

johann bernoulli institute

On the uniqueness of the Gauss-Bonnet Theorem

M.H.M.J. Wintraecken

March 2013

Outline

The Gauss-Bonnet Theorem

Uniqueness in two dimensions

Heegaard splitting

Three dimensions

university of groningen

faculty of mathematics and natural sciences johann bernoulli institute

The Gauss-Bonnet Theorem

Carl Friedrich Gauss

Pierre Ossian Bonnet

johann bernoulli institute

The Gauss-Bonnet Theorem

With local information;

$$K dA = 2\pi(v - e + t) = 2\pi\chi(M).$$

Gaussian curvature: $K = k_1 \cdot k_2$, with $k_i = \frac{1}{\rho_i}$, ρ_i radius of smallest/largest osculating circle. Also

 $R_{abcd} = K(g_{ac}g_{bd} - g_{ad}g_{bc})$

Is this the only such formula?

university of groningen

faculty of mathematics and natural sciences johann bernoulli institute

Uniqueness in two dimensions

Theorem

f function on surfaces, completely determined by metric, that is locally $f(x) = F(g(x), \partial g(x), ...)$, independent of topology. If

$$\int_{M} f \, \mathrm{d}A,$$

yields a topological invariant $t_f(M)$ for all surfaces. Then $t_f(M) = c_f \chi(M)$, where χ is the Euler characteristic.

university of groningen

faculty of mathematics and natural sciences johann bernoulli institute

Sphere

Assume that for the sphere

$$\int_{S^2} f \, \mathrm{d}A = 2c.$$

johann bernoulli institute

Deforming sphere

Deforming the sphere leaves the integral unal-tered

$$\int_{S^2_{deformed}} f \, dA = 2c$$

johann bernoulli institute

Deforming sphere

Deforming the sphere leaves the integral unal-tered

$$\int_{S^2_{deformed}} f \, dA = 2c$$

university of groningen

johann bernoulli institute

Cutting sphere

Due to local isometry we can cut through the straight parts.

Reassembled surface Integral additive so

$$2c = \int_{S_{deformed}^{2}} f \, dA$$
$$= \int_{S_{deformed}^{2}} f \, dA$$
$$+ \int_{(S^{1} \times S^{1})_{deformed}} f \, dA.$$

Which yields

$$\int_{S^1 \times S^1} f \, \mathrm{d}A = 0.$$

Reassembled surface Integral additive so

$$2c = \int_{S_{deformed}^{2}} f \, dA$$
$$= \int_{S_{deformed}^{2}} f \, dA$$
$$+ \int_{(S^{1} \times S^{1})_{deformed}} f \, dA.$$

Which yields

$$\int_{S^1 \times S^1} f \, \mathrm{d}A = 0.$$

johann bernoulli institute

Induction on genus

Surface of genus g (C_g) and two spheres:

$$2\int_{S^2} f \,\mathrm{d}A + \int_{C_q} f \,\mathrm{d}A = t.$$

johann bernoulli institute

Induction on genus

Deformation so that parts of surface are cylinders.

johann bernoulli institute

Induction on genus

Due to local isometry we can cut through the straight parts.

johann bernoulli institute

Induction on genus

We find that

$$2\int_{S^2} f \, dA + \int_{C_g} f \, dA$$
$$= \int_{S^2} f \, dA + \int_{C_{g-1}} f \, dA$$

Induction on genus

So

$$\int_{C_g} f \, dA = \int_{C_{g-1}} f \, dA - \int_{S^2} f \, dA$$
$$= \int_{C_{g-2}} f \, dA - 2 \int_{S^2} f \, dA$$
$$= \dots$$
$$= (1-g) \int_{S^2} f \, dA$$
$$= 2(1-g)c = c\chi(C_g).$$

university of groningen

faculty of mathematics and natural sciences johann bernoulli institute

Heegaard Splitting

Heegaard splitting

The critical points of a Morse function can be ordered

johann bernoulli institute

Heegaard splitting

Definition A Heegard splitting is a difeomorphism of 3-dimensional compact connected manifold to a manifold formed by two 3-dimensional manifolds Π_1 , Π_2 and diffeomorphism on the boundaries $\partial \Pi_1$, $\partial \Pi_2$. Here both Π_1 and Π_2 are homeomorphic to single 3-dimensional ball with *g* handles.

Theorem Every 3-manifold allows for a (non-unique) Heegaard splitting.

Hopf fibration

 S^3 allows a Heegaard splitting for every genus g. Genus 0 obvious, genus one: Hopf fibration.

Three dimensions

Theorem

f function on 3-manifolds, completely determined by metric, that is locally $f(x) = F(g(x), \partial g(x), ...)$, independent of topology. If

$$\int_{M} f \, \mathrm{d}A,$$

yields a topological invariant $t_f(M)$ for all manifolds. Then $t_f(M) = 0$.

Introduce standard metric on torus with reflection symmetry

johann bernoulli institute

Splitting off $C_g \times S^1$

Take some manifold *N* which allows a Heegaard splitting of genus *g*. Consider

$$\int_{N} f \, \mathrm{d}A = t$$

johann bernoulli institute

Locally to standard form

Deform some piece to $C_g \times [a, b]$ endowed with standard metric Integral

$$f \, dA = t$$

JN_{deformed}

invariant

Deforming small neighbourhood

Deform $C_g \times [a, b]$ and indicate cut Twisting does not influence topology

$$f \, \mathrm{d} A = t$$

johann bernoulli institute

Reassemble

Cutting and pasting leaves an integral invariant because of local isometry

$$t = \int_{N} f \, \mathrm{d}A = \int_{N} f \, \mathrm{d}A + \int_{C_{g} \times S^{1}} f \, \mathrm{d}A$$

So

$$\int_{C_g \times S^1} f \, \mathrm{d}A = 0$$

johann bernoulli institute

Globally to standard

Let *M* be a manifold which allows a Heegaard splitting of genus *g*. Consider

$$\int_{M} f \, \mathrm{d}A = t$$

johann bernoulli institute

Local pinching

We follow the same local procedure as before

Local deforming

The 'straightened' pieces can again be deformed. Cutting lines indicated.

Reassemble

We reassemble into $M_g^{S(\mathrm{3D})}$ and $C_g imes S^1$

We have for any two manifolds M, \tilde{M} admitting Heegaard splitting of genus g

$$t = \int_{M} f \, \mathrm{d}A = \int_{M_{g}^{S(3D)}} f \, \mathrm{d}A + \int_{C_{g} \times S^{1}} f \, \mathrm{d}A = \int_{\tilde{M}} f \, \mathrm{d}A$$

Can choose $\tilde{M} = S^3$. Both S^3 and $S^2 \times S^1$ allow a Heegaard splitting of genus one; for any manifold

$$\int_{M} f \, \mathrm{d}A = \int_{S^3} f \, \mathrm{d}A = \int_{S^2 \times S^1} f \, \mathrm{d}A = 0$$

Acknowledgements

Special thanks to Erik van den Ban (UU) and Niels Bos

The End