Confluence of singular fibers on rational elliptic surfaces

Mathijs Wintraecken

Mathematical Institute Utrecht University

Oktober 2009

Universiteit Utrecht Mathematical Institute Utrecht University

Mathijs Wintraecken

Outline

Results

Theorem

Of all confluences to Singular Fibers of Kodaira type II, III and IV, superficially allowed by conservation of the Euler number, the following occur:

Moreover the confluence which does not occur namely $\mathrm{IV}\to 2I_2$ is obstructed by monodromy considerations.

Theorem

Every type of confluence of singular elliptical fibers on a rational elliptical surface of type I_{b_i} into a singular fiber of type I_b with $b = \sum b_i$ occurs.

Elliptic curves

Elliptic curves

An elliptic curve C is Riemann surface of genus 1. We shall now give two equivalent ways of describing a Riemann surface:

- $C \simeq \mathbb{C}/P$, for some Lattice *P*.
- *C* is the solution curve of the equation $y^2 = 4x^3 g_2x g_3$ in affine coordinates, with $g_2^3 27g_3^2 \neq 0$.

$\mathcal{C}\simeq\mathbb{C}/\mathcal{P}$

- Pick a nonzero holomorphic vector field v.
- (c, t) → e^{vt}(c) : C × C → C is a complex analytic action of C on C, with one orbit
- $P = \{t \in \mathbb{C} | e^{tv}(c) = c\}$ (indep of c)
- Induces $\Phi : \mathbb{C}/P \to C$ a complex analytic diffeomorphism.
- *P* has a \mathbb{Z} -basis p_1, p_2 , which is an \mathbb{R} -basis of \mathbb{C} .

C as a solution curve

Consider the Weierstrass p-function

$$\wp(t) \equiv t^{-2} + \sum_{\rho \in P \setminus \{0\}} ((t - \rho)^{-2} - \rho^{-2})$$

lf

$$g_2 = g_2(P) = 60 \sum_{p \in P \setminus \{0\}} p^{-4}$$
 $g_3 = g_3(P) = 140 \sum_{p \in P \setminus \{0\}} p^{-6},$

we have $\wp'(t)^2 - 4\wp(t)^3 + g_2\wp(t) + g_3 = 0$.

$$\wp'(t)^2 - 4\wp(t)^3 + g_2\wp(t) + g_3 = 0$$

Let $\pi : t \mapsto [1 : x : y] = [1 : \wp(t) : \wp'(t)]$ then:

•
$$\pi(\mathbb{C}/P) \subset D \equiv \{ [1:x:y] | y^2 = 4x^3 - g_2x - g_3 \}$$

•
$$\pi'(t) \neq 0 \Rightarrow \pi(\mathbb{C}/P)$$
 open

•
$$\mathbb{C}/P$$
 compact $\Rightarrow \pi(\mathbb{C}/P)$ compact

 $\Rightarrow \pi$ is a holomorphic covering map.

$$\wp(t) = t^{-2} + \sum_{\rho \in P \setminus \{0\}} ((t - \rho)^{-2} - \rho^{-2})$$

 \wp has only poles in $0 + P \Rightarrow \pi$ maps only 0 + P to $\infty \implies \mathbb{C}/P$ covers *D* but once, π is a diffeomorphism. Smoothness \Rightarrow The geometric discriminant $\Delta \equiv g_2^{-3} - 27g_3^{-2} \neq 0$.

Elliptic surfaces

Definition of Elliptic surfaces

 $\varphi: S \rightarrow C$ non-constant proper analytic map.

 $T_s \varphi \neq 0$

 $T_s \varphi = 0$

Regular Singular notation $S^{\rm reg}, C^{\rm reg}$ $S^{\text{sing}}, C^{\text{sing}}$ tangent map Fiber Elliptic curve (donut) Element Kodaira's list (failed donut/misbaksel)

Mathijs Wintraecken

Kodaira's classification

We make the following technical assumptions: *S* is a relatively minimal elliptical surface without multiple singular fibers.

Monodromy

The monodromy is unique up to conjugation with elements of $SL(2,\mathbb{Z})$, because we can pick any \mathbb{Z} -basis of *P* we like.

Universiteit Utrecht Mathematical Institute Utrecht University

Туре	Intersection diagram	Monodromy matrix	Euler number
Ib	$A_{b-1}^{(1)}$	$ \left(\begin{array}{cc} 1 & b\\ 0 & 1 \end{array}\right) $	b
I_b^*	$D_{b+4}^{(1)}$	$\left(\begin{array}{cc} -1 & -b \\ 0 & -1 \end{array}\right)$	<i>b</i> +6
Π	A ₀ ⁽¹⁾	$\left(\begin{array}{rrr} 1 & 1 \\ -1 & 0 \end{array}\right)$	2
Π^*	$E_8^{(1)}$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right)$	10
III	A ₁ ⁽¹⁾	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	3
III^*	$E_7^{(1)}$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	9
IV	A ₂ ⁽¹⁾	$\left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right)$	4
IV*	$ E_6^{(1)}$	$\left(\begin{array}{rrr} -1 & -1 \\ 1 & 0 \end{array}\right)$	8

The Weierstrass model

We now write every regular fiber as a solution curve to the equation $v^2 = 4x^3 - g_2x - g_3$, where g_2 and g_3 depend on c. So we can more or less describe a (relatively minimal) elliptical surface (without multiple singular fibers) by giving $g_2(c)$ and $g_3(c)$, where Kodaira Type | Order zero of g_2 of g_3 of Δ , Euler # \geq 0 \geq 0 0 I₀ 0 $I_{b}, b > 1$ 0 b $\stackrel{I_0^*}{I_b^*},\,b\geq 0$ ≥ 3 3 \ge 2 6 2 b+6Π \geq 1 2 \geq 4 П* 5 10 1 > 2 Ш 3 3 \ge 5 9 Ш* 2 \geq 2 IV 4 4 IV* > 3 8

An elliptic surface is called rational if

$$\sum$$
 Euler $\# = 12$.

We may write

$$g_2(z) = \sum_{i=0}^4 g_{2,i} z^i$$
 $g_3(z) = \sum_{i=0}^6 g_{3,i} z^i,$

locally (over $\hat{\mathbb{C}}$, *z* is an affine coordinate).

• Perturbing $g_{2,i}$ and $g_{3,i}$ gives a family of elliptic surfaces.

•
$$eta(au) \in (oldsymbol{g}_{\mathsf{2},i},oldsymbol{g}_{\mathsf{3},i})$$
 curve.

 Along β the singular fibers in the elliptic surfaces can merge: Confluence.

The monodromy of the singular fibers before and after confluence are related as follows

$$M_{S_c} = M_{S_{c_{\sigma(1)}}} \cdot \ldots \cdot M_{S_{c_{\sigma(N)}}}.$$

Universiteit Utrecht Mathematical Institute Utrecht University

Mathijs Wintraecken

Mathijs Wintraecken

Resultants

Resultants

Consider f and g polynomials in one variable.

$$f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$$

$$g(x) = b_0 x^m + b_1 x^{m-1} + \ldots + b_m$$

f and g have (at least) N common zeros if and only if

h(x)f(x)=k(x)g(x),

for h(x) and k(x) polynomials of degree m - N and n - N.

$$h(x)f(x)=k(x)g(x),$$

where

$$f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$$

$$g(x) = b_0 x^m + b_1 x^{m-1} + \ldots + b_m.$$

If we write

$$h(x) = c_0 x^{m-N} + c_1 x^{m-N-1} + \ldots + c_{m-N},$$

$$k(x) = d_0 x^{n-N} + d_1 x^{n-N-1} + \ldots + d_{n-N},$$

we find equations for the coefficients of the polynomials.

This may be written in matrix form

Linear algebra yields that this equation has solutions if and only if all determinants of $(m + n - 2N + 2) \times (m + n - 2N + 2)$ submatrices are zero. If N = 1 the single discriminant is called the resultant, denoted by R(f, g).

The resultant of f and f' is related to the discriminant of a polynomial:

$$R(f,f')=\pm a_0 D,$$

where $f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$ and *D* denotes the discriminant

$$D = a_0^{2n-2} \prod_{i < j} (x_i - x_j)^2,$$

where the x_i are the roots of f(x).

Lemma

Let f(x), g(x) and h(x) be three polynomials in x. Then f(x) - yg(x) and h(x) have at least one linear factor in common for all $y \in \mathbb{C}$ if and only if f(x), g(x) and h(x) have a linear factor in common.

Corollary

If the resultant R(f - yg, h) with respect to x as a polynomial in y is zero, then f(x), g(x) and h(x) have a linear factor in common.

Confluence of singular fibers on rational elliptic surfaces > Resultants

Configurations including II*, III* and IV*

We consider a configuration of singular fibers where II* is fixed in infinity. This gives

$$egin{aligned} g_2(z) &= a \ g_3(z) &= bz + c, \end{aligned}$$

By rescaling and a Tschirnhausen transformation we may write

$$g_2(z) = a$$

 $g_3(z) = z.$

It is obvious that for $a \neq 0$ we have two singular fibers of Kodaira type I₁ and II if a = 0.

III* is fixed in infinity.We in affine coordinates (we already rescaled and transformed)

$$egin{aligned} g_2(z) &= z + 9c^3 \ g_3(z) &= cz + d \ \Delta(z) &= z^3 + (243c^4 - 54cd)z + 739c^6 - 27d^2 \end{aligned}$$

The discriminant of the geometric discriminant $\Delta(z)$ now reads

$$-19683\left(5c^{3}-d\right)\left(9c^{3}-d\right)^{3}$$

and the resultant of g_2 and $g_3 - 9c^3 + d$.

IV* is fixed in infinity.

Universiteit Utrecht Mathematical Institute Utrecht University

Mathijs Wintraecken

We have that the monodromy equivalence classes must satisfy

$$M_{S_c} = M_{S_{c_{\sigma(1)}}} \cdot \ldots \cdot M_{S_{c_{\sigma(N)}}}$$

So in particular

 $IV \rightarrow 2I_2$

$$\operatorname{Tr}(M_{\mathrm{IV}}) = \operatorname{Tr}(M_{\mathrm{I}_{2}}AM_{\mathrm{I}_{2}}A^{-1})$$
$$\operatorname{Tr}\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \operatorname{Tr}\left(\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}\right)$$
$$-1 = 2(1 - 2c^{2}),$$

where $A \in SL(2, \mathbb{Z})$: a contradiction.

Theorem

Of all confluences to Singular Fibers of Kodaira type II, III and IV, superficially allowed by conservation of the Euler number, the following occur:

Moreover the confluence which does not occur namely $\mathrm{IV}\to 2I_2$ is obstructed by monodromy considerations.

Weierstrass preparation theorem

Weierstrass preparation theorem

f holomorphic *U* neighbourhood of the origin the zeros are given by

$$Z_f = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \mathrm{d}z = \sum_{z_i \in f^{-1}(0) \cap D} \operatorname{Res}_{z=z_i} \frac{f'(z)}{f(z)}$$

Theorem

Let f be as above and furthermore assume that $M = \sum m_i$. Then there exists a unique Weierstrass polynomial W(z) of degree M

$$W(z) = z^M + c_1 z^{M-1} + c_2 z^{M-2} + \ldots + c_M,$$

where W(z) has the same zeros as f in D or alternatively f(z) = W(z)u(z) with u(z) a unit in D.

Suppose we are given $\Delta_{\varepsilon}(z)$. We now write

$$\Delta_{\varepsilon}(z) = W_{\varepsilon}(z)u_{\varepsilon}(z),$$

where $W_{\varepsilon}(z)$ is of order *b*. By differentiating with respect to ε we can determine $W_{\varepsilon}(z)$ up to second order in ε .

$$\partial_{\varepsilon_i} \Delta_{\varepsilon}(z)|_{\varepsilon=0} = u_0(z) \partial_{\varepsilon_i} W_{\varepsilon}(z)|_{\varepsilon=0} + W_{\varepsilon}(z) \partial_{\varepsilon_i} u_{\varepsilon}(z)|_{\varepsilon=0}$$

= $u_0(z) \partial_{\varepsilon_i} W_{\varepsilon}(z)|_{\varepsilon=0} + \mathcal{O}(z^b).$

In theory we can successively determine the $W^{(k)}(z)$ in the power series expansion in ε ; $W_{\varepsilon} = \sum \varepsilon^k W^{(k)}(z)$ by this method.

Confluences to I_b

 I_b arise only from I_{b_i} s. This implies that if $\Delta_{\varepsilon}(z)$, $g_{2,\varepsilon}(z)$, $g_{3,\varepsilon}(z)$ and $\beta(\tau) \in \varepsilon$ -space are such that

• $W_{\beta(\tau)=0} = z^b$ • $g_{2,\beta(\tau)=0}(0) \neq 0$ • $g_{3,\beta(\tau)=0}(0) \neq 0$ • $W_{\beta(\tau)} = (z - e^{i\psi_1} z_{0,\beta(\tau)})^{b_1} \dots (z - e^{i\psi_k} z_{0,\beta(\tau)})^{b_k}$ then we have $I_{b_1} + \dots + I_{b_k} \to I_b$.

To impose the form of $W_{\beta(\tau)}$ we use the Weierstrass preparation theorem and the implicit function theorem (details to be found in the thesis).

Theorem

Every type of confluence of singular elliptical fibers on a rational elliptical surface of type I_{b_i} into a singular fiber of type I_b with $b = \sum b_i$ occurs.

Conclusions and outlook

Conclusions and outlook

HAVE DONE:

- We have fully discussed confluences to II, III, IV, I_b and I^{*}₀ (not presented here).
- We have made progress on the confluences to I₁^{*} and II^{*}.
- We have in the course of doing so provided a fair number of Weierstrass model for global configurations.

TO DO:

- Find for every local confluence an example or obstruction.
- Understand how every configuration of singular elliptical fibers fits in the space of parameters of *g*₂ and *g*₃.

END

