

Matrix Rational H^2 Approximation: a State-Space Approach using Schur Parameters

J.P. Marmorat, M. Olivi, B. Hanzon, R. Peeters

Sophia–Antipolis, France

Introduction

We present a method to compute a stable rational L^2 -approximation of specified order n to a given multivariable transfer function.

- it works for multivariable systems,
- it uses a nice parametrization of stable allpass systems, which
 - takes into account the stability constraint
 - ensures identifiability
 - is well-conditionned
- it uses a recursive search on the degree which improves the chances to reach the global minimum.

The L^2 -criterion in state-space form

- $F(z) = C(zI_N A)^{-1}B + D$, $m \times p$ given transfer function
- $H(z) = \gamma (zI_n A)^{-1}B + \mathcal{D}$, approximant at order n(A, B) input-normal pair: $AA^* + BB^* = I$.

 L^2 -norm of the error F - H:

$$J(A,B) = ||F||^2 - \operatorname{Tr}(\gamma\gamma^*),$$

where

 $\gamma = \mathcal{C}W,$

and W solution to the Lyapunov equation:

 $\mathcal{A}WA^* + \mathcal{B}B^* = W.$

Optimization set: stable-allpass systems

The two following sets (equivalence classes) are diffeomorphic:

- input-normal pairs (A, B)
- stable allpass functions $G(z) = D + C(zI_n A)^{-1}B$ up to a left constant unitary factor $\begin{bmatrix} D & C \\ B & A \end{bmatrix}$ unitary matrix.

Alpay, Baratchart, Gombani [1];

Parametrization issue

Desirable properties:

- ensures identifiability
- a small perturbation of the parameters preserves the stability and the order of the system?
- allows for the use of differential tools.

 \rightarrow Differentiable manifold.

Atlas of charts or overlapping canonical forms :

a collection of local parametrizations with compatibility conditions (changes of charts are smooth).

Atlases of charts

Two families can be found in the litterature

1. from a tangential Schur algorithm:

$$G_n(1/\bar{w})u = v, ||v|| < 1, \quad G_n \stackrel{LFT}{\Longrightarrow} G_{n-1}$$
$$G_n, \dots, G_k \stackrel{(w_k, u_k, v_k)}{\Longrightarrow} G_{k-1}, \dots, G_0.$$

Alpay, Baratchart, Gombani [1]; Fulcheri, Olivi [2]

2. from state-space representations Hanzon, Ober [3]

A parametrization that combines the two approaches: Peeters, Hanzon, Olivi [4]

Encoding stable-allpass systems

A $p \times p$ stable allpass systems of degree n is encoded by

- w_1, w_2, \ldots, w_n points of the unit circle,
- u_1, u_2, \ldots, u_n unit complex *p*-vectors,
- $v_1, v_2, ..., v_n$ complex *p*-vectors, $||v_i|| < 1$.

The w_i 's and the u_i 's define the chart while the v_i 's are the Schur parameters of the system in the chart. In a given chart, a system is perfectly determined by its Schur parameters (identifiability).

Encoding stable-allpass systems (2)

The stable allpass system encoded in that way has unitary realization matrix

$$\begin{bmatrix} D_n & C_n \\ B_n & A_n \end{bmatrix}$$

computed by induction

$$\begin{bmatrix} D_k & C_k \\ B_k & A_k \end{bmatrix} = \begin{bmatrix} V_k & 0 \\ 0 & I_{k-1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & D_{k-1} & C_{k-1} \\ 0 & B_{k-1} & A_{k-1} \end{bmatrix} \begin{bmatrix} U_k^* & 0 \\ 0 & I_{k-1} \end{bmatrix},$$

where A_k is $k \times k$, D_k is $p \times p$, and $D_0 = I_p$.

 \rightarrow very nice numerical behavior

Encoding stable-allpass systems (3)

 U_k and V_k are the $(p+1) \times (p+1)$ unitary matrices:

$$U_{k} = \begin{bmatrix} \xi_{k}u_{k} & I_{p} - (1 + \eta_{k}w_{k})u_{k}u_{k}^{*} \\ \eta_{k}\overline{w_{k}} & \xi_{k}u_{k}^{*} \end{bmatrix}$$
$$V_{k} = \begin{bmatrix} \xi_{k}v_{k} & I_{p} - (1 - \eta_{k})\frac{v_{k}v_{k}^{*}}{\|v_{k}\|^{2}} \\ \eta_{k} & -\xi_{k}v_{k}^{*} \end{bmatrix}$$

$$\xi_k = \frac{\sqrt{1 - |w_k|^2}}{\sqrt{1 - |w_k|^2 \|v_k\|^2}}, \quad \eta_k = \frac{\sqrt{1 - \|v_k\|^2}}{\sqrt{1 - |w_k|^2 \|v_k\|^2}}$$

Main steps of the algorithm

• finding an adapted chart:

realization in Schur form (A lower triangular)

$$A = \begin{bmatrix} w_n & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ * & \cdots & w_1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \sqrt{1 - |w_n|^2} u_n^* \\ \vdots \end{bmatrix}$$

 $\rightarrow v_1 = v_2 = \dots v_n = 0$ (Potapov factorization)

- optimization over the manifold
- recursive search on the degree (optional):
 minimum of degree k → initial point of degree k + 1 (error preserved)

The RARL2 software

This software computes a stable rational L^2 -approximation of specified order n to a multivariable transfer function given in one of the following forms:

- a realization
- a finite number of Fourier coefficients
- some pointwise values on the unit circle.

It has been implemented using standard MATLAB subroutines. The optimizer of the toolkit OPTIM is used to find a local minimum, given by a realization, of the nonlinear L^2 -criterion.

http://www-sop.inria.fr/miaou/Martine.Olivi/me.html

Automobile gas turbine

🔊 🗝 Command Window													
<u>F</u> ile <u>E</u> d	it <u>V</u> iew	We <u>b</u>	<u>W</u> indow	<u>H</u> elp									
a = -0.83 -(0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (). 85 0. 0). 15 0. 0). 00 -0. 8). 00 0. 1). 00 0. 1). 00 0. 1). 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0 0. 00 0. 0	0 0.00 0 0.00 04 -0.93 06 0.07 06 1.07 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00	0.00 0.00 0.07 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 -0.85 0.15 0.15 0.00 0.00 0.00 0.00	0.00 0.00 0.00 -0.96 0.04 1.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 -0.09 -0.09 0.91 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.14 0.86 0.86 0.86	0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.63 0.37 1.37 1.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 0.90 1.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 1.00	b = 0.00 1.04 0.00 -1.79 0.00 0.00 1.04 0.00 0.00 0.00 0.00 -1.79	$\begin{array}{c} 0.\ 00\\ 4.\ 15\\ 0.\ 00\\ 2.\ 68\\ 0.\ 00\\ 4.\ 15\\ 0.\ 00\\ 4.\ 15\\ 0.\ 00\\ 0.\ 00\\ 2.\ 68\end{array}$	
c = 0.05 (0.00 (0.13 -0.0 0.00 0.0	13 -2.20 10 0.00	-0.16 0.00	0.00 1.21	0.00 0.68	0.00 0.12	0.00 -2.54	0.00 1.79	0.00 0.61	0.00 0.03	d = 0.00 0.00	0.00 0.00	
Degree U Local minimum: 1 J=1.0000000 Degree 1 Start with 4 initial points 5.4171990e-01 5.4171990e-01 5.4171990e-01 Degree 1 Found 1 local minimum Best relative error = 0.5417199 Degree 2 Start with 4 initial points 3.8800619e-01 3.8731359e-01 4.4607851e-01													
Ready												~	

Hung, MacFarlane [6]; Glover [5]; Yan, Lam [7]

Nyquist diagrams

 2×2 ; order 12.

Hyperfrequency Filter

The problem: find a 8th order model of a MIMO (2×2) hyperfrequency filter, from experimental pointwise values in some range of frequencies provided by the CNES (French space agency).

First stage (interpolation/completion): compute a stable matrix transfer function of high order which approximates these data, given by a great number (800) of Fourier coefficients.

PRESTO-HF: software by F. Seyfert; HYPERION: software by J. Grimm.

Data and approximant at order 8

Nyquist diagrams

Data and approximant at order 8

References

- [1] D. ALPAY, L. BARATCHART, AND A. GOMBANI, On the differential structure of matrix-valued rational inner functions, Operator Theory : Advances and Applications, 73 (1994), pp. 30–66.
- [2] P. FULCHERI AND M. OLIVI, Matrix Rational H²-Approximation: a Gradient Algorithm Based on Schur Analysis, SIAM J. Contr. and Opt., 36 (1998), pp. 2103–2127.
- [3] B. HANZON AND R.J. OBER, Overlapping block-balanced canonical forms for various classes of linear systems, Linear Algebra and its Applications, 281 (1998), pp. 171-225.
- [4] R.L.M. PEETERS, B. HANZON AND M. OLIVI, Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm, in Proceedings of the ECC99, Karlsruhe, Germany, August 31-September 3.

- [5] K. GLOVER, All optimal Hankel-norm approximations of linear multivariable systems and their L^{∞} -error bounds, Int. J. Control 39 (1984), pp. 1115-1193.
- [6] Y.S. HUNG AND A.G.J. MACFARLANE, Multivariable feedback: a quasi-classical approach, Lect. Notes in Control Sci. 40, Springer- Verlag, 1982.
- [7] W.-Y. YAN AND J. LAM, An approximate approach to H^2 optimal model reduction, IEEE Trans. Autom. Control 44, No.7 (1999), pp 1341-1358.