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is the smallest class ...

@ containing certain initial function projections, successors, . ..

® closed under safe nested recursion on notation

© closed under weak safe composition
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Safe Recursion on Notation

» syntactical restriction of primitive recursion scheme

f(Xl)' oy Xk Y1y e - 7y/)
—_—— ——
normal safe

> separates recursion parameters from recursively computed results

f(zi,x;y) = hi(z, %, ¥,f(z,X;y)) (i €{0,1})

no recursion on recursively computed result



Safe Nested Recursion on Notation

extends safe recursion on notation with ...

@ nesting of recursive function calls nested recursion

fley)=2g(y)
f(xi;y) =ri(x;y, f(x;si(x; v, f(x; ...))))



Safe Nested Recursion on Notation

extends safe recursion on notation with ...

@ nesting of recursive function calls nested recursion

fley)=2g(y)
f(xi;y) =ri(x;y, f(x;si(x; v, f(x; ...))))

@® simultaneous recursion on all normal arguments  multiple recursion

)=g(;2)

f(xi,e;z) = ri(x, €z f(x,€sie(x, € f(x,€ 2))))
) =
) =

fe €z

fe yjiz) = ru(e yiz, (€& yisj(€,y: f(e,y:2))))
F(xisyjiz) = rij(x, v 2, £(xi, y; sij(x, v: £(x, 47 2))))

e case analysis on least significant “bits” of recursion parameters



Safe Nested Recursion on Notation

extends safe recursion on notation with ...

@ nesting of recursive function calls nested recursion

fley)=2g(y)
f(xi;y) =ri(x;y, f(x;si(x; v, f(x; ...))))

@® simultaneous recursion on all normal arguments  multiple recursion

) =g(;2)

f(xi,e;z) = ri(x, €z f(x,€sie(x, € f(x,€ 2))))
) =
) =

fe €z

fe yjiz) = ru(F yiz, (€& yisj(€,y: f(e,y:2))))
F(xisyjiz) = rij(x, v 2, £(xi, y; sij(x, v: £(x, 47 2))))

e case analysis on least significant “bits” of recursion parameters

e |exicographic decreasing recursion parameters



Safe Composition

Requirements

@ composition maintains separation of safe and normal arguments



Safe Composition

Requirements

@ composition maintains separation of safe and normal arguments

Safe Composition employed in B



Safe Composition

Requirements

@ composition maintains separation of safe and normal arguments

@ reflects that FEXP is not closed under composition

Safe Composition employed in B

Weak Safe Composition employed in

f(Xy)=gxi,-...xi:5(X;¥)) {xi, ..., xi. } C{X}
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The class N/

is the smallest class ...

@ containing certain initial function projections, successors, . ..

® closed under safe nested recursion on notation

© closed under weak safe composition

N = FEXP

[§ Toshiyasu Arai and Naohi Eguchi
A new Function Algebra of EXPTIME Functions by Safe Nested
Recursion.
TCL, pages 130-146, 2008



Exponential Path Order >y,

A Path Order based on N/



Exponential Path Order >0,

» induced by precedence > and safe mapping safe : F — 21



Exponential Path Order >0,
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> tct -s "epox" fib.trs
YES (7 ,EXP0)

We consider the following Problem:
Strict Trs:
{ fib(s(s(x)), y) —> fib(s(x), fib(x, y))
, fib(s(00)), y) -> s(y)

, fib (00, ¥ -> s(y) }
StartTerms: basic terms
Strategy: innermost

The system is compatible with ’epo*’ induced by
Precedence: fib > s,0
Safe Mapping: safe(fib) = {2}, safe(s) = {1}
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» induced by precedence > and safe mapping safe : F — 2!

precedence > and safe mapping safe are admissible if

@ constructors are minimal f>g=1Ff<&cC

@® all argument positions of constructors are safe
feC = safe(f) ={1,...,ar(f)}

Notation

we suppose safe(f) = {/+1,...,/+ m}, we write

f(st,. 1 S1;S141s -+ SI4m)
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Recall Weak Safe Composition . . .

= = -

f(X;Y) = g(Xi17"‘?Xik;s()?;.)7)) {Xil""’Xik} - {)?}
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Order for Val

Si epox t

ST,
f(S1y. s S SI41s- -, Sitm) Jepox t

® Tcpox = > on Val

if feDthenic{l,.... I}

(2] “epox cp>
o if f € D, safe(f) = {2} then f(x; z) Tepox X but f(x;2) Zepox z
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» rules out some natural definitions:
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The Ugly ...

> >popx Z >epox
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