

Exponential Path Order EPO*

Martin Avanzini¹ Naohi Eguchi² Georg Moser¹

¹Computational Logic Faculty of Computer Science, University of Innsbruck, Austria

²School of Information Science Japan Advanced Institute of Science and Technology, Japan

June 1 @ RTA'11

polynomial time

Stephen Bellantoni and Stephen Cook

A new Recursion-Theoretic Characterization of the Polytime Functions.

CC, pages 97-110, 1992

${\cal B} \iff >_{\sf pop \star} \>\>\>\>\>$ polynomial time

Martin Avanzini and Georg Moser Complexity Analysis by Rewriting. FLOPS '09, pages 130–146, 2008

🔋 Toshiyasu Arai and Naohi Eguchi

A new Function Algebra of EXPTIME Functions by Safe Nested Recursion.

TCL, pages 130-146, 2008

Martin Avanzini and Naohi Eguchi and Georg Moser

A Path Order for Rewrite Systems that Compute Exponential Time
Functions.

RTA'11, pages 123–138, 2011

Let FEXP denote class of functions computable in time $2^{O(n^k)}$ $(k \in \mathbb{N})$

Let FEXP denote class of functions computable in time $2^{O(n^k)}$ $(k \in \mathbb{N})$

Soundness

Let $\mathcal R$ be a constructor TRS that computes a function f. If $\mathcal R\subseteq >_{\mathsf{epo}\star}$ then $f\in\mathsf{FEXP}.$

Let FEXP denote class of functions computable in time $2^{O(n^k)}$ $(k \in \mathbb{N})$

Soundness

Let \mathcal{R} be a constructor TRS that computes a function f. If $\mathcal{R} \subseteq >_{\mathsf{epo}\star}$ then $f \in \mathsf{FEXP}$.

2 Completeness

Let $f \in FEXP$.

There exists a constructor TRS \mathcal{R}_f computing f with $\mathcal{R}_f \subseteq >_{epo*}$.

Let FEXP denote class of functions computable in time $2^{O(n^k)}$ $(k \in \mathbb{N})$

Soundness

Let \mathcal{R} be a constructor TRS that computes a function f. If $\mathcal{R} \subseteq >_{\mathsf{epo}\star}$ then $f \in \mathsf{FEXP}$.

2 Completeness

Let $f \in \mathsf{FEXP}$.

There exists a constructor TRS \mathcal{R}_f computing f with $\mathcal{R}_f \subseteq >_{epo*}$.

Rewriting as Computational Model

We suppose ...

in this talk

- $ightharpoonup \mathcal{R}$ confluent and terminating
- \blacktriangleright signature ${\cal F}$ underlying TRS ${\cal R}$ partitioned into defined symbols ${\cal D}$ and constructors ${\cal C}$
- ullet values \mathcal{V} al $:= \mathcal{T}(\mathcal{C}, \mathcal{V})$ are terms over constructors \mathcal{C}

Rewriting as Computational Model

We suppose ...

in this talk

- ▶ R confluent and terminating
- signature ${\mathcal F}$ underlying TRS ${\mathcal R}$ partitioned into defined symbols ${\mathcal D}$ and constructors ${\mathcal C}$
- ightharpoonup values \mathcal{V} al := $\mathcal{T}(\mathcal{C},\mathcal{V})$ are terms over constructors \mathcal{C}

Definition

TRS \mathcal{R} computes for each $f \in \mathcal{D}$ partial function $f : \mathcal{V}al^k \to \mathcal{V}al_\perp$ s.t.

$$\forall \vec{s} \in \mathcal{V}$$
al k . $f(\vec{s}) = t$: \iff $f(\vec{s}) \rightarrow_{\mathcal{R}}^!$ t and $t \in \mathcal{V}$ al

Rewriting as Computational Model

We suppose ...

in this talk

- ► R confluent and terminating
- signature ${\mathcal F}$ underlying TRS ${\mathcal R}$ partitioned into defined symbols ${\mathcal D}$ and constructors ${\mathcal C}$
- ightharpoonup values \mathcal{V} al := $\mathcal{T}(\mathcal{C},\mathcal{V})$ are terms over constructors \mathcal{C}

Definition

TRS $\mathcal R$ computes for each $f\in \mathcal D$ partial function $f:\ \mathcal Val^k\to \mathcal Val_\perp$ s.t.

$$\forall \vec{s} \in \mathcal{V} \text{al}^k . f(\vec{s}) = t : \iff f(\vec{s}) \xrightarrow{\mathbf{i}}_{\mathcal{R}}^{!} t \text{ and } t \in \mathcal{V} \text{al}$$

Exponential Path Order > epo*

lacktriangle constraints of ${\mathcal N}$ imposed on lexicographic path order $>_{{\sf epo}\star} \,\subseteq \,>_{{\sf lpo}}$

▶ constraints of \mathcal{N} imposed on lexicographic path order $>_{epo*} \subseteq >_{lpo}$ \Longrightarrow sufficiently strong for **Completeness**

- ▶ constraints of $\mathcal N$ imposed on lexicographic path order $>_{\mathsf{epo}\star} \subseteq >_{\mathsf{lpo}}$ \Longrightarrow sufficiently strong for **Completeness**
- ightharpoonup induces exponential bound on innermost runtime complexity $rc_{\mathcal{R}}^{i}$

- ▶ constraints of $\mathcal N$ imposed on lexicographic path order $>_{\mathsf{epo}\star} \subseteq >_{\mathsf{lpo}}$ \Longrightarrow sufficiently strong for **Completeness**
- ► induces exponential bound on innermost runtime complexity rci_R.

Theorem

Let \mathcal{R} denote a constructor TRS. There exists $k \in \mathbb{N}$ such that

$$\mathcal{R} \subseteq >_{\mathsf{epo}\star} \implies \mathsf{rc}^{\mathsf{i}}_{\mathcal{R}} \in 2^{\mathsf{O}(n^k)}$$

$$\begin{aligned} &\operatorname{rc}_{\mathcal{R}}^{\mathbf{i}}(n) = \max \{ \operatorname{dh}(f(\vec{s}), \xrightarrow{\mathbf{i}}_{\mathcal{R}}) \mid \vec{s} \in \mathcal{V} \operatorname{al}^{k} \text{ and } f(\vec{s}) \text{ of size upto } n \} \\ &\operatorname{dh}(t, \xrightarrow{\mathbf{i}}_{\mathcal{R}}) = \max \{ \underline{\ell} \mid \exists (t_{1}, \dots, t_{\ell}). \ t \xrightarrow{\mathbf{i}}_{\mathcal{R}} t_{1} \xrightarrow{\mathbf{i}}_{\mathcal{R}} \dots \xrightarrow{\mathbf{i}}_{\mathcal{R}} t_{\ell} \} \end{aligned}$$

- ▶ constraints of $\mathcal N$ imposed on lexicographic path order $>_{\mathsf{epo}\star} \subseteq >_{\mathsf{lpo}}$ \Longrightarrow sufficiently strong for **Completeness**
- ▶ induces exponential bound on innermost runtime complexity $rc_{\mathcal{R}}^{i}$ \implies implies Soundness

Theorem

Let \mathcal{R} denote a constructor TRS. There exists $k \in \mathbb{N}$ such that

$$\mathcal{R} \subseteq >_{\mathsf{epo}\star} \implies \mathsf{rc}^{\mathsf{i}}_{\mathcal{R}} \in 2^{\mathsf{O}(n^k)}$$

$$\begin{aligned} \operatorname{rc}_{\mathcal{R}}^{\mathsf{i}}(n) &= \max \{ \operatorname{dh}(f(\vec{s}), \overset{\mathsf{i}}{\to}_{\mathcal{R}}) \mid \vec{s} \in \mathcal{V} \operatorname{al}^{k} \text{ and } f(\vec{s}) \text{ of size upto } n \} \\ \operatorname{dh}(t, \overset{\mathsf{i}}{\to}_{\mathcal{R}}) &= \max \{ \ell \mid \exists (t_{1}, \dots, t_{\ell}). \ t \overset{\mathsf{i}}{\to}_{\mathcal{R}} \ t_{1} \overset{\mathsf{i}}{\to}_{\mathcal{R}} \dots \overset{\mathsf{i}}{\to}_{\mathcal{R}} \ t_{\ell} \} \end{aligned}$$

Exponential Path Order $>_{epo\star}$

- ▶ constraints of $\mathcal N$ imposed on lexicographic path order $>_{\mathsf{epo}\star} \subseteq >_{\mathsf{lpo}}$ \Longrightarrow sufficiently strong for **Completeness**
- ▶ induces exponential bound on innermost runtime complexity $rc_{\mathcal{R}}^{i}$ \implies implies **Soundness**

Ugo Dal Lago and Simone Martini
On Constructor Rewrite Systems and the Lambda-Calculus.
36th ICALP, pages 163–174, 2009

- ▶ constraints of $\mathcal N$ imposed on lexicographic path order $>_{\mathsf{epo}\star} \subseteq >_{\mathsf{lpo}}$ \Longrightarrow sufficiently strong for **Completeness**
- ▶ induces exponential bound on innermost runtime complexity $rc_{\mathcal{R}}^{i}$ \implies implies **Soundness**

- Ugo Dal Lago and Simone Martini
 On Constructor Rewrite Systems and the Lambda-Calculus.
 36th ICALP, pages 163–174, 2009
- Martin Avanzini and Georg Moser
 Closing the Gap Between Runtime Complexity and Polytime
 Computability.

RTA'10, pages 33-48, 2010

The class \mathcal{N}

Syntactic, Recursion-theoretic Characterisation of FEXP

The class ${\cal N}$

is the smallest class ...

- 1 containing certain initial function projections, successors, ...
- 2 closed under safe nested recursion on notation
- 3 closed under weak safe composition

syntactical restriction of primitive recursion scheme

$$f(\underbrace{x_1,\ldots,x_k}_{\text{normal}};\underbrace{y_1,\ldots,y_l}_{\text{safe}})$$

syntactical restriction of primitive recursion scheme

$$f(\underbrace{x_1,\ldots,x_k}_{\text{normal}};\underbrace{y_1,\ldots,y_l}_{\text{safe}})$$

separates recursion parameters from recursively computed results

$$f(\epsilon, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(\mathbf{zi}, \vec{x}; \vec{y}) = h_i(z, \vec{x}; \vec{y}, \mathbf{f}(\mathbf{z}, \vec{\mathbf{x}}; \vec{y}))$$
 ($i \in \{0, 1\}$)

syntactical restriction of primitive recursion scheme

$$f(\underbrace{x_1,\ldots,x_k}_{\text{normal}};\underbrace{y_1,\ldots,y_l}_{\text{safe}})$$

separates recursion parameters from recursively computed results

$$f(\epsilon, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(\mathbf{zi}, \vec{x}; \vec{y}) = h_i(z, \vec{x}; \vec{y}, \mathbf{f}(\mathbf{z}, \vec{\mathbf{x}}; \vec{\mathbf{y}}))$$
 ($i \in \{0, 1\}$)

syntactical restriction of primitive recursion scheme

$$f(\underbrace{x_1,\ldots,x_k}_{\text{normal}};\underbrace{y_1,\ldots,y_l}_{\text{safe}})$$

separates recursion parameters from recursively computed results

$$\begin{split} f(\epsilon, \vec{x}; \vec{y}) &= g(\vec{x}; \vec{y}) \\ f(\mathbf{zi}, \vec{x}; \vec{y}) &= h_i(z, \vec{x}; \vec{y}, \mathbf{f}(\mathbf{z}, \vec{\mathbf{x}}; \vec{\mathbf{y}})) \qquad \qquad (i \in \{0, 1\}) \\ \text{where } h_i(\epsilon, \vec{x}; \vec{y}, \mathbf{r}) &= r_i(\vec{x}; \vec{y}, \mathbf{r}) \\ h_i(\mathbf{zi}, \vec{x}; \vec{y}, \mathbf{r}) &= s_{i,j}(z, \vec{x}; \vec{y}, h_i(z, \vec{x}; \vec{y}, \mathbf{r})) \end{split}$$

no recursion on recursively computed result

Safe Nested Recursion on Notation

extends safe recursion on notation with ...

nesting of recursive function calls

nested recursion

$$f(\epsilon; y) = g(; y)$$

$$f(xi; y) = r_i(x; y, f(x; s_i(x; y, f(x; ...))))$$

Safe Nested Recursion on Notation

extends safe recursion on notation with ...

nesting of recursive function calls

nested recursion

$$f(\epsilon; y) = g(; y)$$

$$f(xi; y) = r_i(x; y, f(x; s_i(x; y, f(x; ...))))$$

simultaneous recursion on all normal arguments multiple recursion

$$f(\epsilon, \epsilon; z) = g(; z)$$

$$f(xi, \epsilon; z) = r_{i,\epsilon}(x, \epsilon; z, f(x, \epsilon; s_{i,\epsilon}(x, \epsilon; f(x, \epsilon; z))))$$

$$f(\epsilon, yj; z) = r_{\epsilon,j}(\epsilon, y; z, f(\epsilon, y; s_{\epsilon,j}(\epsilon, y; f(\epsilon, y; z))))$$

$$f(xi, yj; z) = r_{i,j}(x, y; z, f(xi, y; s_{i,j}(x, y; f(x, yj; z))))$$

case analysis on least significant "bits" of recursion parameters

Safe Nested Recursion on Notation

extends safe recursion on notation with ...

nesting of recursive function calls

nested recursion

$$f(\epsilon; y) = g(; y)$$

$$f(xi; y) = r_i(x; y, f(x; s_i(x; y, f(x; ...))))$$

simultaneous recursion on all normal arguments multiple recursion

$$f(\epsilon, \epsilon; z) = g(; z)$$

$$f(xi, \epsilon; z) = r_{i,\epsilon}(x, \epsilon; z, f(x, \epsilon; s_{i,\epsilon}(x, \epsilon; f(x, \epsilon; z))))$$

$$f(\epsilon, yj; z) = r_{\epsilon,j}(\epsilon, y; z, f(\epsilon, y; s_{\epsilon,j}(\epsilon, y; f(\epsilon, y; z))))$$

$$f(xi, yj; z) = r_{i,j}(x, y; z, f(xi, y; s_{i,j}(x, y; f(x, yj; z))))$$

- case analysis on least significant "bits" of recursion parameters
- lexicographic decreasing recursion parameters

Safe Composition

Requirements

1 composition maintains separation of safe and normal arguments

Safe Composition

Requirements

1 composition maintains separation of safe and normal arguments

Safe Composition

employed in ${\cal B}$

$$f(\vec{x}; \vec{y}) = g(\vec{r}(\vec{x};); \vec{s}(\vec{x}; \vec{y}))$$

Safe Composition

Requirements

- composition maintains separation of safe and normal arguments
- 2 reflects that FEXP is not closed under composition

Safe Composition

employed in \mathcal{B}

$$f(\vec{x}; \vec{y}) = g(\vec{r}(\vec{x};); \vec{s}(\vec{x}; \vec{y}))$$

Weak Safe Composition

employed in \mathcal{N}

$$f(\vec{x}; \vec{y}) = g(x_{i_1}, \dots, x_{i_k}; \vec{s}(\vec{x}; \vec{y})) \qquad \{x_{i_1}, \dots, x_{i_k}\} \subseteq \{\vec{x}\}$$

$$\{i_1,\ldots,x_{i_k}\}\subseteq\{\vec{x}\}$$

The class ${\cal N}$

is the smallest class ...

- **1** containing certain initial function projections, successors, . . .
- 2 closed under safe nested recursion on notation
- 3 closed under weak safe composition

The class ${\cal N}$

is the smallest class ...

containing certain initial function

- projections, successors, ...
- 2 closed under safe nested recursion on notation
- 3 closed under weak safe composition

Theorem

$$\mathcal{N} = \mathsf{FEXP}$$

Toshiyasu Arai and Naohi Eguchi

A new Function Algebra of EXPTIME Functions by Safe Nested Recursion.

TCL, pages 130-146, 2008

A Path Order based on ${\mathcal N}$

Exponential Path Order > epo*

▶ induced by precedence > and safe mapping safe : $\mathcal{F} \to 2^{\mathbb{N}}$

Exponential Path Order >_{epo*}

▶ induced by precedence > and safe mapping safe : $\mathcal{F} \to 2^{\mathbb{N}}$

```
> tct -s "epo*" fib.trs
  YES(?,EXPO)
  We consider the following Problem:
   Strict Trs:
     { fib(s(s(x)), y) \rightarrow fib(s(x), fib(x, y))
     , fib(s(0()), y) \rightarrow s(y)
     , fib(0(), y) \rightarrow s(y) 
   StartTerms: basic terms
   Strategy: innermost
  The system is compatible with 'epo*' induced by
    Precedence: fib > s,0
    Safe Mapping: safe(fib) = \{2\}, safe(s) = \{1\}
```

▶ induced by precedence > and safe mapping safe : $\mathcal{F} \rightarrow 2^{\mathbb{N}}$

Definition

precedence > and safe mapping safe are admissible if

1 constructors are minimal

 $f > g \Rightarrow f \not\in \mathcal{C}$

2 all argument positions of constructors are safe

$$f \in \mathcal{C} \Rightarrow \mathsf{safe}(f) = \{1, \dots, \mathsf{ar}(f)\}$$

▶ induced by precedence > and safe mapping safe : $\mathcal{F} \rightarrow 2^{\mathbb{N}}$

Definition |

precedence > and safe mapping safe are admissible if

1 constructors are minimal

$$f > g \Rightarrow f \notin C$$

2 all argument positions of constructors are safe

$$f \in \mathcal{C} \Rightarrow \mathsf{safe}(f) = \{1, \dots, \mathsf{ar}(f)\}$$

Notation

we suppose safe(f) = {I + 1, ..., I + m}, we write

$$f(s_1,\ldots,s_l;s_{l+1},\ldots,s_{l+m})$$

Exponential Path Order >_{epo*}

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\mathsf{epo} \star} t}{s >_{\mathsf{epo} \star} t}$$

$$\frac{\text{``}t_i \text{ are normal arguments of } s\text{''} \quad s>_{\text{epo*}} t_{k+1}\cdots s>_{\text{epo*}} t_{k+n}}{s>_{\text{epo*}} g(t_1,\ldots,t_k;t_{k+1},\ldots,t_{k+n})} \ f>g$$

$$\frac{\langle s_1, \dots, s_l \rangle >_{\mathsf{lex}'} \langle t_1, \dots, t_l \rangle}{s >_{\mathsf{epo}\star} f(t_1, \dots, t_l; t_{l+1}, \dots, t_{l+m})}$$

Preliminary Definition

Let $s = f(s_1, \ldots, s_l; s_{l+1}, \ldots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\mathsf{epo}\star} t}{s >_{\mathsf{epo}\star} t}$$

SNRN
$$\frac{\langle s_1, \dots, s_l \rangle >_{\mathsf{lex'}} \langle t_1, \dots, t_l \rangle}{s >_{\mathsf{epo}\star} f(t_1, \dots, t_l; t_{l+1}, \dots, t_{l+m})}$$

Recall Weak Safe Composition . . .

$$f(\vec{x}; \vec{y}) = g(x_{i_1}, \dots, x_{i_k}; \vec{s}(\vec{x}; \vec{y})) \qquad \{x_{i_1}, \dots, x_{i_k}\} \subseteq \{\vec{x}\}$$

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\text{epo}*} t}{s >_{\text{epo}*} t}$$

WSC
$$\frac{\text{"t_i are normal arguments of s"} \quad s>_{\text{epo*}} t_{k+1}\cdots s>_{\text{epo*}} t_{k+n}}{s>_{\text{epo*}} g(t_1,\ldots,t_k;t_{k+1},\ldots,t_{k+n})} f>g$$

SNRN
$$\frac{\langle s_1, \dots, s_l \rangle >_{\text{lex}'} \langle t_1, \dots, t_l \rangle}{s >_{\text{epo}\star} f(t_1, \dots, t_l; t_{l+1}, \dots, t_{l+m})}$$

Recall Safe Nested Recursion on Notation . . .

$$f(xi,yj;...)=r(...;...,f(xi,y;\vec{s}(...;...,f(x,yj;...))))$$

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\mathsf{epo}\star} t}{s >_{\mathsf{epo}\star} t}$$

$$\frac{\text{"t_i are normal arguments of s"} \quad s>_{\text{epo*}} t_{k+1}\cdots s>_{\text{epo*}} t_{k+n}}{s>_{\text{epo*}} g(t_1,\ldots,t_k;t_{k+1},\ldots,t_{k+n})} \ f>g$$

$$\frac{\langle s_1, \dots, s_l \rangle >_{\mathsf{lex}'} \langle t_1, \dots, t_l \rangle}{s >_{\mathsf{epo}\star} f(t_1, \dots, t_l; t_{l+1}, \dots, t_{l+m})}$$

Auxiliary Order □_{epo⋆}

Order for \mathcal{V} al

$$\mathbf{ST_n} \ \frac{s_i \sqsupseteq_{\mathsf{epo} \star} t}{f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m}) \sqsupset_{\mathsf{epo} \star} t} \ \mathsf{if} \ f \in \mathcal{D} \ \mathsf{then} \ i \in \{1, \dots, l\}$$

Note

Auxiliary Order _{□epo⋆}

Order for \mathcal{V} al

$$\mathsf{ST}_{\mathbf{n}} \; \frac{s_i \mathrel{\sqsubseteq_{\mathsf{epo}\star}} t}{f(s_1,\ldots,s_l; s_{l+1},\ldots,s_{l+m}) \mathrel{\sqsupset_{\mathsf{epo}\star}} t} \; \mathsf{if} \; f \in \mathcal{D} \; \mathsf{then} \; i \in \{1,\ldots,l\}$$

Note

- \bigcirc $\square_{\mathsf{epo}\star} = \triangleright \mathsf{on} \ \mathcal{V}\mathsf{al}$
- **2** □_{epo*} ⊆ ⊳
 - if $f \in \mathcal{D}$, safe $(f) = \{2\}$ then $f(x; \mathbf{z}) \sqsupset_{\text{epo} \star} x$ but $f(x; \mathbf{z}) \not\sqsupset_{\text{epo} \star} \mathbf{z}$

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i\geqslant_{\mathsf{epo}\star}t}{s>_{\mathsf{epo}\star}t}$$

$$\frac{\text{"t_i are normal arguments of s"} \quad s>_{\text{epo*}} t_{k+1}\cdots s>_{\text{epo*}} t_{k+n}}{s>_{\text{epo*}} g(t_1,\ldots,t_k;t_{k+1},\ldots,t_{k+n})} \ f>g$$

$$\frac{\langle s_1, \dots, s_l \rangle >_{\mathsf{lex'}} \langle t_1, \dots, t_l \rangle}{s >_{\mathsf{epo}\star} f(t_1, \dots, t_l; t_{l+1}, \dots, t_{l+m})}$$

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\mathsf{epo}\star} t}{s >_{\mathsf{epo}\star} t}$$

WSC
$$\frac{s \sqsupset_{\mathsf{epo} \star} t_1 \cdots s \sqsupset_{\mathsf{epo} \star} t_k \qquad s >_{\mathsf{epo} \star} t_{k+1} \cdots s >_{\mathsf{epo} \star} t_{k+n}}{s >_{\mathsf{epo} \star} g(t_1, \dots, t_k; t_{k+1}, \dots, t_{k+n})} f > g$$

$$-\frac{\langle s_1,\ldots,s_l\rangle>_{\mathsf{lex}'}\langle t_1,\ldots,t_l\rangle}{s>_{\mathsf{epo}\star}f(t_1,\ldots,t_l;t_{l+1},\ldots,t_{l+m})}$$

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\mathsf{epo}\star} t}{s >_{\mathsf{epo}\star} t}$$

$$\text{WSC} \frac{s \sqsupset_{\text{epo}\star} t_1 \cdots s \sqsupset_{\text{epo}\star} t_k \qquad s >_{\text{epo}\star} t_{k+1} \cdots s >_{\text{epo}\star} t_{k+n}}{s >_{\text{epo}\star} g(t_1, \ldots, t_k; t_{k+1}, \ldots, t_{k+n})} f > g$$

$$\mathsf{N} \quad \frac{\langle s_1, \dots, s_l \rangle >_{\mathsf{lex'}} \langle t_1, \dots, t_l \rangle}{s >_{\mathsf{epo} \star} f(t_1, \dots, t_l; t_{l+1}, \dots, t_{l+m})}$$

Exponential Path Order $>_{\mathsf{epo}\star}$

Preliminary Definition

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let > and safe be admissible.

$$\frac{s_i \geqslant_{\mathsf{epo} \star} t}{s >_{\mathsf{epo} \star} t}$$

$$\mathsf{WSC} \frac{s \sqsupset_{\mathsf{epo}\star} t_1 \cdots s \sqsupset_{\mathsf{epo}\star} t_k}{s >_{\mathsf{epo}\star} g(t_1, \dots, t_k; \underbrace{t_{k+1}, \dots, t_{k+n}})} f > g$$

$$\frac{(\dagger) \qquad \qquad s>_{\mathsf{epo}\star} t_{l+1} \cdots s>_{\mathsf{epo}\star} t_{m}}{s>_{\mathsf{epo}\star} f(t_{1},\ldots,t_{l};t_{l+1},\ldots,t_{l+m})}$$

- (†) **2** $s_i \supset_{\text{epo}\star} t_i$, and
 - 3 $s \supseteq_{\text{epo} \star} t_{i+1} \cdots s \supseteq_{\text{epo} \star} t_{i}$.

Let $s = f(s_1, \dots, s_l; s_{l+1}, \dots, s_{l+m})$, let $s = s_l + s_l$

$$\frac{s_i \geqslant_{\mathsf{epo} \star} t}{s >_{\mathsf{epo} \star} t}$$

$$\mathsf{WSC} \frac{s \sqsupset_{\mathsf{epo}\star} t_1 \cdots s \sqsupset_{\mathsf{epo}\star} t_k}{s >_{\mathsf{epo}\star} g(t_1, \dots, t_k; \underbrace{t_{k+1}, \dots, t_{k+n}})} f > g$$

$$(\dagger) \qquad \qquad s >_{\text{epo}\star} t_{l+1} \cdots s >_{\text{epo}\star} t_{m}$$

$$s >_{\text{epo}\star} f(t_{1}, \dots, t_{l}; t_{l+1}, \dots, t_{l+m})$$

- (†) **2** $s_i \supset_{\text{epo}*} t_i$, and
 - 3 $s \supset_{\text{epo}*} t_{i+1} \cdots s \supset_{\text{epo}*} t_{i}$.

The Good ...

the exponential path order EPO* is ...

- \blacktriangleright a restriction of LPO that induces exponentially bounded $rc_{\mathcal{R}}^{i}$
- sound and complete for FEXP, implemented in our tool T_CT http://cl-informatik.uibk.ac.at/software/tct

The Good ...

the exponential path order EPO* is ...

- \blacktriangleright a restriction of LPO that induces exponentially bounded $rc_{\mathcal{R}}^{i}$
- ▶ sound and complete for FEXP, implemented in our tool T_CT http://cl-informatik.uibk.ac.at/software/tct

The Bad ...

rules out some natural definitions:

$$d(0) \rightarrow 0$$
 $e(0) \rightarrow s(0)$ $d(s(x)) \rightarrow s(s(d(x)))$ $e(s(x)) \rightarrow d(e(x))$

The Good ...

the exponential path order EPO* is ...

- \blacktriangleright a restriction of LPO that induces exponentially bounded $rc_{\mathcal{R}}^{i}$
- ▶ sound *and* complete for FEXP, implemented in our tool T_CT http://cl-informatik.uibk.ac.at/software/tct

The Bad ...

rules out some natural definitions:

$$d(0) \rightarrow 0$$
 $e(0) \rightarrow s(0)$ $d(s(x)) \rightarrow s(s(d(x)))$ $e(s(x)) \rightarrow d(e(x))$

The Ugly ...

 \triangleright $>_{pop*} \not\subseteq >_{epo*}$