A Schur algorithm for symmetric inner functions

M. Olivi, B. Hanzon, R. Peeters

Sophia–Antipolis, France December 2005

Symmetric inner functions

Schur function (discrete-time): S(z) square rational, analytic and contractive in the open unit disk,

 $S(z)^*S(z) \le I, |z| < 1$

Inner function: Q(z) is Schur and

 $Q(z)^*Q(z) = I, |z| = 1$

Symmetric: $Q(z)^T = Q(z)$

Symmetric inner rational functions arise in the description of physical systems which satisfy the conservation and reciprocity laws.

Nevanlinna-Pick interpolation problem

Find a $p \times p$ Schur function S such that

$$S(w)u = v, \quad u, v \in \mathbb{C}^p, \ |w| < 1, \ ||u|| = 1, \ ||v|| < 1$$

The solutions can be parametrized via a linear fractional transformation

$$S = T_{\Theta}(R) = (\Theta_1 R + \Theta_2)(\Theta_3 R + \Theta_4)^{-1}$$
(1)

in which R is a $p \times p$ Schur function.

 $\Theta = \begin{bmatrix} \Theta_1 & \Theta_2 \\ \Theta_3 & \Theta_4 \end{bmatrix}$ is built from the interpolation data (w, u, v). It is *J*-inner: $\begin{array}{l} \Theta(z)^* J\Theta(z) \leq J, \ |z| < 1, \\ \Theta(z)^* J\Theta(z) = J, \ |z| = 1 \end{array}, \quad J = \begin{bmatrix} I_p & 0 \\ 0 & -I_p \end{bmatrix}$

Parametrizations via a Schur algorithm

 \mathcal{I}_n^p manifold of $p \times p$ inner functions of McMillan degree nLemma: $w \in \mathbb{C}$, |w| < 1, $\exists u$ such that ||Q(w)u|| < 1. Schur algorithm: $Q = Q_n$, $Q_{n-1}, \ldots, Q_k \xrightarrow{LFT} Q_{k-1}, \ldots, Q_0$ Q_k has McMillan degree k and Q_0 is constant unitary. The LFT is built from an interpolation condition

$$Q_k(w_k)u_k = v_k, \ |w_k| < 1, \ ||v_k|| < ||u_k|| = 1$$

Atlas of charts (local parametrizations):

The w_i 's and the u_i 's define the chart while the v_i 's are the Schur parameters of the function Q in the chart.

Choice of the LFT

 $Q(w)u = v \Rightarrow Q = T_{\Theta H}(R) = T_{\Theta}(T_H(R))$

$$\Theta(z) = I_{2p} + (z-1)\frac{1-|w|^2}{1-||v||^2}\frac{\begin{bmatrix} v \\ u \end{bmatrix} \begin{bmatrix} v \\ u \end{bmatrix}^*}{(z-w)(1-\bar{w})}J$$

H arbitrary constant J-unitary, $H^*JH = J$

Kimura, IEEE trans. autom. control, 1987 $H = H(vu^*)$ circuit theoretical interpretation D. Alpay, L. Baratchart, A. Gombani, *Op. Th. and Appl.*, 1994 $H = I_{2p}$ function space approach $Q_0 = Q(1)$. Hanzon, Olivi, Peeters, ECC99 $H = H(w, u, v) \rightarrow$ nice construction of balanced realizations

LFT's which preserve symmetry

Let $\Theta(z)$ be a *J*-inner function such that

$$\bar{\Theta}(1/z) = K\Theta(z)K, \quad K = \begin{bmatrix} 0 & I_p \\ I_p & 0 \end{bmatrix}$$

Then, the linear fractional transformation T_{Θ} preserves symmetry

Every H constant J-unitary is of the form

$$H = H(E) \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} H(E) = \begin{bmatrix} (I_p - EE^*)^{-1/2} & E(I_p - E^*E)^{-1/2} \\ E^*(I_p - EE^*)^{-1/2} & (I_p - E^*E)^{-1/2} \end{bmatrix}$$

P, Q unitary matrices, H(E) Halmos extension (E strictly contractive)

 $\overline{H(E)} = KH(E)K \Leftrightarrow E$ symmetric

Interpolation data for symmetric inner functions.

Q: $p \times p$ symmetric inner function, McMillan degree $n \ge 2$ To take into account symmetry:

$$Q(w)u = v$$
$$u^T Q(w) = v^T$$

 \rightarrow two-sided Nevanlinna-Pick problem ... same interpolation point. To be well-posed:

 $u^T Q'(w) u = \rho$

Interpolation data: $\delta = (w, u, v, \rho) \rightarrow$ interpolation conditions $\mathcal{C}(\delta)$

 \rightarrow two-sided Nudelman problem Ball, Gohberg, Rodman, 1990

The solutions

Pick matrix:
$$\Lambda_{\delta} = \begin{bmatrix} \sigma & \bar{\rho} \\ \rho & \sigma \end{bmatrix}$$

J-inner function:

$$\begin{split} \Theta_{\delta}(z) &= \\ I_{2p} + (z-1)C \begin{bmatrix} (z-w)^{-1} & 0 \\ 0 & (1-z\bar{w})^{-1} \end{bmatrix} \Lambda_{\delta}^{-1} \begin{bmatrix} (1-\bar{w})^{-1} & 0 \\ 0 & (1-w)^{-1} \end{bmatrix} C^* J \\ C &= \begin{bmatrix} v & -\bar{u} \\ u & -\bar{v} \end{bmatrix} \end{split}$$

There exists an inner function satisfying $C(\delta)$ if and only if Λ_{δ} is positive definite. Then

$$Q = T_{\Theta_{\delta}}(R),$$

for some inner function R of McMillan degree n-2

Sketch of the proof (1)

 $\delta = (\mathbf{w} = \mathbf{0}, \mathbf{u}, \mathbf{v} = \mathbf{0}, \rho), \ |\rho| < \mathbf{1}$

Taylor series: Q(z) = Q(0) + zQ'(0) + ...SVD: $Q(0) = V \operatorname{diag}(0, ..., 0, \lambda_1, ..., \lambda_r)U^*$ Since Q(0)u = 0, choose $U = [u \cdots]$ and $B(z) = U \operatorname{diag}(z, 1, ..., 1)U^*$

$$Q_{1}(z) = Q(z)B(z)^{-1}$$

= $Q(0)U \text{diag}(1/z, 1, ..., 1)U^{*} + Q'(0)U \text{diag}(1, z, ..., z)U^{*} ...$
= $Q(0) + Q'(0)U \text{diag}(1, z, ..., z)U^{*} + z \times ...$

and Q_1 satisfies the Nevanlinna-Pick interpolation condition

$$u^T Q_1(0) = u^T Q'(0) u u^* = \rho u^*$$

Sketch of the proof (2)

 $\delta = (\mathbf{w}, \mathbf{u}, \mathbf{v} = \mathbf{0}, \rho)$

$$\beta_w(z) = \frac{(1 - \bar{w})(z - w)}{(1 - w)(1 - \bar{w}z)}, \quad \beta_w(w) = 0,$$

Then $\check{Q}(\beta_w(z)) = Q(z)$ satisfies $\mathcal{C}(\check{\delta})$

$$\check{\delta} = (0, u, v = 0, \check{\rho}), \quad \check{\rho} = \rho(1 - |w|^2) \frac{1 - w}{1 - \bar{w}}$$

 $\delta = (\mathbf{w}, \mathbf{u}, \mathbf{v}, \rho)$

Assume E = Q(w) stricktly contractive (symmetric) Then $\hat{Q} = T_{H(-E)}(Q)$ satisfies $C(\hat{\delta})$ $\check{\delta} = (w, \hat{u}, v = 0, \hat{\rho}), \quad \hat{u} = (I - EE^*)^{1/2} \frac{u}{\sqrt{1 - \|v\|^2}}, \quad \hat{\rho} = \frac{\rho}{1 - \|v\|^2}$

Symmetric Potapov factorization

If both v and ρ are zero: $\delta = (w, u, 0, 0)$, the linear fractional representation $Q = T_{\Theta_{\delta}}(R)$ is a symmetric Potapov factorization

$$Q(z) = B_w(z)^T R(z) B_w(z)$$

 B_w Blaschke factor:

$$B_w(z) = I_p + (\beta_w(z) - 1)uu^*, \ \beta_w(z) = \frac{(1 - \bar{w})(z - w)}{(1 - w)(1 - \bar{w}z)}$$

Schur algorithm

$$Q = Q_n \xrightarrow{\delta_n} Q_{n-1} \xrightarrow{\delta_{n-1}} \cdots Q_0$$

where Q_0 is inner symmetric of degree 1 or 0.

degree 1:

 $Q_0(z) = Y \left(I_p + (\beta_w(z) - 1) y y^* \right) Y^T, \ y \in \mathbb{R}^p, \|y\| = 1, Y \text{ unitary}$

degree 0:

 $Q_0 = O\Lambda O^T$, O real orthogonal, $\Lambda = (\lambda_1, \lambda_2, \dots, \lambda_n), |\lambda_i| = 1.$

Choice of the LFT ? $\Theta = \Theta_{\delta} H(E)$, E symmetric

 $\Theta_{\delta}(1) = I_{2p} \Rightarrow Q(1) = Q_0$

Application to SAW filters: chaining acoustic matrices corresponds to a Schur algorithm in which $\Theta = \Theta_{\delta} H(vu^*)$ where $H(vu^*)$ symmetric E symmetric ? \rightarrow nice construction of realizations