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Introduction

In this work some links are stressed between two types of parametrizations
of lossless functions 1:

interpolation data structured realizations
g(w) = v D + C (z In − A)−1B

parameters: v Hessenberg Schwarz/Ober
optimization parameters physical parameters

Why lossless functions ?

Degree constraint easy to handle in an interpolation scheme

Usefull in many applications (H2 approximation, SLS identification,
representations of orthogonal filter banks)

Generalization to other classes of functions from the observable pair
[B A]

1A lossless function is the transfer function of a conservative system:
|g(z)| < 1 for z in the analyticity domain and |g(z)| = 1 on its boundary
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Discrete-Time: Hessenberg canonical form.

A lossless function G (z) of degree n has a (unique) realization such that

R =

[
d c
b A

]
is orthogonal and

[
b A

]
positive upper-triangular

It can be parametrize as follows: γn κn 0
κn −γn 0
0 0 In−1

 d c

∗
0

A


︸ ︷︷ ︸

R

=

[
1 0
0 Rn−1

]
,

|γn| < 1, κn =
√

1− |γn|
2
, γn = d .

By induction we get: (Rk)k=n,...,0 realization (order k) in Hessenberg form
and (γk)k=n,...,0 |R0| = 1.

B. Hanzon, R. Peeters (2000)
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Connection with the Schur algorithm.

Let gk(z) = γk + ck(zIk − Ak)−1bk be the lossless function whose
realization is Rk .
Then gk satisfies the interpolation condition

gk(∞) = γk , |γk | < 1.

Moreover,

gk(z) =
γk z + gk−1(z)

z + γ̄kgk−1(z)
⇔ gk−1(z) =

(gk(z)− γk)z

1− γ̄k gk(z)
.

This is the Schur algorithm: lossless functions of McMillan degree n are
parametrized by the interpolation values γn, γn−1, . . . , γ1 and γ0 = R0.
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Continuous-time: Ober canonical form

Any lossless function G (s) of McMillan degree n has a unique balanced
realization G (s) = D + C (sIn − A)−1B parametrized by ε = ±1, and
β, α1, α2, . . . , αn−1 positive real numbers:

BT =
[

β 0 · · · 0
]

= εC ,

A =



−β2

2 α1

−α1 0 α2 0
−α2 0

. . .

0 0 αn−1

−αn−1 0


D = −ε.

(1)

Ober 1987
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Parametrization (Ober 1987)

An−k =



0 αk+1 0
−αk+1 0 αk+2

−αk+2

. . .
. . .

0 0 αn−1

−αn−1 0


∆n−k(s) = det(sIn−k − An−k)

∆j monic polynomial, even (odd) for j even (odd) satisfies

∆n−k(s) = s∆n−k−1(s) + α2
k+1∆n−k−2(s), (2)

Are the αk interpolation values ?

G (s) = −ε
∆n(s)− β2

2 ∆n−1(s)

∆n(s) + β2

2 ∆n−1(s)
, G (∞) = −ε, G ′(∞) = εβ2

Interpolation conditions on the stability border !
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Boundary Interpolation

Let f (s) be a lossless function which satisfies the interpolation condition:

f (σ) = ξ, Re(σ) = 0, |ξ| = 1

Then ρ = −f (σ)f ′(σ) is a strictly positive number called the angular
derivative. A well-posed interpolation problem is the ADI problem: find
all the lossless functions f (s) such that{

f (σ) = ξ
f ′(σ) = −ξρ

(3)

Ball, Gohberg and Rodman, Interpolation of rational matrix

functions, 1990, ch. 21
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Linear fractional transformations

For a rational 2× 2 rational matrix function

Θ(s) =

[
Θ11(s) Θ12(s)
Θ21(s) Θ22(s)

]
we define

TΘ(f ) = [Θ11 f + Θ12][Θ21 f + Θ22]
−1.

Used to describe the solutions to interpolation problems:

Θ(s) satisfies itself an interpolation condition

Θ(s) J-lossless:

{
Θ(s)∗JΘ(s) ≤ J, Re s > 0
Θ(s)∗JΘ(s) = J, Re s = 0

,

J =

[
1 0
0 −1

]
.

Then TΘ maps a lossless function to a lossless function.
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Solutions to the ADI problem

The ADI problem (3) always has a solution (since ρ > 0). All the solutions
are given by

f = Tθσ,ρ,ξ
(g)

where

Θσ,ρ,ξ is the J-lossless function

Θσ,ρ,ξ(s) = J − 1

(s − σ)ρ

[
ξ
1

] [
ξ
1

]∗
(4)

g(s) is a lossless function such that g(σ) 6= −ξ

We have that deg f = deg g + 1.
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Schur algorithm and parametrizations

Schur algorithm: let σ = 0 and f lossless: for j = n, n − 1, . . . , 1 put{
ξj = fj(0)
ρj = −ξj f

′
j (0)

and let
ξj fj−1 = T−1

Θσj ,ρj ,ξj
(fj).

Using the reverse Schur algorithm, we define a one-to-one map

(ξ0, ξ1, . . . , ξn, ρ1, ρ2, ρn) → f lossless

on the domain: ρj > 0 and ξj 6= −ξ0 unit complex number, j = 1, . . . , n

Real functions (conjugate symmetry): ξ0 = ξ1 = · · · ξn = ±1
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Connection with Ober form

To move the interpolation point at infinity, let Fj(s) = fj(1/s) and
compute it using the reverse Schur algorithm with ξ0 = 1. Let aj = ρj/2.

F0(s) = 1

F1(s) =
s − a1

s + a1

F2(s) =
s2 − a2s + a1a2

s2 + a2s + a1a2

F3(s) =
s3 − a3s

2 + (a1a2 + a2a3)s − a1a2a3

s3 + a3s2 + (a1a2 + a2a3)s + a1a2a3
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Connection with Ober form

Separating the odd and even part of the numerator and the denominator:

F0(s) = 1

F1(s) =
s − a1

s + a1

F2(s) =
s2 + a1a2 − a2s

s2 + a1a2 + a2s

F3(s) =
s3 + (a1a2 + a2a3)s − a3(s

2 + a1a2)

s3 + (a1a2 + a2a3)s + a3(s2 + a1a2)
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Connection with Ober form

We get the following structure :

Fj(s) =
Pj − ajPj−1

Pj + ajPj−1

Pj monic polynomial, even (odd) for j even (odd)

Pj+1(s) = sPj(s) + ajaj+1Pj−1(s)
Compare with (2) !

β2 = ρn α2
n−j = ajaj+1

In the description of a ladder filter (Johns and all, 1989) the ai ’s are
the inverse of capacitor and inductor values.
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LFTs and balanced realizations

In (Peeters, Hanzon, M.O., SSSC 2001) it was proved that if

G̃ (s) = TΘ(1/s)(G (s))

then a realization of G̃ (s) can be computed from an extended realization
of G (s) by an LFT too !

[
D̃ C̃

B̃ Ã

]
= TΦ

 D 0 C
0 1 0
B 0 A


Where Φ is a block matrix builts from a realization of Θ(s).
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Recursive construction of Ober canonical form

A realization of Fj(s) = Dj + Cj(sIj − Aj)
−1Bj is obtained by the following

recursion:

Aj =

 −ρj/2
√

ρj

2 Cj−1

√
ρj

2 Bj−1 Aj−1 −
Bj−1Cj−1

2

 ,

Bj =

[ √
ρj

0

]
,

Cj =
[
−√ρj 0

]
,

Dj = 1,

which gives the balanced canonical form of Ober, with ε = −1.
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Conclusion

The parameters in the canonical form of Ober can be interpreted as
ADI values in a Schur type recursive scheme

Can be view as the ”limit” of a classical multipoint Schur algorithm
and used to parametrize Schur functions (passive systems)

Boundary interpolation an useful tools for the parametrization of
certain classes of stable systems ... never used in that way to our
knowledge.

Generalization to the MIMO case and connection with pivot
structures under study
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