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The Gauss-Bonnet Theorem

Carl Friedrich Gauss Pierre Ossian Bonnet
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The Gauss-Bonnet Theorem

With local information;
∫

KdA = 2π( − e+ t) = 2πχ(M).

Gaussian curvature: K = k1 · k2,
with k =

1
ρ
, ρ radius of small-

est/largest osculating circle.
Also

Rbcd = K(gcgbd − gdgbc)

Is this the only such formula?
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Uniqueness in two
dimensions
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Theorem

ƒ function on surfaces, completely determined by metric,
that is locally ƒ () = F(g(), ∂g(), . . .), independent of
topology. If

∫

M

ƒ dA,

yields a topological invariant tƒ (M) for all surfaces. Then

tƒ (M) = cƒ χ(M), where χ is the Euler characteristic.
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Sphere

Assume that for the sphere
∫

S2
ƒ dA = 2c.
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Deforming sphere

Deforming the sphere
leaves the integral unal-
tered
∫

S2deformed

ƒ dA = 2c
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Deforming sphere

Deforming the sphere
leaves the integral unal-
tered
∫

S2deformed

ƒ dA = 2c
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Cutting sphere

Due to local isometry we

can cut through the straight

parts.
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Reassembled surface
Integral additive so

2c =
∫

S2deformed

ƒ dA

=
∫

S2deformed

ƒ dA

+
∫

(S1×S1)deformed

ƒ dA.

Which yields
∫

S1×S1
ƒ dA = 0.
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Induction on genus

Surface of genus g (Cg)
and two spheres:

2

∫

S2
ƒ dA+
∫

Cg

ƒ dA = t.
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Induction on genus

Deformation so that

parts of surface are

cylinders.
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Induction on genus

Due to local isometry

we can cut through the

straight parts.
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Induction on genus

We find that

2

∫

S2
ƒ dA+
∫

Cg

ƒ dA

=
∫

S2
ƒ dA+
∫

Cg−1

ƒ dA
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Induction on genus

So
∫

Cg

ƒ dA =
∫

Cg−1

ƒ dA−
∫

S2
ƒ dA

=
∫

Cg−2

ƒ dA− 2
∫

S2
ƒ dA

= . . .

= (1− g)
∫

S2
ƒ dA

= 2(1− g)c = cχ(Cg).
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Heegaard Splitting
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Heegaard splitting
The critical points of a Morse function can be ordered
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Heegaard splitting

Definition A Heegard splitting is a

difeomorphism of 3-dimensional com-

pact connected manifold to a mani-

fold formed by two 3-dimensional mani-

folds 1, 2 and diffeomorphism on the

boundaries ∂1, ∂2. Here both 1

and 2 are homeomorphic to single 3-

dimensional ball with g handles.

Theorem Every 3-manifold allows for a

(non-unique) Heegaard splitting.
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Hopf fibration
S3 allows a Heegaard splitting for every genus g.
Genus 0 obvious, genus one: Hopf fibration.
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Three dimensions
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Theorem

ƒ function on 3-manifolds, completely determined by metric,
that is locally ƒ () = F(g(), ∂g(), . . .), independent of
topology. If

∫

M

ƒ dA,

yields a topological invariant tƒ (M) for all manifolds. Then

tƒ (M) = 0.
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Introduce standard metric on torus with reflection symmetry
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Splitting off Cg × S1

Take some manifold N which
allows a Heegaard splitting of
genus g.
Consider
∫

N

ƒ dA = t
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Locally to standard form

Deform some piece to Cg ×
[, b] endowed with standard
metric
Integral
∫

Ndeformed

ƒ dA = t

invariant
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Deforming small neighbourhood

Deform Cg×[, b] and indicate
cut
Twisting does not influence
topology
∫

Ndeformed

ƒ dA = t



faculty of mathematics
and natural sciences

johann bernoulli institute

Reassemble

Cutting and pasting leaves an
integral invariant because of
local isometry

t =
∫

N

ƒ dA =
∫

N

ƒ dA+
∫

Cg×S1
ƒ dA

So
∫

Cg×S1
ƒ dA = 0
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Globally to standard

Let M be a manifold which al-
lows a Heegaard splitting of
genus g.
Consider
∫

M

ƒ dA = t
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Local pinching

We follow the same

local procedure as

before
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Local deforming

The ‘straightened’ pieces can again be deformed. Cutting

lines indicated.
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Reassemble

We reassemble into MS(3D)
g

and Cg × S1
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We have for any two manifolds M, M̃ admitting Heegaard
splitting of genus g

t =
∫

M

ƒ dA =
∫

M
S(3D)
g

ƒ dA+
∫

Cg×S1
ƒ dA =
∫

M̃

ƒ dA

Can choose M̃ = S3.
Both S3 and S2 × S1 allow a Heegaard splitting of genus one;
for any manifold

∫

M

ƒ dA =
∫

S3
ƒ dA =
∫

S2×S1
ƒ dA = 0
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The End
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