquilibrium Magnetization

Flip angle

ML

MT

M0 α

Signal ∝ MT

B0

α

ML = M0(1 − e−t/T1)

MT ∝ e−t/T2

B1

ν0

ν0

ν0

Figure 3.1: The basic physics of the NMR experiment: in a magnetic field B0, an
equilibrium magnetization M0 forms due to the alignment of nuclear dipoles (left).
An RF pulse tips over M0 creating a longitudinal component ML and a transverse
component MT (middle). MT precesses around the direction of B0, generating a
detectable MR signal. Over time MT decays to zero with a relaxation time T2 and
ML returns to M0 with a relaxation time T1(right). This picture is taken from [4].

with a time constant T2 while the longitudinal moment ML reaches its equilibrium
with a time constant T1. The values of ML and MT are measured using coils. T1

and T2 depend on the environment, so that their local value can be used to discrim-
inate between the tissues, proton density being a third signature to discriminate
between tissues. An illustration of the phenomenon is given in figure 3.1.

Measuring ML (resp. MT ) leads to T1− (resp. T2−) weighted images. A subtle
but important variant of the T2 technique is called T2∗ imaging. In order to obtain
an image, RF pulses are applied repeatedly: such a repetition is called a pulse
sequence. Many kinds of pulse sequences are possible, and the sensitivity of the
MR images to the different parameters can be adjusted by tuning the repetition
time (TR) between consecutive pulses and the time between the RF pulse and the
measurement TE (time to echo). Typical sequences may be of several kinds:

• The Gradient Echo Pulse Sequence simply consists of the repetition of the
FID described previously. It is simply described by the value of the flip angle
α and the repetition time TR.

• The Spin Echo Pulse Sequence consists in applying a first 90 degrees pulse,
then after a time TE/2 a 180 degrees pulse in the transverse plane. The effect
of this pulse is to refocus the signal whose phase has been quickly dispersed
by local field inhomogeneities. Thus, an echo of signal appears at time TE
and is measured. This echo can be repeated many times to sample the T2

decay.

• The Inversion Recovery Pulse Sequence begins with a 180 degrees pulse and
after a delay TI a 90 degrees pulse. It enhances the T1 weighting of the image.

3.1.2 MRI scanning

To selectively image different voxels (picture elements) of a subject, magnetic gradi-
ents are applied. Because of the relation (3.1), the spatial variation of the magnetic
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Figure 3.2: A basic imaging pulse sequence.
During the RF excitation pulse a gradient in z is applied (slice selection), and during
read-out of the signal a gradient in x is applied (frequency encoding). Between
these gradient pulses, a gradient pulse in y is applied, and the amplitude of this
pulse is stepped through a different value each time the pulse is repeated (phase
encoding). Typically 128 or 256 phase-encoding steps (repeats of the pulse sequence)
are required to collect sufficient information to reconstruct an image. This figure is
taken from [4].

field magnitude induces a Larmor frequency variation which can be used to localize
the piece of material that generated it. Gradients are typically applied during the
RF pulses, during the recording of the generated signal and between these two time
instants to encode a slice selection, and a position in the slice with a frequency and
a phase (see figure 3.2). The same coils are used for the transmission of gradients
and the reception of the signal. Since a coil typically encompasses the body (the
head of the subject), it measures a sum of the signals from each tissue in the head.

More precisely, the sequence of events that occurs is:

• The magnetic field B0 is added with a gradient in the z direction. The se-
lection of a particular frequency at the receiver part is then equivalent to the
selection of a slice -a plane with a thickness of typically 1 to 10 mm- along
the z direction. This procedure is called the slice selection.

• Then, within each slice or plane spanned by the resulting directions (x and
y), two gradients are applied during the relaxation.

– In the x direction, a negative gradient is applied after the RF pulse, and
a positive one during acquisition, which creates a gradient echo during
data acquisition, halfway through the second gradient pulse; The effect
is that the precession frequency varies along the x axis, so that a Fourier
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transform of the signal gives its amplitude along the axis. This procedure
is called frequency encoding.

– In the remaining y direction, a gradient field is applied for a short interval
between the RF pulse and data acquisition. After cancellation of this
field, the precession is at the uniform frequency, but with a phase shift
determined by the position on y. Repeating the frequency encoding many
times with different phase shifts creates information on the y position.
This third procedure is known as phase encoding.

For a Repetition Time TR of about 1s, acquiring a single 256× 256 slice (which
needs 256 phase encoding steps so 256 RF pulses) would require 256s (4min and
16s). Acquiring a full volume like in such a way is impractical. Fortunately, there
is a lot of “dead time” in a TR time slice. This “dead time” can be used to acquire
several slices in parallel leading to much more reasonnable whole head acquisition
times. The amount of slices that can be acquired in parallel as well as the exact gra-
dient patterns that have to be applied can vary. Theses parameters can be tuned
to optimize various aspects (acquisition time, contrast, resolution, . . . ). Design-
ing pulse sequences for a given effect is a complicated task, which is achieved by
specialists.

After acquisition of the data in the frequency space, also known as k−space, the
data is mapped into the 3D space by Fourier transform.

3.2 Segmentation of Magnetic Resonance Images
(MRI)

3.2.1 Region labelling

3.2.2 Segmentation



Chapter 4

Forward problem
computation

4.1 Introduction

The forward problem of magneto-electro-encephalography aims at computing the
electromagnetic field produced by a known primary current, in a known geometry.

This chapter is organized in increasing model complexity. Section 4.2 presents
the forward problem in simple geometrical settings for which the calculations can be
done by hand. Section 4.3 considers more general nested surface models, which we
call “semi-realistic”, in which subject-dependent surfaces are designed to match the
main tissue interfaces in the head. Computations in the semi-realistic setting are
performed using Boundary Element Methods (BEM). Finally, Section 4.4 presents
the most sophisticated model, which we call “realistic”, which models the tissue
conductivity voxel-wise, does not necessitate to define interfaces between tissues of
homogeneous conductivity, and allows for tensor-valued conductivity.

4.2 Simple geometries

4.2.1 Current dipole in infinite homogeneous medium

Electrical potential

A current dipole with moment q and position p is represented by Jp(r) = q δp(r).
The potential created by such a dipole follows the Poisson equation

∇ · (σ∇V ) = q · ∇δ(r − p) .

As the medium is infinite with constant conductivity σ,

σ∆V = q · ∇δ(r − p) .

23
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As detailed in Appendix ??, in three dimensions, the fundamental solution to the
Laplacian is −1

4π‖r‖ in the sense that

∆

( −1

4π‖r‖

)

= δ0 .

Hence,

V (r) = − 1

4πσ

∫

q · ∇′δ(r′ − p)
1

‖r − r′‖dr
′ =

1

4πσ
q · r − p

‖r − p‖3
.

Magnetic field

In an infinite, homogeneous domain, only the primary current contributes to the
magnetic field as wass shown in the derivation of 2.19, therefore, for a dipolar source,

B =
µ0

4π
q × r − p

‖r − p‖3
.

4.2.2 Silent sources

Helmholtz, in 1853, was the first to point out the existence of sources which are
electromagnetically silent, i.e. produce a null electro-magnetic field. First note that
a solenoidal source, such that ∇ ·Jp = 0, is electrically silent, since the source term
of the Poisson equation vanishes in this case.

Next, we exhibit an electromagnetically silent source, in the form of a primary
current Jp, supported on a surface S, and such that Jp = q n where n is the normal
vector to S and q is a constant. We prove that Jp is electromagnetically silent if
the medium is infinite and homogeneous. We will extend this result to more general
domains in the course of this chapter.

In an infinite homogeneous medium the potential V can be written as an integral
over the support of the primary current:

V (r) = − 1

4πσ

∫

∇′ · Jp(r′)
1

‖r − r′‖ dr
′ =

1

4πσ

∫

Jp(r′) · r − r′

‖r − r′‖3
dr′ .

For the particular case of Jp = q n δS ,

V (r) =
1

4πσ

∫

S

qn · r − r′

‖r − r′‖3
ds =

q

4πσ

∫

S

r − r′

‖r − r′‖3
· nds

The integral on the right represents the solid angle of S viewed from r, and vanishes
if r is exterior to S.

The magnetic field can be represented by the Biot-Savart equation, yielding, if
ΩS denotes the volume contained inside S:

B(r) =
µ0

4π

∫

S

q n ×∇′

(

1

‖r − r′‖

)

ds =
µ0 q

4π

∫

ΩS

∇′ ×
(

∇′ 1

‖r − r′‖

)

dr′ = 0 .
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ΩN+1 σN+1

SN

σN

ΩN

σ1

Ω1

Ω2

S1

S2

σ2

Figure 4.1: The head is modeled as a set of nested regions Ω1, . . . ,ΩN+1 with
constant isotropic conductivities σ1, . . . , σN+1, separated by interfaces S1, . . . , SN .
Arrows indicate the normal directions (outward).

4.3 Semi-realistic model

In an infinite, homogeneous domain, the electric potential and the magnetic field
decay at the same rate. However, when measured on the scalp, the two fields have
very different spatial properties: the magnetic field apears more “focal”, and the
electric potential more “diffuse”. The main reason for this qualitative difference is
that the magnetic field is less sensitive than the electric potential to conductivity
differences in the tissues of the head. The electric potential, in particular, is subject
to diffusion because of the low conductivity of the skull.

In this section, we will consider a piecewise-constant conductivity, organised in
layers, as depicted in Figure 4.1.

4.3.1 Magnetic field computation

Section 2.2.2 has established the Biot and Savart law, decomposing the magnetic
field into a primary current contribution and an ohmic contribution

B = B0 −
µ0

4π

∫

σ∇V × r − r′

‖r − r′‖3
dr′ ,

where

B0 =
µ0

4π

∫

Jp × r − r′

‖r − r′‖3
dr′ .

With the piecewise-constant conductivity model, the ohmic term can be decom-
posed as a sum over volumes of constant conductivity:

∫

σ∇V × r − r′

‖r − r′‖3
dr′ =

∑

i

σi

∫

Ωi

∇V × r − r′

‖r − r′‖3
dr′ =

∑

i

σiIi (4.1)

In the above identity, note that the conductivities must not only be assumed
constant in each domain Ωi, but also isotropic, in order to take σi out of the
integral over Ωi. The volume integral Ii can be expressed as a surface integral on
∂Ωi = Si−1 ∪ Si. With this in view, we use the Stokes formula, and the identity

∇× (V ∇g) = ∇V ×∇g .
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Thus

Ii =

∫

Ωi

∇×
(

V (r′)
r − r′

‖r − r′‖3

)

dr′ =

∫

∂Ωi

n × V (r′)
r − r′

‖r − r′‖3
ds

=

∫

Si

n × V (r′)
r − r′

‖r − r′‖3
ds−

∫

Si−1

n × V (r′)
r − r′

‖r − r′‖3
ds

This expression is then inserted in (4.1) and, recalling that σN+1 = 0,

B(r) = B0(r) +
µ0

4π

N
∑

i=1

(σi − σi+1)

∫

Si

V (r′)
r − r′

‖r − r′‖3
× n ds (4.2)

In the case where the surfaces Si are spherical, and concentric, the above ex-
pression shows that the radial component of the magnetic field is independent of
the conductivity profile:

B(r) · r = B0(r) · r .
This results from the identity

((r − r′) × r′) · r = 0 .

In a spherical geometry, the independence to the conductivity profile can be
extended to the three components of the magnetic field, if the source is a single
dipole. Indeed, outside Ω, since σ = 0 and Jp = 0, J = 0 and hence ∇ × B = 0.
The magnetic field thus derives from a “potential” which we denote U :

B = −∇U

The potential U is only defined up to a constant, but since B → 0 at infinity, we
adjust the constant so that U → 0 at infinity.
Suppose the dipolar source to be located ar r0, with dipolar moment q. Denote
er = r/‖r‖ the unit radial vector. For r outside Ω,

U(r) = −
∫ ∞

0

∇U(r + t er) · er dt

=

∫ ∞

0

B(r + t er) · er dt =

∫ ∞

0

B0(r + t er) · er dt

=
µo

4π
q × (r − r0) · er

∫ ∞

0

dt

‖r + t er − r0‖3

The above expression shows that B is independent of σ. Moreover, for a radial
dipole, q × (r − r0) · er = 0, hence U(r) = 0 and B(r) vanishes outside Ω.

4.3.2 Electric potential computation

The geometrical setting is again the one of Figure 4.1. In each domain Ωi, the
potential follows a Poisson equation

σi∆V = fi
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where fi is the restriction of ∇·Jp to Ωi. At the interface Si between Ωi and Ωi+1,
the following jump conditions hold:

[V ]Si
= 0 (4.3)

[σ∂nV ]Si
= 0 . (4.4)

We define the jump of a function f : R3 → R at interface Sj as

[f ]j = f−Sj
− f+

Sj
,

the functions f− and f+ on Sj being respectively the interior and exterior limits of
f :

for r ∈ Sj , f±Sj
(r) = lim

α→0±
f(r + αn).

Note that these quantities depend on the orientation of n.
Using the same type of technique as for the magnetic field, one can show that the

values of the potential (and of the normal current flow) on surfaces Si are related
by integral operators.

Green formula

We recall the Green formula
∫

Ω

(u∆v − v∆u) dr′ =

∫

∂Ω

(u∂n′v − v∂n′u) ds(r′) .

Consider v = − 1
4π‖r−r′‖ = −G(r − r′) and a harmonic function u.

The left-hand side integral I(r) =
∫

Ω
(u∆v − v∆u) dr′ takes different values

according to the position of r with respect to Ω, as summarized below:

r ∈ Ω I(r) = u(r)
r ∈ R3\Ω I(r) = 0

r ∈ ∂Ω I(r) = u−(r)
2

The first two lines of the above table are trivial to prove, and the third relies on
solid angle computations (refer to [15] for the proof). Thus seen from inside,

I(r) =

∫

∂Ω

−u−(r) ∂n′G(r − r′) +G(r − r′) ∂−n′(r
′) ds(r′) (4.5)

The same treatment can be applied to the volume Ω′ = R3\Ω, and seen from Ω,
this yields

J(r) =

∫

∂Ω

u+(r) ∂n′G(r − r′) −G(r − r′) ∂+
n′(r

′) ds(r′) (4.6)

with the integral term J(r) equal to

r ∈ R3\Ω J(r) = u(r)
r ∈ Ω J(r) = 0

r ∈ ∂Ω J(r) = u−(r)
2
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Summing (4.5) and (4.6), for r ∈ Ω,

u(r) = −
∫

∂Ω

[u] ∂n′G(r − r′)ds(r′) +

∫

∂Ω

[∂n′u]G(r − r′)ds(r′)

and, for r ∈ ∂Ω,

u+(r) + u−(r′)

2
= −

∫

∂Ω

[u] ∂n′G(r − r′)ds(r′) +

∫

∂Ω

[∂n′u]G(r − r′)ds(r′)

To simplify notation, we introduce two integral operators, called the “double-layer”
and “single-layer” operators, which map a scalar function f on ∂Ω to another scalar
function on ∂Ω :

(

Df
)

(r) =
∫

∂Ω

∂n′G(r − r′)f(r′) ds(r′)

(

Sf
)

(r) =
∫

∂Ω

G(r − r′)f(r′) ds(r′) .

The two above relations become, for r ∈ Ω,

u(r) = −D [u] + S [∂nu]

and for r ∈ ∂Ω,

u∓(r) =
(

± I
2 − D

)

[u] + S [∂nu]

This also holds when Ω = Ω1 ∪ Ω2 ∪ . . .ΩN , with ∂Ω = S1 ∪ S2 ∪ . . . SN . In this
case, for r ∈ Si,

u−(r) + u+(r)

2
=
∑N

j=1 −Dij [u]Sj
+ Sij [∂nu]Sj

(4.7)

Geselowitz formula

Supposing the primary current Jp to be restricted to one volume Ωi, consider V∞
sich that σi∆V∞ = ∇ ·Jp holds in all R3. Across each surface Sj , the potential V∞
and its normal derivative ∂nV are continuous. Consider the function u = σ V −
σiV∞; it is harmonic in each Ωj , therefore satisfies (4.7). Since [u]Sj

= (σj−σj+1)Vj

and [∂nu] = 0, we obtain, on each surface Sj ,

σj + σj+1

2
Vj +

N
∑

k=1

(σk − σk+1)Djk Vk = σiV∞ , (4.8)

a formula which was established in 1967 by Geselowitz.

4.4 Realistic model

For even more realistic models, the piecewise constancy of conductivity that has
been made in the previous section needs to be relaxed. Indeed, the brain is known
to have strong anisotropies in the conductivities at least in two domains:
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• the skull is a non-homogeneous material. It is a porous material with marrow
insertions and all kinds of holes filled with air or various liquids (eg. sinuses).
Also, its shape is extremely complex and difficult to extract from MRI images,
so that it is often “guessed” by using its relative position with respect to the
other interfaces. In practice, researchers have found that its conductivity plays
a fundamental role in EEG and that it would best modelled (in absence of
more direct measurements) with distinct radial and tangential conductivities.

• the white matter is even less homogeneous: it is made of an entanglement of
fibers connecting different pieces of the cortex. It has thus a strong anisotropic
behavior. While the importance of taking into account this anisotropy for
MEG/EEG reconstruction has less been investigated, it is certainly interest-
ing to evaluate its effects and fortunately, there exists a way of measuring
it (contrarily to the case of the skull). Diffusion MRI is able to measure
the diffusion of water molecules in various directions. Intuitively, the water
flow more easily along the direction of the fibers in the white matter than
across them. This anisotropy of diffusion of water can be used to model an
anisotropic conductivity as currents are certainly better conducted along the
fibers than across them.

Dealing with such anisotropies with a BEM like method is impossible most of
the time (it would be possible to deal with radial and tangential anisotropies for a
spherical head but not much more). Thus, this problem needs to be tackled using
directly the Maxwell equation in the quasistatic case. So we start again with the
Poisson equation

∇ · (σ∇V ) = f = ∇ · Jp .

To obtain a unique solution, this equation needs to be supplemented with a bound-
ary condition. To do so, we hypothesize that no current flows outside of the
head (which is mostly true except at the spinal column which is “far” from most
EEG/MEG measurements). We thus have to solve the following problem:



















∇ · (σ∇V ) = ∇ · Jp in Ω

σ
∂V

∂n
= σ∇V · n = 0 on S = ∂Ω.

(4.9)

This problem will be solved using a Finite Element Approach. We will first
show that the PDE 4.9 can be formulated as a variational problem (section 4.4.1),
which is then discretized to obtain a linear system (section 4.4.2), and then solved
(section 4.4.3).

Anisotropic model Note that in the above formulation, σ can either be taken
as a simple scalar function of r but it can as well be a function that associates a
3D symmetric definite positive matrix at each point of the space. This matrix is a
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tensorial description of the anisotropic conductivity (the eigenvalues represent the
conductivity along the corresponding eigenvector). Denoting by Σ this matrix, the
anisotropic system becomes:



















∇ · (Σ∇V ) = ∇ · Jp in Ω

Σ
∂V

∂n
= Σ∇V · n = 0 on S = ∂Ω.

(4.10)

For simplicity, we will develop the scalar model hereafter but most of the re-
sults can be trivially adapted to the anisotropic case. Notationnally, almost noth-
ing changes except that σ(r)∇V (r) · ∇w(r) is replaced by ∇V (r)T Σ∇w(r) and
σ(r)‖∇φ(r)‖2 is replaced by ∇φ(r)T Σ∇φ(r).

4.4.1 A variational formulation of the forward problem

Let us first define some functional spaces that will be needed hereafter.

H1(Ω) =
{

w ∈ L2(Ω),∇w ∈ L2(Ω)3
}

.

H2(Ω) =
{

w ∈ L2(Ω),∇w ∈ H1(Ω)3
}

.

These spaces provide functions that can be simply plugged within the equations
that will be used (with all integrals and differentiations well defined).

We first show that the following three problems are equivalent:

À V ∈ H2(Ω) is solution of:



















∇ · (σ∇V ) = f in Ω

σ
∂V

∂n
= σ∇V · n = g on S = ∂Ω.

Á V ∈ H1(Ω) is such that

∀w ∈ H1(Ω)

∫

Ω

σ(r)∇V (r)·∇w(r) dr+

∫

Ω

f(r)w(r) dr−
∫

S

g(r)w(r) ds = 0 .

Â V = argminφ∈H1(Ω)E(φ) with:

E(φ) =
1

2

∫

Ω

σ(r)‖∇φ(r)‖2 dr +

∫

Ω

f(r)φ(r) dr −
∫

S

g(r)φ(r) ds .
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Notice that the PDE in À is exactly the same as the one in 4.9: we have just
renamed f = ∇·Jp and allowed for a more general Neumann boundary condition g.
This makes the presentation slightly more general and shows that the basic method
will remain the same even if we were able to model the currents in the neck. The
functions f and g are supposed to be square integrable, that is f ∈ L2(Ω) and
g ∈ L2(∂Ω).

Theorem 4.1. Problems À, Á and Â are equivalent.

Proof. Problem Á will be used as a pivot. The proof is thus in two parts: equivalence
of À and Á, and equivalence of Á and Â.

À =⇒ Á

Using the formula: ∇ · (σw∇V ) = σ∇V · ∇w + w∇ · σ∇V and integrating it over
the domain Ω, we have:

∫

Ω

w(r)∇ · σ(r)∇V (r) dr =

∫

Ω

∇ · (σ(r)w(r)∇V (r)) dr −
∫

Ω

σ(r)∇V (r) · ∇w(r) dr

In the left hand side of this equation, ∇ · σ∇V can be replaced by f because of À.
The Green theorem can be used to transform the first term of the right hand side
giving:

∫

Ω

σ(r)∇V (r) · ∇w(r) dr +

∫

Ω

f(r)w(r) dr −
∫

S

w(r)σ(r)∇V (r) · n ds = 0 .

Replacing σ(r)∇V (r) ·n by its value on S as given by the boundary condition of À

yields the result.

∫

Ω

σ(r)∇V (r) · ∇w(r) dr +

∫

Ω

f(r)w(r) dr −
∫

S

g(r)w(r) ds = 0 .

Á =⇒ À

If Á is true for any w ∈ H1(Ω), it is also true for w ∈ D(Ω) the space of C∞ functions
with compact support in Ω. The dual of D(Ω) is the space of distributions over Ω,
D′(Ω). If ∇ · (σ∇V ) ∈ L2(Ω), then ∇ · (σ∇V ) − f ∈ L2(Ω) since f ∈ L2(Ω) by
hypothesis. Denoting by < . . . > the duality bracket between the spaces L2(Ω) and
D′(Ω). Thus Eq. Á can be written as < ∇ · (σ∇V ) − f, w >= 0. From a standard
result in functional analysis [Brezis 88], ∇ · (σ∇V ) − f is zero almost everywhere.

Â =⇒ Á

If Â is true, then for all w ∈ H1(Ω) and for any real number λ, we have:

E(V ) ≤ E(V + λw) . (4.11)

This is true because:

∀V ∈ H2(Ω) ∀w ∈ H1(Ω) ∀λ ∈ R V + λw ∈ H1(Ω)
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By definition of E:

E(V + λw) =
1

2

∫

Ω

σ(r)‖∇(V + λw)(r)‖2 dr +

∫

Ω

f(r)(V + λw)(r) dr − (4.12)

∫

S

g(r)(V + λw)(r) ds

=
1

2

∫

Ω

σ(r)‖∇V (r)‖2 dr +

∫

Ω

f(r)V (r) dr −
∫

S

g(r)V (r) ds+

λ

∫

Ω

σ(r)∇V (r) · ∇w(r) dr + λ

∫

Ω

f(r)w(r) dr − λ

∫

S

g(r)w(r) ds+

λ2

2

∫

Ω

σ(r)‖∇w(r)‖2 dr .

E(V + λw) = E(V ) +
λ2

2

∫

Ω

σ(r)‖∇w(r)‖2 dr (4.13)

λ

(∫

Ω

σ(r)∇V (r) · ∇w(r) dr +

∫

Ω

f(r)w(r) dr −
∫

S

g(r)w(r) ds

)

For λ sufficiently small and positive, Eq. 4.11 implies:

∫

Ω

σ(r)∇V (r) · ∇w(r) dr +

∫

Ω

f(r)w(r) dr −
∫

S

g(r)w(r) ds ≥ 0 .

For λ sufficiently small and negative, Eq. 4.11 implies:

∫

Ω

σ(r)∇V (r) · ∇w(r) dr +

∫

Ω

f(r)w(r) dr −
∫

S

g(r)w(r) ds ≤ 0 .

Thus:
∫

Ω

σ(r)∇V (r) · ∇w(r) dr +

∫

Ω

f(r)w(r) dr −
∫

S

g(r)w(r) ds = 0 .

Á =⇒ Â

From Eq. 4.13 with Á, denoting by φ the value V + λw, it is clear that E(V ) is the
minimum value of E(φ). This is true since when w spans H1(Ω) and for all real λ,
φ = V + λw spans H1(Ω).

4.4.2 Discretization of the FEM forward problem

General discrete framework

The FEM forward problem is implemented using the variational formulation Â.
The continuous functional spaces are approximated using the Galerkin method (see
section ??) yielding a discrete problem.

The 3D space Ω is tessellated with bounded cells (eg tetrahedra or hexahedra)
(Ci), i = 1 . . . NC . This tessellation Ωh also introduces a set of points (Vi), i =
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1 . . . NV (the vertices of the cells) and the space of the continuous functions over
Ω is approximated by a vector space using some basis functions (wi), i = 1 . . . NV

defined at each vertex.

H1
h(Ωh) =

{

φh,∃(φ1, . . . , φNV
) ∈ R

NV , φh(r) =

NV
∑

i=1

φiw
i(r)

}

,

The boundary of the tessellation Sh also defines a tessellation of S the boundary of
Ω. Without loss of generality, we assume that the vertices of the tessellation that
are on the boundary of the tessellation are (Vi), i = 1 . . . NS with NS < NV .

H1
h(Sh) =

{

φh,∃(φ1, . . . , φNS
) ∈ R

NS , φh(r) =

NS
∑

i=1

φiw
i
Sh

(r)

}

,

where wi
Sh

is the restriction to Sh of the function wi.
The discretization of the criterion E in Â is obtained by using the discretized

versions of all the involved functions φ, f and g. For σ, we will use a different
dicretization scheme where σ is given by a constant σi over the cell Ci.

E(φh) =
1

2

∫

Ω

σ(r)

∥

∥

∥

∥

∥

∇
(

NV
∑

i=1

φiw
i(r)

)∥

∥

∥

∥

∥

2

dr +

∫

Ω

f(r)

(

NV
∑

i=1

φiw
i(r)

)

dr −

∫

S

(

NV
∑

i=1

φiw
i
Sh

(r)

)

g(r) ds

= Eh(Φ) ,

where Φ = (φ1, . . . , φNV
) ∈ RNV .

Eh(Φ) =
1

2

NV
∑

i,j=1

φiφj

∫

Ω

σ(r)∇wi(r)·∇wj(r) dr+

NV
∑

i=1

φi

∫

Ω

f(r)wi(r) dr−
NS
∑

i=1

φi

∫

S

wi
Sh

(r)g(r) ds

The minimization of E(φ) then becomes a simple problem of minimizing in finite di-
mension the quadratic criterion Eh(Φ). Denoting by Aij the second order derivative

of this criterion ∂2Eh

∂φi∂φj
, we have:

Aij =

∫

Ω

σ(r)∇wi(r) · ∇wj(r) dr .

Note that the matrix A is naturally symmetric. We also introduce the vector B:

Bi =

{

∫

Ω
f(r)wi(r) dr −

∫

S
wi

Sh
(r)g(r) ds for i ≤ NS

∫

Ω
f(r)wi(r) dr otherwise .

The criterion Eh(Φ) can be written as 1
2ΦT AΦ + B · Φ and optimality is obtained

when AΦ + B = 0.

ΦT AΦ =

NV
∑

i,j=1

φiφjAij =

NV
∑

i,j=1

∫

Ω

φiφjσ(r)∇wi(r)·∇wj(r) dr =

∫

Ω

σ(r) ‖∇φh(r)‖2
dr

(4.14)
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This proves that the matrix A is positive because σ > 0 over Ω. Note, however
that the matrix is not definite. Indeed, ΦT AΦ is zero iff ∇φh(r) = 0 on Ω almost
everywhere. This is natural as the original equation is insensitive to the addition
to V of a constant function over Ω. On our discretized spaces, this happens for
Φ = Cst1 (this is the case whenever the constant function over Ωh belongs the
space H1

h(Ωh) which is the case for the standard basis functions P 1 or Q1 used for
tetrahedric or hexahedric cells respectively). Similarly to Eq. 4.14, we can prove
that ΦT AΨ =

∫

Ω
σ(r)∇φh(r) · ∇ψh(r) dr. Applying this result to Ψ = 1, proves

that the kernel of the matrix A is the constant vector 1. Rewriting this result for
each line of the matrix gives:

∀i = 1 . . . NV

NV
∑

j=1

Aij = 0 . (4.15)

This result can be used to reduce the amount of memory used to store the matrix A.
Indeed, Eq 4.15 can be rewritten as:

Aii = −
∑

j 6=i

Aij . (4.16)

This can be used to rewrite conveniently the part of the criterion E(φh) contain-
ing A.

C(Φ) =
1

2
ΦT AΦ =

1

2

NV
∑

i,j=1

φiφjAij =
1

2

NV
∑

i=1

Aiiφ
2
i +

1

2

∑

i6=j

Aijφiφj .

Replacing Aii by its value given by Eq. 4.16 yields:

C(Φ) =
1

2

NV
∑

i=1

∑

i6=j

(

−Aijφ
2
i +Aijφiφj

)

=
1

2

NV
∑

i=1

∑

i6=j

Aij (φj − φi)φi

=
1

2

NV
∑

i=1

∑

i<j

Aij [(φj − φi)φi + (φj − φi)φi] sinceAji = Aij

= −1

2

NV
∑

i=1

∑

i<j

Aij (φj − φi)
2

This formulation has a double advantage:

• it totally removes the need for the terms Aii which do not need to be computed
nor stored.

• if we recall that φh represents a potential, the criterion explicitly involves the
differences of these potential values. This is physically very natural.
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A P 1 implementation

In practice, we will use P 1 basis function over a tetrahedral mesh. In dimension d,
a tetrahedron Tj is defined by d + 1 vertices Vik

, k = 1 . . . d + 1. The restriction
wi

j of wi to Tj is defined by (for notational simplicity, we assume without loss of
generality that Vi1 = Vi):

wi
j(r) =

{

0 if the vertex Vi does not belong to Tj
|r V2...Vd+1|
|V1...Vd+1|

otherwise ,

where the vectors in the determinants are written with d + 1 coordinates: the
usual d coordinates are augmented with a final 1 (this is called projective or ho-
mogeneous coordinates). Because wi

j is a linear function of r, its gradient is a
constant vector which can be computed as the first row of the inverse matrix
[V1 − Vd+1 . . .Vd − Vd+1]

−1
. Given this value of the gradient ∇wi

j , the matrix
A is computed as:

Aij =
∑

k:Vi∈Tk,Vj∈Tk

∫

Tk

σk∇wi
k · ∇wj

k(r) dr ,

This shows that the only non-diagonal (since diagonal elements do not need to be
computed) non-zero coefficients of the matrix A correspond to the edges of the
mesh. Consequently, the matrix A is very sparse.

Since we usually assume that g = 0 for the forward problem, the computation
of B includes only the term containing f = ∇ · Jp.

Bi =
∫

Ω
∇ · Jp(r)wi(r)dr becomes:

Bi =

∫

Ω

∇ ·
(

wi(r)Jp(r)
)

dr −
∫

Ω

∇wi(r) · Jp(r) dr

=

∫

S

wi(r)Jp(r) · ds(r) −
∫

Ω

∇wi(r) · Jp(r) dr

=

∫

S

wi(r)Jp(r) · n(r) ds(r) −
∫

Ω

∇wi(r) · Jp(r) dr

To go further, one needs to choose a proper model for Jp.

The continuous case In this first case, Jp is represented as Jp(r) =
∑NV

j=1 w
j(r)Jp

j .
Consequently:

Bi =

NV
∑

j=1

J
p
j

∫

S

wi(r)wj(r)ds(r) −
NV
∑

j=1

J
p
j

∫

Ω

∇wi(r) · wj(r)dr

Assuming that there are no sources on S gives:

Bi =

NV
∑

j=1

J
p
j

∫

Ω

∇wi(r) · wj(r)dr
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The Dirac case In this case, the current distribution is localized at a single point
in space r0 (or at a few places by linear combination). At this point in space the
current orientation and strength are described by a vector µ. Thus, Jp(r) can be
written as: Jp(r) = µδ(r − r0). Consequently,

Bi = µ

∫

S

wi(r)δ(r − r0)dr − µ · ∇wi(r0)

Assuming again that there are no sources on S gives:

Bi = −µ · ∇wi(r0)

4.4.3 Solving the FEM forward problem

The discretized problem solution can be found by solving AV + B = 0. This is
a fairly simple matrix problem, which could in theory be solved using a pseudo-
inverse (the inverse of A does not exist since its kernel is the vector 1). However,
A is a very big matrix which can be stored only because it is sparse. Since the
pseudo-inverse (or the inverse) of a sparse matrix is usually not a sparse matrix, it
is unwise to try to compute it, as the amount of memory needed to store it will be
huge. It is thus a much better idea to solve AV + B = 0 using an iterative method
for each B. Since the matrix A is symmetric and positive, the conjugate gradient
method can be used. Strictly speaking, this method can only be used with definite
matrices, but it actually works in this case provided that B is in the range of matrix
A. Because A is symmetric, the property (4.15) also holds for column vectors of A,
which means that these columns are all orthogonal to the constant vector 1. These
vectors thus all have the property that their mean value is zero. It can be verified
that this property is true for the various versions of B detailed above.

The conjugate gradient method only needs to evaluate the quantity g = AΦ+B

for any given parameter vector Φ and the quantity gT Ag to compute the optimal
step at each iteration. These two quantities can be easily evaluated using simple
traversal of all the edges of the mesh.

In general, the conjugate gradient method only requires a few steps to converge
(typically one or two magnitude order less iterations thanNV the size of the matrix).
However, due to the very different values of the conductivities for the various parts
of the head, this leads to badly conditionned matrices A. To improve the speed of
converge, it is ths preferable to use a preconditioned conjugate gradient method. A
simple diagonal preconditioner is already very effective. Such a preconditioner is
obtained by the inverting a diagonal matrix whose entries are the diagonal elements
of the matrix A.



Part II

Analysis of functional
imaging data
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Chapter 5

Functional Magnetic
Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) appeared around 1990-1993 and
allows various inferences on how the brain is functioning, such as:

• Localization of the main functional areas.

• Study of the spatio/temporal structure of these activations.

• Synchronisation between various areas.

fMRI studies can be made either in an exploratory mode in which there is little
a priori on what should be observed or in an estimation mode where a given known
activity is searched for. Typically, an acquisition is a 3D+t signal represented by
a sequence of 3D images. For reasons that will be explained later, the spatial
resolution is somewhat worse than that of anatomic MRI: currently one can expect
to have images with a voxel size of 3mm and a temporal resolution of 3s. This means
that currently one can expect to have several hundreds of images in an experimental
set.

5.1 Origins of the fMRI signal: the BOLD effect

The origins of the fMRI signal are still not very well understood. MRI machines can
be tuned to acquire images that measure different phenomena. We focus here on the
Blood Oxygen Level Dependent (BOLD) effect, which is the principal acquisition
mode used nowadays.

As skteched in section ??, brain activity translates into action potentials, which
correspond to the depolarization of the neuron membrane, which occurs through
the exchange of ions – essentially potassium K+ and sodium Na+ (see figure 5.1).

At the level of synapses, this information is exchanged through the release of
neurotransmitters that bind to receptor sites on post-synaptic terminals, yielding
the next neuron to depolarization. Recovery from neuronal signaling requires uptake
and repackaging of neurotransmitter and restoration of ionic gradients, all processes

39
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Figure 5.1: The ion exchanges corresponding to action potentials.

that consume Adenosin Triphosphate (ATP). ATP consumption, in turn, requires
a continuous supply of glucose and oxygen which is provided by Cerebral Blood
Flow (CBF)1. It was noticed quite early [12] that brain activity can be assessed by
the measurement of regional CBF. These is the effect measured eg with Positron
Emission Tomography (PET). The BOLD effect measured by fMRI is more subbtle.

It is important to note that while the oxygenated blood has basically the same
magnetic susceptibility as the surrounding brain tissues, deoxyhemoglobin (the de-
oxygenated hemoglobin) is paramagnetic and thus incurs a signal drop when its
rate increases. Brain activity increases the CBF, but actually this is more governed
by the glucose consumption than by the oxygen one. This means that the rate of
deoxyhemoglobin/oxyhemoglobin actually decreases, which induces an increase of
the MRI signal. In practice, the phenomenon is even more complicated as the CBF
increases, blood volume and blood velocity also increase, but the blood oxygenation
effect dominates. The signal increase whith current machine is of a few percent at
1.5T and 5-15% for 4T machines.

The BOLD signal is composed of CBF contributions from larger arteries and
veins, smaller arterioles and venules, and capillaries. Experimental results indicate
that the BOLD signal increases roughly as the square of the magnetic field strength.
Furthermore, it can be weighted to the smaller vessels, and hence closer to the active
neurons, by using larger magnetic fields. For example, whereas about 70% of the
BOLD signal arises from larger vessels in a 1.5 tesla scanner, about 70% arises from
smaller vessels in a 4 tesla scanner. This explains the race for larger field scanners:
a few 7 tesla commercial scanners have become operational, and experimental 8 and
9 tesla scanners are under development.

5.2 Image Acquisition and Experimental Design

Image acquisition and experimental design are closely coupled. Indeed, the experi-
mental design must be adapted to

1As an illustration, the brain receives 15% of the total cardiac output of blood, and yet accounts
for 2% of the body weight; in particular, the flow per gram tissue to gray matter is comparable to
that in the heart muscle, the most energetic organ in the body [4]. Yet the brain has no reserve
store of oxygen, and depends on continuous delivery by CBF.
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Figure 5.2: Physiological changes accompanying brain activation. Arrows indicate
the increase or decrease of the corresponding item and its magnitude. Functional
neuroimaging is largely based on the metabolism and flow changes in the lower three
blocks: the drop in oxygen extraction is the basis for the BOLD signal changes mea-
sured with fMRI, but the MR signal is potentially sensitive to blood flow, volume,
and velocity as well. This figure is taken from [4].
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5.2.1 Fast MRI sequences

Since functional imaging requires fast acquisition, some techniques have been devel-
oped for fast imaging, the most important being echo planar imaging (EPI). In this
case, the gradient are oscillated very rapidly, so that sufficient gradient echoes are
created to allow measurement of all the phase-encoding steps required for an image.
The full data for a low-resolution image are acquired from the signal generated by
one RF pulse. EPI requires strong gradients. An 2D image matrix of size 64 × 64
is acquired in about 30 to 100 ms (instead of a few minutes for a conventional
T2-weighted slice acquisition).

The acquisition of a 3D volume of data is the sequence of multiple slice acquisi-
tions, that can be sequential (ordered in the z direction) or interleaved (pair slices
acquired before odd slices)2.

5.3 Data Preprocessing

We now consider a four-dimensional dataset acquired under a given experimental
paradigm. Each volume of data acquired at a given TR is called an image. A set
of sequentially acquired images is a run or a session. Many different sessions can
be acquired for a given dataset, with repetition of the same experimental paradigm
or not. The same experiment can be replicated on many subjects to allow for
neurophysiological inference.

5.3.1 Registration

Due to the motion of the subject during the experiment, images have to be regis-
tered, so that a given voxel unambiguously represents a brain area for all the images.
This involves two steps:

• Motion estimation: it is often assumed that the motion is rigid; this is only
approximately true due to the intrinsic artifacts of EPI images that induce
non-rigid distortions between images even if the subject motion is rigid. Un-
der this hypothesis, motion estimation boils down to the estimation of six
parameters (3 translations, 3 rotations). The most current method consists in
finding the rigid transformation that minimizes the grey level difference be-
tween consecutive images. This simple method has been shown to introduce
artifacts, like spurious task-related motion estimates. More robust methods
based on the principle of M-estimator have been designed.

• Motion correction: this step should be performed only when the estimated
motion is non-negligible with respect to the voxel size, since a reinterpolation
of the data has ill-controlled effects on the data content. The usual method
is a trilinear interpolation of the data that takes into account the motion
estimates.

2Direct 3D acquisition schemes have also been designed. They offer higher Signal to Noise
Ratio (SNR), but they do not allow for fast imaging procedures.
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Following motion estimation and correction, a step of spatial normalization
can be performed: this consists of coregistering the functional images with a MR
anatomical image of the same subject or with a template (this is of frequent use
for multi-subjects studies), and then to interpolate the functional images into the
template. In that case, the displacement field is considered as non-rigid, yielding a
heavy computational load. Care should be taken when employing this procedure,
because:

• The registration between images or different modalities and/or templates is
very difficult. It requires non-rigid deformations (e.g. spatial stretching of the
data). The effect on the resulting activation maps may be quite complex.

• This procedure dramatically increases the number of voxels of the dataset,
which in turn increases the computation load for the analysis.

• As any sub-sampling procedure, this simply increases the size of the images
without adding any information. It is actually simpler to interpolate the
final images (activation maps) into the template of interest instead of the raw
functional images.

5.3.2 Smoothing

Spatial smoothing has become a standard routine for fMRI data analysis for two
kinds of reasons:

• The increase of the SNR: smoothing the data spatially increases the SNR in
the sense that it reduces the effect of the spatially uncorrelated noise with
respect to a priori more structured signal of interest. This is of course at
the expense of spatial precision (the spatial precision of functional images is
quite coarse. In particular, the average grey matter width is not much greater
than the typical voxel size, so that it is unavoidable that isotropic smoothing
mixes tissues of different nature). The debate about spatial smoothing yields
a tradeoff between bias (the precision in activation localization) and variance
(SNR gain by smoothing). However, it is clear that an optimal smoothing
scheme is not the isotropic gaussian filter employed usually, but is brought by
adaptative filters.

• The interpretation of the images as gaussian random fields (under the null
hypothesis that no activation pattern is present): in the SPM software, acti-
vation significance is justified by assuming that the residual of the regression
model can be treated as a gaussian random field with a certain smoothness.
This is probably not true if one considers the original images, but becomes
likely after the smoothing process.

It is important to consider that intrinsic spatial correlation is embedded in raw
fMRI datasets. In particular, though many functional brain areas are largely sub-
voxel, there is a consensus that reliable activation foci should encompass clustered
voxels. Smoothing is then simply a means for canceling spatially high frequency
noise in the data. Though this statement is correct, this intrinsic spatial correlation
is certainly not isotropic.
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5.3.3 Removing global effects

This consists in subtracting to all voxel time courses the mean of each image. This
preprocessing is aimed at removing some physiological effects that are assumed to be
global over the image. However, this is at the risk of removing activation patterns,
if the latter have an influence on the global mean. This is actually the case, and
recent studies have enlightened the bias induced by this procedure [7].

5.3.4 Selecting voxels of interest

Signals of interest are expected only in the grey matter. It is thus tempting to ease
the analysis by selecting only the anatomically relevant voxels for further analysis.
More simply, one often uses a mask that keeps the brain voxels. A simple threshold
on the T2 averaged image of the sequence is often sufficient. More sophisticated
methods can be employed, but they are integrated in the general framework of
signal analysis.

5.3.5 Detrending

In the temporal part of the dataset also there is the presence of intrinsic correla-
tions. Although some methods use a smoothing in the temporal domain, this is not
a systematic usage in fMRI data processing. In fact, the presence of temporal corre-
lations is probably related to the intrinsic object of the measurement, in particular
the presence of biological rhythms (respiratory, cardiac) that some authors propose
to correct. But there is more consensus on the presence of trends in the signal,
which induces high temporal correlation (these effects have typically low frequency)
in the dataset. Their cancellation is thus important to enforce the stationarity hy-
pothesis, which is fundamental in the analysis of the data. This is performed by
removing the low frequencies of the signal, or by estimating adaptively the trend,
or by fitting a wavelet basis.

A practical method is the removal from each voxel-based signal of a fitted low
frequency approximation:

xdetrend(t) = x(t) − (x ∗ g)(t) (5.1)

where g is e.g. a gaussian filter wider than the timing of the effects of interest.

5.3.6 Temporal registration or slice timing

Another source of artifacts in the interpretation of the data is the fact that all the
slices are not acquired at the same time, but at given fractions of the TR. This
effect is problematic when the sequence of events is quick (of the order of the TR).
In that case, it may be better to correct for this effect, that is to apply a kind of
temporal registration between the slices, so that their acquisition can be considered
as simultaneous for further study. This is currently done by preserving the spectrum
of the signal obtained at different voxels and shifting their phase. This method has
been popularized under the name of slice timing correction.

5.4 Generalized Linear Model



Chapter 6

Localizing cortical activity
from MEEG

Source localization from external EEG or MEG measurements is an ill-posed in-
verse problem. Ill-posedness in the sense of Hadamard can have three causes:
non-existence, non-uniqueness, and non-continuity with respect to a change in the
data. Uniqueness of the source distribution is a well-known problem: there exist
“silent sources” of EEG and MEG (see section 4.2.2). However, there are several
uniqueness results for the inverse source problem, in the case ideal case of perfect
measurements:

• If the source distribution Jp is modelled as a linear combination of isolated
dipoles,

Jp =

m
∑

k=1

~qk δrk
(r)

then m, ~qk and rk are uniquely determined by the electric potential V on the
whole outer surface (the scalp) [1].

• If Jp is modelled as a surfacic distribution, and normal to a prescribed surface
S: Jp = qn then the amplitude of the source distribution, q, is uniquely
determined, up to a constant, by perfect measurements of the electric potential
V on the whole scalp.

Even if the uniqueness of the source distribution giving rise to external measure-
ments can be proved in some cases, in practise, the number of sensors is limited,
their response is not perfect, their positions are not perfectly known. The geo-
metrical model is not exact either: the conductivity values are only approximately
known, and the sources do not necessarily correspond to the model. Therefore, in
practise, regularization is compulsory.

The principle behind all source reconstruction methods is to minimize a norm
of the difference between measured and simulated data:

C(Jp) =

∥

∥

∥

∥

(

Vmeas

Bmeas

)

−
(

V (Jp)
B(Jp)

)∥

∥

∥

∥

.
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The relationship between the simulated data (V,B) and the sources Jp may either
be explicit or implicit. The explicit relationship consists in computing the so-called
lead-field matrix, which relates the sources, discretized in the head volume, to the
electromagnetic field at the sensor positions. With a Boundary Element or Finite
Element Method, a lead-field matrix computation requires to invert the forward
problem matrix. In the case of an implicit relationship, the Poisson equation and
Biot-Savart relation are considered as constraints, and incorporated via the tech-
nique of Lagrange multipliers (see Appendix A.4, and section ??).

The sources can be modeled as the superposition of a small number of isolated
dipoles, whose number, positions, orientations and amplitudes must be estimated,
or as a spatial distribution of dipole parameters over a given region (distributed
source) which is discretized over a grid or a mesh.

In the case of isolated dipoles, several models can be chosen to constrain the
search. In particular, the spatio-temporal behavior of the dipoles fall into one of
three categories:

• moving dipole: dipole positions and orientations are both free to vary over
time,

• rotating dipole: positions are fixed but moment orientations are allowed to
vary,

• fixed dipole: positions and orientations are both constrained to be fixed.

A difficulty of dipole-based methods is to find the right number of dipoles: an
under-estimation will lead to a localization bias, whereas an over-estimation will
lead to superfluous dipoles, indistinguishable from the true dipoles, and modify the
localizations of the true dipoles.

After presenting the basic, pseudoinverse solution to mean-square minimization
in Section 6.1, non-linear dipole fitting methods are presented in Section 6.2. Sec-
tion 6.3 deals with MUSIC and Beamforming, two scanning methods, which do
not rely on an assumption on the number of dipoles. In Section 6.4, we deal with
reconstruction methods for distributed sources, where the number of unknowns is
far greater than the number of measurements.

6.1 Pseudoinverse solution

The lead-field matrix G relates the source amplitudes to the (ideal) sensor mea-
surements. In presence of additive measurement noise,

M = GJ + N . (6.1)

Let us make dimensions more explicit: suppose that the number of sensors (both
EEG and MEG) equals m, the number of time-points equals n and the source space
dimension equals p. Then (6.1) becomes:







M1(t1) . . . M1(tn)
...
. . .

...
Mm(t1) . . . Mm(tn)






=







G11 . . . G1p

...
. . .

...
Gm1 . . . Gmp













j1(t1) . . . j1(tn)
...
. . .

...
jp(t1) . . . jp(tn)






+ N ,
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and, denoting as J(ti) the column vector (j1(ti) . . . jp(ti))
T

and M(ti) the column

vector (M1(ti) . . . Mp(ti))
T
,

(M(t1), . . . ,M(tn)) = G (J(t1), . . . ,J(tn)) + N

The minimum norm solution seeks a source matrix J which minimizes the Frobenius
norm

‖M − GJ‖2
F = Tr

(

(M − GJ)T (M − GJ)
)

=
∑

i ‖M(ti) − GJ(ti)‖2

This problem is equivalent to finding the set {J(ti), i = 1 . . . n} which, for each i,
minimize

‖M(ti) − GJ(ti)‖2 = (M(ti) − GJ(ti))
T

((M(ti) − GJ(ti))

A simple computation of the gradient with respect to J shows that a minimizer Ĵ

of ‖M − GJ‖2 must satisfy

GT GĴ = GT M . (6.2)

If G has rank p, then GT G is invertible and

Ĵ =
(

GT G
)−1

GT M .

In the case of distributed sources, the source space dimension is generally very large
(typically 104), while the number of sensors is limited to a few hundred. Hence, G

is rank-deficient, and a minimizer must be selected among the solutions of (6.2).
The “Moore-Penrose pseudoinverse” selects the minimizer whose norm is minimum,

by imposing Ĵ to be orthogonal to Ker
(

GT G
)

. It is denoted

Ĵ =
(

GT G
)†

GT M . (6.3)

and is computed by Singular Value Decomposition (SVD), as explained in Ap-
pendix A.5.

6.2 Dipole fitting

Let us assume a limited number of dipolar sources with fixed position over a time
interval. For p dipoles, with position pi and moment qi = qiui, the relationship
between sources and measurements is of the form

M(t) =

p
∑

i=1

g(pi,ui) qi(t) + N(t) ,

or equivalently

M(t) = GQ(t) + N(t) ,
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where in this case the lead-field matrix G is

G =







g1(p1,u1) . . . g1(pp,up)
...

. . .
...

gm(p1,u1) . . . gm(pp,up)







It is possible to separate the direction parameter from the position parameter,
by decomposing the lead field over the unit basis: if the coordinates of ui in the
unit basis are (ux

i , u
x
i , u

x
i ) then gj(pi,ui) = gx

j (pi)u
x
i + gy

j (pi)u
y
i + gz

j (pi)u
z
i and

the product GQ can be rewritten:







gx
1 (p1) gy

1 (p1) gz
1(p1) . . . gx

1 (pp) gy
1 (pp) gz

1(pp)
...

. . .
...

gx
m(p1) gy

m(p1) gz
m(p1) . . . gx

m(pp) gy
m(pp) gz

m(pp)





























ux
1 q1
uy

1 q1
uz

1 q1
...

ux
p qp
uy

p qp
uz

p qp























The resulting lead field matrix G thus only depends on the position parameter.
Note: for magnetoencephalography (MEG) in a spherical head model, the measure-
ments do not depend on the radial component of the source, therefore only the two
tangential directions need to be computed at each position. The resulting lead field
matrix G has dimension m× 2p instead of m× 3p in the general case.

We suppose that

• the number of dipoles p is smaller than the number of sensors m;

• the lead field matrix G has full rank, thus GT G is invertible.

In section 6.1, we have presented the pseudoinverse solution of ‖M − GQ‖:

Q̂ = (GT G)−1GT M . (6.4)

The amplitude term Q is thus linearly related to the measurements, and easy to
compute, once the matrix G is known. The difficulty is to find the positions pi and
orientations ui of the dipolar sources. Applying G to both sides of (6.4) shows that

GQ̂ = G (GT G)−1GT M (6.5)

= PGM (6.6)

is the orthogonal projection of the measurements M on the range of G, which has
dimension 2p. Hence

‖M − GQ̂‖ = ‖M − PGM‖ (6.7)

6.3 Scanning methods

The methods presented in this section are called scanning methods because they
assume that the activated dipole(s) are located at a predefined set of positions. For
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example, the considered locations may belong to a regular sampling of the cortex
region. The dipole orientations are either assumed to be known or can be left
unconstrained. The scanning methods attempt to decide among the possible dipole
locations where it is the most appropriate to place the sources so as to best describe
some subset of the measurements (usually a small time window containing the events
of interest). The two methods presented here rely on different assumptions on the
model or on the measured signal and thus cannot be blindly used in all situations1.
They nonetheless give very stable results when the appropriate conditions are met.

Both methods presented here use a time-window of interest, which needs first
to be identified. The signal is also usually prewhitened.

6.3.1 MUltiple SIgnal Classification (MUSIC)

The MUSIC method, proposed in 1992, recovers the positions by scanning potential
locations, after having separated a “signal space” from a “noise space” by a Principal
Component Analysis (PCA) decomposition [14].

Assuming the sensor space to be of dimensionality m and the time window of size
n, an m × n measurement matrix Mk is formed for each trial k. As seen above,
and assuming, for the time being, that there is no noise, we have Mk = GQk,
where G and Qk are respectively matrices of sizes m × r and r × n. The number
of columns of G, r, is the number of parameters needed to describe the dipoles at
all the locations considered to form the matrix G. For example, assuming we have
p positions and that only the strengths of the dipoles are to be searched for (the
dipole orientations being given), then r = p. If orientations as well as orientations
are to be recovered, the r = 3p. Intermediate situations can also occur. MUSIC is
able to treat simultaneously various types of dipoles, but for simplicity we assume
here to have only one type of dipole search. Usually, it is assumed that p, and thus
r are small with respect to m and n.

MUSIC fundamentally relies on rank assumptions over the matrices G and Q. More
precisely, it is assumed that:

• The G matrix for p dipoles is full rank (i.e. of rank r) (Gain matrix assump-
tion).

• The correlation matrix RQ = E(QkQ
T
k ) matrix for p dipoles is full rank (i.e.

of rank r) (Asynchronous assumption).

• The noise is considered additive and temporally and spatially zero-mean white
noise with variance σ2 (Noise whiteness). When a good noise model can be
established, a prewhitening phase ensures that this is the case. Additionally
the signal and noise are assumed to be uncorrelated.

Denoting by Nk the m×n noise matrix at trial k, the noisy data Mk is given by

Mk = GQk + Nk. The auto-correlation matrix of the measurements E
(

MkM
T
k

)

,

1This is actually true of every localisation method.
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where E denotes the expectation across trials, can be written as:

E
(

MkM
T
k

)

= E
(

(GQk + Nk) (GQk + Nk)
T
)

,

E
(

MkM
T
k

)

= E
(

GQkQ
T
k GT

)

+ GE
(

QkN
T
k

)

+ E
(

NkQ
T
k

)

GT +E
(

NkN
T
k

)

,

E
(

MkM
T
k

)

= GRQGT + σ2I ,

since E
(

NkQ
T
k

)

= E
(

QkN
T
k

)

= 0 by the assumption that signal and noise are

uncorrelated. Since GRQGT is exactly of rank r with positive eigenvalue (by the
Gain matrix and the asynchronous assumptions), the r highest eigenvalues (and
therefore the first r higher singular values of M) correspond to the the signal part
of the matrix while the m − r smallest once should (in theory) be identical (equal
to σ2) and correspond to noise.

Using the best rank r approximation of E
(

MkM
T
k

)

thus allows the recovery of the

signal space. In practise, MUSIC approximates E
(

MkM
T
k

)

by 1
Nk
E (Mk)E (Mk)

T
,

where Nk is the number of trials, which is equivalent to work with the averaged sig-

nals. In the following, we denote by U either the eigenvectors of F = E
(

MkM
T
k

)

in the “exact” theory or the left singular vectors of F = E (Mk) when E
(

MkM
T
k

)

is approximated by the above formula. In both cases, the column vectors of U are
ordered in such a way that the eigenvalues or the singular values are in decreasing
order. The best rank r approximation of F in terms of the Frobenius norm is simply
given by the first r columns of U. Indeed, this corresponds to setting to zero the
m− r smallest eigenvalues or singular values of F (depending on the case).
By writing U = [UrUm−r], the signal and noise spaces are thus respectively
spanned by Ur and Um−r. By construction, these spaces are orthogonal and the
projectors PUr

= UrU
T
r and P⊥

Ur
= Um−rU

T
m−r = I − PUr

can be introduced.

Having identified the signal and noise spaces, the best source locations need to
be found. Considering the sub-matrix Gi corresponding to the columns of G that
are associated with dipole at position xi, the most appropriate columns are those
that best correspond to the subspace Ur. It is equivalent to say that the colums
of Gi should be as orthogonal as possible to Um−r (it is best to think in terms
of angles as otherwise deep sources corresponding to Gi of small norm would be
favored as their contribution to Um−r will automatically be smaller). Since the
matrix UT

m−r
Gi

‖Gi‖
basically contains all the cosines of all the angles between one

vector of the space spanned by Um−r and one vector of the space spanned by Gi,
minimizing the criterion:

C(xi) =
‖UT

m−rGi‖
‖Gi‖

,

is what we are looking for as it is equivalent to minimize the sum of the squares of
all these cosines. Equivalently, this criterion can be written as:

C(xi) =
‖UUT

m−rGi‖
‖Gi‖

=
‖Um−rU

T
m−rGi‖

‖Gi‖
=

‖P⊥
Ur

Gi‖
‖Gi‖

,
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as U preserves the norm and as UrU
T
m−r = 0.

In practise, the image 1
C(xi)

is formed and the traditionnal MUSIC method just

extracts p maxima from this image as the best locations for the dipoles. This selec-
tion scheme is however not very good as the p dipoles extracted may all explain the
same part of the signal. Imagine a signal built from the superposition of a super-
ficial source and a deeper one: the above selection scheme will have the tendency
to extract sources that all explain the superficial source as it tends to gives the
strongest signal, hiding thus the deeper source. For this reason a recursive version
of MUSIC called RAP-MUSIC (Recursively APplied MUSIC) has been proposed.
In this method, only a single maximum is extracted, and then the signal contribu-
tion of this source is substracted from the measurements. The RAP-MUSIC method
is then re-applied to this new measurement set.

The advantage of MUSIC over traditional dipole-fitting methods is that it only
requires to scan for a single dipole position at a time. Difficulties linked with the
MUSIC method are

• its inability to handle spatially distinct but simultaneous sources,

• the distinction between fixed and rotating sources (not described in this text),

• the evaluation of the rank of the gain matrix.

6.3.2 Beamforming methods

Beamforming methods are easier to implement than MUSIC, but rely on an even
more restrictive assumption: that sources which are spatially distinct are temporally
uncorrelated. The relation between the source amplitudes J(xi) = [J1(xi)J

2(xi)J
3(xi)]

and the measurements M is given by:

M =

p
∑

i=1

G(xi) · J(xi) + N . (6.8)

The mean of the source amplitude is denoted J(xi), and the covariance of the source
at xi is defined by

CJ (xi) = E{[J(xi) − J(xi)] [J(xi) − J(xi)]
T }

This covariance is a 3 × 3 matrix whose trace will be used to measure the strength
of the source.

Some hypotheses are introduced:

• the noise N is zero-mean, with covariance CN .;

• the sources are decorrelated: if i 6= k, E{[J(xi) − J(xi)] [J(xk) − J(xk)]T } is
the 3 × 3 null matrix;

• the noise and the source amplitudes are decorrelated
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Under these hypotheses, one can express the mean and covariance of the measure-
ments as:

M = E{M} =

p
∑

i=1

G(xi) · J(xi)

CM = E{[M − M] [M − M]T } =
∑p

i=1G(xi)CJ (xi)G(xi)
T + CN

The concept behind beamforming is, for a given spatial position x0, to apply a
spatial filtering to the measurements, which filters out sources which do not come
from a small volume around x0. Let W (x0) be a m × 3 matrix representing the
spatial filter: the source amplitude in the vicinity of x0 will be estimated by

S(x0) = (W (x0))
T M . (6.9)

An ideal narrow-band filter should satisfy (W (x0))
TG(x) = I if x = x0 and

(W (x0))
TG(x) = 0 if not. With such constraints, in the absence of noise, the

reconstructed amplitudes S(x0) would exactly match the source amplitudes J(x0).
However, such an ideal filter response is impossible to achieve with a limited number
of measurements m, and a different set of constraints must be sought.

Using (6.8) and (6.9), it is clear that

S(x0) =

p
∑

i=1

(W (x0))
TG(xi)J(xi) + (W (x0))

T N

and taking the covariance of the above expression,

CS(x0) =

p
∑

i=1

(W (x0))
TG(xi)CJ (xi)(G(xi))

TW (x0) + (W (x0))
TCNW (x0)

= CJ(x0) +
∑

xi 6=x0

(W (x0))
TG(xi)CJ (xi)(G(xi))

TW (x0) + (W (x0))
TCNW (x0)

The estimated source strength Tr(CS(x0)) must match Tr(CJ (x0)). Given the
above expression, Tr(CS(x0)) − Tr(CJ (x0)) is a positive quantity, and one must
therefore seek the W (x0) which minimizes it.

Given that Tr(CJ (x0)) is independent of W (x0), the beamforming method seeks
W (x0) which minimizes Tr(CS(x0)) = Tr((W (x0))

TCMW (x0)), under the con-
straint that (W (x0))

TG(x0) = I.
Using a Lagrange multiplier approach, let L denote a 3×3 matrix of multipliers

and introduce the Lagrangian

L(W,L) = Tr(WTCMW + (WTG− I)L) .

At the saddle-point (W,L) of L,

W = − 1
2C

−1
M GL .

Substituting this expression in GTW = I yields

L = −2(GTC−1
M G)−1
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therefore
W = C−1

M G (GTC−1
M G)−1

and
WT = (GTC−1

M G)−1GTC−1
M

in which we can recognize an expression similar to a “pseudoinverse” of G.
Given the above expression for the spatial filter, computing the estimated source

strength Tr(CS(x0)) leads to considerable simplifications: indeed,

̂V arJ(x0) = Tr(CS(x0)) = Tr
(

(G(x0)
TC−1

M G(x0))
−1
)

(6.10)

From this expression, it is clear that the spatial resolution of the reconstruction
depends on the spatial resolution of the lead field matrices G(x0), which in turn
depends on the number of sensors and their positions, and on the source positions
(superficial sources better resolved than deep sources).

In fact, supposing the measurements to be only due to noise, and CM = CN = I:
in this case,

̂V arJ(x0) = Tr
(

(G(x0)
TG(x0))

−1
)

;

at positions x0 far away from the sensors, (G(x0)
TG(x0)) only has small elements,

and Tr
(

(G(x0)
TG(x0))

−1
)

can become unduly large, since there is no activity
present in this model. To compensate for this, a renormalization is introduced:

̂V arJ(x0) =
Tr
(

(G(x0)
TC−1

M G(x0))
−1
)

Tr
(

(G(x0)TC−1
N G(x0))−1

) .

In conclusion, beamformers offer a rapid exploration of the source space, under strict
assumptions of decorrelation between different sources, and between the sources and
the noise.

6.4 Estimating distributed activity: imaging ap-
proach

In this section, we consider the source to be distributed over a spatial region which
describes the cortical mantle, its orientation fixed normal to the cortical sheet, and
the source amplitude is to be estimated. This approach was first proposed by Dale
and Sereno [6]. In this source model, tens of thousands degrees of freedom are
typically needed to represent a source distribution on the surface of the cortex.

When the gain matrix G can be computed for such source models, it is a rect-
angular matrix (p columns and m lines with p≫ m). We have seen in Section 6.1 a
Moore-Penrose pseudoinverse solution to the source estimation problem (6.3). This
solution unfortunately has the disadvantage of being unstable with respect to mea-
surement noise and to model errors. This can be seen by considering the condition
number of the Moore-Penrose pseudoinverse. Let σ1 be the largest eigenvalue of
GT G, and σr its smallest non-null eigenvalue: the condition number of (GT G)† is
σ1

σr
. Inaccuracies due to noise in the measurements can potentially be amplified by

this quantity.
The purpose of the regularization which is presented in the next section is to

lower this condition number, in order to provide stability of the reconstructed source.
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6.4.1 Tikhonov regularization

Instead of minimizing ‖M − GJ‖2, the Tikhonov-regularized problem adds a reg-
ularity term to the cost function to be minimized:

Cλ(J) = ‖M − GJ‖2 + λ‖J‖2 .

The L2 norm is the simplest regularization term which may be introduced, but
many variants exist. To minimize Cλ(J), a necessary condition is that the gradient
of Cλ with respect to J vanishes thus

(GT G + λ I)Jλ = GT M .

The addition of the regularization term has made the matrix invertible, and the
solution to the above equation is therefore Jλ = (GT G + λI)−1GT M. Here the
condition number is σ1+λ

λ
which is lower than the condition number of the pseu-

doinverse as soon as λ > σr.
When the number of sources is much greater than the number of sensors, it is

computationally efficient to make use of the following trick:

Jλ = (GT G + λ I)−1GTM

= GT (GGT + λ I)−1M

6.4.2 Selecting the regularization parameter: the L-curve

In the Tikhonov-type regularization, a parameter λ has been introduced, which
must be chosen carefully: if λ is too small, the reconstruction will remain unstable,
whereas if λ is too large, the measurements will no longer be properly explained.
Selection of the regularization parameter can be performed with the help of the L-
curve, which represents in a 2D plane, log ‖M−GJλ‖ versus log ‖Jλ‖, for different
values of the parameter λ. The optimal λ is the one for which the curve displays a
corner [11].



Appendix A

Useful mathematic formulae
and lemma

A.1 Differential operators in R3

The nabla operator is a notation representing ∇ =





∂x

∂y

∂z



. The gradient of a scalar

field a(x, y, z) is a vector field defined by ∇a =





∂a
∂x
∂a
∂y
∂a
∂z





Given a vector field b, whose coordinates in the canonical basis of R3 are the

three scalar fields bx, by and bz: b =





bx
by
bz



, and The divergence of b is denoted

∇ · b.

∇ · b =
∂bx
∂x

+
∂by
∂y

+
∂bz
∂z

The divergence of the gradient is called the Laplacian:

∆a = ∇ · ∇a .

The curl of vector field b is denoted ∇× b.

∇×∇× b = ∇(∇ · b) − ∆b (A.1)

where ∆b is a vector field whose coordinates are the Laplacian of the coordinates
of b.

A.1.1 Conversion from volume to surface integrals

Let Ω be a volume in R3 and ∂Ω its boundary. Let n be an outward-pointing normal
field defined on the boundary. Integrating the divergence of a vector field ~f on Ω is

55
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equivalent to summing the flux ~f · n over the boundary:
∫

Ω

∇ · ~f dr =

∫

∂Ω

~f · n ds (A.2)

The above identity is called the Stokes theorem. In particular, if ~f = ∇h, this
implies that

∫

Ω

∆ dr =

∫

∂Ω

∂h

∂n
ds . (A.3)

A similar relationship holds for the curl of a vector field ~f , ∇× ~f :
∫

Ω

∇× ~f dr =

∫

∂Ω

n × ~f ds . (A.4)

In the above surface integral, it is noteworthy that the order is n× ~f and not ~f ×n.

A.1.2 The Green function for the Laplacian in R3

The Green function GL for the Laplacian in R3 is a solution in R3 of:

∆GL(r) = δ0(r) ,

where δ0 denotes the dirac mass positionned at the origin of the space.

Theorem A.1. The Green function for the Laplacian in R3 with radial symmetry

is:

GL(r) = − 1

4π‖r‖ .

Proof. To find a solution to this equation, we integrate it over a volume Ω that
contains the origin of the space:

∫

Ω

∆GL(r) dr =

∫

Ω

δ0(r) dr = 1 .

Applying the Stokes theorem on the left hand side of this equation leads to:
∫

∂Ω

∇GL(r) · n ds = 1

Let us call r = ‖r‖ and look for a solution with radial symmetry GL(r) = u(r). In
this case, the gradient ∇GL(r) · n is a constant ur(R) on each sphere of radius R.
Applying the above formula to such a spherical domain Ω gives:

4πR2ur(R) = 1 .

Thus:

ur(r) =
1

4πr2
,

and:

GL(r) = u(r) = − 1

4πr
.
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A.2 The Poincaré and Hölder inequalities

Lemma A.1. Hölder inequality: For u ∈ L2(Ω) and v ∈ L2(Ω), we have:

(∫

Ω

|uv| dr
)2

≤
∫

Ω

u2 dr

∫

Ω

v2 dr

Proof. Since |uv| ≤ 1
2

(

u2 + v2
)

, we have:
∫

Ω

|uv| dr ≤ 1

2

(∫

Ω

u2 dr +

∫

Ω

v2

)

dr

Replacing u by λu in the previous formula, we have:

∀λ > 0

∫

Ω

|uv| dr ≤ 1

2

(

λ

∫

Ω

u2 dr +
1

λ

∫

Ω

v2 dr

)

≤ min
λ>0

1

2

(

λ

∫

Ω

u2 dr +
1

λ

∫

Ω

v2 dr

)

Since the minimum of λA+ 1
λ
B for λ > 0 is obtained for λ =

√

B
A

, we get:

∫

Ω

|uv| dr ≤
√

∫

Ω

u2 dr

√

∫

Ω

v2 dr

Remark A.1. Applying the Hölder inequality for v = 1, we obtain:
(∫

Ω

|u| dr
)2

≤ vol(Ω)

∫

Ω

u2 dr . (A.5)

Lemma A.2. Poincaré inequality: If Ω is bounded then there is a constant

C(Ω) > 0 such that

∀w ∈ H1
0 (Ω)

∫

Ω

w2(r) dr ≤ C(Ω)

∫

Ω

‖∇w(r)‖2 dr

Proof. The proof is established here only in the 1D case for Ω = [a, b]. Since
w ∈ H1

0 (Ω), w(a) = w(b) = 0. We have:

|w(x)| = |w(x) − w(a)| =

∣

∣

∣

∣

∫ x

a

w′(r) dr

∣

∣

∣

∣

≤
∫ x

a

|w′(r)| dr ≤
∫ b

a

|w′(r)| dr

Integrating the previous equation squared yields:

∫ b

a

w2(r) dr ≤ (b− a)

(

∫ b

a

|w′(r)| dr
)2

Using Eq. A.5 for the right hand side of the previous equation, we get:
∫ b

a

w2(r) dr ≤ (b− a)2
∫ b

a

w′(r)2 dr
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A.3 Integral equalities

On a face f defined by the vertices Vk , k = 1..d + 1, given a base function wi for
some index i, the integral Ai =

∫

f
wi(r)dr is zero (because wi = 0 over f) if the

index i does not correspond to one of the vertices defining f . Otherwise, without
loss of generality, we assume that i corresponds to the vertex V1.

Parameterizing the space by the affine basis defined by the vertices Vk, we have

r =
(

1 −∑d
j=1 λj

)

Vd+1 +
∑d

j=1 λjVj , where λ = (λj , j = 1 . . . d) is the vector

of affine parameters. r is in the domain delimited by f iff all the coefficients in
the previous formula are between 0 and 1. Furthermore, dr = |V1 . . .Vd+1| dλ (the
determinant is written with homogenous coordinates for the vectors Vk).

Ai =

∫

f

|r V2 . . .Vd+1|
|V1 . . .Vd+1|

dr

=

∫ 1

0

∫ 1−λ1

0

. . .

∫ 1−
Pd−1

i=1
λi

0

∣

∣

∣

∣

∣

∣



1 −
d
∑

j=1

λj



Vd+1 +

d
∑

j=1

λjVj V2 . . .Vd+1

∣

∣

∣

∣

∣

∣

dλd . . . dλ1

= |V1 . . .Vd+1|
∫ 1

0

∫ 1−λ1

0

. . .

∫ 1−
Pd−1

i=1
λi

0

λ1 dλd . . . dλ1

=
1

p!
|V1 . . .Vd+1|

∫ 1

0

λ1

∫ 1−λ1

0

. . .

∫ 1−
Pd−p−1

i=1
λi

0

(

1 −
d−p
∑

i=1

λi

)p

dλd−p . . . dλ1

=
1

(d− 1)!
|V1 . . .Vd+1|

∫ 1

0

λ1(1 − λ1)
d−1dλ1

=
1

(d+ 1)!
|V1 . . .Vd+1|

=
1

d+ 1
V olume(f)

Similarly :

Ak
i =

∫

f

( |r V2 . . .Vd+1|
|V1 . . .Vd+1|

)k

dr

= |V1 . . .Vd+1|
∫ 1

0

∫ 1−λ1

0

. . .

∫ 1−
Pd−1

i=1
λi

0

λk
1 dλd . . . dλ1

=
1

(d− j)!
|V1 . . .Vd+1|

∫ 1

0

λk
1

∫

. . .

∫ 1−
Pj−1

i=1
λi

0

(1 −
j
∑

i=1

λj)
d−j dλj . . . dλ1

=
1

(d− 1)!
|V1 . . .Vd+1|

∫ 1

0

λk
1(1 − λ1)

d−1dλ1

=
1

(d− 1)!
|V1 . . .Vd+1|

k!(d− 1)!

(d+ k)!

=
k!d!

(d+ k)!
V olume(f)
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Bkl
i =

∫

f

( |r V2 . . .Vd+1|
|V1 . . .Vd+1|

)k ( |V1 r V3 . . .Vd+1|
|V1 . . .Vd+1|

)l

dr

= |V1 . . .Vd+1|
∫ 1

0

∫ 1−λ1

0

. . .

∫ 1−
Pd−1

i=1
λi

0

λk
1λ

l
2 dλd . . . dλ1

=
1

(d− 2)!
|V1 . . .Vd+1|

∫ 1

0

∫ 1−λ1

0

λk
1λ

l
2(1 − λ1 − λ2)

d−2 dλ2dλ1

=
1

(d+ 2)!
|V1 . . .Vd+1| for k = l = 1

A.4 Minimization under contraints: the Lagrange
multiplier approach

Suppose one want to solve a constrained minimisation problem such as:

x = argmin
x,f(x)=O

C(x) , (A.6)

where x can represent a single or vectorial variable, C(x) is the criterion to be
minimized and f(x) = 0 represents a constraint on the solution x (again this con-
straint can be either scalar or vectorial). For simplicity, only the scalar version of
the problem is developped hereafter. The Lagrange multiplier approach states that
problem A.6 can be expressed equivalently as the un-constrained problem:

x = argmin
x,λ

C(x) − λf(x); , (A.7)

The normal equations associated to problem A.7 are:

{

C ′(x) − λf ′(x) = 0 ,
f(x) = 0 .

which clearly shows that the constraint f(x) = 0 is taken into account for the
solution of the minimization problem. λ is called the Lagrangian parameter. In the
vectorial case, as many Lagrangian parameters as constraints must be introduced
and the term λf(x) is replaced by a scalar product.

A.5 Singular Value Decomposition

A basic theorem of linear algebra states that any real M×N matrix A with M ≥ N
can be written as the product of an M ×N column orthogonal matrix U, an N ×N
diagonal matrix D with non-negative diagonal elements (known as the singular

values), and the transpose of an N ×N orthogonal matrix V [9]. In other words,

A = UDVT =

N
∑

i=1

diUiV
T
i , (A.8)
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where di refers to the i-th non-zero element of a diagonal matrix D and Mi des-
ignates the i-th column of a matrix M (applied here to the matrices U and V).
The singular values are the square roots of the eigenvalues of the matrix AAT (or
AT A since these matrices share the same non-zero eigenvalues) while the columns
of U and V (the singular vectors) correspond to the eigenvectors of AAT and AT A

respectively. As defined in Eq.(A.8), the SVD is not unique since:

• It is invariant to arbitrary permutations of the singular values and their corre-
sponding left and right singular vectors. Sorting the singular values (usually
by decreasing magnitude order) solves this problem unless there exist equal
singular values.

• Simultaneous changes in the signs of the vectors Ui and Vi do not have any
impact on the leftmost part of Eq.(A.8). In practice, this has no impact on
most numerical computations involving the SVD.

In the case where M < N , the above theorem can be applied to AT yielding
basically the same result, with the matrices D and U being M ×M and matrix V

being M ×N .

If A is considered as a linear operator from a vector space EN of dimension N to a
vector space EM of dimension M , then SVD can be interpreted as chosing specific
orthogonal bases for EM (given by U eventually completed if non square) and EN

(given by V eventually completed if non square), such that A is diagonal (given by
D) when expressed in the coordinate frames associated with those bases.

If A has null singular values (ie D has null diagonal elements), then this means
that A is singular. Its rank R is exactly equal to the number of non-null singular
values. From Eq. (A.8) is then possible to obtain a reduced form of the SVD, in
which UR, DR and VR are respectively M ×R, R×R and N ×R matrices yielding
the general formula:

A = URDRVT
R =

R
∑

i=1

dRiURiVR
T
i .

The matrices UR, DR, VR are obtained by taking the columns of matrices U, D, V
corresponding to the non-null elements di. Thus, UR and VR provide respectively
orthogonal bases of the image of A and of the orthogonal to the kernel of A.

Standard libraries such as lapack provide efficient ways of computing the SVD of
a matrix A without having to rely on the matrices AAT and AT A (which is an
advantage for both the numerical stability of the result and the computational
burden). [9] describes the algorithms for computing such a decomposition. Usually
singular values are ordered by decreasing order to remove the permutation ambiguity
depicted above.

A.5.1 Moore-Penrose pseudoinverse

If the matrix A is square and invertible, its inverse is very easily obtained as A−1 =
VD−1UT . When some singular values are null, D−1 does not exist, but it is still
possible to define D† as the diagonal matrix such that:



A.5. SINGULAR VALUE DECOMPOSITION 61

d†i =

{

1/di di 6= 0

0 di = 0
(A.9)

The N ×M matrix A† defined as:

A† = VD†UT ,

is defined whatever is the matrix A (even for non-square and non-invertible ma-
trices) and is called the Moore-Penrose pseudoinverse of matrix A. From the con-
sideration about the reduced SVD, it can be seen that basically the pseudo inverse
behaves as a regular inverse between the sub-spaces defined by UR and VR and
has the same kernel as the original matrix A.

Actually, the Moore-Penrose pseudoinverse can be defined as the unique N ×M
matrix A† that satisfies the following relations:

AA†A = A (A.10)

A†AA† = A† (A.11)
(

AA†
)∗

= AA† (A.12)
(

A†A
)∗

= A†A (A.13)

where A∗ is the conjugate transpose of A. Equation (A.10) simply states that even
if AA† is not the identity, its restriction to the image of A (defined by its column
vectors) is the identity. Equation (A.11) states that A† is a weak inverse of A for
the multiplicative semigroup. Equations (A.13) and (A.13) state respectively that
AA† and A†A are Hermitian matrices. Another property of interest for us is:

A† = lim
λ→0

(

AT A + λI
)−1

AT = lim
λ→0

AT
(

AAT + λI
)−1

.

Various other properties of the Moore-Penrose pseudoinverse and some proofs of
the above claims can be found from
http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse.

A.5.2 SVD and least-squares problems

Singular Value Decomposition is an important decomposition for least-squares meth-
ods because of the orthogonal properties of the matrices U and V.

Indeed, if one has to solve the problem:

x = argmin
x,‖x‖=1

‖Ax‖2 = argmin
x

‖Ax‖2

‖x‖2
. (A.14)

Lagrange multiplier (see section A.4) are used to solve this problem. The above
minimisation is thus equivalent to solving the problem:

x = argmin
x,λ

‖Ax‖2 − λ
(

‖x, ‖2 − 1
)

.

http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
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Writing the normal equations of this problem yields:

{ (

AT A − λI
)

x = 0
‖x, ‖2 = 1

Thus the solution x is an eigenvector of AT A. In such a case, the value of the cri-
terion is precisely the corresponding eigenvalue. Since singular values and singular
vectors of A are precisely the eigenvalues and eigenvectors of AT A, the above prob-
lem is thus minimized for the right singular vector corresponding to the smallest
singular value of A. Indeed, introducing the SVD of A yields1:

x = argmin
x,‖x‖=1

‖Ax‖2

= argmin
x,‖x‖=1

‖UDVT x‖2

= argmin
x,‖x‖=1

‖DVT x‖2 since U is an orthogonal matrix

= argmin
x′,‖x′‖=1

‖Dx′‖2 with x′ = VT x and since VT is an orthogonal matrix

The last two transforms are true since orthogonal transforms (corresponding to
orthogonal matrices) preserve the norm, which means that ‖Uz‖ = ‖z‖ and that
VT maps the unit sphere to itself. Assuming that the smallest singular value has
index l, then the solution to this last problem is x′ = el (the vector with all zero
components except at position l where the coordinate is 1). Consequently, the
solution x = Vx′ = Vel = Vl. The solution of th problem is thus given by Vl the
l-th column vector of V, where the index l corresponds to the index of the smallest
singular value dl.

1Here, the SVD of an M × N matrix A is written in such a way that the matrices U, V and
D are respectively of sizes M × M , N × N and M × N . This can always be done by completing
U and V with some addtional orthogonal columns and D with zero columns or lines (depending
on whether M < N or M > N)
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