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In the proof of theorem 3 of [2] it is stated that the manifold constructed in

figure 4 is diffeomorphic to M
S(3D)
g ∪Cg × S1. This is in general not correct, it

should be M
S(3D)
g ∪TCg

, with TCg
a mapping torus. The statement of Theorem

3 is nonetheless true. The reason for this is that∫
TCg

fdvol = 0,

with f locally defined in terms of the metric. This can be seen as follows:
consider TCg and deform part of it such that it is isometric to [a, b]× Cg. Now
introduce a second copy of TCg

and cut in the parts isometric to [a, b]×Cg. The
two disjoint parts are now both diffeomorphic to [c, d]×Cg. We can now deform
the parts isometric to [a, b] × Cg and glue then together such that we get the
trivial mapping torus Cg×S1. See figure 1 for a sketch. From this construction
we can conclude that

2

∫
TCg

fdvol =

∫
Cg×S1

fdvol = 0.

The result now follows as in [2].
As stated in the discussion on page 2181 of [2]∫

M

fdvol

is zero for manifolds M of the type L×S1 (and also for mapping tori of arbitrary
dimension by adapting the argument above). It is moreover claimed that cut
and paste techniques are insufficient to provide results to theorems 2 and 3 of [2]
in higher dimensions. This is not correct, due to a result given in [1]. To explain
this, we briefly recalll some notions from [1]. Let M be a closed manifold and
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Figure 1: Two non-trivial mapping tori that are reassembled into a trivial mapping torus.

N ⊂M a closed submanifold of codimension 1 with trivial normal bundle. If one
cuts M open along N one obtains a manifold M ′ with boundary ∂M ′ = N +N .
Pasting the boundary together in a different manner gives a new closed manifold
M̃ . M̃ is said to have been obtained by cutting and pasting M (Schneiden und
Kleben in German or SK for short).

We shall assume that a topological invariant t ∈ R for n-dimensional mani-
folds is compatible with disjoint unions, that is if M = M1 + M2 then t(M) =
T (M1) + t(M2). Such t is called an SK-invariant if whenever M1 and M2 are
compact n-manifolds with diffeomorphic boundaries and φ, ψ : ∂M1 → ∂M2

orientation preserving diffeomorphisms, then

t(M1 ∪φ −M2) = t(M1 ∪ψ −M2).

Here −M2 means M2 with reversed orientation and M1 ∪φ −M2 means M1

pasted to M2 along the boundary by φ and smoothed.1

Corollary 1.4 of [1] now states that any SK-invariant for smooth manifolds is
a linear combination of the Euler characteristic and the signature in the oriented
case.

By the generalisation of the constructions above and in [2] the invariants
found by integration are SK-invariants and thus linear combinations of the Euler
characteristic and the signature.
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1There is an analogous definition in the non-oriented case.
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