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Abstract

An elementary geometrical proof of the fact that the Euler characteristic is the
only topological invariant of a surface that can be found by integration (using
Gauss-Bonnet) is given. A similar method is also applied to three dimensional
manifolds.
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Introduction. The Gauss-Bonnet theorem relates the integral of some intrin-
sic quantity whose origins lie in the field of differential geometry, namely the
Gaussian curvature, to some topological invariant, the Euler characteristic. For
higher dimensional manifolds the Gauss-Bonnet theorem can be generalized, us-
ing the theory of characteristic classes. For a very elegant exposition we refer to
Milnor and Stasheff [12] or alternatively Spivak [13]. Abrahamov [1] proved that
the invariants thus produced are unique, up to some equivalence. See Gilkey
[7] for a modern (and more extensive) treatment. Below we provide a proof of
a similar statement for two and three dimensional manifolds, based solely on
geometrical arguments, in contrast to the more algebraic approach taken in the
literature.
The formulation of the main result will be along the lines of the following ques-
tion proposed by I.M. Singer: ‘Suppose that f is a scalar valued invariant of the
metric such that t(M) =

∫
fdvol is independent of the metric. Then is there

some universal constant c so that t(M) = cχ(M)?’ This question has reportedly
([7]) been answered in the affirmative by E. Miller.

The proof as discussed by Gilkey is somewhat algebraic in nature and fo-
cusses on the invariance of f = F (g, ∂g, . . .) under coordinate transformations.
Fortunately the functions which are well behaved can be easily found and be
listed, using a theorem by Weyl on the invariants of the orthogonal group. The
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invariant functions thus found are linear combinations of contractions of Rie-
mann tensors and their derivatives. The functions can be further distinguished
based on their behaviour under rescaling of the metric. If the product of the
function and the volume form is invariant under this rescaling it is a candidate
for a topological invariant.1 For example in two dimensions the Gaussian cur-
vature is the only such function (up to some remainder whose integral is zero).
It can be shown that all such functions yields topological invariants.

Our geometrical proof relies heavily on the classification of two dimensional
closed surfaces and on Heegaard splitting. A discussion of the classification
can be found in [9] or [10], for the latter we refer to [5] or [14]. We complete
our discussion by some remarks on generalizations and the implications of this
result in the study of the large scale structure of the universe, which caused our
interest.

Surfaces.

Theorem 1. Let f be a function on two dimensional real Riemannian compact
manifolds, which is completely determined by the metric, in the sense that f
locally can be written as f(x) = F (g(x), ∂g(x), . . .) where g denotes the metric,
independent of the topology of the base manifold. Suppose the integration

If (M) ≡
∫
M

f dvol,

where dvol indicates the volume form, of f over an orientable2 manifold M yields
a topological invariant tf (M) for all surfaces. We write tf (M) to emphasize the
dependence on f . Then there exists a real number cf , depending only on f , such
that tf (M) = cf χ(M), where χ denotes the Euler characteristic.

Proof First we note that the space of Riemannian metrics on a manifold is
connected. This is obvious because if g and g̃ are metrics then so is λg+(1−λ)g̃
for all λ ∈ [0, 1]. This means that we can assume without loss of generality that
M is isometrically embedded in R3, because we can choose g̃ to be the standard
metric of M . Now let f be a function as described in the theorem, such that∫

M

f dvol = t

is a topological invariant. Suppose that for the two sphere S2 we have∫
S2
f dvol = 2c,

where c is some constant. From this we can conclude that for the sphere t =
cχ(M).

1A line of reasoning one also encounters in the work by Abrahamov.
2Clearly the integral over a non-orientable manifold does not make sense.
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Figure 1: From left to right, top to bottom we have depicted: the sphere, the deformation (in
two steps), the deformed surface with cutting lines indicated by the yellow glass plane and
the reassembled surfaces (with and without cutting lines).

We can now deform the two-sphere as follows. A small region is pushed
outwards and bent -in a sufficiently smooth manner- such that this region con-
tains three equally spaced parallel cylinders pieces all of the same radius. We
can now cut in the cylindrical part along the plane orthogonal to the cylinder
and reassemble the parts so that we recover a topological sphere but also get a
torus. The integral is not altered because integrals are additive. The procedure
is illustrated in figure 1. Because the integral is clearly additive for unions this
implies that ∫

C1

fdvol = 0,

where C1 is a surface of genus 1. Generally we shall denote a surface of genus
g by Cg.

The rest of the proof is inductive in nature. We begin with a topological
genus-g torus and two spheres. We deform these surfaces so that the spheres
contain a piece of a cylinder, both of the same radius, and the n-torus such that
it contains two pieces of the cylinder, again of the same radius, so that if these
pieces are deleted one of the remaining surfaces is itself a topological cylinder.
We again cut the cylindrical pieces in half and reassemble the part so that we
have a genus-g − 1 torus and a sphere. As sketched in figure 2.

We can now conclude that∫
Cg

fdvol + 2

∫
S2
fdvol =

∫
Cg−1

fdvol +

∫
S2
fdvol
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Figure 2: From left to right, top to bottom we have depicted: An n-torus and two spheres, the
same surfaces deformed, the deformed surfaces with the lines along which we cut indicated by
yellow glass plane and the reassembled surfaces.

and thus by induction that∫
Cg

fdvol = c(2− 2g) = c χ(Cg).

By the classification of all 2-manifolds we have proven the theorem for all two
dimensional real manifolds embedded in R3. �

Remark 2. In theorem 1 we assumed that f gives us a topological invariant
for all surfaces, in fact the conclusion can be drawn for a given manifold M , if∫
fdvol is an invariant for S2, S1 × S1 and M .

The proof of this statement differs from that above in that instead of the induc-
tion step illustrated in figure 2, we consider a genus g surface and 2g balls and
perform the cut and paste operation for each hole simultaneously.

Three dimensions. We will now focus on the three dimensional case. The intu-
ition for the following proof is much strengthened by the remark that a Morse
function h on some manifold M can always be interpreted as height function.
This can be easily seen as follows: Let M be isometrically embedded in Rn,
possibly using the Nash embedding theorem. Then we can add the value of
the Morse function as another coordinate to a point p ∈ M ⊂ Rn, so that the
manifold M is embedded in Rn+1 and the last coordinate is the height.
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Theorem 3. Let f be a function on three dimensional real Riemannian compact
manifolds, which is completely determined by the metric, in the sense that f
locally can be written as f(x) = F (g(x), ∂g(x), . . .) where g denotes the metric,
independent of the topology of the base manifold. If the integration

If (M) ≡
∫
M

f dvol

of f over a manifold M yields a topological invariant tf (M), for all 3-manifolds.
Then we have t(M) = 0.

Proof The first step in our proof will consist of showing that if M = Cg × S1
we have that ∫

M

f dvol = 0.

To show this we shall consider a manifold N , that admits a Heegaard splitting
of genus g. This means that the manifold N can be represented as the attach-
ment of two three-dimensional manifolds, which are both homeomorphic to a
three-dimensional ball with g handles, with respect to a diffeomorphism of their
boundaries. We further have that there exists a Morse function h on N with
one minimum and one maximum and all critical points of index 1, 2 correspond
to the critical values c1 and c2 respectively with c1 < c2, see [5]. This has been
schematically represented in the leftmost picture in figure 3. 3

We now define for every surface Cg of genus g, some metric induced by an
embedding in R3, exhibiting Z2 symmetry. We shall refer to this Riemannian
manifold as the standard surface of genus g. In the following we view N as
embedded in Rk. Let f be as in theorem 1 such that∫

N

f dvol,

is a topological invariant t. For some sufficiently small [a1, b1] ⊂ R, with c1 <
a1 < α1 < β1 < b1 < c2, we smoothly and isotopically deform h−1([a1, b1]) ∩
M ∼ Cg × [a1, b1], so that h−1([α1, β1])∩M becomes isometric to the standard
Cg × [α1, β1] ⊂ R4 ⊂ Rk given by the standard Cg and the ordinary Cartesian
product. We shall now deform this part of the manifold so that it consists of
a straight piece and two pieces which are straight at the beginning and the
end but are bent in the middle so that if we cut along the the boundaries of

3Note that conversely a Heegaard splitting also gives a Morse function in a natural manner.
Namely we start with Morse functions on both g-handled balls, by simply taking a Morse func-
tion on the standard g-handled ball and pulling back via the diffeomorphisms to the g-handled
balls in question. Now theorem 1.4 and lemma 3.7 of [11], give a differentiable structure on
the union with a smooth structure compatible with the given differentiable structure on the
different parts, moreover such that the Morse functions on both parts piece together to a
smooth function.
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Figure 3: From left to right we have sketched: A manifold admitting a Heegaard splitting;
the critical points of the Morse function are indicated as dots and the attachment by a blue
dashed line, the same manifold with a small part of it brought to a standard Cg × [−δ, δ]
metric, the deformed surface with cutting lines (red) indicated and the reassembled surfaces.

the pieces and reassemble we recover the original manifold and Cg × S1. The
procedure is sketched in figure 3. From this we conclude that∫

N

f dvol =

∫
N

f dvol +

∫
Cg×S1

f dvol,

where we again used local isotopy and the additivity of integration. Therefore,∫
Cg×S1

f dvol = 0.

The next part of the proof relies on the fact that the sphere (S3) allows a
Heegaard splitting of every genus g, see [5]. Let M be a manifold which allows
a Heegaard splitting of genus g. We now deform two pieces of the manifold
into parts isometric to Cg × [α1, β1] and Cg × [α2, β2], with α1 < β1 < α2 <
β2, so that for all p1 ∈ (α1, β1) and p2 ∈ (α2, β2) both h−1((−∞, p1)) ∩ M
and h−1(p2,∞) ∩ M are topological spheres with g handles whose boundary
is isometric to the standard genus g surface, as discussed above. We can now
smoothly deform h−1((p1, q1)) ∩M and h−1((q2, p2)) ∩M , with p1 < q1 < β1
and α2 < q2 < p2 (see figure 5), such that if we cut along the pi and qi lines and
reassemble (possibly using Z2 symmetry) we recover two topological manifolds,
with given topology. One of the manifolds we thus construct is a manifold
admitting a Heegaard splitting of genus g. The attachment diffeomorphism,
of the latter, on the boundary of the sphere with g handles is the identity.

This manifold shall be denoted by M
S(3D)
g . The other manifold is a topological

Cg × S1-manifold. The entire procedure is sketched in figure 4.
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Figure 4: A Heegaard splitting, then the same manifold with two small parts brought to a
standard metric both on another side of the ‘attachment line’, cutting lines (red) are also
indicated, and finally the reassembled surface (two connected components).

This means that by deforming, cutting and pasting a manifold M , which
allows a Heegaard splitting of genus g, we find the following equalities∫

M

f dvol =

∫
M

S(3D)
g

f dvol +

∫
Cg×S1

f dvol =

∫
M

S(3D)
g

f dvol + 0,

where f is as defined in the theorem. If we now use that the sphere (S3) allows
a Heegaard splitting of every genus g we find that∫

M

f dvol =

∫
M

S(3D)
g

f dvol =

∫
S3
f dvol. (1)
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Figure 5: A sketch of the deformed manifold with the cutting lines (red) and the ‘attachment
line’ (blue).

Following this observation, we are able to use the result of the first part of the
proof, ∫

Cg×S1
f dvol = 0.

This immediately translates into∫
S2×S1

f dvol = 0.

We notice that both S3 and S2 × S1 allow a Heegaard splitting of genus 1, so
that ∫

S3
f dvol =

∫
M

S(3D)
1

f dvol =

∫
S2×S1

f dvol = 0. (2)

Combining equations (1) and (2) yields∫
M

f dvol = 0,

for any manifold M and f = f(g, ∂g, . . .) a function determined by the metric
and all its derivatives. �

Remark 4. In theorem 3 we assumed that f gives us a topological invariant for
all 3-manifolds, in fact the conclusion can be drawn for a given manifold M , if∫
fdvol is an invariant S3, S1 × Cg, M

S(3D)
1 and M , where Cg is a surface of

genus g and M
S(3D)
1 as defined above.

This is clear from inspection of the proof of theorem 3.
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Discussion. One can wonder about generalizations of the methods stated above
to manifolds of general dimension. Some of these generalizations are immedi-
ately obvious, for example the procedure sketched in figure 3 can be used in any
dimension so see that for f and t as in the theorem∫

Md−1×S1
f dvol = t

implies that t = 0, where Md−1 is any manifold of dimension d − 1 occurring
as level set. However a full classification of all integrals yielding a topological
invariant does not seem feasible because there is no easy classification of mani-
folds of dimension d − 1 for d > 3 (and none for d > 4), occurring as the level
sets of a Morse function on a manifold of dimension d.

Recently a lot of effort has been put into the the study of topological proper-
ties of Gaussian random fields [2, 6, 15], using among others Euler integration [4].
This is especially important in the context of cosmology, because these random
fields are believed to describe the density fluctuations in the early universe [3].
A nice closed formula for the expectation value of the Euler characteristic of the
level sets of these fields has been found [3, 8], because it could be determined us-
ing the Gauss-Bonnet theorem. The result above shows that no expressions can
be found for all other interesting topological invariants, such as Betti numbers,
associated to the field, using a similar straightforward integration technique.
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