L² Rational Approximation, Model Reduction and Applications

Martine Olivi

INRIA Sophia-Antipolis

GT Identification, 19 Nov 2009

(日)、(型)、(E)、(E)、(E)、(O)()

Plan

1 Rational approximation and system theory

Our approach to rational approximation

3 Applications

Identification of hyperfrequency filters Inverse EEG source problems and approximation Implementing wavelets in analog circuits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

What is the use of rational approximation ?

General problem

Find a mathematical model from measured data

 \rightarrow **Applications :** model reduction, identification, realization problem, simulation, control, prediction

- Which model ?
 - Linear time invariant (LTI) systems represented by their transfer function a rational matrix-valued function H(z).

(日)、(型)、(E)、(E)、(E)、(O)()

- Which data ?
 - Time series : $u(t_k), y(t_k), k = 1, \dots N$
 - Frequency data : $H(i\omega_k), k = 1, ..., N$
- Which method ?
 - Projection
 - Optimization (criterion ?)

Rational approximation and system theory

(日)、(型)、(E)、(E)、(E)、(O)()

A fertile interaction :

- Minimal partial realization/moment matching
- Nonlinear least-squares
- AAK approximation/ Hankel norm approximation
- Subspace methods
- H² rational approximation

A still active field.

Stability and Analyticity

Stability

A bounded input $\|u\|_{\infty} < \infty$ produces a bounded output $\|y\|_{\infty} < \infty$

- Impulse response h(t) integrable
- Transfer function H(s) analytic in the right half-plane $\{\operatorname{Re} s \ge 0\}$

Analytic functions have a rigid structure, they are completely determined by their values on certain subsets of their domain of definition, or of their boundary.

The H^2 norm

 H^2 Hardy spaces of functions analytic in the right half-plane, square integrable on the imaginary axis

$$\|H\|^2 = \frac{1}{2\pi} \int |H(i\omega)|^2 d\omega$$

A rich structure: analyticity + Hilbert space

- $L^2 \rightarrow L^{\infty}$ stability
- Comes from a scalar product (orthogonality principle, differentiable)
- Stochastic interpretation : minimize the mean square output error due to a white noise
- Cauchy formula : f(a) = 1/(2π) ∫_∂ f(z)/(z-a) dz, Re a > 0
 f completely determined by its boundary values on the imaginary axis ∂ = iℝ.

From continuous-time to discrete-time

Preserves the H^2 -norm and the order or McMillan degree

General inverse problem

Recover an analytic function on a domain from (pointwise band-limited) data on the boundary

Rational L² approximation

 H_{\perp}^2 Hardy space of matrix valued functions, analytic outside \mathbb{D} , vanishing at ∞ (stable transfer functions)

$$\|F\|^2 = \frac{1}{2\pi} \operatorname{Tr} \left\{ \int_0^{2\pi} F(e^{it}) F(e^{it})^* dt \right\}$$

Rational approximation

Given $F \in H_2^{\perp}$, minimize

 $\|F-H\|^2$

(日)、(型)、(E)、(E)、(E)、(O)()

H rational, stable, of McMillan degree n

F(z) given: a method for model reduction

Plan

Rational approximation and system theory

2 Our approach to rational approximation

3 Applications

Identification of hyperfrequency filters Inverse EEG source problems and approximation Implementing wavelets in analog circuits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A difficult problem

- Nonlinear optimization problem
- The set of approximants (stable systems of order n) has a complex structure, specially in the MIMO case.
 It is difficult to get 'good' parameters.
- L^2 norm \mapsto great number of local minima

How we cope with ?

- Eliminate the linear variables obtaining a function that involves only the nonlinear parameters (separable least square)
- Use a 'good' parametrization for the reduced optimization space
- Use an optimization strategy : start from an initial point given by another method or iterative search on the order

Implementation: RARL2 a matlab software J. P. Marmorat, M.O. (2004)

Optimization space reduction

Given $F(z) \in H^2_{\perp}$ find H(z) of degree *n* which minimizes $||F - H||^2$.

Elimination of linear variables: two points of view

• Lossless-unstable factorization Douglas-Shapiro-Shields (1970) $H(z) = \Phi(z) G(z), \Phi(z)$ lossless, $G(z) \in H^2$.

$$\operatorname{Vec}(\Phi) = \{H(z) \in H^2_{\perp}, H(z) = \Phi(z)G(z)\}$$

• State-space framework $\operatorname{Vec}(C, A) = \{H(z) \in H^2_{\perp}, H(z) = C(zI - A)^{-1}\beta\}$

Connection: lossless embedding

(C, A) output-normal pair: $\longrightarrow \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ unitary matrix $A^*A + C^*C = I$ $\Phi(z) = C(zI - A)^{-1}B + D$ lossless

The concentrated criterion

The projection theorem (orthogonality principle) in a Hilbert space allows to compute

- G(z) from $\Phi(z)$
- β from (C, A)

Concentrated criterion

$$J(C,A) = \min_{H \in \operatorname{Vec}(C,A)} \|F - H\|^2$$

Advantages:

- The dimension of the parameter space is reduced but we also get a better-conditioned problem
- Lossless matrices enter the picture (transfer functions of conservative systems)

Which parametrizations for lossless systems?

 An atlas of local coordinate maps: identifiability, differentiability

- Parametrizations with a double interpretation
 - Schur analysis and interpolation theory
 A nice way to address the constraint metric ||F||_∞ ≤ 1.

 Big inpact in system theory.
 Kailath (1986), Kimura, Ball, Gohberg and Rodman (1990)
 - Balanced state-space canonical forms Useful in computations; physical interpretation

Hanzon, M.O., Peeters, LAA (2006), Marmorat, M.O., Automatica(2007)

Optimization process in RARL2

- $V \mapsto G(z) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ computed from V and G_0 as a product of two unitary matrices (well-conditionned)
- Optimization with respect to local coordinates V (fmincon) Nonlinear condition reached → change of chart
- Nonlinear condition: eig min $Q \ge \epsilon$ where Q is the solution to $Q - A^*QA_0 = C^*C_0.$

Plan

Rational approximation and system theory

Our approach to rational approximation

3 Applications

Identification of hyperfrequency filters Inverse EEG source problems and approximation Implementing wavelets in analog circuits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Plan

Rational approximation and system theory

Our approach to rational approximation

3 Applications

Identification of hyperfrequency filters

Inverse EEG source problems and approximation Implementing wavelets in analog circuits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Identification of hyperfrequency filters

- Electro-magnetic waves filter made of resonant cavities, interconnected by coupling irises (orthogonal double slits). Each cavity has 3 screws.
- Works around the GHz, Passband: a few Mhz
- Used in space telecommunication (satellites transmission) for multiplexing purposes.

Identification problem: given measurements performed on the device find the values of parameters from the physical model What for ? Tuning (adjusting the screws)

An equivalent electrical model (1)

- Maxwell equations
- Input and output : one spacial mode (waveguide)
 - electric field \approx voltage
 - magnetic field \approx current

The filter can be seen as a quadripole, with two ports.

- The electrical field in each cavity is decomposed along two orthogonal modes (approximation valid in the range of frequencies)
- For each mode, a good approximation of the Maxwell equations is given by the solution of a second order differential equation.

One mode in one cavity \mapsto a RLC circuit (order 2)

An equivalent electrical model (2)

Screws act as capacitors Irises results in a coupling between two horizontal (or two vertical) modes of adjacent cavities Order = 2×9 (two times the number of modes)

(日)、(型)、(E)、(E)、(E)、(O)()

Low-pass equivalent electrical model

Original filter: two (conjugate) bandwidths in the high frequencies ↓ low-pass transformation Low-pass equivalent : one bandwidth around 0

one mode = one circuit (order 1) order = number of modes $M_{i,j}$ coupling

State-space representation

We are interested in the power which is transmitted and reflected.

 $\begin{cases} \dot{x}(t) = Ax(t) + Ba(t) \\ b(t) = Cx(t) + a(t) \end{cases} \quad a(t) = \begin{bmatrix} a_1(t) \\ a_2(t) \end{bmatrix} \quad b(t) = \begin{bmatrix} b_1(t) \\ b_2(t) \end{bmatrix}$

Scattering matrix: $S(z) = I + C(zI - A)^{-1}B$ lossless symmetric with complex coefficients

$$C = \begin{bmatrix} j\sqrt{2R_1} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & j\sqrt{2R_2} \end{bmatrix} \quad B = C^t$$
$$A = -R - jM, \quad A = A^t \qquad \qquad 2R = -C^tC$$

M coupling matrix

Identification vs Model Reduction

(日)、(型)、(E)、(E)、(E)、(O)()

A difficult problem:

- \rightarrow Interpolate and extrapolate the data (band-limited)
- \rightarrow Ensure stability
- \rightarrow Find a small order model

Resolution in 3 steps

- Interpolation/extrapolation of the frequency data dedicated method
- Model reduction by rational L²-approximation RARL2
- **Computation of the physical parameters** from a realization in a particular form (coupling matrix) DEDALE (F.Seyfert)

Presto-HF (F. Seyfert) is a matlab based toolbox dedicated to the identification problem of low pass coupling parameters of band pass microwave filters. Used by CNES, IRCOM, Alcatel.

Numerical results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The future

Omux identification and design

Plan

Rational approximation and system theory

Our approach to rational approximation

3 Applications

Identification of hyperfrequency filters Inverse EEG source problems and approximation Implementing wavelets in analog circuits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Inverse EEG (electroencephalography) problem

From measurements by electrodes of the electric potential u on the scalp, recover a distribution of m pointwise dipolar current sources C_k with moments p_k located in the brain (modeling the presence of epileptic foci). L. Baratchart, M. Clerc, J. Leblond, J.P. Marmorat, M. Zghal

Mathematical model

The head Ω is modeled as a set of 3 spherical nested regions $\Omega_i \subset \mathbb{R}^3$, i = 0, 1, 2 (brain, skull, scalp), with piecewise constant conductivity σ_i , separated by interfaces S_i .

(日)、(型)、(E)、(E)、(E)、(O)()

 $\label{eq:macroscopic model + quasi-static approximation of Maxwell equations$

 \rightarrow Spatial behavior of \emph{u} in Ω

$$(P) \begin{cases} \operatorname{div} (\sigma \nabla u) = \sum_{k=1}^{m} p_k \cdot \nabla \delta_{C_k} & \text{in } \Omega \\ u = \operatorname{and} \partial_n u & \text{given on } \partial \Omega \end{cases}$$

Resolution of this inverse problem in 3 steps

• Data propagation

Anti-harmonic projection

$$(P) \text{ in } \Omega_0 \left\{ \begin{array}{ll} \bigtriangleup u = \frac{1}{\sigma_0} \sum_{k=1}^m p_k . \nabla \delta_{C_k} & \text{ in } \Omega_0 \\ u \text{ and } \partial_n u & \text{ given on } S_0 \end{array} \right.$$

The solution u to (P) in Ω_0 assumes the form:

$$u(x) = h(x) + \sum_{k=1}^{m} \frac{\langle p_k, x - C_k \rangle}{4\pi ||x - C_k||^3} = \underbrace{h(x)}_{harmonic} + \underbrace{u_a(x)}_{anti-harmonic}$$

 u_a obtained by expanding u on bases of spherical harmonics u_a contains the information on the sources

Best rational approximation on planar sections
 Source localization

Best rational approximation on planar sections

- Slice Ω_0 along a family of planes Π_p : $\Pi_p \cap \Omega_0 = \Gamma_p$ (disks) $\Pi_p \cap S_0 = \Gamma_p$ (circles)
- From pointwise values on Γ_p , compute the best L^2 rational approximation to $f_p = (u_a|_{\Gamma_p})^2$ on Γ_p

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Why does it works ?

- f_p is a (meromorphic) function whose singularities $\zeta_{k, p}$ inside D_p are strongly and explicitly linked with the sources C_k .
 - $(\zeta_{k, p})$ are aligned together and also with the complex coordinates ζ_k of C_k .
 - $|\zeta_{k, p}|$ is maximum at $\zeta_{k, p} = \zeta_{k}$ (the k^{th} source's section)
- The poles $\widetilde{\zeta}_{k, p}$ of the best L^2 rational approximation to f_p on Γ_p accumulate to the singularities $\zeta_{k,p}$ Leblond, Baratchart, Yattselev

FindSource3D

of u on S_2 then of C_1 into Ω_0

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

R. Bassila, M. Clerc, J. Leblond, J.P. Marmorat

Plan

Rational approximation and system theory

Our approach to rational approximation

3 Applications

Identification of hyperfrequency filters Inverse EEG source problems and approximation Implementing wavelets in analog circuits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Wavelets in analog circuits

The continuous-time wavelet transform of a signal f(t)

$$W_{\psi}(au,\sigma) = rac{1}{\sigma}\int f(t)\psi\left(rac{t- au}{\sigma}
ight) dt$$

- Widely used signal processing technique in medical applications (cardiac signal processing)
- Provides combined time and frequency localization Can be implemented with a linear system:

$$f * h(t) = \int f(\tau)h(t-\tau) d\tau, \quad h(t) = \frac{1}{\sigma}\psi\left(\frac{-t}{\sigma}\right)$$

Only the implementation of strictly causal stable filters is feasible ! To ensure causality, a time-shifted (truncated) time-reversed mother wavelet $\tilde{\psi}(t) = \psi(t_0 - t)$ is considered.

L²-approximation of wavelets functions

Motivation of an L^2 -approximation criterion

- Wavelet transform involves an L^2 -inner product
- Due to Parseval's theorem, L^2 -approximation in the time domain can be reformulated as L^2 -approximation in the frequency domain

$$\min_{h} \|\tilde{\psi}(t) - h(t)\| \equiv \min_{H} \|\tilde{\Psi}(s) - H(s)\|$$

An important admissibility property: wavelets needs to have (at least) one vanishing moment

$$\int ilde{\psi}(t) \; dt = 0$$

Approximation method (sampling, choice of a clever initial point, use an iterative local search optimization technique) Karel, Haddad, Westra, Serdijn, Peeters (2009)

Model reduction using RARL2

- The given function F(z): the approximation obtained by Karel & al. converted into a discrete-time transfer function.
- The vanishing moment condition yields on the discrete-time approximant $H(z) = C(zI A)^{-1}\beta$ the linear condition on β

 $C(I+A)^{-1}\beta=0$

• It can be handled by a slightly different concentrated criterion

$$J(A, C) = \min_{\beta} \|F(z) - H(z)\|^2$$

subject to $C(I + A)^{-1}\beta = 0$

 β is easily computed from A and C using Lagrange multipliers. Same optimization space and parametrization.

Incremental search on the order

Approximation of Morlet wavelet

Initial approximation order 20 / RARL2 approximation order 8

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

Approximation of DB7 wavelet

Initial approximation order 136 / RARL2 approximation order 8

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Approximation of DB3 wavelet

Initial approximation order 225 / RARL2 approximation order 12

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Perspectives

- Convex constraints on the approximant can be handled with the same optimization space (output normal pairs)
 - \rightarrow Vanishing moments (wavelets)
 - \rightarrow Positive real, bounded real (β solution to an LMI)
- The same optimization space can be used for other criterions (separable least-square) RARL2 subroutines divides into two independant libraries : arl2lib: computation of the concentrated criterion, gradient with respect to A, C boplib: parametrization of balanced output pairs C, A
 - \rightarrow Multi-objective control (β solution to an LMI Scherer)
 - \rightarrow (weighted) Nonlinear least-square

http://www-sop.inria.fr/apics/RARL2/rarl2-eng.html