mputational
gic

Exponential Path Order EPO*

Martin Avanzini! Naohi Eguchi’ Georg Moser!

L Computational Logic
Faculty of Computer Science, University of Innsbruck, Austria

2School of Information Science
Japan Advanced Institute of Science and Technology, Japan

June 1 @ RTA'l11

http://cl-informatik.uibk.ac.at
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://jaist.ac.jp/

polynomial time

B polynomial time

Stephen Bellantoni and Stephen Cook
A new Recursion-Theoretic Characterization of the Polytime
Functions.
CC, pages 97-110, 1992

> popx polynomial time

Martin Avanzini and Georg Moser
Complexity Analysis by Rewriting.
FLOPS '09, pages 130-146, 2008

> popx polynomial time

NINS

N exponential time

[@ Toshiyasu Arai and Naohi Eguchi
A new Function Algebra of EXPTIME Functions by Safe Nested
Recursion.
TCL, pages 130-146, 2008

> popx polynomial time

NINS
NINS

N >epo* exponential time

[Martin Avanzini and Naohi Eguchi and Georg Moser
A Path Order for Rewrite Systems that Compute Exponential Time

Functions. 00!
RTA'11, pages 123-138, 2011

Main Result

Let FEXP denote class of functions computable in time 2°(") (k € N)

Main Result

Let FEXP denote class of functions computable in time 2°(") (k € N)

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >epox then f € FEXP.

Main Result

Let FEXP denote class of functions computable in time 2°(") (k € N)

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >epox then f € FEXP.

® Completeness
Let f € FEXP.
There exists a constructor TRS R¢ computing f with R¢ C >cpox.

Main Result

Let FEXP denote class of functions computable in time 2°(") (k € N)

® Soundness
Let R be a constructor TRS that computes a function f.
If R € >epox then f € FEXP.

® Completeness
Let f € FEXP.
There exists a constructor TRS R¢ computing f with Rf C >cpox.

Rewriting as Computational Model

We suppose ... in this talk

» R confluent and terminating

> signature F underlying TRS R partitioned into defined symbols D
and constructors C

» values Val := 7(C, V) are terms over constructors C

Rewriting as Computational Model

We suppose ... in this talk

» R confluent and terminating

> signature F underlying TRS R partitioned into defined symbols D
and constructors C

» values Val := 7(C, V) are terms over constructors C

TRS R computes for each f € D partial function f : Val® — Val | s.t.

VseVal*. f(3)=t <= f(3) o), tandte Val

Rewriting as Computational Model

We suppose ... in this talk

» R confluent and terminating

> signature F underlying TRS R partitioned into defined symbols D
and constructors C

» values Val := 7(C, V) are terms over constructors C

TRS R computes for each f € D partial function f : Val® — Val | s.t.

VseVal*. f(3) =t <= f(3) L) tandte Val

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

— sufficiently strong for Completeness

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

= sufficiently strong for Completeness

» induces exponential bound on innermost runtime complexity rc,

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

= sufficiently strong for Completeness

» induces exponential bound on innermost runtime complexity rc,

Let R denote a constructor TRS. There exists k € N such that

H k
R C >epox = [rCr € 20(r%)

rc(n) = max{ dh(f(5), 1>z | § € Val* and f(5) of size upto n}

dh(t,Br) = max{l | (tr,...,t). t Lo t1 By ... i t;}

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

= sufficiently strong for Completeness

» induces exponential bound on innermost runtime complexity rcp,

— implies Soundness

Let R denote a constructor TRS. There exists k € N such that

H k
R C >epox = [rCr € 20(r%)

rc(n) = max{ dh(f(5), 1>z | § € Val* and f(5) of size upto n}

dh(t,Br) = max{l | (tr,...,t). t Lo t1 By ... i t;}

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

= sufficiently strong for Completeness

» induces exponential bound on innermost runtime complexity rcp,

— implies Soundness

[§ Ugo Dal Lago and Simone Martini
On Constructor Rewrite Systems and the Lambda-Calculus.
36th ICALP, pages 163—-174, 2009

Exponential Path Order >0,

» constraints of V' imposed on lexicographic path order >epox € >lpo

= sufficiently strong for Completeness

» induces exponential bound on innermost runtime complexity rcp,

— implies Soundness

[§ Ugo Dal Lago and Simone Martini
On Constructor Rewrite Systems and the Lambda-Calculus.
36th ICALP, pages 163—-174, 2009

[§ Martin Avanzini and Georg Moser
Closing the Gap Between Runtime Complexity and Polytime

Computability. @

RTA'10, pages 33-48, 2010

The class N/

Syntactic, Recursion-theoretic Characterisation of FEXP

The class N

is the smallest class ...

@ containing certain initial function projections, successors, . ..

® closed under safe nested recursion on notation

© closed under weak safe composition

Safe Recursion on Notation

» syntactical restriction of primitive recursion scheme

f(Xl,--ka;)/b-uaYI)
—_— —

normal safe

Safe Recursion on Notation

» syntactical restriction of primitive recursion scheme

f(X17"'7Xk;y17"'7y/)
—_— —

normal safe

> separates recursion parameters from recursively computed results

-
—~
“m
LoXI
<l <y
N N
I
> 0y

,(Z,)?,?,f(l,)?,?)) (IG {0)1})

Safe Recursion on Notation

» syntactical restriction of primitive recursion scheme

f(X17"'7Xk;y17"'7y/)
—_— —

normal safe

> separates recursion parameters from recursively computed results

-
—~

. “m
Rell

,(z,>_<’,)7,f(z,>?,37)) (IG {0)1})

Safe Recursion on Notation

» syntactical restriction of primitive recursion scheme

f(Xl)' oy Xk Y1y e - 7y/)
—_—— ——
normal safe

> separates recursion parameters from recursively computed results

f(zi,x;y) = hi(z, %, ¥,f(z,X;y)) (i €{0,1})

no recursion on recursively computed result

Safe Nested Recursion on Notation

extends safe recursion on notation with ...

@ nesting of recursive function calls nested recursion

fley)=2g(y)
f(xi;y) =ri(x;y, f(x;si(x; v, f(x; ...))))

Safe Nested Recursion on Notation

extends safe recursion on notation with ...

@ nesting of recursive function calls nested recursion

fley)=2g(y)
f(xi;y) =ri(x;y, f(x;si(x; v, f(x; ...))))

@® simultaneous recursion on all normal arguments multiple recursion

)=g(;2)

f(xi,e;z) = ri(x, €z f(x,€sie(x, € f(x,€ 2))))
) =
) =

fe €z

fe yjiz) = ru(e yiz, (€& yisj(€,y: f(e,y:2))))
F(xisyjiz) = rij(x, v 2, £(xi, y; sij(x, v: £(x, 47 2))))

e case analysis on least significant “bits” of recursion parameters

Safe Nested Recursion on Notation

extends safe recursion on notation with ...

@ nesting of recursive function calls nested recursion

fley)=2g(y)
f(xi;y) =ri(x;y, f(x;si(x; v, f(x; ...))))

@® simultaneous recursion on all normal arguments multiple recursion

) =g(;2)

f(xi,e;z) = ri(x, €z f(x,€sie(x, € f(x,€ 2))))
) =
) =

fe €z

fe yjiz) = ru(F yiz, (€& yisj(€,y: f(e,y:2))))
F(xisyjiz) = rij(x, v 2, £(xi, y; sij(x, v: £(x, 47 2))))

e case analysis on least significant “bits” of recursion parameters

e |exicographic decreasing recursion parameters

Safe Composition

Requirements

@ composition maintains separation of safe and normal arguments

Safe Composition

Requirements

@ composition maintains separation of safe and normal arguments

Safe Composition employed in B

Safe Composition

Requirements

@ composition maintains separation of safe and normal arguments

@ reflects that FEXP is not closed under composition

Safe Composition employed in B

Weak Safe Composition employed in

f(Xy)=gxi,-...xi:5(X;¥)) {xi, ..., xi. } C{X}

The class N

is the smallest class ...

@ containing certain initial function projections, successors, . ..

® closed under safe nested recursion on notation

© closed under weak safe composition

The class N/

is the smallest class ...

@ containing certain initial function projections, successors, . ..

® closed under safe nested recursion on notation

© closed under weak safe composition

N = FEXP

[§ Toshiyasu Arai and Naohi Eguchi
A new Function Algebra of EXPTIME Functions by Safe Nested
Recursion.
TCL, pages 130-146, 2008

Exponential Path Order >y,

A Path Order based on N/

Exponential Path Order >0,

» induced by precedence > and safe mapping safe : F — 21

Exponential Path Order >0,

» induced by precedence > and safe mapping safe : F — 21

> tct -s "epox" fib.trs
YES (7 ,EXP0)

We consider the following Problem:
Strict Trs:
{ fib(s(s(x)), y) —> fib(s(x), fib(x, y))
, fib(s(00)), y) -> s(y)

, fib (00, ¥ -> s(y) }
StartTerms: basic terms
Strategy: innermost

The system is compatible with ’epo*’ induced by
Precedence: fib > s,0
Safe Mapping: safe(fib) = {2}, safe(s) = {1}

Exponential Path Order >0,

» induced by precedence > and safe mapping safe : F — 2!

precedence > and safe mapping safe are admissible if

@ constructors are minimal f>g=1Ff<&cC

@® all argument positions of constructors are safe
feC = safe(f) ={1,...,ar(f)}

Exponential Path Order >0,

» induced by precedence > and safe mapping safe : F — 2!

precedence > and safe mapping safe are admissible if

@ constructors are minimal f>g=1Ff<&cC

@® all argument positions of constructors are safe
feC = safe(f) ={1,...,ar(f)}

Notation

we suppose safe(f) = {/+1,...,/+ m}, we write

f(st,. 1 S1;S141s -+ SI4m)

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
“tj are normal arguments of " S >epox thk1 S >epox thin
WSC — : f>g
S >ep0* g(t17 ey tkv tk+17 ey tk+n)
SNRN <51a-~~75l> >lex! <t17---7tl> S >epo* tl+1 e S >epo* tm

) >epo* f(tl, —e b tl—i—la) tl+m)

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
WSC “t; are normal arguments of s” | S >epox tkt1 " *S >epox thtn f>g
S >ep0* g(t17 ey tkv tk+17 ey tk+n)
SNRN <51a-~~75l> >lex! <t17---7tl> S >epo* tl+1 e S >epo* tm
) >epo* f(tl, —e b tl—i—la) tl+m)

Recall Weak Safe Composition . . .

= = -

f(X;Y) = g(Xi17"‘?Xik;s()?;.)7)) {Xil""’Xik} - {)?}

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
“tj are normal arguments of " S >epox thk1 S >epox thin
WSC — : f>g
S >ep0* g(t17 ey tkv tk+17 ey tk+n)
<51a cee 75l> >lex! <t17 sy tl> S >epo* tl+1 S >epo* tm
SNRN .
) >epo* f(tl, —e b tl—i—la) tl+m)

N
I

r(coeso F(xd,y;S(oe o F(xy):20))

f(xi,yjf;...

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
“tj are normal arguments of " S >epox thk1 S >epox thin
WSC — : f>g
S >ep0* g(t17 ey tkv tk+17 ey tk+n)
SNRN <51a-'~75l> >lex! <t17---7tl> S >epo* tl+1 e S >epo* tm

) >epo* f(tl, —e b tl—i—la) tl+m)

Auxiliary Order Tepox

Order for Val

Si epox t

ST,
f(S1y. s S SI41s- -, Sitm) Jepox t

® Tcpox = > on Val

if feDthenic{l,.... I}

Auxiliary Order Tepox

Order for Val

Si epox t

ST,
f(S1y. s S SI41s- -, Sitm) Jepox t

® Tcpox = > on Val

if feDthenic{l,.... I}

(2] “epox cp>
o if f € D, safe(f) = {2} then f(x; z) Tepox X but f(x;2) Zepox z

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
“tj are normal arguments of " S >epox thk1 S >epox thin
WSC — : f>g
S >ep0* g(t17 ey tkv tk+17 ey tk+n)
SNRN <51a-~~75l> >lex! <t17---7tl> S >epo* tl+1 e S >epo* tm

) >epo* f(tl, —e b tl—i—la) tl+m)

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
S Tepox t1 **+ S Tepox tk S >epox Lk+1"*S >epox tk+n
WSC : f>g
S >epox g(tl, ey b g1, o tk+n)
SNRN <517~--7SI> >lex! <t17-~-7tl> S >epo* tl+1 e S >epo* tm

S >epox f(t1s -yt tipt, s tigm)

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
S TJepox 11+ S Tepox tk S >epox Lk+1° S >epox tktn
WSC : f>g
S >epox g(tl, ey b g1, o tk+n)
SNRN <517~--7SI> >lex! <t17-~-7tl> S >epo* tl+1 e S >epo* tm

S >epox f(t1s -yt tipt, s tigm)

Exponential Path Order >0,

Preliminary Definition

Let s = f(s1,...,S/S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
S Jepox t1 -+ S lepox tk S >epox Lk+1° S >epox tktn
WSC : f>g
S >epox g(tl, ey b g1, o tk+n)
(T) S >epo* tl+1 S >epo* tm
SNRN i
S >epox f(t1s -yt tipt, s tigm)

s =1t - Si-1=ti-1,
(T) @ S; Jepox ti, and
9 S jepo* ti+1 S jepo* tl-

Exponential Path Order >0,

Let s = f(s1,...,5/;S/+1,---,5+m), let > and safe be admissible.
Si >epo* t
ST S >epox t
WSC S TJepox 11+ S Tepox tk S >epox Lk+1° S >epox tktn Fs g
S >epox g(tl, ey b g1, o tk+n)
SNRN (T) . S >epox ti+1 **° S >epox tm
S >epox f(t1s -yt tipt, s tigm)

s =1t - Si-1=ti-1,
(T) @ S; Jepox ti, and
9 S jepo* ti+1 S jepo* tl-

The Good . ..

the exponential path order EPO™ is ...

> a restriction of LPO that induces exponentially bounded rciR

» sound and complete for FEXP, implemented in our tool TcT
http://cl-informatik.uibk.ac.at/software/tct

http://cl-informatik.uibk.ac.at/software/tct

The Good . ..

the exponential path order EPO™ is ...
> a restriction of LPO that induces exponentially bounded rciR

» sound and complete for FEXP, implemented in our tool TcT
http://cl-informatik.uibk.ac.at/software/tct

The Bad ...

» rules out some natural definitions:
d(0) —» 0 e(0) — s(0)
d(s(x)) — s(s(d(x))) e(s(x)) — d(e(x))

http://cl-informatik.uibk.ac.at/software/tct

The Good . ..

the exponential path order EPO™ is ...
> a restriction of LPO that induces exponentially bounded rciR

» sound and complete for FEXP, implemented in our tool TcT
http://cl-informatik.uibk.ac.at/software/tct

The Bad . ..

» rules out some natural definitions:
d(0) —» 0 e(0) — s(0)
d(s(x)) — s(s(d(x))) e(s(x)) — d(e(x))

The Ugly ...

> >popx Z >epox

http://cl-informatik.uibk.ac.at/software/tct

