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Abstract. Let Σ be a strictly convex (hyper-)surface, Sm an optimal triangulation (piecewise lin-
ear in ambient space) of Σ whose m vertices lie on Σ and S̃m an optimal triangulation of Σ with
m vertices. Here we use optimal in the sense of minimizing dH(Sm,Σ), where dH denotes the
Hausdorff distance. In ‘Lagerungen in der Ebene, auf der Kugel und im Raum’ Fejes Tóth con-
jectured that the leading term in the asymptotic development of dH(Sm,Σ) in m is twice that of
dH(S̃m,Σ). This statement is proven.
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1. Introduction
In the seminal book ‘Lagerungen in der Ebene, auf der Kugel und im Raum’ [2] by Fejes Tóth,
inscribed and circumscribed optimal triangulations approximating convex surfaces in R3 and the
‘Approximierbarkeit’ (approximation parameter A2) are introduced. By a triangulation we shall al-
ways mean ageometric realization of a simplicial complex in Euclidean space, that is piecewise
linear in ambient space. Furthermore, unless stated otherwise we take a simplicial complex to mean
the geometric realization. Optimal triangulations with m vertices are triangulations or polytopes1

which minimize the Hausdorff distance between the surface and the polytope in the space of trian-
gulations with m vertices. Depending on the setting these vertices lie on the surface (inscribed), the
faces touch the surface (circumscribed), or the vertices are are in general position. The Hausdorff
distance between two sets X and Y in Euclidean space of arbitrary but fixed dimension d is defined
as:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖},

where ‖x − y‖ denotes the standard Euclidean distance of x and y. The inverse of the asymptotic
value of the product of the number of vertices and the Hausdorff distance (or more generally the
product of m2/(d−1) and the Hausdorff distance, where d is the dimension of the Euclidean space)
is referred to as the approximation parameter A2 (Ad in dimension d). Fejes Tóth gave a lower
bound on the inverse of the approximation parameter for inscribed triangulations depending on the
Gaussian curvature. His reasoning was roughly speaking as follows: Given a point p on the surface
there is a plane, intersecting the surface, with distance η from this point whose normal is equal to

1In the inscribed convex case there is no essential difference.
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the normal to the surface at that point. Because the surface is convex the intersection approaches an
ellipse as η becomes smaller, whose semi-axes are

√
2η/k1(p) and

√
2η/k2(p), with ki the principal

curvatures at the point on the surface. The area of the largest inscribed triangle in this ellipse is√
27η/(2

√
K(p)). The (one-sided) distance of this triangle to the surface is η. Because we consider

the largest triangle this gives us a lower bound, for any triangle t and hence for a triangulation we
find

dHmt &
∑
mt

2√
27

√
Kt(p)Areat,

withmt the number of triangles,Kt(p) the gaussian curvature at the point2 p (depending on t), Areat
the area and & refers to the leading term in the asymptotic expansion of dHmt as η tends to zero.
Fejes Tóth then argued somewhat heuristically that this lower bound can be obtained. Schneider
[7] generalized the discussion of Fejes Tóth to convex hypersurfaces in Euclidean space arbitrary
dimension and gave a solid proof of the formula for the approximation parameter Ad of inscribed
polytopes of convex C3 hypersurfaces, which reads

1

Ad
= lim
m→∞

m2/(d−1)dH(Σ, Tm) =
1

2

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,

where κd = πd/2/Γ(1 + d/2) is the volume of the d-dimensional unit ball, θd the covering density
of the ball in d-dimensional space, dµ the volume form and K the Gaussian curvature. The covering
density is defined as the infimum of the density over all coverings of, in this case, Euclidean space
by the Euclidean unit ball, see for example [6]. Moreover, a fairly explicit description of the optimal
triangulations in terms of optimal coverings was given. Gruber [3, 4] then slightly extended the work
by Schneider by considering hypersurfaces which are of lower differentiability class (C2). Further-
more he discussed the complexity of circumscribing polytopes resulting in the same approximation
parameter Ad, a topic which fell outside the scope of the article by Schneider. Fejes Tóth also con-
jectured that the complexity of triangulations whose vertices are in general position, that is neither
in- nor circumscribed, is half of the complexity in the inscribed setting. None of the previously men-
tioned papers gave a proof of this. Below we provide a proof of this statement for not strictly convex
C1 hypersurfaces with positive reach. Using the previously mentioned results this implies:

Theorem 1.1. Let Σ be a strictly convex C2 hypersurface embedded in Rd and for every m let
Sm be an optimally approximating simplicial complex with m vertices having Hausdorff distance
dH(Sm,Σ). Then we have

lim
m→∞

m2/(d−1)dH(Sm,Σ) =
1

2Ad
=

1

4

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

.

2. The sphere
To illustrate the problem we first consider the standard circle S1 in R2, with radius 1 and centred at
the origin. We approximate the circle by a regular polygon with m vertices, Pm. Due to symmetry
this is the optimal manner, because the Hausdorff distance must be attained in every edge. Suppose
that for an optimal polygon the Hausdorff distance is not attained in one of the edges, then we
can perturb one of its vertices so that the Hausdorff distance is not attained in this edge nor in its
neighbours, via induction we find that the polygon is not optimal. Naturally the centre of the regular
polygon is the origin. The circumradius of the regular polygon will be denoted by R. A sketch is
provided in figure 1. Clearly the points on the polygon furthest from or closest to the centre are the
vertices and the centres of the edges. In these points are the only points where the Hausdorff distance

2Above p was introduced as the point in the neighbourhood of t such that the normal to t equals the normal of the surface at
p.
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can be attained. The distance between the circle and the vertex or the centre of the edge is given by
R−1 and 1−R cos(π/m), respectively, which yields that the Hausdorff distance between the circle
and the regular polygon is

dH(Pm, S
1) = max

{
R− 1, 1−R(1− dH(P in

m, S
1))
}

= max
{
R− 1, 1−R cos

( π
m

)}
,

where P in
m denotes the inscribed polygon, that is the polygon with R = 1.

R

R cos(π/m)
2π/m

FIGURE 1. A polygon Pm and a circle, both with the same centre. R denotes the
circumradius of Pm. We depict the inscribed case.

We can minimize dH(Pm, S
1) with respect to R by the following choice

R =
2

1 + cos
(
π
m

) =
2

2− dH(P in
m, S

1)
.

So that

dH(Pm, S
1) =

2

1 + cos
(
π
m

) − 1 =
2

2− dH(P in
m, S

1)
− 1,

for sufficiently large m or rather sufficiently low dH(P in
m, S

1) we can develop this expression

dH(Pm, S
1) =

2

1 + cos
(
π
m

) − 1 =
1

4

( π
m

)2

+O
(

1

m4

)
dH(Pm, S

1) =
2

2− dH(P in
m, S

1)
− 1 = 1

2dH(P in
m, S

1) +O((dH(P in
m, S

1)2).

Remark 2.1. One may wonder about the equivalent statement for the Banach-Mazur distance (δBM).
The Banach-Mazur distance on convex bodies which are symmetric in the origin (C0), have been
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treated extensively by Gruber [3, 4]. For two convex bodies C,D ∈ C0 the Banach-Mazur distance
is defined [3] as

δBM(C,D) = inf{λ > 1 : C ⊂ `(D) ⊂ λC, ` : Rd → Rd linear}

In this setting it is again clear that the optimal approximating body of S1 is a regular polygon Pm (in
this case with its interior). Because the definition includes linear maps ` that work on Pm, rescaling
Pm by R does not influence the result, that is δBM(S1, Pm) = δBM(S1, RPm), with the interiors
having been left implicit.

For general Sd we are not able to give an explicit description of the inscribed polytope which
approximates Sd optimally, as there are only so many Platonic solids. However, suppose that we are
given such a polytope P in

m, then by definition the vertices ({vi}) of P in
m lie on Sd and there are points

({qi}) on the faces which attain a distance dH(P in
m, S

d) to the sphere. We can now consider the
polytope P in

m rescaled by a factor R, denoted by RP inm . For RP in
m, the points vi, qi, the vertices and

the points where the maximum distance is attained in the inscribed setting, are the points closest to
and furthest from the origin. This means that in these points the Hausdorff distance can be attained.
Which in turn implies that

dH(RP inm , Sd) = max
{
R− 1, 1−R(1− dH(P in

m, S
d))
}
,

which is minimized with respect to R by

R∗ =
2

2− dH(P in
m, S

d)
.

Therefore,

dH(R∗ P inm , Sd) =
2

2− dH(P in
m, S

d)
− 1 =

1

2
dH(P in

m, S
d) +O((dH(P in

m, S
d)2).

In this manner we have constructed a simplicial complex (R∗ P inm ) such that the Hausdorff distance
of this complex is half of the Hausdorff distance in the inscribed case, up to leading order. On
the other hand let us now assume that we have a simplicial complex Sm with m vertices which
minimizes dH(Sm, S

d), we can now make the following construction; we take the vertices vi of Sm
and project these on the sphere along the normal π(vi). The simplicial complex with these vertices
and the simplexes corresponding to the original simplicial complex Sm we will denote by P̃m. By the
corresponding we mean that the convex hull of vi1 , . . . , vil , denotes by sj , lies in Sm, if and only if
the convex hull of π(vi1), . . . , π(vil), denotes by sπj , lies in P̃m. We have for individual simplexes in
the complex dH(si, s

π
i ) ≤ dH(Sm, S

d), which is in this case not very hard to see, this will be proven
in a general setting in lemma 3.4. From which we conclude that dH(Sm, P̃m) ≤ dH(Sm, S

d). This
in turn, in combination with the triangle inequality, yields

dH(P̃m, S
d) ≤ dH(Sm, P̃m) + dH(Sm, S

d) ≤ 2dH(Sm, S
d).

This means that we have proven theorem 1.1 in the case of the sphere, if we assume existence. In
the next section we prove that there is indeed an inscribed polytope P in

n which approximates Sd

optimally.

3. Result
In this section we first discuss the continuity of the Hausdorff distance and prove some results on
existence of optimal triangulations. By an optimal triangulation we mean that that there is no com-
plex with the same number of vertices (on the surface or in general position, depending on the
context) that achieves a smaller Hausdorff distance. We then give one rather simple lemma that



On optimal triangulations of convex hypersurfaces 5

says that if we have an optimally approximating simplicial complex Sm with m vertices in ambi-
ent space of a hypersurface Σ, then the optimally approximating inscribed polytope Pm satisfies
dH(Pm,Σ) ≤ 2dH(Sm,Σ). Subsequently, given an inscribed polytope P in

m, we construct a simpli-
cial complex Sm such that

dH(Sm,Σ) ≤ 1

2
dH(P in

m,Σ) + o(dH(P in
m,Σ)).

The proof consists of two steps. Roughly speaking, we first push every point on the polytope out-
wards by 1

2dH(P in
m,Σ) using the normal to the surface to create a new hypersurface. Note that this

is no longer a simplicial complex. The second step considers the Hausdorff distance between this
surface and the simplicial complex found by ‘pushing the vertices outwards’.

Suppose that we are given a combinatorial simplicial structure on the set {1, . . . ,m} and two
(possibly degenerate) geometric realizations Sm, S̃m in Rd with (ordered) vertex sets {v1, . . . , vm} =

V and {ṽ1, . . . , ṽm} = Ṽ . If we now interpret V , Ṽ as elements in (Rd)m and assume that
|V − Ṽ | ≤ δ, then for each combinatorial simplex {i1, . . . , ik} we have dH(CH(vi1 , . . . , vik),

CH(ṽi1 , . . . , ṽik)) ≤ δ, by linearity and, thus, dH(Sm, S̃m) ≤ δ, here CH denotes the convex hull.
Now we can prove that for a combinatorial simplicial complex and manifold Σ

dH(·,Σ) : (Rd)m → R≥0 : V → dH(V,Σ),

where we identify the vertices with the geometric realization of the complex, is continuous. Let
V, Ṽ ∈ (Rd)m, with ‖V − Ṽ ‖ ≤ δ, then the triangle inequality yields

dH(V,Σ)− dH(V, Ṽ ) ≤ dH(Ṽ ,Σ) ≤ dH(V,Σ) + dH(V, Ṽ ).

|dH(V,Σ) − dH(Ṽ ,Σ)| ≤ δ, which shows continuity in the setting for a fixed simplicial structure.
We now note that there are but a finite number of simplicial structures on a finite set. This together
with the fact that the minimum of a finite number of continuous functions is again continuous gives
us that dH(·,Σ) is continuous for any set of simplicial structures, in particular those corresponding
to topological d− 1-manifolds or topological d− 1-spheres. This means that we have continuity in
a very broad setting.

In the following we shall sometimes refer to the reach. Let X be a hypersurface in Rd. The
reach R(X) of X is the largest distance to X such that if the distance between a point in Rd and X
is smaller thanR(X), there is a unique closest point onX . Federer [1] has shown that a C2 manifold
has strictly positive reach. This result is not instrumental in the proofs of the following lemmas, but
is used in Theorem 3.6.

Lemma 3.1. For each m there exists an inscribed polytope P in
m which approximates a given com-

pact convex hypersurface Σ optimally, where we assume that the vertices of P in
m lie on Σ. Here we

specifically allow the vertices to coincide, so that we can use compactness arguments.

Proof. It suffices to note that dH(·,Σ) is continuous if we restrict the domain to Σm = Σ× · · · ×Σ
and topological d − 1 manifolds, using the same identifications as above. Because Σ and therefore
Σm is compact and a continuous function attains its minimum on a compact set. Note that if we
approximate a convex surface by a simplicial complex which is a topological d − 1-manifold, then
the optimally approximating triangulation is itself a convex surface, because any simplicial complex
lies in the convex hull of its vertex set. This implies that the inward normal to the hypersurface
intersects the convex hull first and then the simplicial complex, so that the Hausdorff distance to the
convex surface is smaller. So P in

m is indeed an inscribed polytope. �

A similar statement is true for triangulations whose vertices do not lie on the hypersurface.

Lemma 3.2. Let Σ be a compact hypersurface. There exists a simplicial complex Sm, with m ver-
tices which approximates Σ optimally.
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Proof. Σ is compact, so it is bounded and thus contained in some ball B(q, ρ) with radius ρ and
centre q. Because (B(q, 2ρ))m is compact dH(·,Σ) attains its minimum on this set. This is also a
global minimum because we have that dH(Sm,Σ) ≤ dH(S1,Σ) ≤ ρ. �

Remark 3.3. In the lemma above we use the obvious statement that for two optimal simplicial com-
plexes (or polytopes) Sn and Sm, with n and m vertices respectively, where n > m we have that
dH(Sn,Σ) ≤ dH(Sm,Σ). However a strict inequality does not hold in the most general setting.
An example of this is the following; consider the circle S1 and its optimal approximating simplicial
complexes for m = 1 and m = 2. These optimal approximating simplicial complexes are a point
in the centre and any line segment which contains the centre and does not extend beyond twice the
radius of the circle. It is easy to see that dH(S1, S

1) = dH(S2, S
1).

We now focus on the lemmas that discuss the relation between the Hausdorff distance of trian-
gulations whose vertices are restricted to a given convex hypersurface and those that are not restricted
to this hypersurface.

Lemma 3.4. For a given m suppose that the simplicial complex Sm (in general, that is not neces-
sarily inscribed) optimally approximates a compact convex hypersurface Σ, that is, there is no S̃m
such that dH(S̃m,Σ) < dH(Sm,Σ). Then the optimally approximating inscribed polytope Pm with
m vertices satisfies dH(Pm,Σ) ≤ 2dH(Sm,Σ).

Proof. For each vertex vi of Sm choose a point von
i on Σ closest3 to vi. We define π to be the

mapping π : (v1, . . . , vm) 7→ (von
1 , . . . , v

on
m). We endow {von

1 , . . . , v
on
m} with the same simplicial

structure as on {v1, . . . , vm}. The resulting simplicial complex will be denoted by Son
m . So π can be

viewed as a simplicial map. Due to linearity we have that for every simplex {vi1 . . . vik}, we have
dH(CH(vi1 , . . . , vik),CH(von

i1
, . . . , von

ik
)) ≤ dH(Sm,Σ) and therefore dH(Sm, S

on
m) ≤ dH(Sm,Σ),

which in turn, using the triangle inequality, yields

dH(Son
m ,Σ) ≤ dH(Son

m , Sm) + dH(Sm,Σ) ≤ 2dH(Sm,Σ).

Note that by the argument we have given in lemma 3.1 the optimal approximating simplicial complex
is indeed a polytope. So by definition of optimality on enclosed polytopes we have that dH(Pm,Σ) ≤
dH(Son,Σ) which yields that dH(Pm,Σ) ≤ 2dH(Sm,Σ). �

For the following lemma we need two observations: Let Σ be a convex (but not necessarily
strictly convex) hypersurface and Sm a sequence of optimally approximating triangulations of Σ
withm vertices. Suppose that Tm(i) is a convergent (sub-) sequence of simplices with Tm(i) ⊂ Sm(i)

of which the lengths of the edges does not go to zero, then the sequence converges to a subset of a
hyperplane that is also contained in Σ, because the Hausdorff distance between Σ and Sm(i) tends
to zero.

Secondly, if Σ = ∂C is a convex C1 hypersurface with C a convex body and L a line segment
that is contained in Σ then the normal to Σ is constant along L. This can be seen by projecting
the tangent spaces along L on a hyperplane orthogonal to L: If the normal is not constant then we
can pick two points (p,q) where the normals are not the same. Let us denote by OLp, OLq the
hyperplane that contain p and q respectively and are orthogonal to L. Let us write Cp = OLp ∩ C
and Cq = OLq ∩ C. We translate OLq along L such that OLp and OLq coincide. If the normals
are not the same there is a point r in the translated Cq that does not lie within the half space marked
by the normal at p, which contradicts convexity, because the line that connects the (untranslated
version) of that point r and p does not lie within C.

3If dh(Sm,Σ) ≤ R(Σ), with R the reach, the point is unique.
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Lemma 3.5. Let P in
m be an optimally approximating inscribed polytope with Hausdorff distance

dH(P in
m,Σ) to a (not necessarily strictly) convex C1 hypersurface with positive reach, such that

dH(P in
m,Σ) is smaller than reach of Σ. Then we can construct a simplicial complex Sm such that

dH(Sm,Σ) ≤ 1

2
dH(P in

m,Σ) + o(dH(P in
m,Σ)).

Proof. Let vi be the vertices of P in
m then we choose the vertices ṽi to be vi + 1

2dH(P in
m,Σ)ν(vi),

where ν denotes the normal to the hypersurface. We endow the vertex set {ṽi} with the same simpli-
cial structure as {vi} has. The complex which arises will be denoted by Sm. This also corresponds to
the boundary of the convex hull of {ṽ}. We can see this as follows, P in

m is the boundary of the convex
hull of {vi}. It suffices to prove that a (d− 1)-dimensional simplex vi1 , . . . , vid in P in

m corresponds
to a simplex in ∂(CH(ṽ1, . . . , ṽm)). Suppose that is does not, then there exists a vertex ṽj which lies
outside the plane spanned by ṽi1 , . . . ṽid , this is impossible because the vj does not lie on Pm. To
see why the mapping defined above reduces the Hausdorff distance by half, up to higher order, we
turn to the alternative definition of the Hausdorff distance, see for example Munkres [5]:

dH(X,Y ) = inf{ε|X ⊂ U(Y, ε) and Y ⊂ U(X, ε)},

where U(X, ε) denotes the ε-neighbourhood of X . Let C be the compact convex body such that
Σ = ∂C. From this we see that P in

m is contained in an inner rim inside the convex hypersurface Σ
that is

P on
m ⊂ U(Σ, dH(P on

m ,Σ)) ∩ C.

We also have that

Σ ⊂ U(P on
m , dH(P on

m ,Σ)).

This yields that for every point x ∈ P on
m we have a unique point y ∈ Σ which is closest to x,

moreover the vector (x− y) is normal to the hypersurface. We may now define the mapping Π by

Π : x 7→ x+
1

2
dH(P on

m ,Σ)
x− y
|x− y|

and consider Π(P on
m ). By definition we have that

Π(P on
m ) ⊂ U(Σ, 1/2dH(P on

m ,Σ)).

We shall now show that

Σ ⊂ U(Π(P on
m ),

1

2
dH(P on

m ,Σ)).

For every y ∈ Σ there is a x ∈ P on
m such that y − x is normal to Σ and |y − x| ≤ dH(P on

m ,Σ). The
first intersection point of {c− λν(x)|λ ∈ R} and P on

m will do, where by the first we mean the point
with the smallest λ associated. Such an intersection point exists because of the following; suppose
there exists a y ∈ Σ such that

{y − λν(y)|λ ∈ R} ∩ P on
m = ∅,

then the line {y − λν(y)|λ ∈ R} intersects Σ at some other point ỹ = y − λ̃ν(y), without first
intersecting P on

m . This also means that there is a point ye = y − λ̃ν(y)/2, which has equal dis-
tance to y and ỹ so ye lies further from Σ than the reach, but this contradicts the assumption that
dH(P on

m ,Σ) ≤ R(Σ). We will now show that |y − x| ≤ dH(P on
m ,Σ). Suppose that there is a y′ such

that |y′ − x| ≤ |y − x|, then we can find a point along y − x with equal distance to two points of
Σ, namely y and y′, again contradicting the assumption that dH(P on

m ,Σ) ≤ R(Σ). Therefore y is
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the point on Σ which is closest to x and thus |y − x| ≤ dH(P in
m,Σ). Given the special role we have

thrust on the normal ν it is clear that

Σ ⊂ U(Π(P in
m),

1

2
dH(P in

m,Σ)).

This implies that

dH(Π(P in
m),Σ) ≤ 1

2
dH(P in

m,Σ).

Finally we argue that dH(Π(P in
m), Sm) tends to zero as m tends to infinity, faster than dH(P in

m,Σ)
tends to zero, that is dH(Π(P in

m), Sm) = o(dH(P in
m,Σ)). The normals (x − y)/|x − y|, where x

is an element of T and y the point of Σ closest to x, line up with ν(vi), where vi is some vertex
of T . Because the surface is continuously differentiable the normal is continuous, so if T ⊂ Sm is
an element of a convergent sequence of triangles and the edge lengths tend to zero (x− y)/|x− y|
converges trivially to the normal at any vertex because of continuity, if the edge lengths do not tend to
zero we use the observation above that the normal along a line segment contained in the hypersurface
is constant to conclude that the normals converge. This implies that (x − y)/|x − y| − ν(vi) tends
to zero so dH(P in

m,Σ)((x − y)/|x − y| − ν(vi)) tends to zero faster than dH(P in
m,Σ). Because

dH(P on
m ,Σ) ≤ dH(P in

m,Σ)|(x− y/|x− y| − ν(vi)|, by definition of the mapping Π, we have that

dH(Sm,Σ) ≤ dH(Π(P in
m), Sm) + dH(Π(P in

m),Σ) ≤ 1

2
dH(P in

m,Σ) + o(dH(P in
m,Σ)).

We also used the triangle inequality for the first inequality. So Sm is a simplicial complex sufficiently
close to Σ. �

We are now able by combining Lemmas 3.1, 3.2, 3.4 and 3.5 to prove Theorem 1.1, which we
shall display in full.

Theorem 3.6. Let Σ be a strictly convex C2 hypersurface in Rd. For everym let Sm be an optimally
approximating simplicial complex with m vertices having Hausdorff distance dH(Sm,Σ) to the
convex hypersurface Σ. Then we have

lim
m→∞

m2/(d−1)dH(Sm,Σ) =
1

4

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,

where κd is the volume of the d-dimensional ball πd/2/Γ(1 + d/2), θd is the covering density of the
ball in d-dimensional space and K the Gaussian curvature.

Proof. By Gruber and Schneider [3, 4, 7] we have that

lim
m→∞

m2/(d−1)dH(P in
m,Σ) =

1

2

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,

where P in
m an optimally approximating inscribed polytope simplicial complex, which is automati-

cally also a polytope. Lemmas 3.4 and 3.5 give us
1

2
dH(Pm,Σ) ≤ dH(Sm,Σ)

and the existence of a simplicial complex S̃m, for sufficiently large m, satisfying

dH(S̃m,Σ) ≤ 1

2
dH(P in

m,Σ) + o(dH(P in
m,Σ)).

By optimality the latter equation implies

dH(Sm,Σ) ≤ 1

2
dH(P in

m,Σ) + o(dH(P in
m,Σ)).
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Furthermore, lemmas 3.1 and 3.2 give us the existence of the simplicial complexes involved. So that

1

2
lim
m→∞

m2/(d−1)dH(P in
m,Σ) ≤ lim

m→∞
m2/(d−1)dH(Sm,Σ)

≤ lim
m→∞

m2/(d−1)

(
1

2
dH(P in

m,Σ) + o(dH(P in
m,Σ))

)
=

1

2
lim
m→∞

m2/(d−1)dH(P in
m,Σ).

Using the result of Gruber and Schneider yields

lim
m→∞

m2/(d−1)dH(Sm,Σ) =
1

4

(
θd−1

κd−1

∫
Σ

√
K(x)dµ

)2/(d−1)

,

the desired result. �

Discussion. The fact that the surface is convex is essential to our line of reasoning, because this
insures that the simplices whose vertices lie on the surface do not intersect the surface. This is the
reverse of the case of negative curvature, where in general the simplex and the surface will intersect.
Optimal triangulations in the non-convex setting are part of ongoing research.
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List of symbols
Symbol Meaning
Ad Fejes Tóth’s approximation parameter
CH Convex hull of a subset of Rd
C Convex body
dH Hausdorff distance
κd Volume of the d-dimensional ball, that is πd/2/Γ(1 + d/2).
K Gaussian curvature
L Line segment contained in a hypersurface
m Number of vertices
mt Number of triangles (only 2 dimensional case)
OLp Hyperplane orthogonal to the line segment L going through p ∈ L
Pm Polygon/polytope with m vertices
P in
m Inscribed polygon/polytope with m vertices
Sm Simplicial complex with m vertices
Son
m Simplicial complex whose m vertices lie on the hypersurface (often at

a stage where the complex is not yet prover to be convex)
Σ Hypersurface
θd The optimal covering density of Euclidean space by unit balls
U(X, ε) ε neighbourhood of X
vi, ṽi Vertices
Vi Set of vertices
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[2] L. Fejes Tóth. Lagerungen in der Ebene, auf der Kugel und im Raum. Berlin, Göttingen, Heidelberg:

Springer, 1953.
[3] P.M. Gruber. Assymptotic estimates for best and stepwise approximation of convex bodies I. Forum Math-

ematicum, 5:281–297, 1993.
[4] P.M. Gruber. Assymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math-

ematicum, 5:521–538, 1993.
[5] J.R. Munkres. Topology. Prentice-Hall, 2000.
[6] C.A. Rogers. Packing and Covering. Cambridge: University Press, 1964.
[7] R. Schneider. Zur optimalen approximation konvexer hyperflächen durch polyeder. Mathematische An-
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