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1 preliminaries

1.1 Resultants and discriminants

This subsection contains some obvious adaptation of parts of sections 33, 34 and 35 of the fifth chapter
of Algebra by van der Waerden [7], concerning resultants. Although all adaptations must be known, we
have been unable to locate the classical literature.

Let

f(x) = a0x
n + a1x

n−1 + . . .+ an, g(x) = b0x
m + b1x

m−1 + . . .+ bm

be two polynomials, where we assume that a0 6= 0 and b0 6= 0.

Lemma 1.1 Suppose that N ≤ n,m. Then f(x) and g(x) have N or more linear factors ϕ1(x), . . . , ϕN (x)
in common if and only if there exist non-zero polynomials h(x) and k(x) of degree m − N and n − N
respectively, such that

h(x)f(x) = k(x)g(x). (1)

We shall not exclude possibility ϕi = ϕj.

Proof Let us assume that (1) holds for some given h(x) and k(x). If we now decompose both sides of
the equation into prime factors then we must see the appearance of the same factors on both sides of
the equation. In particular we must see all the factors of f(x) on the right hand side appear as often as
they do on the left. Since we assume that k(x) has degree n − N at most it can contain n − N prime
factors of f(x), which implies that g(x) must contain N .
Conversely let φ1(x), . . . , φN (x) be N common linear factors of f(x) and g(x). Then one may simply
write

f(x) = φ1(x)φ2(x) . . . φN (x)k(x), g(x) = φ1(x)φ2(x) . . . φN (x)h(x)

and equation (1) holds. 2

By writing

h(x) = c0x
m−N + c1x

m−N−1 + . . .+ cm−N , k(x) = d0x
n−N + d1x

n−N−1 + . . .+ dn−N .

and comparing the coefficients of the left and right hand side of equation (1) we find that the existence
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of h(x) and k(x) in lemma 1.1 is equivalent to the existence of a vector (c1,−dj) such that



a0 0 0 . . . 0 b0 0 . . . 0

a1 a0 0 . . . 0 b1 b0
. . . 0

a2 a1 a0 . . . 0 b2 b1
. . . 0

...
...

. . .
. . .

...
...

. . .
. . .

...
an an−1 . . . . . . a0 bm−2 . . . . . . 0
0 an . . . . . . a1 bm−1 . . . . . . 0
0 0 an . . . a2 bm bm−1 . . . b0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 . . . . . . 0 an 0 . . . . . . bm





c0
...
...
...

cm−N
−d0

...

...
−dm−N



=



0
...
...
...
...
...
...
...
0



. (2)

The (n+m−N + 1)× (n+m− 2N + 2) matrix in (2) will be denoted by SR.

Let us now turn our attention to the following result of linear algebra

Lemma 1.2 Let A : kn → km be a linear mapping then the equation A(v) = 0 has a nontrivial v as a
solution if and only if all n × n-matrices produced by dropping m − n columns of the matrix associated
to A have a zero determinant.

This lemma is a consequence of the Rank lemma, which can for example be found on pages 113 and 114
of Duistermaat and Kolk [1]. This gives us the following result

Lemma 1.3 f(x) and g(x) have N or more linear factors in common if and only if all (m+ n− 2N +
2) × (m + n − 2N + 2)-matrices produced by dropping N − 1 columns of the matrix SR associated to f
and g have zero determinant.

If N = 1, SR is a square matrix and is called the Sylvester matrix, in this case the determinant
of SR is called the resultant and is denoted by R(f, g). The resultant is related to the discriminant
D = a2n−2

0

∏
i<j(xi − xj)2 of a polynomial f(x) via the equation R(f, f ′) = ±a0D, see for example

section 35 of [7]. We emphasize the determinants of (m+ n− 2N + 2)× (m+ n− 2N + 2)-submatrices
of SR are polynomials in the coefficients of f and g, but not all these determinants are independent as
polynomials in the coefficients of the polynomial f(x).

In lemma 1.1 we emphasized that we did not exclude possibility ϕi = ϕj , to further investigate this we
turn our attention on the following example.
Let f(x), g(x) and h(x) be three polynomials in x. Then f(x)− yg(x) and h(x) have at least one linear
factor in common for all y ∈ C if and only if f(x), g(x) and h(x) have a linear factor in common.
Proof Suppose that f(x) − yg(x) and h(x) have a factor in common for all y ∈ C, if we choose such a
non-zero y, then f(x) − yg(x) = (x − xj)py(x), where py(x) is a polynomial in x and xj is some root
of h(x). Since the roots of a polynomial depend continuously on the coefficients of the polynomial the
roots of f(x) − yg(x) are continuous with respect to y. Moreover the roots of h(x) form a discreet set
this implies that f(x) − yg(x) = (x − xj)py(x) for all y. We now take the particular case of y = 0
and see that f(x) = (x − zj)p0(x). Taking this expression for f(x) and letting y 6= 0, we see that
yg(x) = (x − zj)(p0(x) − py(x)). This implies that f(x), g(x) and h(x) have at least a common linear
factor. The converse is obvious. 2

This in turn leads to the statement f(x), g(x) and h(x) have at least one common linear factor if and only
if the resultant of f(x)−yg(x) and h(x) with respect to x, which is a polynomial in y, is identically equal
to zero. It is now also clear that f(x) has a third order zero if and only if the resultant of f(x)− yf ′(x)
and f ′′(x) is identically equal to zero.

Using these techniques (and the obvious generalizations) we are able to verify whether and how often
ϕi = ϕj as discussed in lemma 1.1, for i 6= j.
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1.2 Families of elliptic surfaces and confluences

Let ϕ : S → C be a relatively minimal elliptic fibration without multiple singular fibers. We shall denote
the set of singular points of the elliptic surface by Ssing = {s ∈ S|Tsϕ = 0} and the set of regular points
of C by Creg = C\ϕ(Ssing). In the following we shall use the monodromy associated to a singular fiber
and the Weierstrass model of an elliptic surface.

Roughly speaking monodromy can be understood as follows. Every regular fiber of the elliptic fibration
is an elliptic curve. Of course each elliptic curve can be described by g/P , where g is the Lie algebra of
the G, the identity component of the group of automorphisms of the elliptic curve and P is a lattice in
g. It can be shown that the fiberwise construction extents to a unique holomorphic complex line bundle
g and holomorphic subbundle P with discreet fibers, for a precise discussion see section ????? of [2].
For each continuous mapping γ : [0, 1] → Creg : t 7→ γ(t) called a path in Creg, and every v0 ∈ Pγ(0),
there is an unique (lifted) path v is P such that v(0) = v0 and v(t) ∈ Pγ(t) for every 0 ≤ t ≤ 1. The
mapping T : v0 7→ v(1) is an orientation preserving isomorphism from Pγ(0) to Pγ(1). Let c∗ be a fixed
point in Creg, called a base point and let γ be a loop in Creg based at c∗ , that is a path in Creg such
that γ(0) = γ(1) = c∗ , then T as an orientation preserving automorphism of Pc∗ . If v∗1 and v∗2 form an
oriented Z-basis of Pc∗ , then T (v∗i ) = vi also forms an oriented Z-basis of Pc∗ and thus there exists a

unique matrix M ∈ SL(2,Z) called the monodromy matrix defined by the loop γ, such that vi = M j
i v
∗
j .

The monodromy matrix defined as such clearly depends on the choice of v∗1 and v∗2 , it can be verified
that the conjugation class of M within SL(2,Z) is defined invariantly. We shall often use the word
monodromy matrix to indicate the conjugation class. Discreetness of the fibers of P implies that the
definition of monodromy is invariant under homotopic deformation of γ. If γ runs around one singular
point c ∈ ϕ(Ssing) in C once with counterclockwise orientation we find a monodromy matrix. This
monodromy matrix is indicative of the Kodaira type of the singular fiber around which singular point
we run. The monodromy matrix for each type is given in table 1. For a full discussion of monodromy
see section ????? of [2].

Table 1: In this table we only give one monodromy matrix characterizing the conjugation class, b is
a positive integer.

Type Intersection Monodromy Order zero Order zero Order zero
diagram matrix of g2 of g3 of ∆/ Euler number

I0

(
1 0
0 1

)
≥ 0 ≥ 0 0

Ib A
(1)
b−1

(
1 b
0 1

)
0 0 b

I∗0 D
(1)
4

(
−1 0
0 −1

)
≥ 2 ≥ 3 6

I∗b D
(1)
b+4

(
−1 −b
0 −1

)
2 3 b+ 6

II A
(1)
0

(
1 1
−1 0

)
≥ 1 1 2

II∗ E
(1)
8

(
0 −1
1 1

)
≥ 4 5 10

III A
(1)
1

(
0 1
−1 0

)
1 ≥ 2 3

III∗ E
(1)
7

(
0 −1
1 0

)
3 ≥ 5 9

IV A
(1)
2

(
0 1
−1 −1

)
≥ 2 2 4

IV∗ E
(1)
6

(
−1 −1
1 0

)
≥ 3 4 8
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Let us now focus our attention to the Weierstrass model. The main idee behind the Weierstrass model
is the following. Every elliptic curve may be described by the projective Weierstrass equation x0x

2
2 −

4x 3
1 + g2x

2
0 x1 + g3x

3
0 = 0, in P2, where the geometric discriminant ∆ ≡ g 3

2 − 27g 2
3 6= 0. We

call ∆(z) the geometric discriminant to avoid confusion if we consider the discriminant of ∆(z), with
respect to z. Again we can apply this to every regular fiber of an elliptic fibration. This yields the
equation x0x

2
2 − 4x 3

1 + g2(c)x 2
0 x1 + g3(c)x 3

0 = 0, in P(L 0
c × L 2

c × L 3
c ), where c ∈ Creg and L = g

∗.
The P(L 0

c × L 2
c × L 3

c ) extends to a holomorphic bundle P(L0 × L2 × L3) over C. The projective
Weierstrass equation within this bundle also extends to the entire C in particular to the singular points
of the elliptic fibration where where the geometric discriminant ∆(c) is zero. The order with which
the geometric discriminant ∆(c) and g2(c) and g3(c) disappear at a singular point is indicative of the
Kodaira type of the singular fiber. The order order of the zero of ∆ is in fact equal to the Euler number
of the singular fiber. In table 1 we have listed the orders of the zeros of g2, g3 and ∆ for each Kodaira
type. The converse is also true, if we start with some g2, g3 and ∆ = g 3

2 − 27g 2
3 of which the orders

of the zeros are as listed in table 1, we can reconstruct the relatively minimal elliptic surface without
multiple singular fibers which gives rise to the g2, g3 and ∆. This reconstruction goes as follows we take

W = {(c, [x]) ∈ P(L0 ⊕ L2 ⊕ L3)|x0x
2

2 − 4x 3
1 + g2(c)x 2

0 x1 + g3(c)x 3
0 = 0},

denote the projection of W to C by p and apply a minimal resolution of singularities f on W , the surface
S found after the resolution is a relatively minimal elliptic surface without multiple singular fibers and
moreover ϕ = p ◦ f : S → C. For a full discussion and all proves of the above statements see section
????? of [2].

We now concentrate on giving the definition of a confluence of singular fibers and discussing some
properties of these confluences. This discussion partially relies on remark 7.3.4 of [2] and the article of
Naruki [4], although our definition of confluence differs from that of Naruki.

Let us now consider a deformation of elliptic surfaces. Furthermore let the perturbation depend on
the parameter ε. One will often observe several singular fibers Sc1(ε), . . . , ScN (ε) with c1(ε), . . . , cN (ε)
singular points of surfaces nearby some special surface S(0) of the deformation flowing together into one
singular fiber Sc(0).1 Such a phenomenon is called a confluence of singular fibers. In the next chapter
we shall often adhere to the opposite view, where we start with a singular fiber Sc(0) which is perturbed
into several singular fibers Sc1(ε), . . . , ScN (ε). This is of course simply a matter of point of view. We
may associate monodromy matrices (or rather conjugacy classes thereof) MSci

to the singular fibers
Sci , by defining the monodromy associated to the singular fibers as the monodromy of curve γi which
encircles the singular fiber Sci once and counterclockwise. For a certain perturbation σ of indices, the
concatenation γσ(1) ∗ . . . ∗ γσ(N) is homotopic to γ0, after deformation. For this perturbations of indices
σ we have the identity MSc = MScσ(1)

· . . . ·MScσ(N)
.

We will now make this statement more precise. Suppose that we are given a commutative diagram of
the form

Σ
ϕ

����
��
��
��

η

��

Γ

δ ��?
??

??
??

?

E

where Σ, Γ and E are complex analytic manifolds of dimension n+ 2, n+ 1 and n respectively and ϕ, δ
and η are proper surjections. Let us set

Sε = η−1(ε), Cε = δ−1(ε), ε ∈ E

and further assume that δ and η are complex analytic submersions and the fibers Sε are compact.2 The
data (Σ,Γ, E , ϕ, δ, η) above is called a C∞ n-parameter deformation of elliptic surfaces, if the following
conditions are satisfied

1We shall assume that ε = 0 is the special value of the perturbation parameter, this assumption is of course made
without loss of generality.

2In this we differ from Naruki.
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i) δ and η are locally trivial C∞-fibrations.

ii) The restriction ϕ|ε : Sε → Cε is an elliptic fibration.

In the work presented below we will sometimes take E to be a closed subset of Cn with its origin in
the boundary of E and allow δ and η to exhibit root-like behaviour. This means more precisely that
δ and η are locally trivial C0-fibrations. In this case we will refer to the data (Σ,Γ, E , ϕ, δ, η) as a C0

n-parameter deformation. We are in general only interested in local confluence of singular fibers, so we
may often even take δ and η to be trivial C∞ or C0 n-parameter deformations.
From this point onward we will always consider a C∞ n-parameter deformation. We denote by Csing

ε

the set of singular points on Cε and by Creg
ε its complement in Cε. We further define

Γsing =
⋃
ε∈E

Csing
ε , Γreg =

⋃
ε∈E

Creg
ε .

We denote by γε̃(t) the C∞ family of loops parameterized by t, where γε̃(t) ∈ Creg
ε̃ for all t and ε̃ ∈ Ẽ a

m-dimensional submanifold of E which contains the special point 0.3 For every ε ∈ E we may associate a
monodromy to the loop γε̃; M([γε̃]). Furthermore we have that the period lattice P depends continuously
on the parameter ε. Discreetness of the period lattice P implies that M([γε̃]) is constant with respect
to ε̃. If for some fixed ε̃, γε̃(t) is homotopic to the concatenation γ1 ∗ . . . ∗ γk of loops, where naturally
γj ⊂ Creg

ε̃ , then we have that M([γε̃]) = M([γ1])·. . .·M([γk]). We now apply this notion to the confluence
of singular fibers. To do so let us first give a precise definition of a confluence of singular fibers. We say
that the singular fibers Sci,ε̃, with ci(ε̃) ∈ Csing

ε̃ , i = 1, . . . , N of Sε, flow together into the same singular

fiber Sc0, 0 of Ssing
0 , if there is a curve β ⊂ Ẽ , which is parameterized by τ and sends 0 to the special

point 0, such that ci(β(τ)) are discrete for τ in a small neighbourhood of 0, but not for τ = 0 itself, as
well as

lim
τ→0

ci(β(τ)) = c0.

Notice that this definition differs from the definition given in [4]. For τ = 0 we have a small neighbour-
hood if the origin U0 ⊂ C0, analytically diffeomorphic to D = {z ∈ C

∣∣|z| < δ}, where δ ∈ R>0, such that
δ is the only singular point in U0. We choose γ0(t) to be the curve which winds around c0 once in the
counterclockwise direction. Assuming U0 and E to be sufficiently small, γ0 may be extended to some
family γβ(τ) ⊂ Creg

β(τ) of loops as mentioned above by, for example, imposing a (trivial) connection of

δ : Γ→ E .4 Note that every γβ(τ) is homotopic to γ0 in Γreg. A member γβ(τ)(t) of this family with τ 6= 0
runs around all the ci’s into which c0 breaks up. Let γiβ(τ)(t) denote a counterclockwise loop winding
around ci once. Let us further fix τ 6= 0 and some base point, which we choose to lie on the curve γβ(τ)

denoted by p. Moreover choose for each ci a parameterized curve γiv connecting p with some point on the
curve γiβ(τ), such that the γiv do not intersect each other nor the γiβ(τ)s and γβ(τ). Finally let δ̃ be a loop

starting and ending at a point on γβ(τ) winding around p once, counterclockwise, such that δ̃ intersects

γiv only once and γβ(τ) twice. Denote by σ the permutation of indices such that δ̃ intersects γ
σ(1)
v first,

γ
σ(2)
v second et cetera. The concatenation γ

σ(1)
v ∗ γσ(1)

β(τ) ∗ (γ
σ(1)
v )−1 ∗ . . . ∗ γσ(N)

v ∗ γσ(N)
β(τ) ∗ (γ

σ(N)
v )−1, where

(γ̃)−1 denotes the curve γ̃ inversely parameterized, clearly encloses c1, . . . , cN and is homotopic to γβ(τ).
These considerations yield

MSc = MScσ(1)
· . . . ·MScσ(N)

. (3)

We will in in the work presented below consider deformations of Weierstrass models of elliptic surfaces,
instead of the deformations of elliptic surfaces themselves, this turns out to be equivalent. As we can see
as follows. If we choose to work in the local coordinate z on C, for the Weierstrass model of a relatively
minimal rational elliptic surface without multiple singular fibers ϕ : S → C, g2 and g3 can be though of
simply as polynomials of fourth and sixth order in z. We now write

g2(z) =

4∑
i=0

g2,iz
i, g3(z) =

6∑
i=0

g3,iz
i. (4)

3For our purpose it will not be necessary to endow Ẽ with a complex structure.
4The same holds for the set U0.
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We will now consider the g2,is and g3,is to be the parameters of deformation of a family of Weierstrass
models of elliptic surfaces; corresponding to the coordinates of E . This implies that we are faced with
the following commutative diagram

Σ
ϕ

����
��
��
��

η

��

f ′

��
Γ

δ ��?
??

??
??

? Ω
poo

ω

��
E

where Ω denotes the family of Weierstrass models Wε, p is the projection so that p|ε maps Wε to Cε, f
′
ε is

a minimal resolution of singularities, the restriction ϕ|ε : Cε → Sε is a minimal resolution of singularities
and δ, η and ω are locally trivial C∞-fibrations. The work of Tyurina [6] guarantees that the family of
Weierstrass models generates a family of elliptic surfaces in a continuous manner, in particular she has
proven that the resolution of singularities f |ε extends continuously to a resolution of singularities of the
entire family. So investigating the deformation of Weierstrass models of elliptic surfaces is equivalent to
investigating the deformation of elliptic surfaces.

We end this section with some observations mostly taken from remark 7.3.4 of [2]. The zeros of a
polynomial depend continuously on the coefficients of the polynomial and the number of zeros in D, a
small neighbourhood, counted with multiplicity is invariant under small perturbations of the polynomial.
Moreover singular fibers correspond to zeros of the geometric discriminant ∆ and the topological Euler
number of a singular fiber equals the order of the zero of the geometric discriminant. Combining these
two remarks we find that the Euler number is conserved in confluences, in the sense that if several singular
fibers flow together into one singular fiber that then the sum of the Euler numbers of the singular fibers
before the confluence is equal to the Euler number of the singular fiber which was the product of the
confluence. Likewise we have that the number zeros of g2 and g3 in D is invariant under perturbation,
but since the zeros of g2 and g3 do not necessarily coincide to form the zero of the geometric discriminant,
we have that the sum of the orders of the zeros of g2 (g3) of the merging singular fibers is less or equal to
the order of the zero of g2 (g3) of the resulting singular fiber. This implies for example that singular fibers
of type Ib may only be the result of a confluence of singular fibers of type Ibi , with

∑
bi = b. The same

argument gives that two “starred” types that is two singular fibers of the set {I∗0, I∗1, . . . , IV
∗, III∗, II∗},

cannot merge. Finally note that if g2 and g3 have a linear factor in common, the discriminant of the
geometric discriminant ∆(z) = g2(z)3 − 27g3(z)2 is zero, implying that the resultant of g2(z) and g3(z)
factors discriminant of the geometric discriminant.

2 Confluence of singular fibres

In this section we consider all confluences on rational elliptic surfaces which lead to singular fibers of type
Ib, II, III, IV of I∗0. We shall provide for each confluence an exemplary family of Weierstrass models in
which the confluence takes place, either explicitly or implicitly. For the confluences that do not arise we
verify that the product of the equivalence classes of the monodromy matrices associated to the merging
singular fibers does not lie in the same equivalence class as the monodromy matrix of the resulting
singular fiber, see formula (3).
We restrict ourselves to these singular fibres because of the following considerations. Suppose that we
wish to construct an example if a singular fiber itself not of type Ib which is perturbed into a great number
of singular fibers of type Ibi with bi ≥ 2. Say for example II∗ → I4 + I3 + I2 + I1 or II∗ → 2I3 + 2I2,
then we must impose that the zeros of the geometric discriminant have the right multiplicity and the
resultant of g2 and g3 is not equal to zero before the confluence and restricted to the singular fibers
involved in the confluence. Using the methods of subsection 1.1 this demand translates into not only
into imposing a great number of polynomials in the coefficients of g2 and g3 to be zero, as well as a
significant number of algebraic inequalities. This great multitude, the fact that not all polynomials in
the coefficients of g2 and g3 are independent and that the polynomials by themselves are not very simple
makes that we have not been able to confront this problem. Furthermore in the number of singular fibres
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involved in a confluence obstructed by monodromy increases the number of matrices we must conjugate
in equation (3) to verify the obstruction increases accordingly. This increase also complicates our efforts
if the confluences under consideration involve a large number of singular fibers.

There has been previous work on the monodromy restrictions of the confluences of singular fibers, namely
by Naruki [4], which focusses on the confluence of three singular fibers of type Ib. In [4] no arguments
are included to prove the existence of those confluences which are allowed by monodromy considerations.
Moreover in this article we provide an explicit argument for the existence of the confluence 3I2 → I∗0,
which according to section 5 of [4] would be disallowed.

Our object; finding confluences to a given singular fiber is a local phenomenon, but fits into a larger
global picture. Namely the relation between the global configuration of singular fibers and the values of
the coefficients of g2 and g3. We have that the discriminant of the geometric discriminant is non-trivial
as a polynomial in the coefficients of g2 and g3. This implies that the generic configuration of singular
fibers is 12I1. We now focus on the algebraic set Ng in the space of coefficients of g2 and g3 defined by
setting the discriminant of ∆(z) equal to zero. We clearly work in the category of algebraic varieties.
It is also clear that the set of Ng is stratified. We would like to know the exact structure of Ng and
find the correspondence between the strata of Ng and the global configuration of singular fibers, which
is not necessarily one-to-one. Should we understand the structure of Ng completely, we would know
if certain singular fibers could flow together simply because (the parts of) the strata associated to the
different configurations are adjacent. Or, even stronger, we would know which (global) configurations of
singular fibers can arise from the perturbation of a given configuration of singular fibers. This imposes
a hierarchial structure on the list of all allowed configurations as found by Persson [5]. We are not able
to determined the structure of Ng due to the same reasons we are unable to construct confluence like
II∗ → I4 + I3 + I2 + I1 or II∗ → 2I3 + 2I2.

2.1 Confluence to singular fibers of Kodaira type Ib.

As remarked in subsection 1.2 only singular fibers of type Ibi may flow together to form a singular fiber
of type Ib, with b =

∑
bi. We note that the restriction to rational elliptic surfaces implies that b ≤ 9, as

we can verify easily in the list of Persson [5]. In this subsection we will prove the following theorem

Theorem 2.2 Every type of confluence of singular elliptical fibers on a rational elliptic surface of type
Ibi into a singular fiber of type Ib with b =

∑
bi occurs.

The proof consists of three parts:

- For a perturbation of a singular fiber of Kodaira type Ib into a singular fiber of type Ib−e and e
singular fibers of type I1 we will give an explicit example by giving formulae for g2 and g3 and
verify the fact that eI1 singular fibers are created by using the discriminant, see subsection 1.1.

- For all singular fibers of Kodaira type Ib, with b ≤ 6, not of the above type, we are able to give
explicit examples, again by giving g2 and g3, moreover we will give the roots of the geometric
discriminant ∆.

- For every confluence not mentioned before we will use the combination of the Weierstrass prepara-
tion theorem and the implicit function theorem to prove existence of the confluence, this method
is implicit when it concerns the coefficients of g2 and g3. 5

Ib → Ib−e + I1 + . . .+ I1 = Ib−e + e I1

We will give the argument for existence of all confluences of the form Ib → Ib−e+I1 +. . .+I1 = Ib−e+e I1.
We start out with a singular fiber of type Ib in the origin. The g2 and g3 yielding the singular fiber Ib are
found by setting the first b coefficients of the geometric discriminant ∆ to zero consecutively.6 Allowing

5Method suggested by Hans Duistermaat.
6One will often find it practical to solve with respect to g3,0, g2,1, g3,2, g2,2, g2,4, g3,4, g3,5, g3,6 and g2,3, in this order.
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the final e coefficients of the b coefficients set to zero to be perturbed into nonzero values generally yields
a singular fiber of type Ib−e and e singular fibers of type I1. The fact that only singular fibers of type
I1 arise is verified by calculating the discriminant of the geometric discriminant divided by zb−e. If this
discriminant is nontrivial for nonzero values of the perturbation parameter, the geometric discriminant
has but zeros of order one outside the origin corresponding to singular fibers of type I1. The explicit
model and the verification of the behaviour of the geometric discriminant is given in table 2.

Table 2: In this table the geometric discriminant in denoted by ∆ and the discriminant with D.

Confluence g2(z) g3(z) Behaviour of ∆(z)
I2 → 2I1 3 −1 + εz + z2 D(∆(z)) = 24318ε2(8 + ε2)
I3 → 3I1 3 −1 + εz + z3 D(∆(z)) = 210330ε3(27 + ε3)
I3 → I2 + I1 3 −1 + εz2 + z3 D(∆(z)/z) = 22324ε2(−2433 + 32ε3)
I4 → 4I1 3 −1 + εz + z4 D(∆(z)) = 28345ε4(211 + 27ε3)
I4 → I2 + 2I1 3 −1 + εz2 + z4 D(∆(z)/z) = 213336ε3(2 + ε2)2

I4 → I3 + I1 3 −1 + εz3 + z4 D(∆(z)/z2) = 22330ε2(−213 − 2433ε4)
I5 → 5I1 3 −1 + εz + z5 D(∆(z)) = 222354ε5(55 + 16ε5)
I5 → I3 + 2I1 3 −1 + εz3 + z5 D(∆(z)/z2) = 212342ε3(55 + 27ε5)
I5 → I4 + I1 3 −1 + εz4 + z5 D(∆(z)/z3) = 28336ε2(55 + 27ε5)
I6 → 6I1 3 −1 + εz + z6 D(∆(z)) = 21236655ε6(21136 + 55ε6)
I6 → I2 + 4I1 3 −1 + εz2 + z6 D(∆(z)/z) = 229360ε5(27 + ε3)2

I6 → I3 + 3I1 3 −1 + εz3 + z6 D(∆(z)/z2) = 210363ε5(8 + ε2)3

I6 → I4 + 2I1 3 −1 + εz4 + z6 D(∆(z)/z3) = 219348ε3(−27 + ε3)2

I6 → I5 + I1 3 −1 + εz5 + z6 D(∆(z)/z4) = 28342ε2(2736 + 55ε6)

I7 → 7I1 3 + z −1 + εz − z
2 −

z2

233 + z3

2433 D(∆(z)) = 713

2179331 ε
7 +O(ε8)

− z4

2733 + z5

2834 − 7z6

21036

I7 → I2 + 5I1 3 + z −1− z
2 −

z2

233 + εz2 + z3

2433 D(∆(z)
z ) = 71355

2174337 ε
6 +O(ε7)

− z4

2733 + z5

2834 − 7z6

21036

I7 → I3 + 4I1 3 + z −1− z
2 −

z2

233 + z3

2433 + εz3 D(∆(z)
z2 ) = − 713

2157338 ε
5 +O(ε6)

− z4

2733 + z5

2834 − 7z6

21036

I7 → I4 + 3I1 3 + z −1− z
2 −

z2

233 + z3

2433 D(∆(z)
z3 ) = − 713

2156336 ε
4 +O(ε5)

− z4

2733 + εz4 + z5

2834 − 7z6

21036

I7 → I5 + 2I1 3 + z −1− z
2 −

z2

233 + z3

2433 D(∆(z)
z4 ) = 713

2145340 ε
3 +O(ε4)

− z4

2733 + z5

2834 + εz5 − 7z6

21036

I7 → I6 + I1 3 + z −1− z
2 −

z2

233 + z3

2433 D(∆(z)
z5 ) = 713

2138341 ε
2 +O(ε3)

− z4

2733 + z5

2834 − 7z6

21036 + εz6

I8 → 8I1 3 + z + 73z2

12 −1− z
2 + εz − 37z2

223 D(∆(z)) = −213344772017 ε8

+z3 + z4 − 7·31z3

2333 − 52z4

223 −
z5

3 +O(ε9)

I8 → I2 + 6I1 3 + z + 73z2

12 −1− z
2 −

37z2

223 + εz2 D(∆(z)
z ) = −2193452017 ε7

+z3 + z4 − 7·31z3

2333 − 52z4

223 −
z5

3 +O(ε8)

I8 → I3 + 5I1 3 + z + 73z2

12 −1− z
2 −

37z2

223 D(∆(z)
z2 ) = 212334552017 ε6

+z3 + z4 − 7·31z3

2333 + εz3 − 52z4

223 −
z5

3 +O(ε7)

I8 → I4 + 4I1 3 + z + 73z2

12 −1− z
2 −

37z2

223 D(∆(z)
z3 ) = 2193292017 ε5

+z3 + z4 − 7·31z3

2333 − 52z4

223 + εz4 − z5

3 +O(ε6)

I8 → I5 + 3I1 3 + z + 73z2

12 −1− z
2 −

37z2

223 D(∆(z)
z4 ) = −2103272017 ε4

+z3 + z4 − 7·31z3

2333 − 52z4

223 −
z5

3 + εz5 +O(ε5)

I8 → I6 + 2I1 3 + z + 73z2

12 −1− z
2 −

37z2

223 D(∆(z)
z5 ) = −2113192017 ε3

+z3 + z4 − 7·31z3

2333 − 52z4

223 −
z5

3 + εz6 +O(ε4)

I8 → I7 + I1 3 + z + 73z2

12 −1− z
2 −

37+2·3ε
223 z2 D(∆(z)

z6 ) = 33023·313
216 ε2

+εz2 + z3 + z4 − 7·31+2·32ε
2333 z3 +O(ε3)

− 2·19+223ε+ε2

233 z4

− 2232−ε2
2432 z5

+ 2433+2333ε+5·7ε2+2ε3

2533 z6
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Table 2 – continued from previous page
Confluence g2(z) g3(z) Behaviour of ∆(z)

I9 → 9I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 + z3 D(∆(z)
z ) = 5941

24380 ε
7 +O(ε8)

+εz + z2

2 + 7·11z4

233 + 13z5

22 − 27143z6

2334

− 5·23z3

32 − 7·67z4

2232

I9 → I2 + 7I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 D(∆(z)
z2 ) = 775938

212367 ε
6 +O(ε7)

+ z2

2 +εz2 + z3 + 7·11z4

233

− 5·23z3

32 − 7·67z4

2232 + 13z5

22 − 27143z6

2334

I9 → I3 + 6I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 D(∆(z)
z3 ) = 5935

29360 ε
6 +O(ε7)

+ z2

2 + εz2 − εz2

223 + z3 + 7·11z4

233

− 5·23z3

32 − 7·67z4

2232 + 13z5

22 − 27143z6

2334

I9 → I4 + 5I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 + z3 D(∆(z)
z4 ) = 555932

216359 ε
4 +O(ε5)

+ z2

2 −
5·23z3

32 + 7·11z4

233 + 13z5

22 − 27143z6

2334

− 7·67z4

2232 + εz4

I9 → I5 + 4I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 + z3 D(∆(z)
z5 ) = 255929

349 ε3 +O(ε4)

+ z2

2 −
5·23z3

32 + 7·11z4

233 + εz4 + 13z5

22

− 7·67z4

2232 − 12εz4 − 27143z6

2334

I9 → I6 + 3I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 + z3 D(∆(z)
z6 ) = 5926

26340 ε
2 +O(ε3)

+ z2

2 −
5·23z3

32 + 7·11z4

233 + εz4

2 + 13z5

22

− 7·67z4

2232 − 6εz4 +εz5 − 27143z6

2334

I9 → I7 + 2I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 + z3 D(∆(z)
z7 ) = 225924

338 ε+O(ε2)

+ z2

2 −
5·23z3

32 + 7·11z4

233 + εz4 + 13z5

22

− 7·67z4

2232 − 12εz4 +2εz5 − 27143z6

2334 + εz6

I9 → I8 + I1
1
12 + z

3 − 1
2333 − z

2232 − 5z2

2332 + εz2

233 + z3 D(∆(z)
z8 ) = 5920

331 +O(ε)

+ (1−ε)z2
2 + 7·11z4

233 + εz4 − ε(2+ε)z4

8 + 13z5

22

− 5·23z3

32 + εz3 − ε(2·5·13−32ε)z5

2232 − 27143z6

2334

− 7·67z4

2232 + 3ε(2+ε)z4

22 + ε(233−3·5ε+3ε2)z6

233

Confluences found by explicit calculation

In some very rare cases we are able to find a very elegant geometric discriminant which factors. In these
cases the zeros of the geometric discriminant are easily found by explicit computation. From the fact
that only Ibi may merge into a Ib, as mentioned above, we derive that zeros of order bi correspond to
singular fibers of type Ibi . These examples are listed in table 3.

Confluences and the Weierstrass preparation theorem

All confluences other then the ones mentioned above will not be given explicitly, but existence will be
proven by making use of the Weierstrass preparation theorem and the implicit function theorem. We
shall start by giving (a part of) the Weierstrass preparation theorem.

Let f be a complex analytic function in one variable, not identically equal to zero, on a convex neigh-
bourhood U of zero. Now let γ : [0, 1] → U\{0} be a closed curve around the origin. For simplicity we
will assume that γ([0, 1]) is homotopic to a circle in U\{0}. Denote the two real dimensional surface in
U enclosed by γ by D. Furthermore we shall assume that f |γ([0,1]) 6= 0.

Theorem 2.2.1 Let f be be as above and furthermore assume number of zeros inside D counted with
multiplicity equals M . Then there exists a unique Weierstrass polynomial W (z) of degree M

W (z) = zM + c1z
M−1 + c2z

M−2 + . . .+ cM ,

where W (z) has the same zeros as f in D or alternatively f(z) = W (z)u(z) with u(z) a unit in D.

9



Table 3: In this table the geometric discriminant in denoted by ∆

Confluence g2(z) g3(z) ∆(z) Roots near z = 0

I4 → 2I2 3 −1 + ε2z2

4 − 33

24 z
2(2z + ε)2× 0, 0,

+εz3 + z4 (−8 + z2ε2 + 4εz3 + 4z4) ε/2, ε/2

I5 → I3 + I2 3 −1 + ε2z3

4 − 33

24 z
3(2z + ε)2× 0, 0, 0

+εz4 + z5 (−8 + z3ε2 + 4εz4 + 4z5) ε/2, ε/2

I5 → 2I2 + I1 3 −1 + εz2 − 33

22
z2× 0, 0

− 3ε2/3

22/3 z
3 + z5 (2ε− 3 · 21/3ε2/3z + 2z2)× (ε/2)1/3, (ε/2)1/3,

(−4 + 2εz2 − 3 · 21/3ε2/3z3 + 2z5) −22/3ε1/3

I6 → I4 + I2 3 −1 + ε2z4

4 − 33

24 z
4(2z + ε)2× 0, 0, 0, 0

+εz5 + z6 (−8 + ε2z4 + 4εz5 + 4z6) ε/2, ε/2

I6 → I3 + I2 3 −1 + εz3 − 33

22
z3× 0, 0, 0

+ I1 − 3ε2/3

22/3 z
4 + z6 (2ε− 3 · 21/3ε2/3z + 2z3)× (ε/2)1/3, (ε/2)1/3,

(−4 + 2εz3 − 3 · 21/3ε2/3z4 + 2z6) −22/3ε1/3

I6 → 2I2 + 2I1 3 −1 + 3ε4/3

22+2/3 z
2 − 33

26
z2× 0, 0,

+εz3 + z6 (3 · 31/3ε4/3 − 23εz + 23z4)× 1
2 (21/3ε1/3 + i25/6ε1/3),

(−24 + 21/33ε4/3z2 1
2 (21/3ε1/3 − i25/6ε1/3),

+23εz3 + 23z6) − ε1/3

22/3 , − ε1/3

22/3

I6 → 3I2 3 −1 + ε2

22 z
2 − 33

24
z2(2z2 − ε)2× 0, 0,

−εz4 + z6 (−23 + ε2z2 − 22εz4 + 22z6)
√

ε
2 ,
√

ε
2 ,

−
√

ε
2 , −

√
ε
2

I6 → 2I3 3 −1 + ε3z3 −27z3(z + ε)3× 0, 0,0,
+3ε2z4 (−2 + z6 + 3z5η + 3z4η2 + z3η3) −ε, −ε, −ε
+3εz5 + z6

In the following ∆(z) will play the role of f(z). We shall start with an example is which we illustrate how
we use the Weierstrass preparation theorem and the implicit function theorem to prove the existence of
a confluence.

I7 → I4 + I3

We start with a Weierstrass model defined by

g2(z) = 3 + z3 + z4

g3(z) = −1− z3

2
− z4

2
+ εz4 + ηz5 − z6

233
+ δz6,

so that

∆(z) =2 · 33εz4 + 2 · 33ηz5 + 2 · 33δz6 +

(
32

2
+ 33ε

)
z7 +

(
32

22
+ 33ε− 33ε2 + 33η

)
z8

+

(
− 1

8
+ 33δ + (33 − 2 · 33ε)η

)
z9 + 3

(
5

8
+ 32(1− 2ε)δ +

3ε

22
− 32η2

)
z10

+

(
3 +

(
32

22
− 2 · 33δ

))
z11 +

(
1− 33(

1

233
+ δ)2

)
z12.

It is clear that for ε, η, δ = 0 we find a zero of order seven in the origin, corresponding to a singular fiber
of type I7, but for ε 6= 0 we find a zero of order four, corresponding to a singular fiber of type I4. From
the Weierstrass preparation theorem we deduce that the geometric discriminant must be of the form

∆(z) = z4
(
z3 + c1,ε,η,δz

2 + c2,ε,η,δz + c3,ε,η,δ
)
uε,η,δ(z)

where we made the dependence on the perturbation parameters obvious by the under-indices and where
u is again a unit in a neighbourhood of the origin. We note that the product of z4 and the third order
polynomial has been called the Weierstrass polynomial. and we therefore use the notation

Wε,η,δ(z) = z3 + c1,ε,η,δz
2 + c2,ε,η,δz + c3,ε,η,δ
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and refer to Wε,η,δ as he reduced Weierstrass polynomial. Our aim is the prove that there exists a curve
δ′ in the ε, η, δ-space so that

Wε,η,δ(z) = (z − z0,ε,η,δ)
3, (5)

where z0,ε,η,δ|δ′ is equal to zero if and only if δ′ is at the origin. Equation (5) is equivalent to

c1,ε,η,δ = −3z0,ε,η,δ c2,ε,η,δ = 3(z0,ε,η,δ)
2 c3,ε,η,δ = −(z0,ε,η,δ)

3,

which in turn yields

c2,ε,η,δ −
1

3
(c1,ε,η,δ)

2 = 0 c3,ε,η,δ −
1

33
(c1,ε,η,δ)

3 = 0. (6)

We shall now view this equation as an equation in the variables ε, η, δ. To prove the existence of a
solution curve δ′ in a neighbourhood of the origin, it is sufficient to prove that

D(c2,ε,η,δ −
1

3
(c1,ε,η,δ)

2, c3,ε,η,δ −
1

33
(c1,ε,η,δ)

3)|0 ∈ Aut(C2),

where D indicates the total derivative with respect to two variables, any combination of ε, η and δ will
do. In the following we will not indicated these variables explicitly. Since the value of c1,ε,η,δ is zero at
ε = η = δ = 0 we need to establish that

D(c2,ε,η,δ, c3,ε,η,δ)|0 ∈ Aut(C2).

Alternatively we may also prove that the rank of

D(c2,ε,η,δ, c3,ε,η,δ)

is maximal, in this case D indicates the total derivative with respect to ε, η and δ. We shall always
assume we take the derivative at zero, we shall make this explicit no longer.

We now determine c1,ε,η,δ, c2,ε,η,δ and c3,ε,η,δ perturbatively by making use of the Weierstrass preparation
theorem. We have that

∆ε,η,δ(z) = z4Wε,η,δuε,η,δ(z)

so that

∂

∂ε
∆ε,η,δ(z) =

∂

∂ε

(
z4Wε,η,δ(z)uε,η,δ(z)

)
= z4

(
∂

∂ε
Wε,η,δ(z)

)
uε,η,δ(z) + z4Wε,η,δ(z)

∂

∂ε
uε,η,δ(z)

∂

∂η
∆ε,η,δ(z) =

∂

∂η

(
z4Wε,η,δ(z)uε,η,δ(z)

)
= z4

(
∂

∂η
Wε,η,δ(z)

)
uε,η,δ(z) + z4Wε,η,δ(z)

∂

∂η
uε,η,δ(z)

∂

∂δ
∆ε,η,δ(z) =

∂

∂δ

(
z4Wε,η,δ(z)uε,η,δ(z)

)
= z4

(
∂

∂δ
Wε,η,δ(z)

)
uε,η,δ(z) + z4Wε,η,δ(z)

∂

∂δ
uε,η,δ(z).

We are only interested in a neighbourhood of the origin in ε, η, δ-space, so we consider

∂

∂ε
∆ε,η,δ(z)

∣∣
0

= z4

(
∂

∂ε
Wε,η,δ(z)

)
uε,η,δ(z)

∣∣
0

+ z4Wε,η,δ(z)
∂

∂ε
uε,η,δ(z)

∣∣
0

∂

∂η
∆ε,η,δ(z)

∣∣
0

= z4

(
∂

∂η
Wε,η,δ(z)

)
uε,η,δ(z)

∣∣
0

+ z4Wε,η,δ(z)
∂

∂η
uε,η,δ(z)

∣∣
0

∂

∂δ
∆ε,η,δ(z)

∣∣
0

= z4

(
∂

∂δ
Wε,η,δ(z)

)
uε,η,δ(z)

∣∣
0

+ z4Wε,η,δ(z)
∂

∂δ
uε,η,δ(z)

∣∣
0
.

If we now also note that Wε,η,δ(z)|0 = z3, this equation reduces to

∂

∂ε
∆ε,η,δ(z)

∣∣
0

= z4

(
∂

∂ε
Wε,η,δ(z)

)
uε,η,δ(z)

∣∣
0

+ z7 ∂

∂ε
uε,η,δ(z)

∣∣
0

∂

∂η
∆ε,η,δ(z)

∣∣
0

= z4

(
∂

∂η
Wε,η,δ(z)

)
uε,η,δ(z)

∣∣
0

+ z7 ∂

∂η
uε,η,δ(z)

∣∣
0

∂

∂δ
∆ε,η,δ(z)

∣∣
0

= z4

(
∂

∂δ
Wε,η,δ(z)

)
uε,η,δ(z)

∣∣
0

+ z7 ∂

∂δ
uε,η,δ(z)

∣∣
0
.
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The unit around zero is determined by

∆ε,η,δ(z)

z7

∣∣∣∣
0

= uε,η,δ(z)|0,

which together with the previous formulae implies that the first derivatives of Wε,η,δ(z) at the origin can
be determined from the fourth through seventh coefficient of the polynomial ∆(z). From this we may
deduce that

W (z) = z3 +

(
10ε

3
− 6η + 12δ

)
z2 + (−6ε+ 12η)z + 12ε+O(|(ε, η, δ)|2).

This implies that the rank of

D(c2,ε,η,δ, c3,ε,η,δ)

is maximal, which means that we have proven the existence of a curve δ′ such that

∆δ′(z) = z4(z − z0,δ′)
3uδ′(z)

and thus the existence of a confluence of type I7 → I4 + I3.

Let us now reflect on this proof. We did focus on a confluence of type I7 → I4 + I3 and thus imposed
the equation (5). If we would have been interested in a confluence of type I7 → I4 + I2 + I1 we would
have imposed for example7

Wε,η,δ(z) = (z − z0,ε,η,δ)
2(z + z0,ε,η,δ)

This would have altered the coefficients in (6), but it still would have been sufficient to prove that the
rank of

D(c2,ε,η,δ, c3,ε,η,δ)

is maximal. So we have also found a proof of the existence of confluences of type I7 → I4 + I2 + I1 and
I7 → I4 + I1 + I1 + I1. This statement may be generalized to the following.

Lemma 2.2.2 Let g2, g3 and ∆, depending of perturbation parameters δ1, . . . , δm be such that for δ1 =
. . . = δm = 0 we have the Weierstrass model of a rational elliptic surface with a singular fiber of type Ib
in the origin. Further assume that for δ1, . . . , δm 6= 0 the geometric discriminant is of the form

∆(z) = z2W (z)u(z),

where u(z) is a unit, W (z) a polynomial, which we shall refer to as the reduced Weierstrass polynomial,
and both W (z) and u(z) depend of some perturbation parameters δ1, . . . , δm. Furthermore if we write

W (z) = zb−2 + c1z
b−3 + . . .+ cb,

the maximality of the rank of the jacobian

D(c1, c2, . . . , cb)|0

implies that every confluence of type Ib → Ib−e + Ie1 + . . .+ Iej , with e1 + . . .+ ej = e ≤ b− 2 exists.

Proof To prove the existence of any confluence of type Ib → Ib−e+Ie1+. . .+Iej , with e1+. . .+ej = e ≤ b−2
it is sufficient to prove that there is a curve δ′ in δ1, δ2, . . . , δm-space such that W (z) is of the form

W (z) = zb−e−2(z − eiθ0z0, δ1,δ2,...,δm)(z − eiθ1z0, δ1,δ2,...,δm) . . . (z − eiθez0, δ1,δ2,...,δm),

7It is practical to let the position of all roots depend on one parameter to make sure we can distinguish roots.
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where we impose that the θi ∈ [−π, π) are fixed and θ1 = . . . = θe1 , θe1+1 = . . . = θe2 , . . ., θej−1+1 =
. . . = θej and no other equalities occur. Imposing this means that

W (z) = zb−e−2(z − eiθ0z0, δ1,δ2,...,δm)(z − eiθ1z0, δ1,δ2,...,δm) . . . (z − eiθez0, δ1,δ2,...,δm)

= zb−e−2
(
ze − ze−1(eiθ0 + . . .+ eiθe)z0, δ1,δ2,...,δm

+ ze−2(eiθ0eiθ1 + . . .+ eiθe−1eiθe)z2
0, δ1,δ2,...,δm

+ . . .+ (−1)eze0, δ1,δ2,...,δm(eiθ0 . . . eiθe)

= zb−2 + c1z
b−3 + . . .+ cb−2,

in particular we have that

c1 = −(eiθ0 + . . .+ eiθe)z0, δ1,δ2,...,δm

c2 = (eiθ0eiθ1 + . . .+ eiθe−1eiθe)z2
0, δ1,δ2,...,δm

...

ce = (−1)eze0, δ1,δ2,...,δm(eiθ0 . . . eiθe)

ce+1 = 0

...

cb−2 = 0.

If we pick8 the θis such that (eiθ0 + . . .+ eiθe) 6= 0 we may use the first equation above to substitute the
z0, δ1,δ2,...,δm if all of the above equations, where the equation does not read ci = 0. This implies that

it suffices to impose equations of the sort cj = 0 or cj − αjcj1 = 0, where αj = (eiθ0 . . . eiθj−1 + . . . +
eiθe−j+1 . . . eiθe)(eiθ0 + . . . + eiθe)−j . Like in our extensive discussion of the confluence I7 → I4 + I3, we
have that the maximality of the rank of the Jacobian9

D(c1, c2, . . . , cb)|0

implies that

D(c2 − α2c
2
1, . . . , cb−2)|0

is an automorphism of Cb−3, which via the implicit function theorem yields the existence of a solution
curve δ′ and thus the confluence itself. 2

We have shown for 7 ≤ b ≤ 9 by explicit construction of the Weierstrass models such that the conditions
on ∆ and W of lemma 2.2.2 hold and by calculation that the rank of the Jacobians mentioned is maximal.
These explicit considerations will not be presented here. This concludes our discussion of singular fibers
of type Ib.

Our method does not rely in any sense on the rationality of the elliptic surface. We therefore conjecture
that the result also holds for K3-surfaces.

2.3 Confluence to singular fibers of Kodaira type II, III and IV.

Theorem 2.3.1 Of all confluences to Singular Fibers of Kodaira type II, III and IV, allowed by con-
servation of the Euler number, the following occur:

II→ I1 + I1 III→ 3I1 III→ I2 + I1 III→ II + I1 IV→ 4I1 IV→ I3 + I1

IV→ III + I1 IV→ II + I2 IV→ 2II IV→ I2 + 2I1 IV→ II + 2I1.

Moreover the confluence which does not occur namely IV → 2I2 is obstructed by monodromy considera-
tions.

8This is not strictly necessary but this simplifies the argument somewhat.
9We assume we derive with respect to the right number of coordinates.
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In this subsection we shall give examples of every imaginary confluence to a singular fiber of type II, III or
IV, except IV→ 2I2. The properties of these examples will be verified by explicit calculation, as can be
seen in table 4, with the exception of the confluences IV→ II+2I1 and IV→ I2 +2I1. The confluences of
type IV→ II+2I1 and IV→ I2 +2I1 are treated separately and rely on the same discriminant argument
as used before. We will prove that there exists no confluence of the type IV→ 2I2, by using monodromy
considerations, not unlike the considerations seen in [4].

Table 4: In this table the zeros of the geometric discriminant are denoted by z0.

Confluence g2(z) g3(z) zeros z0 of ∆(z) g2(z0) g3(z0)
II→ 2I1 3ε2 z ±ε3 3ε2,3ε2 ±ε3
III→ 3I1 3z ε3 ε2, ε2e±

2π
3 3ε2, 3ε2e±

2π
3 ε3, ε3, ε3

III→ I2 + I1 z + 3ε2 εz
2 + ε3 0, 0, − 9ε2

4 3ε2, 3ε2, 3ε
4 ε3, ε3, − ε

3

8
III→ II + I1 z εz 0, 0, 27ε2 0, 0, 27ε2 0, 0, 27ε3

IV→ 4I1 3ε4 z2 ±ε3, ±iε3 3ε4, 3ε4 ε6, −ε6
IV→ I3 + I1 24ε(z + 72ε3) z2 + 2532zε3 0, 0, 0,−64ε3 2633ε4, 2633ε4, 2933ε6, 2933ε6,

+2933ε6 2633ε4, 263ε4 2933ε6, −29ε6

IV→ III + I1 εz z2 0, 0, 0, ε3

33 0, 0, 0, ε4

33 0, 0, 0, ε6

36

IV→ II + I2 εz z2 + ε3z
2233 0, 0, ε3

2233 , ε3

2233 0, 0, ε4

2233 , ε4

2233 0, 0, ε6

2336 , ε6

2336

IV→ 2II 0 z(z − ε) 0, 0, ε, ε 0, 0, 0, 0 0, 0, 0, 0

Confluence g2(z) g3(z) Behaviour of ∆(z)

IV→ I2 + 2I1
zεz
2 + 3ε2 z2 + ε2z

4 + ε3 D

(
∆(z)
z2

)
= 1

64ε
3(ε− 72)3

IV→ II + 2I1 εz z2 + εz D

(
∆(z)
z2

)
= ε4(ε2 − 108)

Table 5: We give the g2 and g3 defining the Weierstrass model in affine coordinates and have al-
ready rescaled the leading term of the geometric discriminant and used a Tschirnhauser
transformation on ∆.

Fixed g2 and g3 Parameter Configuration
fiber
II∗ g2(z) = a a = 0 II∗ + II

g3(z) = z a 6= 0 II∗ + 2I1

III∗ g2(z) = z + 9c3 c = d = 0 III∗ + III
g3(z) = cz + d 5c3 − d = 0, c 6= 0 III∗ + II + I1

9c3 − d = 0, c 6= 0 III∗ + I2 + I1

otherwise III∗ + 3I1

IV∗ g2(z) = az + b −a4b+ 2 · 33b2 + 2 · 33a2d = 0 IV∗ + IV, IV∗ + III + I1, IV∗ + II + I2,

g3(z) = z2 + a3z
2·33 + d IV∗ + 2II, IV∗ + II + 2I1 (generic)

a12 − 3411a8b+ 2 · 375 · 11a4b2 IV∗ + I3 + I1, IV∗ + I2 + 2I1 (generic)
−2939b3 + 2 · 3613a6d
−26311a2bd+ 29312d2 = 0,
a12 − 3411a8b+ 2 · 375 · 11a4b2 6= 0
a = b = d = 0 IV∗ + IV
a = b = 0, d 6= 0 IV∗ + 2II
b = a4/216, d = a6/15552, a 6= 0 IV∗ + II + I2

b = a4/108, d = a6/11664, a 6= 0 IV∗ + III + I1

b = 7a4/1728, d = 37a6/746496, a 6= 0 IV∗ + I3 + I1

otherwise IV∗ + 4I1

We have that the monodromy matrices, or rather the equivalence classes thereof, before and after
confluence satisfy equation (3). Taking the trace on both sides of the equation yields in the case of the
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confluence IV→ 2I2

Tr(MIV) = Tr(MI2AMI2A
−1)

Tr

(
0 1
−1 −1

)
= Tr

((
1 2
0 1

)(
a b
c d

)(
1 2
0 1

)(
a b
c d

)−1
)

−1 = 2(1− 2c2),

which contradicts that A ∈ SL(2,Z).

Note that in a confluence to a singular fiber of type II the complementary singular fiber II∗ remains
fixed in infinity. In our examples of confluences to III and IV, III∗ and IV∗, respectively, remain fixed
in infinity. This means that we have provided an explicit Weierstrass normal form for all configurations
in the list of Persson [5] including a singular fiber of type II∗, III∗ or IV∗.

With respect to our ultimate goal of understanding the stratification of the space Ng we are now in
a position to give more insight into the intricate structure of the set of strata corresponding to a con-
figuration containing a singular fiber of Kodaira type II∗, III∗ or IV∗, using the methods discussed in
subsection 1.1.10 The results of this investigation are given in table 5.

2.4 Confluence to singular fibers of Kodaira type I∗0.

In this subsection we discuss the confluences of to singular fibers of type I∗0 and prove the following
theorem.

Theorem 2.4.1 Of all confluences to Singular Fibers of Kodaira type I∗0, allowed by conservation of
Euler number, the following occur:

I∗0 → I4 + 2I1 I∗0 → IV + II I∗0 → IV + 2I1 I∗0 → I3 + II + I1 I∗0 → I3 + 3I1

I∗0 → 2III I∗0 → III + I2 + I1 I∗0 → III + II + I1 I∗0 → III + 3I1 I∗0 → 3I2

I∗0 → 2I2 + 2I1 I∗0 → I2 + 2II I∗0 → I2 + II + 2I1 I∗0 → I2 + 4I1 I∗0 → 3II

I∗0 → 2II + 2I1 I∗0 → II + 4I1 I∗0 → 6I1.

Moreover the confluences which do not occur

I∗0 → I5 + I1 I∗0 → I4 + I2 I∗0 → I4 + II I∗0 → IV + I2 I∗0 → 2I3

I∗0 → I3 + III I∗0 → I3 + I2 + I1,

are obstructed by monodromy considerations.

The proof of this statement can be found by giving a construction of a parameterized family of Weierstrass
models, which for ε = 0 describe the configuration 2I∗0 (one in the origin and one in infinity) and for
ε 6= 0 describe I∗0 (in infinity) together with the singular fibers which are supposed to flow together if
ε → 0. Most examples can be grouped into sets of similar confluences. We shall discuss each set and
give the family of Weierstrass models for one of the confluences of each group explicitly. The remaining
will be discussed individually. We also explicitly discuss the monodromy obstructions.

For the confluences I∗0 → IV + II, I∗0 → 2III and I∗0 → 3II we choose ether g2 or g3 identically equal to
zero and fix the orders of the zeros of the other function to the appropriate number.
Example: I∗0 → IV + II
For this confluence we choose

g2(z) = 0 g3(z) = z2(z − ε) ∆(z) = −27z4(z − ε)2.

Obviously we are now faced with a zero of fourth order and a zero of second order of the geometric
discriminant ∆(z). Since g2(z) = 0, they correspond to singular fibers of type IV and II.

10Suggested by Hans Duistermaat.
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For the confluences I∗0 → I4 + 2I1, I∗0 → I3 + 3I1 and I∗0 → I2 + 4I1 we fix for ε 6= 0 a singular fiber of
type Ib in the origin by consecutively setting the coefficients of the geometric discriminant equal to zero,
while imposing that g2(0) 6= 0. the verification that only singular fibers of type I1 remain is done by
calculating the discriminant of ∆(z)/zb.
Example: I∗0 → I3 + 3I1

For this confluence we choose

g2(z) = z2 + 3ε2 g3(z) = z3 +
1

2
εz2 + ε3 ∆(z) = −1

4
z3(2313z3 + 2233εz2 − 32ε2z + 2333ε3).

We are clearly faced with a singular fiber of type I3 in the origin since z3 factors ∆(z) but g2(0) 6= 0.
We may further derive that

D

(
∆(z)

z3

)
= −361093ε6

24
,

where D denotes the discriminant. This implies that there are three singular fibers of type I1 outside
the origin.

For the confluences I∗0 → IV + 2I1, I∗0 → III + II + I1, I∗0 → III + 3I1, I∗0 → 2II + 2I1 and I∗0 → II + 4I1 we
take for ε 6= 0 the most generic function with the appropriate common zero of g2 and g3, while keeping
the correct limit for ε→ 0. We then verify that the remaining zeros of ∆ are of first order.
Example: I∗0 → 2 II + 2I1

The least complicated choice seems to be

g2(z) = (z − ε)(z + ε) g3(z) = z(z − ε)(z + ε) ∆(z) = −(z − ε)2(z + ε)2(26z2 + ε2).

The geometric discriminant has clearly two second order zeros corresponding to singular fibers of type
II, the first order zeros of the geometric discriminant automatically correspond to singular fibers of type
I1.

For the confluences I∗0 → I3 + II + I1, I∗0 → III + I2 + I1, I∗0 → I2 + 2II and I∗0 → I2 + II + 2I1 we first
impose the right number of common zeros of g2 and g3, then we set the coefficients of ∆(z) equal to zero
consecutively, while imposing that g2(0) 6= 0. we then verify, if necessary, that the remaining zeros are
of first order.
Example: I∗0 → III + I2 + I1

We choose

g2(z) = −3(z − ε)(z + ε) g3(z) = (z − ε)2(2z + ε) ∆(z) = −27z2(z − ε)3(5z + 3ε).

The geometric discriminant has a second order zero in the origin, a third order zero in ε and finally a
first order zero in −3ε/5. By construction both g2 and g3 are not equal to zero in the origin, which
implies we have a singular fiber of type I2. Clearly (z − ε) factors both g2 and g3, which gives us that
the zero in ε corresponds to a singular fiber of type III. The remaining zero corresponds to a singular
fiber of type I1.

I∗0 → 3 I2

For this confluence we need the discriminant to be a square of a third order polynomial in z. We therefore
write ∆(z) = −27f(z)2. Since we assume that there is a singular fiber of type I∗0 at infinity, g3 is of
degree 2 and may be written as follows g3(z) = 3p(z)q(z), where p and q are linear functions. Moreover
neither p nor q may divide g2, since this would yield a singular fiber of type II. From the definition of
the geometric discriminant we deduce that

p(z)3q(z)3 = (g3(z)− f(z))(g3(z) + f(z)).

Combining this with the fact that neither p nor q divides g2 yields

p(z)3 = C1(g3(z)− f(z)) q(z)3 = C2(g3(z) + f(z)),

with C1 and C2 constants, which in turn may be absorbed in p(z) and q(z). We now have that

g2(z) = 3p(z)q(z) g3(z) =
p(z)3 + q(z)3

2
∆(z) = −27

4
(p(z)3 − q(z)3).
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By rescaling, a Tschirnhauser transformation and taking into account that g2 and g3 have no common
factor we may set

p(z) = az + b q(z) = z + a2b,

where a3 6= 1.
We therefore choose

g2(z) = 3(2z + ε)(z + 4ε), g3(z) =
(2z + ε)3 + (z + 4ε)3

2
, ∆(z) = −3372

4
(z − 3ε)2(z2 + 3εz + 3ε2)2.

The zeros of ∆(z) are therefore 3ε, − 1
2 i(
√

3−3i)ε and − 1
2 i(
√

3 + 3i)ε, at which the value of g2 is 3 ·72ε2,
3
2 (−13− 3

√
3i)ε2 and 3

2 (−13 + 3
√

3i)ε2 respectively. This implies that we indeed have 3 I2 for ε 6= 0.

I∗0 → 2I2 + 2I1

Here we choose

g2(z) =ε(z + 3ε)

g3(z) =
1

2
(2z3 + (322/3 − 21/3)εz2 − ε2z − 2ε3)

∆(z) =− 1

4
z2(−2233z4 + 2233(21/3 − 322/3)εz3 − 27(−16 + 18 21/3 + 22/3)ε2z2

+ 2(110− 27 21/3 + 81 22/3)ε3z + 9(1− 6 21/3)2ε4).

The geometric discriminant ∆(z) has a two zeros of order two, one in the origin and another in z =
1
6 (21/3−6 22/3)ε and two zeros of first order in z = 1

6 (2 21/3ε−3 22/3ε−2
√
−6ε2 + 18 21/3ε2 + 22/3ε2) and

z = 1
6 (2 21/3ε− 3 22/3ε+ 2

√
−6ε2 + 18 21/3ε2 + 22/3ε2). The value of g2 in the two zeros of second order

is 3ε2 and 1
6 (18 + 21/3− 6 22/3)ε2 respectively, which implies we have indeed constructed a confluence of

I∗0 → 2I2 + 2I1.

I∗0 → 6 I1

A generic perturbation of a singular fiber other then a singular fiber of type I1 yields χ singular fibers of
type I1, where χ is the Euler number of the singular fiber before perturbation. This implies that almost
any perturbation will do, however the following model will be convenient

g2(z) = z2 + ε, g3(z) = z3, ∆(z) = −(2z2 − ε)(13z4 + 5εz2 + ε2).

Again we use the discriminant to verify that the singular fibers are of type I1

D(∆(z)) = 2731813 ε15.

This completes our discussion of examples of confluences to singular fibers of type I∗0

We shall now discuss the obstructions. Verification of the obstructions for a confluence of two singular
fibers to a singular fiber of type I∗0, is done in the same manner as for the confluence IV → 2 I2 and is
explicitly given in table 6. We use the same type of argument for I∗0 → 2I2 + II. For the confluence
I∗0 → I3 + I2 + I1 we use equation (3) fully.

Table 6

Confluence Trace equation coefficient equation
(one permutation given) (one permutation given)

I∗0 → I5 + I1 Tr(MI1AMI5A
−1) = Tr(MI∗0

) −2 = 2− 5c2

I∗0 → I4 + I2 Tr(MI2AMI4A
−1) = Tr(MI∗0

) −2 = −2(−1 + 4c2)
I∗0 → I4 + II Tr(MIIAMI4A

−1)) = Tr(MI∗0
) −2 = 1− 4a2 − 4ac− 4c2

I∗0 → IV + I2 Tr(MIVAMI2A
−1) = Tr(MI∗0

) −2 = −1− 2a2 − 2ac− 2c2

I∗0 → 2I3 Tr(MI3AMI3A
−1) = Tr(MI∗0

) −2 = 2− 9c2

I∗0 → I3 + III Tr(MIIIAMI3A
−1) = Tr(MI∗0

) −2 = −3(a2 + c2)
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I∗0 → I3 + I2 + I1

For this confluence we shall consider not the eigenvalues but the full matrix product, so we verify that
there are no A1, A2 ∈ SL(2, Z) such that MI3A1MI2A

−1
1 A2MI1A

−1
2 = MI∗0

, nor for any permutation
of the monodromy matrices MI1 , MI2 and MI3 . Taking a1, b1, c1, d1 and a2, b2, c2, d2 to be the
coefficients of A1 and A2 we see that solving this equation with respect to a1, c1 and c2 yields among
others c1 = ±

√
2/3, which contradicts the assumption that A1, A2 ∈ SL(2, Z). Solving the equations

for a permutation of the monodromy matrices MI1 , MI2 and MI3 yields c = ±2/
√

3, c = ±
√

2/3 or

c = ±
√

2, again contradiction A1, A2 ∈ SL(2, Z). This is sufficient to prove that this confluence can
not be realized.

I∗0 → 2I2 + II
Taking the trace of both sides of the equation MIIA1MI2A

−1
1 A2MI2A

−1
2 = MI∗0

and its permutations,
where A1 and A2 are as before yields

−2 =1− 2a2
1 − 2a2

2 − 2a1c1 + 4a1a
2
2c1 − 2c21 − 2a2c2 − 4a2

1a2c2 + 4a1a2c1c2

+ 4a2c
2
1c2 − 2c22 − 4a2

1c
2
2 − 4a1c1c

2
2

and likewise equalities for the permutations. This all these equalities imply that 3 is even, a contradiction.

This concludes the discussion of perturbations of a singular fiber of Kodaira type I∗0.
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