
Automation of Polynomial Path
Orders

master thesis in computer science

by

Martin Avanzini

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Master of Science

supervisor: Dr. Georg Moser, Institute of Computer Science

Innsbruck, 25 February 2009

Master Thesis

Automation of Polynomial Path Orders

Martin Avanzini
Martin.Avanzini@student.uibk.ac.at

25 February 2009

Supervisor: Dr. Georg Moser

Abstract

The automated complexity analysis of rewrite systems is a challenging topic that
has recently gained much attention. As one practical application, techniques
developed for the analysis of rewrite systems can in principle be employed for
the automated analysis of functional programs. In this thesis, we present the
polynomial path order >pop∗, a syntactic restriction of the well known multi-
set path order. The order is carefully crafted to induce polynomial bounds on
the runtime-complexity of compatible rewrite systems. Semantic labeling and
the dependency pair method are two prominent transformation techniques de-
veloped in the context of termination analysis. Both significantly strengthen
the power of basic termination techniques. We show that suitable adaptations
as proposed in the literature can be employed together with >pop∗ for a com-
plexity analysis. This severely widens the applicability of the polynomial path
order. Furthermore, we give an efficient automation that works by a reduction
to the Boolean satisfiability problem (SAT). Experimental results confirm the
feasibility of our approach.

Acknowledgments

Foremost, special thanks to my supervisor Georg Moser for his valuable feed-
back, dedicated guidance and ongoing support over the last years. I must have
interrupted him thousands of times from important work, and he always pre-
tended he did not mind. Thank you Georg.

Great thanks to Nao Hirokawa who teached me not to be afraid of proofs,
a fact reflected in this thesis. I want to thank Andreas Schnabl for the many
fruitful conversations we had. Many thanks to Martin Korp, Christian Sternagl
and Harald Zankl providing their excellent term rewriting libraries, technical
assistance included. In particular, thank you Christian for helping me solve
many of the LATEX related problems.

I want to thank my family for their ongoing support, and for providing an
environment that allowed me to focus on my studies. Without their help, the
thesis presented here would not exist. Last but not least, I want to thank my
girlfriend Daniela who had to dispense so many things over the last couple of
years.

v

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Orders . 7
2.2 Term Rewriting . 8

3 The Polynomial Path Order on Sequences 15

4 The Polynomial Path Order POP∗ 23

5 The Polynomial Path Order and Relative Rewriting 31
5.1 A Simulation of Innermost Steps 38
5.2 The Embedding of Top-Steps . 40
5.3 The Embedding of Arbitrary Steps 48
5.4 Controlling the Growth Rate of Term-Sizes 49

6 Transformation Techniques 51
6.1 POP∗ and Dependency Pairs . 51
6.2 POP∗ and Semantic Labeling . 58

7 Implementation Matters 63
7.1 POP∗ Semantic Labeling . 64
7.2 POP∗ and Dependency Pairs . 70
7.3 Experimental Findings . 75
7.4 Experimental Results . 78

8 Related Work 83

9 Conclusion 85

Bibliography 87

A Appendix 93
A.1 An extension of Polynomial Path Orders 93
A.2 Counting Dependency Pair Steps 96
A.3 POP∗ as Direct Method . 98

vii

1 Introduction

Term rewriting is a branch of theoretical computer science which combines ele-
ments of logic, automated theorem proving and declarative programming. Term
rewriting is akin to equational logic, where a term rewrite system R (or TRS
for short) is conceivable as a set of directed equations. The rewrite relation −→R
as induced by the TRS R is defined in such a way that s −→R t holds when t can
be obtained from s by applying one of the equations from R from left to right.
Rewriting constitutes a Turing-complete model of computation. One desired
property of a TRS R is termination, that is −→R does not give rise to infinite re-
ductions. Consequently, termination has been studied quite early, and powerful
methods for proving termination have been established over the years. Early
research concentrated mainly on direct termination techniques, for instance the
use of reduction orders like the multiset path order (MPO for short) [20] or
polynomial interpretations [38]. A reduction order � is a well-founded order on
terms such that the inclusion R ⊆ � entails −→R ⊆ �, and thus termination
of R. In recent years, the attention shifted towards transformation techniques.
The dependency pair method [5] and semantic labeling [58] are particular popu-
lar instances of transformation techniques. Both methods significantly increase
the possibility to verify termination automatically.

Once we have established termination of a given rewrite system R, it seems
natural to direct the attention to the analysis of the complexity of R. The
complexity analysis in the context of rewriting is a challenging but compelling
task with many applications. Below we render two applications we address in
this thesis:

(i) The characterization of complexity classes by means of rewriting charac-
terizations has attained a lot of attention [11, 17, 46]. Results established
for complexity analysis of rewrite systems give rise to alternative char-
acterizations (cf. for instance [4, 14]), simplified proofs and the analysis
of the implicit computational complexity of functions (cf. for instance
[16, 33, 49], or [13, 40, 42] in the context of rewriting).

(ii) A first order functional program P can often be understood as orthogonal
constructor rewrite system RP [10, 41]. We highlight this correspondence
on a small ML-program, defining the append function @ on lists:

let (@) xs ys =
match xs with

| [] -> ys
| x::xs -> x :: (xs @ ys)

The computation of the append function is encoded by the rewrite system

1

1 Introduction

R@ consisting of the two rewrite rules

[] @ ys −→ ys

(x :: xs) @ ys −→ x :: (xs @ ys)

in a very natural way. The evaluation of an expression e just amounts to
the reduction of the corresponding term under R@. In other words, R@

computes the function @ as defined in the ML-program.

As evaluation steps of such functional programs just correspond to rewrite
steps of the respective rewrite system, the complexity analysis of the latter
gives rise to an (automated) complexity analysis of the former.

In rewriting, the complexity of a rewrite system R is usually measured by
the maximal length of derivations. Let the relation −→ refer to some (rewrite)
relation on terms. The relation −→ could for instance be the rewrite relation −→R
as induced by the TRS R, or the innermost rewrite relation i−→R. The latter
denotes the restriction of −→R where innermost terms need to be reduced first,
also referred to as eager evaluation in the functional programming community.
With the derivation length dl(t,−→) of a term t with respect to −→ we refer to
the length of the longest possible derivation starting from t. Let T denote a set
of terms, the so called start terms. The runtime-complexity function rc based
on T and −→ is defined as

rc(n, T,−→) = max{dl(t,−→) | t ∈ T and |t| 6 n}

for a reasonable size-measure | · | on terms. Then rc(n, T,−→) gives the length
of the longest −→-chain starting from a term in T of size up to n.

The derivational complexity of a rewrite systemR is given by the derivational
complexity function dcR defined by

dcR(n) = rc(n, T ,−→R)

where T refers to the set of all possible terms. A program proposed by Hof-
bauer and Lautemann [32] is to measure the power of termination methods by
the induced derivational complexity. For example, termination proofs by mul-
tiset path orders induce primitive recursive upper bounds on dcR [31]. Similar
results have been established for other reduction orders [32, 39, 55]. To the
contrary, little is known about state-of-the-art termination techniques such as
the dependency pair method or semantic labeling in their general setting.

Viewed from the opposite direction, a proof of termination inherits vital in-
formation about the complexity of the considered rewrite system. For instance,
the inclusion R ⊆ >mpo certifies a primitive recursive derivational complexity
function dcR. Moreover such an analysis is easy to automate. However, the re-
ported results on induced derivational complexity by standard techniques are of
a rather theoretical value. For the complexity analysis of a functional program
as highlighted above, one is usually interested in lower complexity bounds that
assess feasible computability. Even the smallest bound given in [32, 39, 55],
namely doubly-exponential as induced by polynomial interpretations, cannot

2

be considered as computationally feasible. One recent exception is presented in
[26]. Here linear derivational complexity can be verified by the use of automata
techniques.

For the study of lower bounds, the derivational complexity function dcR is
not well suited. In particular, this holds if a rewrite system Rf is conceived (as
above) as a description of an algorithm, specifying the evaluation of a functions
f . In this thesis, we follow [7, 29] and adopt the innermost runtime-complexity
function rci

R as complexity measure for rewrite systems R. It is defined as

rci
R(n) = rc(n, Tb, i−→R)

where Tb refers to the set of all constructor-based terms and i−→R to the in-
nermost rewrite relation as induced by R. Here Tb contain those terms that
correspond to a function-call on values, that is terms of the form f(v1, . . . , vn)
where f denotes a defined function symbol and the terms vi are values. The
definition of the (innermost) runtime-complexity function dispels two obstacles:

(i) The derivational complexity function does not discriminate between dif-
ferent start terms, whereas this is natural for the runtime-complexity
analysis of functions. We highlight the difference in the following TRS
Rdouble defined by the rules

double(0) −→ 0 double(s(n)) −→ s(s(double(n))) .

The above rewrite system computes the function double(n) = 2n, that
is the term1 double(sn(0)) reduces to s2n(0), where naturals are repre-
sented as tally numbers. Although the computed function double is clearly
feasible—even computable in linearly many steps—the derivational com-
plexity of Rdouble is exponential. On the other hand, for the runtime-
complexity analysis of Rdouble, only terms of the shape double(sn(0)) cor-
responding to the function call double(n) with n ∈ N are considered. The
runtime-complexity of Rdouble is linear as desired.

(ii) Unrestricted rewriting may be too powerful for the study of lower com-
plexity classes, even if we restrict the analysis to constructor-based terms.
This has already been observed by Beckmann and Weiermann [11]. In
particular, an unwise reduction strategy may give rise to unneeded du-
plication of reducible terms (i.e. computation). Eager evaluation, that is
rewriting under the innermost rewrite relation i−→R, naturally circumvents
duplication of computation.

In this thesis, we present the polynomial path order (or POP∗ for short) first
introduced in [7] and give fruitful extensions. In essence, the polynomial path
order is a carefully crafted miniaturization of MPO, incorporating the schemes
of predicative recursion [12]. Predicative recursion was introduced by Bellan-
toni and Cook to break the strength of primitive recursion in their recursion-
theoretic characterization of the polytime computable functions (FP for short).

1Here we employ the convention fn(t) to denote the term f(f(. . . f(t) . . .)) with n occurrences
of f .

3

1 Introduction

In the definition of the polynomial path order, the same idea is employed to
break the strength of MPO that induces primitive recursive derivational com-
plexity. The combination of MPO with predicative recursion gives rise to a
completely automatic runtime-complexity analysis of rewrite systems: we show
that compatibility of a rewrite system R with a polynomial path order >pop∗
certifies a polynomially bounded innermost runtime-complexity ofR. More pre-
cisely, the inclusion R ⊆ >pop∗ entails that the innermost runtime-complexity
function rci

R is bounded by a polynomial. This result is supplemented by an
alternative characterization of the functions computable in polynomial time
(FP for short). Opposed to the classical recursion-theoretic characterization
[18], our characterization is entirely free of resource bounds: the polytime-
computable functions can be understood as exactly those functions computed
by certain syntactically restricted rewrite systems compatible with polynomial
path orders >pop∗. The polynomial path order is also of practical interest. As
one application, such an analysis can in principle be employed for an automated
complexity analysis of (eager) first-order functional programs.

The polynomial path order is a purely syntactic method. That is, it operates
by a purely structural analysis of the input. This is in strong contrast to
the majority of existing methods, for instance restricted forms of polynomial
interpretations (employed for example in [13]) or matrix interpretations [22].
Intuitively, here one searches for an interpretation of the symbols appearing
in R that certify feasible bounds on the length of derivations. The efficient
implementation of such semantic techniques is always a major concern, whereas
polynomial path orders are extremely fast. This is reflected in our experimental
results.

The polynomial path order is strongly based on the path order for FP in-
troduced by Arai and Moser in [4]. A central motivation for this research is
the observation that the direct application of the latter order is only successful
on a handful of (very simple) rewrite systems. The path order for FP gains
only power if additional transformations are performed. Unfortunately, such
powerful transformations are difficult to find automatically. In Chapter 3 we
introduce the reader to the path order for FP in a slightly generalized setting.
This order provides us with a suitable foundation for the reasoning carried out
later on.

The polynomial path order is a restriction of MPO. Thus its power cannot
exceed the power of MPO. As briefly mentioned, transformation techniques
have significantly increased the possibility to automatically prove termination.
This gives rise to the question whether we can combine the polynomial path
order with transformation techniques employed for the termination analysis.
We answer this question positively in Chapter 6, where we investigate a com-
bination of the polynomial path order with semantic labeling and a variant of
the dependency pair method [29, 30].

Although semantic labeling preserves the length of derivation, only partial re-
sults on derivational complexities are reported [44]. The main problem is that
the transformed system Rlab may admit an infinite signature. For this case,
the results mentioned above on polynomial runtime-complexities induced by

4

POP∗ fails (as do most of the results mentioned above on derivational complex-
ities induced by reduction orders). For finite systemsRlab the situation changes.
In this thesis, we employ a restricted form of semantic labeling, dubbed finite
semantic labeling. This variant asserts that Rlab is finite. By finite semantic
labeling we significantly increase the strength of the polynomial path order.
This is confirmed by experimental evidence presented in this thesis.

In recent efforts [29], Hirokawa and Moser provide an adaption of the depen-
dency pair method as proposed in [5] suitable for a runtime-complexity analysis.
This method enables the use of several powerful techniques such as argument
filterings [37], usable rules and reduction pairs. Moreover, in [30] the framework
has been extended by dependency graphs. For the integration of the polyno-
mial path order into the dependency pair framework for complexity analysis
we face several difficulties. In order to tackle these problems, and to simplify
the presentation, we introduce in Chapter 5 the polynomial path order in the
context of relative rewriting [45]. Relative rewriting is a notion generalizing
rewriting, where the corresponding relative rewrite relation −→R/S is formed by
two rewrite systems R and S. We show that a pair (∼>pop∗, >pop∗) provides
us with the means to give polynomial bounds on the runtime-complexity with
respect to the relative rewrite relation. Moreover, we present a generalization
of the polynomial path order >πpop∗ by incorporating argument filtering. In
particular, the pair (∼>

π
pop∗, >

π
pop∗) certifies polynomial bounds (in the size of

the start term) on the runtime-complexity with respect to the relative rewrite
relation −→R/S , provided all steps due to R happen at the root position. We
show in Chapter 6 that the latter result allows the use of the polynomial path
order together with argument filterings in the variant of the dependency pair
method from [29]. Moreover, this approach integrates seamless to the extension
of [29] to dependency graphs [30], but for brevity we concentrate solely on [29].

Beside those theoretical issues, we give an efficient implementation of the
polynomial path order together with the above mentioned transformations.
This is a challenging task, as the search space is enormous. For the integration
of argument filterings with recursive path orders like MPO, standard approaches
exist [19, 56]. We mainly follow these, suitable adapted for our concerns. On
the other hand, although efficient techniques for the integration of (variants of)
semantic labeling exist [34, 35], we cannot follow these approaches. This is due
to the fact that the considered models are usually infinite.

The thesis is structured as follows: In Chapter 2 we revise central definitions
and introduce the reader to the employed theory of rewriting. In Chapter 3
we present the path order for FP in a slightly more general setting, presenting
a suitable foundation for the reasoning carried out in this thesis. In Chapter
4 we introduce the polynomial path order. Moreover, following [8] we give an
alternative characterization of FP. In Chapter 5 we briefly explain the notion
of relative rewriting. We incorporate argument filterings in the base order
and we show that polynomial path orders can be employed for the analysis
of relative steps. In Chapter 6 we present POP∗ combined with dependency
pairs and semantic labeling as indicated above. In Chapter 7 we investigate
the technical issues arising from the implementation of the polynomial path

5

1 Introduction

order. In particular, we give an automation together with semantic labeling
and argument filterings. In Chapter 8 we briefly contrast the polynomial path
order to related research, and we conclude in Chapter 9.

6

2 Preliminaries

Below, we introduce the reader to the employed terminology and recall the basic
concepts of term rewriting. Although helpful, familiarity with rewriting is not
assumed. For further information, [10, 52] provide good resources.

2.1 Orders

Definition 2.1. A proper order is an irreflexive and transitive binary relation.
A preorder is a reflexive and transitive binary relation. An equivalence relation
is reflexive, symmetric and transitive. A binary relation R is well-founded if
there exists no infinite chain a0, a1, . . . with ai R ai+1 for all i ∈ N. Moreover,
we say that R is well-founded on a set A if there exists no such infinite chain
with a0 ∈ A. R is finitely branching if for all elements a, the set {b | a R b} is
finite.

For a binary relation R, we write R+ to denote the transitive, R= for the
reflexive and R∗ for the transitive and reflexive closure of R. Every preorder
% induces a proper order �, namely a � b if and only if a % b and not b % a,
and an equivalence relation ∼, namely a ∼ b if and only if a % b and b % a.
For a preorder %, we usually denote the induced equivalence relation by ∼ and
induced proper order by �. Obviously, % = � ∪∼ holds for these.

Definition 2.2. Let A be a set and ∼ an equivalence relation on A. The
quotient of A modulo ∼ is defined as the set A/∼ = {[a] | a ∈ A} where [a] is
the ∼-equivalence class of a, i.e. [a] = {b ∈ A | b ∼ a}. Suppose % = � ∪∼
is a binary relation over A satisfying ∼ · � · ∼ ⊆ % where ∼ is an equivalence
relation. The extension of � to A/∼ is defined as the binary relation A with
[a] A [b] if and only if a � b.

A multiset M is a collection in which elements are allowed to occur more
than once. In our context M is always finite.

Definition 2.3. Let A be a set. A multiset M is a function from A into N such
that M(a) = 0 for all but finitely many elements a ∈ A, where M(a) denotes
how often a occurs in M . The set of all multisets over A is denoted by M(A).

We sometimes write [a1, . . . , an] for the multiset M with elements a1, . . . , an,
for instance we write [1, 1, 2] for the multiset containing 1 twice and 2 once. The
usual set operations are extended to multisets as follows: we write a ∈M(a) if
M(a) > 0 and denote the empty multiset M , i.e. M(a) = 0 for all a ∈ A, by
∅. For M1,M2 ∈ M(A) the sum M1]M2 is defined as the multiset M such
that M(a) = M1(a) + M2(a) for all a ∈ A. Likewise the difference M1\M2 is
given by M such that M(a) = M1(a)−M2(a) if M1(a) >M2(a) and M(a) = 0

7

2 Preliminaries

otherwise. The inclusion M1 ⊆M2 holds if for some multiset M , M1]M = M2.
We write ⊇ for the converse of ⊆ and define equality (=) on multisets as the
relation ⊇ ∩⊆.

Definition 2.4. Let � be a binary relation on a set A. The multiset extension
�mul of � is the binary relation onM(A) such that M1 �mul M2 if there exists
multisets X,Y ∈M(A) satisfying

(i) M2 = (M1\X)] Y ,

(ii) ∅ 6= X ⊆M1 and

(iii) for all y ∈ Y there exists an element x ∈ X such that x � y.

In particular, if � is a proper order over A then �mul is a proper order over
M(A) and moreover �mul is well-founded on M(A) if and only if � is well-
founded on A. We follow [23] and generalize the above definition of multiset
extension to a binary relation by identifying equivalent elements:

Definition 2.5. Let ∼ denote an equivalence relation and let % = � ∪∼ be
a binary relation over a set A such that ∼ · � · ∼ ⊆ %. Suppose A denotes
the extension of � to the quotient A/∼ of the ∼-equivalence classes. Define
for multiset M ∈ M(A) the corresponding multiset M∼ ∈ M(A/∼) such that
M∼([a]) = Σb∈[a]M(b) for all a ∈ A. The strict multiset extension �mul of %
is defined such that M1 �mul M2 if and only if M∼1 Amul M

∼
2 . Furthermore,

we define equivalence by M1 ∼mul M2 if and only if M∼1 = M∼2 . We define
%mul = �mul ∪ ∼mul and call %mul the weak multiset extension of %.

Notice that when % is a preorder on A then the strict multiset extension
�mul of % is a proper order and the weak multiset extension %mul a preorder
on M(A). Moreover, �mul is well-founded if and only if � is well-founded.

2.2 Term Rewriting

Throughout the thesis, with V we denote a countably infinite set of variables.

Definition 2.6. A (variadic) signature F is a set of function symbols such
that F ∩ V = ∅, where each f ∈ F is associated with one or more natural
numbers, the arities of f . For the case when F associates more than one arity
to a symbol f ∈ F , we call f variadic.

For a symbol f ∈ F and associated arity n, we say that f is n-ary. We
call 0-ary function symbols constants. For readability, we write c instead of c()
for constants. We always use F to denote a signature and if not mentioned
otherwise then F is finite and non-variadic, i.e. contains no variadic symbols.
If not stated otherwise, f, g, h, . . . denote elements from F . From function
symbols and variables, we build terms as follows.

Definition 2.7. The set of terms over F and V is denoted by T (F ,V) and is
inductively defined by

8

2.2 Term Rewriting

(i) V ⊆ T (F ,V), and

(ii) f(t1, . . . , tn) ∈ T (F ,V) for all n-ary function symbols f ∈ F and terms
t1, . . . , tn ∈ T (F ,V).

If not mentioned otherwise, we use s, t, u, v, . . . , possibly extended by sub-
scripts, to denote elements from T (F ,V) and abbreviate T (F ,V) by T . We
denote the set of all ground terms T (F ,∅) by T (F).

By Var(t) ⊆ V we denote the set of all variables appearing in t, likewise by
Fun(t) ⊆ F we denote the set of all function symbols appearing in t. We denote
by root(t) the root symbol of t, that is root(f(t1, . . . , tn)) = f and root(t) = t
else. In the upcoming definition, we define the different size-measures for terms
as employed in this thesis.

Definition 2.8. The size |t| of a term t is recursively given by

|t| =

{
1 + Σn

i=1|ti| if t = f(t1, . . . , tn)
1 otherwise.

The width of a term t is recursively given by

width(t) =

{
max{n,width(t1), . . . ,width(tn)} if t = f(t1, . . . , tn) and n > 0
1 otherwise.

The depth of a term t is recursively defined by

depth(t) =

{
1 + max{depth(t1), . . . ,depth(tn)} if t = f(t1, . . . , tn) and n > 0
0 otherwise.

The Buchholz-norm ‖t‖ of term t is recursively defined by

‖t‖ =

{
1 + max{n, ‖t1‖, . . . , ‖tn‖} if t = f(t1, . . . , tn)
1 otherwise.

A position is a finite sequence of positive natural numbers. The positions of
a term t are collected in Pos(t) as follows.

Definition 2.9. The set Pos(t) of all positions in a term t is inductively defined
as follows:

Pos(t) =

{
{ε} if t ∈ V,
{ε} ∪ {ip | 1 ≤ i ≤ n and p ∈ Pos(ti)} if t = f(t1, . . . , tn) .

Here the root position is denoted by the empty sequence ε and pq denotes the
concatenation of positions p and q.

Definition 2.10. Given a term t, the subterm of t at position p ∈ Pos(t) is
denoted by t|p and defined as

• t|ε = t, and

9

2 Preliminaries

• t|ip = ti|p if t = f(t1, . . . , tn).

We write s E t if s = t|p for some position p ∈ Pos(t) and call s a subterm of
t. For the case when s 6= t we write s C t and call s a proper subterm of t. We
denote by D the converse of E and by B the converse of C respectively.

A substitution σ is a mapping from V into T (F ,V) and we write tσ for the
term extension of the mapping in the following sense.

Definition 2.11. Let σ be a mapping from V into T (F ,V), called a substitu-
tion. Let t be a term. We extend σ to terms by

• tσ = σ(t) if t ∈ V, and

• tσ = f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn).

A bijective substitution from V to V is called a renaming. Below, we always
use σ to denote a substitution.

Definition 2.12. A binary relation R on terms is closed under substitutions if
whenever s R t holds then sσ R tσ holds for any substitution σ.

Consider a fresh constant symbol �, named hole. Terms that contain holes
are called contexts.

Definition 2.13. We call an element C ∈ T (F ∪ {�},V) a context. Let C
be a n-hole context and let p1, . . . , pn denote all positions in Pos(C) such that
C|pi = �, sorted in lexicographic order. For terms t1, . . . , tn, we denote by
C[t1, . . . , tn] the term obtained by replacing the holes at position pi with ti.
Let X be a set of symbols. We write C〈t1, . . . , tn〉X to denote C[t1, . . . , tn],
whenever root(ti) ∈ X and C is a n-hole context containing no symbols from X
(observe that here C may be degenerated, that is C does not contain a hole).

The context � is called the empty context.

Definition 2.14. Let R be a binary relation on terms. R is closed under
contexts if whenever s R t holds then C[s] R C[t] holds for any context C with
exactly one hole. If in addition R is closed under substitutions, then R is called
a rewrite relation.

A proper order R on terms that is also a rewrite relation is called a rewrite
order. When R is well-founded in addition, then R is called a reduction order.
Reduction orders are of particular interest for the termination analysis of term
rewrite systems. We briefly introduce two prominent reduction orders below,
but before we recall term rewrite systems and their properties.

Definition 2.15. A rewrite rule is a pair (`, r) of terms such that `, r ∈
T (F ,V), ` 6∈ V and Var(r) ⊆ Var(`). For a rewrite rule (`, r), we write ` −→ r
instead.

Definition 2.16. A term rewrite system (TRS for short) is a tuple (F ,R)
where F is a signature and R is a set of rewrite rules over T (F ,V).

10

2.2 Term Rewriting

We usually abbreviate (F ,R) by R when F is clear from context. If not
stated otherwise, we useR, S, Q and P to denote rewrite systems. The smallest
extension of R that is a rewrite relation is denoted by −→R.

Definition 2.17. Let R be a TRS. The rewrite relation −→R is the binary
relation on T (F ,V) such that s −→R t if and only if there exists a one-hole
context C, substitution σ and position p such that C|p = �, s = C[`σ] and
t = C[rσ] for some rule ` −→ r ∈ R.

For a step s −→R t we say that s rewrites to t in one step and call t a reduct of
s. In order to indicate the rewrite position p of a step s −→R t we write s −→p

R t.
We call a step s −→ε

R t a top-step. The term s is a normal form of R if there
exists no term t such that s −→R t holds. We collect all normal forms of R in
the set NF(R). When s→∗R t and t ∈ NF(R) then t is called a normal form of
s and we write s −→!

R t in this case. The innermost rewrite relation i−→R is the
restriction of −→R where innermost terms have to be reduced first:

Definition 2.18. Let R be a TRS. The innermost rewrite relation i−→R is
defined such that s i−→R t if and only if s = C[f(`1σ, . . . , `nσ)], t = C[rσ] and
`iσ ∈ NF(R) for all i ∈ {1, . . . , n}. Here C denotes a one-hole context, σ a
substitution and f(`1, . . . , `n) −→ r ∈ R.

Definition 2.19. A TRS R is terminating if −→R is well-founded.

We say that a rewrite order � isR-compatible (and vice versa) if the inclusion
R ⊆ � holds. Notice that compatibility of R with a reduction order asserts
termination of R.

Definition 2.20. Two terms s and t are joinable if there exists a term u such
that s→∗R u and t→∗R u. A TRS R is confluent if for each term s each pair of
reducts t1 and t2 is joinable.

Every terminating and confluent system admits the unique normal form prop-
erty, that is s −→!

R t1 and s −→!
R t2 implies t1 = t2. A rewrite system R is

left-linear if for each rule ` −→ r ∈ R each variable appears at most once in `.
If ` → r is a rewrite rule and σ a renaming then the rewrite rule `σ → rσ is
called a variant of `→ r.

Definition 2.21. A rewrite system is orthogonal if it is left-linear and does not
give rise to overlaps in the following sense: An overlap of a TRS R is a triple
〈`1 → r1, p, `2 → r2〉 satisfying

(i) `1 → r1 and `2 → r2 are variants of rules from R without common
variables,

(ii) `1|p 6∈ V,

(iii) `1|p and `2 are unifiable, and

(iv) if p = ε then `1 → r1 and `2 → r2 are not variants.

11

2 Preliminaries

It is well-known that each orthogonal system is confluent [10]. In the follow-
ing, let |t|a denote the number of appearances of the symbol a in t.

Definition 2.22. A TRS R is called duplicating if some rule ` −→ r ∈ R is
duplicating, that is there exists a variable x ∈ Var(`) such that |r|x > |`|x

We assume a partitioning of F into two disjoint sets, denoted by D and C.
A function symbol f ∈ D is called a defined symbol, whereas elements from C
are called constructors.

Definition 2.23. Let D] C be a partitioning of F into defined symbols and
constructors. A term t is called constructor-based if t = f(t1, . . . , tn), f ∈ D
and t1, . . . , tn ∈ T (C,V).

We denote the set of all constructor-based terms by Tb(F ,V). For brevity, we
write Tb for Tb(F ,V) when the signature can be inferred from context. Likewise
we abbreviate the set T (C,V) by Val and sometimes call elements from Val
values.

Definition 2.24. The rewrite system (F ,R) induces a partitioning on F into
defined symbols D and constructors C as follows: the set D is obtained by
collecting all root symbols of left-hand sides in R, that is

D = {f | f(`1, . . . , `n) −→ r ∈ R} .

Furthermore, C is given by F \D. The TRS (F ,R) is called a constructor TRS
if every left-hand side in R is constructor-based, i.e. ` ∈ Tb for all ` −→ r ∈ R
with respect to the partitioning D] C.

Definition 2.25. Let R be a TRS. A defined function symbol is completely
defined if it does not occur in any normal form, i.e. f 6∈ Fun(t) for all t ∈ NF(R).
A TRS is completely defined if each defined symbol f ∈ D is completely defined.

Observe that for a completely defined system R, normal forms and construc-
tor terms coincide, i.e. NF(R) = Val.

Definition 2.26. Let −→ be a finitely branching and well-founded binary rela-
tion. The derivation length of a terminating term t with respect to −→ is defined
as

dl(t,−→) = max{n | ∃s. t→n s} .

Let T be a set of terms over a finite signature F , and assume −→ is well-founded
on T . The runtime-complexity function with respect to −→ and T is defined as
follows:

rc(n, T,−→) = max{dl(t,−→) | t ∈ T and |t| 6 n} .

In particular we are interested in the runtime-complexity with respect to i−→R
on the set Tb of all constructor-based terms.

Definition 2.27. The innermost runtime-complexity function of a rewrite sys-
tem R is defined as rci

R(n) = rc(n, Tb, i−→R).

12

2.2 Term Rewriting

We say the runtime-complexity of R is linear, quadratic, or polynomial if
rci
R(n) is bounded linearly, quadratically, or polynomially in n, respectively.

Definition 2.28. An F-algebra A is a non-empty set A—the so called carrier
of A—equipped with operations fA : An → A for every n-ary symbol f ∈ F .
A mapping α from V into A is called an assignment for A. The interpretation
of a term t under an assignment α is inductively defined as follows:

[α]A(t) =

{
α(t) if t ∈ V
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn) .

Definition 2.29. A monotone F-algebra is a pair (A,�) where A is an F-
algebra, � a well-founded proper order on the carrier A of A and all operations
fA are strictly monotone in all arguments, i.e.

f(a1, . . . , ai, . . . , an) � f(a1, . . . , b, . . . , an)

for all a1, . . . , an ∈ A, i ∈ {1, . . . , n} and b with ai � b. We call (A,�) well-
founded if � is well-founded.

F-algebras give rise to reduction orders in a natural way:

Definition 2.30. Let (A,�) be a monotone and well-founded F-algebra. We
write �A for the reduction order defined by s �A t if and only if [α]A(s) �
[α]A(t) for all assignments α.

As a special instance, an F-algebras A is called a polynomial interpretations
if (i) the carrier is N equipped with the usual order > on naturals, and (ii)
all operations fA are monotone polynomials. Clearly, polynomial interpreta-
tions are monotone and well-founded F-algebra. We frequently make use the
following restricted form of polynomial interpretations:

Definition 2.31. We call a polynomial p(x1, . . . , xn) = Σn
i=1xi + c with c ∈ N

a weight functions. A strongly linear interpretation A is a polynomial interpre-
tation where all interpretation functions fA are weight functions.

Other instances of reduction orders are so called recursive path orders. These
are induced by precedences.

Definition 2.32. A strict precedence � is a proper order, a quasi-precedence
% a preorder on a (possible variadic or infinite) signature F . A well-founded
precedence � (quasi-precedence %) induces a rank rank(f) on f ∈ F as follows:

rank(f) = 1 + max{rank(g) | g ∈ F and f � g} .

Here we employ the convention that the maximum of the empty set is 0, and
call a quasi-precedence % well-founded when the induced proper order � is well
founded.

Let % be a quasi-precedence. We lift equivalence ∼ on function symbols as
induced by % to terms as in the following definition.

13

2 Preliminaries

Definition 2.33. Let % be a quasi-precedence. We say that two terms s, t ∈
T (F ,V) are equivalent with respect to %, written by s ∼ t, if either

(i) s = t, or

(ii) s = f(s1, . . . , sn), t = g(t1, . . . , tn), f ∼ g, and there exists a permutation
π such that si ∼ tπ(i) holds for all i ∈ {1, . . . , n}.

An instance of a recursive path order is the multiset path order (MPO for
short). We render the definition of a multiset path order >mpo as follows.

Definition 2.34. The multiset path order >mpo induced by the precedence %
is inductively defined by s >mpo t for s = f(s1, . . . , sn) if one of the following
alternatives hold:

(i) there exists i ∈ {1, . . . , n} such that si >mpo t or si ∼ t,

(ii) t = g(t1, . . . , tm), f � g and s >mpo tj for all j ∈ {1, . . . ,m}, or

(iii) t = g(t1, . . . , tm), f ∼ g and {s1, . . . , sn} >mul
mpo {t1, . . . , tm}.

Here >mul
mpo denotes the strict multiset extension of >mpo ∪ ∼.

It is a well known fact that for well-founded precedences %, the order >mpo

is a reduction order. Thus compatibility of R with an instance >mpo certifies
termination of R.

Definition 2.35. A TRS R is called precedence terminating if there exists a
well-founded precedence % such that root(`) � f for every rewrite rule `→ r ∈
R and every function symbol f ∈ Fun(r).

Observe that every precedence terminating system can be shown terminating
with multiset path orders.

Finally, we sometimes refer to many-sorted rewrite systems. For that, let
S be a finite set representing the set of types or sorts. An S-sorted set A is
a family of sets {As | s ∈ S} such that all sets As are pairwise disjoint. We
write VS for a S-sorted set of variables with V =

⋃
s∈S Vs. A S-sorted signature

FS is like a (non-variadic) signature, but the arity of f ∈ FS is defined by
arity(f) = (s1, . . . , sn) for s1, . . . , sn ∈ S. Additionally, each symbol f ∈ FS is
associated with a sort s ∈ S, called the type of f and denoted by type(f).

Definition 2.36. The S-sorted set of terms T (F ,V)S consists of the sets
T (F ,V)s for s ∈ S, where T (F ,V)s is inductively defined by

(i) Vs ⊆ T (F ,V)s, and

(ii) f(t1, . . . , tn) ∈ T (F ,V)s for all function symbols f ∈ FS with arity(f) =
(s1, . . . , sn), type(f) = s and terms ti ∈ T (F ,V)si for i ∈ {1, . . . , n}.

Definition 2.37. A S-sorted term rewrite system R is a TRS such that for
` −→ r ∈ R, it holds that `, r ∈ T (F ,V)s for some sort s ∈ S.

14

3 The Polynomial Path Order on
Sequences

Arai and Moser proposed in [4] the path order for the polytime computable
functions (path order for FP for short). The order is carefully crafted to induce
polynomial bounds on the runtime-complexity. More precise, let I denote an
instance of the path order for FP, and assume the inclusion R ⊆ I holds. Then
for a defined symbol f there exists a polynomial p such that for every sequence

f(v1, . . . , vn) = t0 −→R t1 −→R . . . −→R t` = r

and values v1, . . . , vn it follows that ` 6 p(|f(v1, . . . , vn)|). Moreover, the def-
inition of the path order for FP gives rise to a new characterization of the
polynomial time computable functions FP. In [4] it has been shown that every
function from FP is computable by a syntactically restricted form of TRSs that
is compatible with an instance of the path order for FP, and vice versa every
such TRS computes a function from FP.

The order is centered around the idea of predicative recursion. As already
observed by Cobham in 1964, unrestricted recursion is in general to strong for
FP. In his characterization of the polytime-computable functions [18], Cobham
circumvents the problem by weakening the recursion scheme suitably. This
is done by demanding a polynomial size-bound on recursively computed re-
sults. Almost thirty years later, Bellantoni and Cook provided a new recursion-
characterization of the polytime computable functions [12]. In particular, their
definition does not rely on any externally imposed resource bounds. In order
to break the strength of the recursion on notation scheme, they differentiate
between safe and normal argument positions. To highlight this separation, we
write f(~x; ~y) instead of f(~x, ~y) where ~x appear at normal and ~y at safe argu-
ment positions of f . A new function f is defined by predicative recursion on
notation via the equations

f(0, ~x; ~y) = g(~x; ~y)
f(zi, ~x; ~y) = hi(z, ~x; ~y, f(z, ~x; ~y))

for i ∈ {0, 1} and previously defined functions g, h0 and h1. Observe that
recursion is performed on a normal argument position, whereas the recursively
computed result is substituted into a safe argument position. In particular
this implies that the stepping functions hi cannot perform recursion on the
recursively computed f(z, ~x; ~y). The separation of safe and normal argument
positions is enforced by the predicative composition scheme, where a function f
is defined by composition via the equation

f(~x; ~y) = h(~r(~x;);~s(~x; ~y)) .

15

3 The Polynomial Path Order on Sequences

As shown in [12], starting from a suitable set of initial functions, predicative
recursion and composition generate exactly those functions computable in poly-
nomial time.

The separation of safe and normal arguments is implicitly employed in the
definition of the path orders for FP. Roughly, a call f(x1, . . . , xn; y1, . . . , ym) is
represented by a sequence of the form (f(x1, . . . , xn) y1 · · · ym) where the safe
arguments yi are singled out. Naturally, if one wants to show compatibility of
a TRS R with path orders for FP, then the rewrite system R either needs to
follow this representation or be appropriately transformed. Unfortunately, such
(automatic) transformations are difficult to find. This led to the definition of
the polynomial path order >pop∗.

Compatibility of >pop∗ with a TRSR gives vital information that can be used
for an embedding of i−→R into the path order for FP. The results established in
[4] can then be employed for estimating the derivation length of a term t with
respect to i−→R. Below, we present a slight generalization of the path order for
FP suitable for our concerns, duped polynomial path order I on sequences. We
show that the crucial main theorem from [4] carries over to this generalization.
This was already observed in [7, 8] for I as induced by strict precedences.
Although the extension to quasi-precedences is indeed not difficult, for the sake
of completeness we reformulate an adaption to quasi-precedences below.

Let F be a signature and ◦ 6∈ F be a variadic function symbol. We extend the
signature F by ◦ and write Seq(F ,V) = T (F ∪{◦},V). We refer to elements of
Seq(F ,V) as sequences. For brevity, we may write Seq for Seq(F ,V). Instead
of ◦(s1, . . . , sn) we write (s1 · · · sn) and we write ∅ for the empty sequence ().
We define concatenation of sequences a, b ∈ Seq by ∅ @ b = b, a @ ∅ = a
and (a1 · · · an) @ (b1 · · · bm) = (a1 · · · an b1 · · · bm) otherwise. In the following
we write % for a quasi-precedence on F .

The polynomial path order I on sequences is a miniaturization of the mul-
tiset path order. The definition of I is based on an auxiliary order m. This
separation is necessary to break the strength of MPO. We render the orders
I and m in the following two definitions. Recall that we use � and ∼ for the
proper and equivalence relation as induced by the quasi-precedence %.

Definition 3.1. We define m induced by the precedence % inductively by s m t
for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following alternatives holds:

(1) si ·& t for some i ∈ {1, . . . , n}, or

(2) s = f(s1, . . . , sn), t = (t1 · · · tm) or t = g(t1, . . . , tm) with f � g and s m tj
for all j ∈ {1, . . . ,m}, or

(3) s = (s1 · · · sn), t = (t1 · · · tm), and [s1, . . . , sn] mmul [t1, . . . , tm].

Here ·& refers to m ∪ ∼ and mmul denotes the strict multiset extension of ·&.

Definition 3.2. We define the polynomial path order I on sequences induced
by the precedence % inductively by s I t for s = f(s1, . . . , sn) or s = (s1 · · · sn)
if one of the following alternatives holds:

(1) s m t,

16

(2) si I& t for some i ∈ {1, . . . , n},

(3) s = f(s1, . . . , sn), t = (t1 · · · tm), and the following two properties hold:

– s I tj0 for some j0 ∈ {1, . . . ,m}, and
– s m tj for all j 6= j0, or

(4) s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼ g and (s1 · · · sn) I (t1 · · · tm),

(5) s = (s1 · · · sn), t = (t1 · · · tm), and [s1, . . . , sn] Imul [t1, . . . , tm].

Again we write I& for I ∪ ∼. Furthermore, Imul denotes the strict multiset
extension of I&.

Buchholz was the first to observe that finite term rewrite systems compatible
with recursive path orders � are even compatible to finite approximations of
� [15]. This observation carries over to polynomial path orders over sequences.
We introduce those approximations ml

k and Ilk for m and I respectively be-
low. These are just suitable restrictions of m and I, where the parameters k
and l control the growth of width and height in descents with respect to the
corresponding order.

Definition 3.3. For k, l > 1, we define ml
k induced by the precedence % induc-

tively by s ml
k t for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following

alternatives holds:

(1) si ·&lk t for some i ∈ {1, . . . , n},

(2) s = f(s1, . . . , sn) if t = g(t1, . . . , tm) with f � g or t = (t1 · · · tm),

– s ml−1
k tj for all j ∈ {1, . . . ,m},

– and m < k + width(s), or

(3) s = (s1 · · · sn), t = (t1 · · · tm) and the following properties hold:

– [t1, . . . , tm] = N1] · · ·]Nn, and
– there exists i ∈ {1, . . . , n} such that [si] 6∼mul Ni, and
– for all i ∈ {1, . . . , n} such that [si] 6∼mul Ni we have si ml

k r for all
r ∈ Ni, and

– m < k + width(s).

Definition 3.4. For k, l > 1, we define the approximation of the polynomial
path order Ilk on sequences induced by the precedence % inductively as follows:
s Ilk t for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following alternatives
holds:

(1) s ml
k t,

(2) si I&
l
k t for some i ∈ {1, . . . , n},

(3) s = f(s1, . . . , sn), t = (t1 · · · tm), and the following properties hold:

– s Il−1
k tj0 for some j0 ∈ {1, . . . ,m},

17

3 The Polynomial Path Order on Sequences

– s ml−1
k tj for all j 6= j0, and

– m < k + width(s), or

(4) s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼ g and (s1 · · · sn) Ilk (t1 · · · tm), or

(5) s = (s1 · · · sn), t = (t1 · · · tm) and the following properties hold:

– [t1, . . . , tm] = N1] · · ·]Nn, and
– there exists i ∈ {1, . . . , n} such that [si] 6∼mul Ni, and
– for all i ∈ {1, . . . , n} such that [si] 6∼mul Ni we have si Ilk r for all
r ∈ Ni, and

– m < k + width(s).

In the following we write Ik to abbreviate Ikk and likewise mk for mk
k. As

a direct consequence of the definition, it follows that I =
⋃
k∈N Ik. We start

with some simple observations.

Lemma 3.5.

(i) Ik is closed under context, that is if s Ik t then C[s] Ik C[t] with one-
hole context C over the signature F ∪ {◦}.

(ii) Ik ⊆ Il for k 6 l.

(iii) The orders ∼ and Ik are compatible, that is the inclusions ∼ · Ik ⊆ Ik
and Ik · ∼ ⊆ Ik hold.

Proof. The first observations follows by a standard inductive argument, and
is essentially due to the clauses (4) and (5) from the definition of Ik. The
inclusion Ik ⊆ Il for k 6 l follows directly from the definition. Finally, it
is not difficult to see that an instance Ik can neither detect permutation of
arguments nor can distinguish equally ranked function symbols f ∼ g. Thus
the last observation is immediate.

Observe that an approximation Ik is not transitive due to the restrictions
imposed on depth and width of terms. This is essential, as it controls the
growth of sizes in Ik-descending sequences: Whenever s Ik t, then there exists
a (uniform) constant c such that ‖t‖ 6 ‖s‖ + c and thus, if we have a Ik-
descending sequence s = t0 Ik t1 Ik · · · Ik t` we conclude that ‖tn‖ 6 cn+‖s‖
for 0 6 n 6 `. More precise, the following Lemma holds:

Lemma 3.6. If s Ilk t, then depth(t) 6 depth(s) + l, width(t) < k + width(s)
and ‖t‖ 6 ‖s‖+ k + l.

Proof. Observe that depth(t) > depth(s) is only possible via the application
of clause (3) from Definition 3.4 or clause (2) from Definition 3.3 respectively.
It is easy to see that the number of applications of these clauses is controlled
by l, yielding the desired result. By similar reasoning, we derive width(t) <
k + width(s), which follows due to the restrictions on clauses (3) and (5) from
Definition 3.4 and clauses (2) and (3) from Definition 3.3 respectively. Finally,
as ‖t‖ 6 depth(t) + width(t) we conclude the last claim.

18

Definition 3.7. We define

Gk(t) = max{` ∈ N | t = t0 Ik t1 Ik · · · Ik t`} .

Moreover, for f ∈ F we define

Fk,p(m) = max{Gk(f(t1, . . . , tn)) | rank(f) = p ∧
∑
i

Gk(ti) + n 6 m} .

Lemma 3.8. Gk((s1 · · · sn)) = n+
∑n

i=1 Gk(si).

Proof. The assertion follows by course of value induction on the length of the
sequence (s1 · · · sn). The base case s = ∅ follows trivially from minimality of ∅.
For the inductive step, suppose s = (s1 · · · sn) @ (sn+1) and assume a maximal
descent

s = u0 Ik u1 Ik · · · Ik u` ,

i.e. Gk(s) = `. The only non-pathological case is when u0 Ik u1 follows due
to clause (5) from Definition 3.4 (or clause (3) from Definition 3.3). In this
case it suffices to realize that Gk(s) = Gk((s1 · · · sn))+Gk((sn+1)) and the claim
follows directly from the induction hypothesis on (s1 · · · sn) and (sn+1).

Lemma 3.9. Gk((c1 · · · cn)) =
∑n

i=1 rank(ci) for constants ci, i ∈ {1, . . . , n}.

Proof. From Lemma 3.8 we infer Gk(s) = n +
∑n

i=1 Gk(ci). Thus the Lemma
follows with a proof of Gk(c) = rank(c) − 1 for an arbitrary constant c, which
we show by induction on rank(c): First, assume rank(c) = 1. Thus c = ∅ and
by minimality of ∅ it follows that Gk(∅) = 0. For the inductive step, suppose
by induction hypothesis Gk(cj) = rank(cj) − 1 for all cj with c � cj in the
precedence. It is easy to see that

{t | c Ik t} = {cj | c � cj} ,

and so Gk(c) = max{1 + Gk(cj) | c � cj}. By applying the induction hypothesis
on the right-hand side, we see that

Gk(c) = max{rank(cj) | c � cj} = rank(c)− 1 .

The next theorem constitutes the main result of this chapter. In particular,
it states that under the assumption that Gk(ti) is polynomially bounded for
i ∈ {1, . . . , n}, then Gk(f(t1, . . . , tn)) is polynomially bounded.

Theorem 3.10. For all k, p ∈ N, let dk,p be recursively given by dk,0 = k + 1
and dk,p+1 = (dk,p)k + 1. Then for all k, p ∈ N there exists a constant c such
that

Fk,p(m) 6 c(m+ 2)dk,p

for all m ∈ N. The constant c depends only on k and p.

19

3 The Polynomial Path Order on Sequences

Proof. Let s = f(s1, . . . , sn) and assume rank(f) = p and
∑

i Gk(si) + n 6 m.
We proceed by main induction on p and side-induction on m. To show the
theorem, we show that for all t with s Ik t there exists a constant c (depending
only on k and p) such that Gk(t) < c(m+ 2)dk,p holds. From the assertion, the
theorem follows easily by definition of Fk,p:

Fk,p(m) = max{Gk(f(s1, . . . , sn)) | rank(f) = p ∧
∑
i

Gk(si) + n 6 m}

= 1 + max{Gk(t) | f(s1, . . . , sn) Ik t

∧ rank(f) = p ∧
∑
i

Gk(si) + n 6 m}

6 c(m+ 2)dk,p .

Now we show Gk(t) < c(m+ 2)dk,p holds for all m > 0.

Base Case. First we show that s ml
k r implies that Gk(r) 6 kl(m + 2)l by

induction on l. If l = 1, then s ml
k r implies that r is a subterm of s, i.e., there

exists i ∈ {1, . . . , n} such that si ·&k r. It follows that Gk(r) 6 m 6 k(m+ 2).
For the above, observe Gk(r) = Gk(si) for si ∼ r is an easy consequence of
∼ ·Ik ⊆ Ik (cf. Lemma 3.5). Next, suppose l > 1 and s ml

k r = (r1 · · · r`). By
induction hypothesis on l, we have Gk(ri) 6 kl−1(m+2)l−1 for all i ∈ {1, . . . , `}.
Observe that ` < k + width(s) 6 k(m+ 2) hold by definition and the fact that
width(s) 6 m. Using Lemma 3.8 we conclude

Gk(r) 6 `+ `kl−1(m+ 2)l−1

= `(kl−1(m+ 2)l−1 + 1)

< (k(m+ 2)− 1)(kl−1(m+ 2)l−1 + 1)

6 kl(m+ 2)l .

We continue the proof of the base case and set c = kk. By side-induction
hypothesis on m we conclude that Fk,p(m1) 6 c(m1+2)dk,p holds for all m1 < m.
Let l 6 k and let s Ilk r. We show Gk(r) 6 c(m + 1)k+1 + kl(m + 2)l with
induction on s Ilk r.

1. Suppose s ml
k r holds. From the preparatory observations, we conclude

Gk(r) 6 kl(m+ 2)l 6 c(m+ 1)k+1 + kl(m+ 2)l.

2. Suppose there exists i ∈ {1, . . . , n}, such that si I&k r. Then Gk(r) 6
Gk(si) 6 m 6 c(m + 1)k+1 + kl(m + 2)l, where we additionally employ
∼ ·Ik ⊆ Ik.

3. Suppose r = (r1 · · · r`) and there exists i0 such that s Il−1
k ri0 and s ml−1

k

ti for all i 6= i0. Observe that l−1 > 1 by definition. From the preparatory
step we see ∑

i 6=i0

Gk(ri) 6 (`− 1)kl−1(m+ 2)l−1 .

By induction hypothesis we have

Gk(ri0) < c(m+ 1)k+1 + kl−1(m+ 2)l−1 .

20

In total, using again ` < k(m+ 2), we obtain with the help of Lemma 3.8

Gk(r) 6 `+ (`− 1)kl−1(m+ 2)l−1 + c(m+ 1)k+1 + kl−1(m+ 2)l−1

6 (k(m+ 2)− 1) + (k(m+ 2)− 2)kl−1(m+ 2)l−1

+ c(m+ 1)k+1 + kl−1(m+ 2)l−1

= (k(m+ 2)− 1) + kl(m+ 2)l − kl−1(m+ 2)l−1 + c(m+ 1)k+1

6 c(m+ 1)k+1 + kl(m+ 2)l ,

where the last inequality follows from l − 1 > 1.

4. Suppose r = f(r1, . . . , r`) and (s1 · · · sn) Ilk (r1 · · · r`). Hence it follows
that

∑
j Gk(rj) <

∑
i Gk(si) 6 m. By assumption, we conclude

Gk(f(r1, . . . , r`)) < c(m+ 1)k+1 6 c(m+ 1)k+1 + kl(m+ 2)l .

Finally, we obtain Gk(t) 6 c(m+ 1)k+1 + c(m+ 2)k < c(m+ 2)k+1.

Step Case. Let rank(f) = p+ 1. By induction hypothesis on p we can assume
Fk,p(m) 6 c(m + 2)dk,p . By side-induction hypothesis on m we conclude that
Fk,p+1(m1) 6 c(m1 + 2)dk,p holds for all m1 < m.

We set d = dk,p, d′ = dk,p+1 = dk + 1 and furthermore c′ = c
Pk−2
i=0 d

i
k

Pk−1
i=0 d

i
.

Let g(1)(n) = n, g(l+1)(n) = c[k(n+2)g(l)(n)]d. We consider the following claim.

Claim. If s = f(s1, . . . , sn),
∑

i Gk(si) + n 6 m and s ml
k r then

Gk(r) 6 g(l)(m+ 2) .

Proof of Claim. By induction on l. Suppose l = 1, then s m1
k r implies the

existence of i ∈ {1, . . . , n} such that si ·&k r. Hence Gk(r) 6 Gk(si) 6 m 6
g(1)(m + 2). Suppose l > 1, hence s ml

k r either implies that si ·&lk r for
some i ∈ {1, . . . , n} or r = g(r1, . . . , r`) and s ml−1

k rj for all 1 6 j 6 `. In the
first case, the assertion follows as above. For the second case, we obtain from
Fk,p(m) 6 c(m+ 2)d and induction hypothesis on l

Gk(t) 6 c[
∑
i

Gk(ri) + 2]d 6 c[k(m+ 2)g(l−1)(m+ 2)]d = g(l)(m+ 2) ,

where again we employ ` < k(m+ 2). A standard induction yields

g(l)(m+ 2) 6 c
Pl−2
i=0 d

i
k

Pl−1
i=1 d

i
(m+ 2)

Pl
i=1 d

i

as desired.

We show that s Ilk r implies Gk(r) 6 c′(m+ 1)d
′
+ c′(m+ 2)d

l
by induction

on s Ilk r. We restrict our attention to the following two sub-cases.

21

3 The Polynomial Path Order on Sequences

1. Suppose r = (r1 · · · r`) and there exists j0 such that s Il−1
k rj0 and s ml−1

k

ri for all i ∈ {1, . . . , `}. By the claim and Lemma 3.8, we have∑
i 6=j0

Gk(ri) 6 (`− 1)g(l−1)(m+ 2)

6 k(m+ 2)c
Pl−3
i=0 d

i
k

Pl−2
i=1 d

i
m

Pl−1
i=1 d

i

6 c′(m+ 2)
Pl−1
i=1 d

i

6 c′(m+ 2)d
l−1 .

By induction hypothesis, we see Gk(rj0) 6 c′(m + 1)d
′

+ c′(m + 2)d
l−1

.
Hence

Gk(r) 6 c′(m+ 1)d
′
+ c′(m+ 2)d

l−1
+ c′(m+ 2)d

l−1

6 c′(m+ 1)d
′
+ c′(m+ 2)d

l

2. Suppose r = f(r1, . . . , r`) and furthermore (s1 · · · sn) Ilk (r1 · · · r`). Hence∑
j Gk(rj)+` <

∑
i Gk(si)+n 6 m. By this assumption, we conclude that

Gk(f(r1, . . . , r`)) 6 c′(m+ 1)d
′

and thus Gk(r) 6 c′(m+ 1)d
′
+ c′(m+ 2)d

l
.

Finally, we obtain Gk(t) 6 c′(m+ 1)d
′
+ c′(m+ 2)d

k
< c′(m+ 2)d

′
.

22

4 The Polynomial Path Order POP∗

In this chapter we present the polynomial path order >pop∗. Similar to the
polynomial path order I on sequences, the idea of predicative recursion is
employed to break the strength of MPO. Unlike I, the schemes of predicative
recursion are enforced explicitly. For this, we reflect the separation of safe and
normal argument positions in the definition of safe mappings defined below.
In the sequel we fix a finite and non-variadic signature F , and denote by R a
constructor TRS over the signature F . Furthermore, we write D for the defined
symbols, and C for the constructors of R respectively.

Definition 4.1. A safe mapping safe is a function safe : F → 2N that associates
with every n-ary function symbol f the set of safe argument positions. If f ∈ D
then safe(f) ⊆ {1, . . . , n}, for f ∈ C we fix that all argument positions of f
are safe, that is safe(f) = {1, . . . , n}. The argument positions not included
in safe(f) are called normal and denoted by nrm(f), i.e. safe(f)] nrm(f) =
{1, . . . , n}.

We always denote by safe a safe-mapping, and by nrm the normal part of
safe. We extend the mapping safe to terms by safe(f(t1, . . . , tn)) = {ti1 , . . . , tip}
where safe(f) = {i1, . . . , ip}, and safe(t) = ∅ if t ∈ V. In a similar spirit,
we define nrm(f(t1, . . . , tn)) = {tj1 , . . . , tjq} with nrm(f) = {j1, . . . , jq} and
nrm(t) = ∅ otherwise. Furthermore, the polynomial path order relies on the
distinction between function symbols that give rise to reductions and symbols
that encode values. We need to be careful not to break those separations in the
definition of equivalence. This is made precise in the following two definitions.

Definition 4.2. We say that a quasi precedence % is admissible for the poly-
nomial path order if the following conditions are satisfied:

(i) all constructors are minimal in the precedence, that is if f � g with g ∈ D
then f ∈ D, and

(ii) the equivalence part ∼ of % respects the separation of F into defined and
constructor symbols, that is if f ∼ g then f ∈ D if and only if g ∈ D.

In the remaining, we denote by % a quasi-precedence that satisfies conditions
(i) and (ii) of Definition 4.2. We simply call % a precedence. Based on %, we
define equivalence on terms under a safe mapping safe.

Definition 4.3. We say that two terms s, t ∈ T (F ,V) are equivalent with
respect to % and safe, written as s s∼ t, if either

(i) s = t, or

23

4 The Polynomial Path Order POP∗

(ii) s = f(s1, . . . , sn), t = g(t1, . . . , tn), f ∼ g, and there exists a permutation
π such that si

s∼ tπ(i) and i ∈ safe(f) if and only if π(i) ∈ safe(g) holds
for i ∈ {1, . . . , n}.

Observe that s∼ ⊆ ∼ for the standard definition of equivalence ∼ on terms
(cf. Definition 2.33). Similar to the polynomial path order I on sequences,
the polynomial path order >pop∗ is an extension of an auxiliary order, below
denoted by >pop. We render both orders in the next two definitions.

Definition 4.4. We define the auxiliary order >pop induced by the precedence
% and safe mapping safe inductively by s >πpop t for s = f(s1, . . . , sn) if one of
the following alternatives hold:

(1) si ∼>pop t for some i ∈ {1, . . . , n}, and if f ∈ D then i ∈ nrm(f), or

(2) t = g(t1, . . . , tm), f ∈ D, f � g and for all j ∈ {1, . . . ,m}, s >πpop tj .

Here ∼>pop denotes >pop ∪
s∼.

Definition 4.5. We define the polynomial path order >pop∗ induced by the
precedence% and safe mapping safe inductively by s >pop∗ t for s = f(s1, . . . , sn)
if either s >pop t or one of the following alternatives hold:

(1) si ∼>pop∗ t for some i ∈ {1, . . . , n}, or

(2) t = g(t1, . . . , tm), f ∈ D, f � g and

– s >pop∗ tj0 for some j0 ∈ safe(g), and
– for all j 6= j0 either s >pop tj , or sB tj and j ∈ safe(g), or

(3) t = g(t1, . . . , tm), f ∈ D, f ∼ g and both nrm(s) >mul
pop∗ nrm(t) as well as

safe(s) ∼>
mul
pop∗ safe(t) holds.

Here ∼>pop∗ refers to >pop∗ ∪
s∼. Observe that s∼ · >pop∗ ·

s∼ ⊆ >pop∗ and hence
>mul

pop∗ and ∼>
mul
pop∗ denoting the strict and weak multiset extension of ∼>pop∗ re-

spectively are well-defined.

In clause (2) above, we allow s B tj for some safe argument position j ∈
safe(g). This is a mainly technical point that strengthens the polynomial path
order suitably for the completeness property shown below (notice that B ⊆
>pop does not hold in general). Furthermore, notice that due to the restricted
definition of clause (3), >pop∗ is not a reduction order. Although it is closed
under substitutions, it lacks closure under contexts. Still, compatibility of R
with >pop∗ asserts termination of R, as the polynomially path order is just a
tamed version of MPO. Hence the following theorem is immediate.

Theorem 4.6. Let R be a TRS compatibly with >pop∗, i.e. R ⊆ >pop∗ holds.
Then R is terminating.

We demonstrate the application of the polynomial path order on three small
examples below.

24

Example 4.7. Consider the well-known constructor TRS Rmult defined by the
following rewrite rules:

add(0, y) −→ y mult(0, y) −→ 0
add(s(x), y) −→ s(add(x, y)) mult(s(x), y) −→ add(y,mult(x, y)) .

The above rewrite system encodes addition (add) and multiplication (mult) over
tally numbers. It is easy to see that Rmult is compatible with >mpo as induced
by the strict precedence mult � add � s � 0. Furthermore, the recursive defi-
nitions of addition and multiplication as encoded in Rmult obey the predicative
recursion and composition schemes: declare the first argument of addition and
both arguments of multiplication as normal, and declare the second argument
position of addition as safe. Both functions perform recursion on a normal
argument, and furthermore the recursively computed results add(x, y) and re-
spectively mult(x, y) are substituted into safe argument positions. Based on
this observation, we define safe(add) = {2}, safe(mult) = ∅ and safe(s) = {1}.
Then it can be verified that Rmult is compatible with >pop∗ as induced by �
and safe. We demonstrate this on the last rule and show

mult(s(;x), y;) >pop∗ add(y; mult(x, y;)) . (i)

Above we employ the usual notation for the separation of normal (to the left)
and safe arguments (to the right). As mult � add in the precedence it suffices to
verify mult(s(;x), y;) >pop y and mult(s(;x), y;) >pop∗ mult(x, y;). The former
follows directly by one application of clause (1) from >pop, and the latter follows
from [s(;x), y] >mul

pop∗ [x, y] and [] ∼>
mul
pop∗ [] where we employ clause (3) from the

definition of >pop∗. We conclude (i).
Notice how >pop∗ naturally enforces the predicative recursion scheme: re-

member that the recursively computed result needs to be substituted into a
safe argument position of the stepping function. To the contrary, in the exam-
ple above assume that the recursively computed result mult(x, y;) is substituted
into a normal argument position of add. As >pop∗ can only be applied on a safe
argument position, we need to certify mult(s(;x), y;) >pop mult(x, y;) for that
case. Clearly this is prohibited by definition of >pop. On the other hand,
predicative recursion dictates that each recursively defined function performs
recursion on a normal argument position. Again, this is asserted by the ori-
entation with >pop∗. To the contrary, suppose mult performs recursion on a
safe argument y. Then the orientation of mult(x; s(; y)) >pop∗ mult(x; y) fails
as [x] >mul

pop∗ [x] cannot be shown.

Example 4.8. Consider the constructor TRS Rexp defined as

double(0) −→ 0 exp(0) −→ s(0)
double(s(x)) −→ s(s(double(x))) exp(s(x)) −→ double(exp(x)) .

This system is compatible with >mpo induced by the precedence exp � double �
s � 0. It is not difficult to see that the runtime-complexity of Rexp is exponen-
tial. Compatibility with a polynomial path order cannot be shown, due to the
restrictions imposed by the safe mapping.

25

4 The Polynomial Path Order POP∗

Notice that the encoded exponentiation function cannot be defined under the
regime of predicative recursion. To see why the orientation fails, consider the
last rewrite rule of Rexp, that is the rewrite rule defining the recursion step
of exp. According to clause (2) from the definition of >pop∗, the recursively
computed result exp(x) needs to be put into a safe argument position of the
stepping function double, i.e. safe(double) = {1}. However, in order to orient
the rewrite rules defining double one needs to mark the argument position of
the recursion argument as normal, that is safe(double) = ∅. A uniform safe
mapping safe cannot be found.

Example 4.9. Consider the constructor TRS Rbits taken from [24] and defined
through the following six rewrite rules:

half(0) −→ 0 bits(0) −→ 0
half(s(0)) −→ 0 bits(s(0)) −→ s(0)

half(s(s(x))) −→ s(half(x)) bits(s(s(x))) −→ s(bits(s(half(x)))) .

Here half(x) computes bx2 c and bits(x) computes dlog(x)e where x is a natural
number given in successor representation. Again, this system does not follow the
predicative recursion schema, even thought the encoded functions are polytime
computable (and the above rewrite system defines an algorithm with at most
quadratic many evaluation steps).

Although the system is compatible with >mpo, again the inclusion Rbits ⊆
>pop∗ does not hold for any order >pop∗. By solely relying on the concept
of predicative recursion, the polynomial path order cannot detect that the ar-
gument to bits in the critical rule bits(s(s(x))) −→ s(bits(s(half(x)))) does not
increase the recursive argument, and thus does not give rise to an exponential
blowup.

The above observed restriction of predicative recursion is a well known prob-
lem, and treated extensively in Caseiro’s PhD thesis [16]. Caseiro introduces
various more general schemata that certifying polytime computability. Unfor-
tunately, these are mostly of semantical nature and hard to automate. The
above highlighted problem is also addressed by Hofmann in [33]. In the system
proposed, recursion on recursively computed result is allowed, at the expense
that all involved functions are non-size increasing and moreover, all expres-
sions are typable under a linear type system. Both conditions present severe
restrictions, for instance they prohibit the natural definition of multiplication.
Even though the polynomial path order is not applicable to the system Rbits

directly, in Chapter 6 we demonstrate that by simple mechanic transformations
the polynomial path order is indeed capable of handling Rbits. Transformations
allow us to at least partially break the limitations of predicative recursion.

Below we present the Main Theorem from this chapter. It states that the
polynomial path order induces polynomial bounds on the runtime-complexity.

Theorem 4.10. Let R be a constructor TRS compatible with >pop∗, i.e R ⊆
>pop∗ holds. There exists a polynomial p : N→ N such that

rci
R(n) 6 p(n)

26

for all n ∈ N. The polynomial p depends only on the cardinality of F and the
sizes of the right-hand sides in R.

We highlight that the above theorem is restricted to constructor TRSs. Al-
though this is essential, it seems possible to slightly adapt the definition of
POP∗ such that Theorem 4.10 can be reformulated for arbitrary TRSs. This
is subject to future research. A proof of the theorem is delayed until the next
chapter, where we show a more general result (cf. Theorem 5.34). Instead,
we relate the polynomial path order to classical complexity analysis and es-
tablish an important completeness property (cf. also the technical report [8]).
In particular, we give yet another characterization of the polytime computable
functions. Following [13], we provide a semantics for completely defined orthog-
onal TRSs. For Σ an alphabet, let Σ∗ denotes the set of words over Σ. Let
p·q : Σ∗ → Val denote an encoding function that represents words over Σ as
ground values. We call an encoding p·q reasonable if it is bijective and there
exists a constant c such that |u| 6 |puq| 6 c · |u| for every u ∈ Σ∗.

Definition 4.11. Let p·q be an encoding function and let R denote a com-
pletely defined, orthogonal TRS. An n-ary function f : (Σ∗)n → Σ∗ is com-
putable by R if there exists a defined function symbol f such that for all
w1, . . . , wn, v ∈ Σ∗

f(pw1q, . . . , pwnq)→! pvq ⇐⇒ f(w1, . . . , wn) = v .

On the other hand we say that R computes f , if the function f : (Σ∗)n → Σ∗

is defined by the above equation.

In [11] Beckmann and Weiermann provide a term rewriting characterization
RB of Bellantoni and Cook’s class of predicative recursive functions. A term
rewriting characterization is a very powerful but quite simple concept: assume
a recursion-theoretic characterization of a class of functions C. From this it is
often straight forward to define a schema of rewrite rules RC such that every
function f ∈ C is computed by some restriction Rf ⊆ RC and vice versa. In all
non-pathological cases the TRS Rf is a terminating and confluent constructor
TRS, and may be conceived as an algorithm computing the function f under
the resource bounds admitted by C. This way, theory developed in the context
of rewriting is applicable for the analysis of the class C (cf. for instance [17],
where elegant proofs of non-trivial closure properties of the primitive recursive
functions are given, but cf. also [11]). We render the schema RB for the
predicative recursive functions in the upcoming definition.

Definition 4.12. For k, l ∈ N we define Bk,l as the least set of function symbols
with k normal and l safe argument positions such that:

(i) 0 ∈ B0,0, S0,S1,P ∈ B0,1 and C ∈ B0,3, and

(ii) Uk,l
r ,O

k,l ∈ Bk,l if k + l > 0 and r ∈ {1, . . . , k + l}, and

(iii) SUBk,l
m,n[f,~g,~h] ∈ Bk,l for f ∈ Bm,n, ~g ∈ Bk,0 and ~h ∈ Bk,l, and

(iv) PRECk,l[g, h0, h1] ∈ Bk+1,l for g ∈ Bk,l and h0, h1 ∈ Bk+1,l+1.

27

4 The Polynomial Path Order POP∗

The predicative signature B is given by
⋃
k,l∈N Bk,l. Below, for brevity we abbre-

viate x1, . . . , xk by ~x and y1, . . . , yl by ~y. Furthermore, we write the sequences
g1(~x;), . . . , gm(~x;) as ~g(~x;) and h1(~x; ~y), . . . , hn(~x; ~y) as ~h(~x; ~y). The schema
of TRSs RB over the signature B is given below, where indices k, l,m, n range
over naturals numbers and i ∈ {0, 1}.

Ok,l(~x; ~y) −→ 0

Uk,l
r (~x; ~y) −→ xr for 1 6 r 6 k

Uk,l
r (~x; ~y) −→ yr−k for k < r 6 l + k

P(; 0) −→ 0
P(; Si(;x)) −→ x

C(; 0, y1, y2) −→ y1

C(; Si(;x), y1, y2) −→ y2

SUBk,l
m,n[f,~g,~h](~x; ~y) −→ f(~g(~x;);~h(~x; ~y))

PRECk+1,l[g, h0, h1](0, ~x; ~y) −→ g(~x; ~y)

PRECk+1,l[g, h0, h1](Si(; z), ~x; ~y) −→ hi(z, ~x; ~y,PRECk+1,l[g, h0, h1](z, ~x; ~y)) .

The following proposition follows directly from the definition of RB.

Proposition 4.13 ([11]). Let f ∈ FP. There exists a finite restriction Rf ⊆
RB such that Rf computes f .

Clearly Rf is in any case a terminating and confluent constructor TRS. Ter-
mination can be verified by recursive path orders, and from orthogonality, con-
fluence is asserted. In particular, this implies that the computation of f through
the rewrite system Rf is independent on the employed strategy, a fact we use
in a moment.

Remark. It is important to remark that the schema of TRSs RB rendered
above is dubbed unfeasible in [11]. This is due to the case that this schema
admits an exponential lower bound on the derivation length and therefore is
not (directly) suitable as a term-rewriting characterization of the predicative
recursive functions. This exponential lower-bound is only correct if we consider
full rewriting. Together with an innermost strategy, or more generally the
assertions that safe arguments are evaluated in a call by value fashion, the
system becomes feasible, cf. [11].

Definition 4.14 ([40]). A simple signature F is a sorted signature such that
each sort has a finite rank r in the following sense: the sort s has rank r if for
every constructor c with arity(c) = (s1, . . . , sn) and type(c) = s, the rank of
each sort si is less than the rank of s, except for at most one sort which can be
of rank r.

Simple signatures allow the definition of enumerated datatypes and inductive
datatypes like words and lists but prohibit for instance the definition of tree
structures. In particular the scheme RB from Definition 4.12 is based on a
simple signature.

28

We conclude this chapter with a final theorem. Following [8], we present an
alternative characterization of the functions computable in FP.

Theorem 4.15 ([8]). Each finite, orthogonal and constructor TRS based on a
simple signature that is compatible with >pop∗ is computable in polynomial time
and vice versa each polynomial computable function is computable by a finite,
orthogonal and constructor TRS compatible with >pop∗ that is based on a simple
signature.

Proof. We consider the first half of the assertion. Suppose R denotes a fi-
nite, orthogonal and constructor TRS compatible with an instance >pop∗. We
single out one of the defined symbols f ∈ D and consider the corresponding
function f : (Σ∗)n → Σ∗ computed by R. From the inclusion R ⊆ >pop∗ we
see by Theorem 4.6 that R is terminating. Moreover, from orthogonality (and
hence confluence) of R, normal forms are unique and thus the function f is
well-defined. Suppose f(pw1q, . . . , pwnq) −→!

R pvq for words w1, . . . , wn, v. In
particular, from confluence we see that

f(pw1q, . . . , pwnq) i−→R t1 i−→R · · · i−→R t` = pvq .

It is folklore, that there exists a polytime algorithm performing one rewrite
step. From the inclusion R ⊆ >pop∗, by Theorem 4.10 we see that ` is bounded
by a polynomial in the sum of the sizes of pw1q, . . . , pwnq. As p·q is reasonable,
we conclude the existence of polynomial p such that ` 6 p(

∑
i|wi|). To conclude

the existence of a polytime algorithm for f it suffices to bound the size of terms
ti for 1 6 i 6 ` polynomially in

∑
i|wi|. This is a consequence of the following

claim, where again we employ that the encoding p·q is reasonable.

Claim. Let R be a constructor TRS based on a simple signature that is com-
patible with >pop∗. Let t ∈ Tb. There exists a polynomial q such that when
t i−→∗R s then |s| 6 q(|t|).

Proof of Claim. We establish this claim in Lemma 5.37.

Now assume on the other hand that f ∈ FP and let Rf be the finite rewrite
system computing f as given from Proposition 4.13. The assertion follows, if we
define a suitable instance >pop∗ such that Rf ⊆ >pop∗. As Rf is based on the
predicative signature (cf. Definition 4.12) the definition of the safe mappings
is immediate. It remains to define a suitable (finite) precedence. We define a
mapping lh from the signature of B into the natural numbers as follows. Let
lh(g), g ∈ B be defined as follows: lh(g) = 1 for g ∈ {0,S0,S1,P,U

k,l
r ,O

k,l,C}
with k, l ∈ N. Furthermore, define

lh(SUBk,l
m,n[f,~g,~h]) = 1 + lh(f) + Σm

i=1 lh(gi) + Σn
i=1 lh(hi), and

lh(PRECk,l[g, h0, h1]) = 1 + lh(g) + lh(h0) + lh(h1) .

We define the strict precedence � such that for f, g ∈ B, if lh(f) � lh(g) and
f, g appear in Rf then f � g. As Rf is finite, it is easy to see that � is
finite. Moreover, the only constructor symbols S0,S1 and 0 are minimal in the

29

4 The Polynomial Path Order POP∗

precedence �. Thus � is admissible (cf. Definition 4.2). This concludes the
definition of >pop∗.

Unfortunately Rf is in general not compatible with >pop∗ as we cannot
orient the rules governing predicative composition, that is the rules defining
SUBk,l

m,n[f,~g,~h]. In particular, the orientation fails as SUBk,l
m,n[f,~g,~h](~x; ~y) >pop

hi(~x; ~y) does not hold for any i. However, we can transform Rf into a finite, or-
thogonal, constructor TRS R′f by rewriting the rule for predicative composition
to

SUBk,l
m,n[f,~g,~h](~x; ~y) −→ f1(~g(~x;), ~x;h1(~x; ~y), ~y)

f1(~u, ~x; v1, ~y) −→ f2(~u, ~x; v1, h2(~x; ~y), ~y)
...

fn−1(~u, ~x;~v, ~y) −→ f(~u;~v, hn(~x; ~y)) .

Here ~u = u1, . . . , um, ~v = v1, . . . , un−1 are variables and f1, . . . , fn−1 are auxil-
iary function symbols for which we adapt the precedence such that SUBk,l

m,n �
f1 � · · · � fn−1 � f . It is easy to see that the modified system R′f simulates
Rf , that is R′f computes the same functions as Rf . Moreover R′f ⊆ >pop∗ can
be verified, and we conclude the claim.

30

5 The Polynomial Path Order and
Relative Rewriting

In this chapter, we introduce the polynomial path order in the context of relative
rewriting. We proof the Main Theorem of Chapter 4 in this generalized setting.
In turn, this provides all technical details necessary for Chapter 6, where we
apply the polynomial path order in the dependency pair setting for complexity
analysis as proposed in [29, 30].

Relative rewriting is a notion that generalizes rewriting. Below, we briefly
recall basic concepts. For further information, relative rewriting has been ex-
tensively studied in [25], and also [45, 52] provide some resources. Let R and
S be two rewrite systems over the same signature. The relative rewrite relation
−→R/S is defined by −→R/S= −→∗S ·−→R ·−→∗S , that is, −→R/S corresponds to −→+

R∪S
with exactly one step due to R. In a similar spirit, we define the relative inner-
most rewrite relation i−→R/S as i−→+

R∪S with exactly one innermost step due to
R. Formally, we introduce i−→R/S in terms of the generalized restricted rewrite
relation Q−→R (cf. [53]).

Definition 5.1. Let R and Q be two TRSs. We define the generalized re-
stricted rewrite relation Q−→R such that s Q−→R t if and only if there exists a
one-hole context C, substitution σ and rule f(`1, . . . , `n) −→ r ∈ R such that
s = C[f(`1σ, . . . , `nσ)], t = C[rσ] and `iσ ∈ NF(Q) for all i ∈ {1, . . . , n}.

Generalized restricted rewriting generalizes both full and innermost rewriting:
we have −→R = ∅−→R and moreover i−→R= R−→R. Observe that whenever NF(Q) ⊆
NF(P) for two TRSs Q and P, it follows that Q−→R ⊆ P−→R holds. The notion of
generalized restricted rewriting allows us to concisely define relative rewriting
with respect to an innermost reduction strategy:

Definition 5.2. Let R and S be two TRSs over the same signature. We define
the relative innermost rewrite relation i−→R/S by

i−→R/S = R∪ S−−−→∗S · R∪ S−−−→R · R∪ S−−−→∗S .

A common technique for the termination analysis of −→R/S is the use of a
pair of orderings (�,�). Here � is a rewrite preorder and � a well-founded
proper and compatible order, that is, the inclusion � · � · � ⊆ � is satisfied.
When S ⊆ � and R ⊆ � hold, then each relative steps −→R/S translates to
a descent with respect to �. As � is well-founded, infinite reductions cannot
exist. Since >pop∗ is compatible with ∼>pop∗, the above observation suggests
that a pair of orders (∼>pop∗, >pop∗) can be employed for the complexity analysis
of i−→R/S . Below we show that this is indeed the case. In particular, we show
that the inclusions R ⊆ >πpop∗ and S ⊆ ∼>

π
pop∗ certify a polynomial bound in n

31

5 The Polynomial Path Order and Relative Rewriting

on the runtime-complexity rc(n, Tb, i−→R/S) provided that R∪S is a constructor
TRS. Since i−→R = i−→R/∅, this simultaneously establishes Theorem 4.10.

When we consider the polynomial path order in the dependency pair method
adapted for complexity analysis [29], the relation obtained from i−→R/S by re-
stricting R steps to top-steps is of particular interest.

Definition 5.3. Let R and S be two TRSs over the same signature. We define

i−→ε
R/S = R∪ S−−−→∗S · R∪ S−−−→ε

R · R∪ S−−−→∗S

and call a step i−→R/S a relative (innermost) top-step.

The relation i−→ε
R/S gives rise to another well known transformation technique,

the so called argument filtering transformation [37]. It allows one to remove
arguments of function symbols, or to replace a term by one of its subterms.

Definition 5.4. An argument filtering for a signature F is a mapping π that
associates with every n-ary function symbol f ∈ F either an argument position
i ∈ {1, . . . , n} or a list [i1, . . . , im] of argument positions with 1 6 i1 < · · · <
im 6 n. The signature Fπ consists of all function symbols f such that π(f) is
some list [i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering
π induces a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =


t if t is a variable,
π(ti) if t = f(t1, . . . , tn) and π(f) = i,
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im].

We write π(R) for the system {π(`) −→ π(r) | ` −→ r ∈ R}.

We define the polynomial path ordering >πpop∗ with argument filterings such
that s >πpop∗ t if and only if π(s) >pop∗ π(t). Below we show that a pair of
orders (∼>

π
pop∗, >

π
pop∗) can be employed for the complexity analysis of i−→ε

R/S .
This result will be used in Chapter 6, where we show that polynomial path
orders with argument filterings can be used to form a safe reduction pair in the
dependency pair setting from [29].

In the technical report [8] we presented a complete proof of Theorem 4.10,
the main result from [7]. Ideally, we would like to follow [8] below, and then
extend this result to the polynomial path order >πpop∗ with argument filterings.
According to the following proposition, it is easy to see that the derivation
length of −→ε

R/S can be estimated in terms of −→ε
π(R)/π(S).

Proposition 5.5. Let R be a TRS and π an argument filtering. Then

s −→ε
R t =⇒ π(s) −→ε

π(R) π(t) and s −→R t =⇒ π(s) −→=
π(R) π(t) .

Observe that the inclusion R ⊆ >πpop∗ just amounts to π(R) ⊆ >pop∗, and
from the above proposition together with the application of Theorem 4.10 it
might be tempting to think that a complexity-certificate provided by π(R) ⊆
>pop∗ is transferable to R. Unfortunately, this cannot be easily achieved, due
to the following two problems:

32

(i) For a term t ∈ Tb, the transformed term π(t) need not be constructor-
based with respect to defined symbols and constructors as induced by
π(R) and π(S) respectively.

(ii) Although a simulation of relative top-steps in the sense of Proposition 5.5
works for full rewriting, it fails for innermost steps.

We illustrate those problems in the following example.

Example 5.6. Let D = {f, h} and C = {s, 0}. Let the TRS (R,D] C) be
defined by the rules

f(s(x)) −→ x h(s(x)) −→ 0 .

Define the argument filtering π such that π(h) = 1 and π(f) = π(s) = [1]. Then
π(R) is given by

f(s(x)) −→ x s(x) −→ 0 .

The term f(sn(0)) is not constructor-based with respect to defined symbols
Dπ = {f, s} and constructors Cπ = {0} as induced by π(R). A complexity
certificate for rc(n, Tb(Dπ ∪ Cπ,V),−→π(R)) does not necessarily translate to a
certificate on rc(n, Tb(D ∪ C,V),−→R). Notice that the above observation holds
even for full rewriting. Next, observe that the step f(s(0)) i−→R 0 cannot be
simulated by π(R):

π(f(s(0))) = f(s(0)) i−→π(R) f(0) 6= π(0) .

Here, the rule f(s(x)) −→ x cannot be applied as s(0) ∈ NF(π(R)).

However, both problems are easily lifted. Notably, in the extension >πpop∗ of
>pop∗ to argument filterings, we keep the separation of F into defined symbols
D and constructors C as induced by the untransformed rewrite system. Thus
the set of constructor-based terms Tb stays stable. This addresses problem
(i) from above. Reasoning via the inclusion π(R) ⊆ >pop∗ roughly amounts
to the analysis of i−→π(R) ∩ >pop∗. To the contrary, we analyze the relation
i−→R ∩ >πpop∗ and consequently i−→R ∩ >pop∗ when π denotes the identity on

terms. This addresses problem (ii).
Let s = f(s1, . . . , sn) and π be an argument filtering such that π(f) =

[i1, . . . , ip]. In the following, we write safeπ(t) to denotes the multiset of safe
arguments positions not erased, i.e. safeπ(t) = {si | i ∈ safe(f) ∩ π(f)}. In a
similar spirit, we use nrmπ(t) to denote the normal and not erased arguments
of t. For sake of clarity, we unfold the definition of >πpop∗ in the following three
definitions.

Definition 5.7. We define the equivalence relation s s∼π t under π inductively,
if one of the following alternatives holds:

(1) s = t, or

(2) s = f(u1, . . . , un) and t = x ∈ V, or s = x ∈ V and t = f(u1, . . . , un),
π(f) = i and ui

s∼π x, or

33

5 The Polynomial Path Order and Relative Rewriting

(3) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and

(a) π(f) = i and si
s∼π t, or

(b) π(f) = [i1, . . . , ip], π(g) = j and s
s∼π tj , or

(c) π(f) = [i1, . . . , ip], π(g) = [j1, . . . , jq], f ∼ g and the multisets
nrmπ(s) and nrmπ(t), as well as safeπ(s) and safeπ(t) are equivalent
under s∼π.

Definition 5.8. We define the auxiliary order >πpop induced by the precedence
%, safe mapping safe and argument filtering π inductively by s >πpop t for
s = f(s1, . . . , sn) if one of the following alternatives holds:

(1) π(f) = i and si >
π
pop t, or

(2) π(f) = [i1, . . . , ip] and for some i ∈ π(f), si ∼>
π
pop t and if f ∈ D then

i ∈ nrmπ(f), or

(3) π(f) = [i1, . . . , ip], t = g(t1, . . . , tm) and either

(a) π(g) = j and s >πpop tj , or
(b) π(g) = [j1, . . . , jq], f ∈ D, f � g and for all j ∈ π(g), s >πpop tj .

Here ∼>
π
pop denotes >πpop ∪

s∼π.

Definition 5.9. We define the polynomial path order >πpop∗ with argument
filterings induced by the precedence %, safe mapping safe and argument filtering
π inductively by s >πpop∗ t for s = f(s1, . . . , sn) if either s >πpop t or one of the
following alternatives holds:

(1) π(f) = i and si >
π
pop∗ t, or

(2) π(f) = [i1, . . . , ip] and for some i ∈ π(f), si ∼>
π
pop∗ t, or

(3) π(f) = [i1, . . . , ip], t = g(t1, . . . , tm) and either

(a) π(g) = j and s >πpop∗ tj , or
(b) π(g) = [j1, . . . , jq], f ∈ D, f � g and

– s >πpop∗ tj0 for some j0 ∈ safe(g) ∩ π(g), and
– for all j 6= j0 with j ∈ safe(g) ∩ π(g), either s >πpop tj , or π(s)B
π(tj) and j ∈ safe(g), or

(c) π(g) = [j1, . . . , jq], f ∈ D, f ∼ g and nrmπ(s) >π,mul
pop∗ nrmπ(t) as

well as safeπ(s) ∼>
π,mul
pop∗ safeπ(t) hold.

Above we write ∼>
π
pop∗ for >πpop∗ ∪

s∼π. Observe that s∼π · >πpop∗ ·
s∼π ⊆ >πpop∗

and hence >π,mul
pop∗ and ∼>

π,mul
pop∗ , denoting the strict and weak multiset extension

of ∼>
π
pop∗ respectively, are well-defined.

Definition 5.10. We write id for the unique argument filtering that maps
every term to itself, i.e. id(s) = s for all terms s. Formulated otherwise,
id(f) = [1, . . . , n] for every function symbol f ∈ F of arity n.

The following Lemma attests the intuition behind >πpop∗.

34

Lemma 5.11. For s, t ∈ T , if s >πpop∗ t then π(s) >pop∗ π(t) and vice versa,
π(s) >pop∗ π(t) implies s >πpop∗ t. In particular, >pop∗ = >id

pop∗. Furthermore,
s

s∼π t if and only if π(s) s∼ π(p).

Proof. The proof of the lemma follows by a standard induction.

We start with some simple observations.

Lemma 5.12. Let s, t ∈ T . For >πpop∗ it holds that:

(i) >πpop∗ is closed under substitution, that is, if s >πpop∗ t then sσ >πpop∗ tσ
for any substitution σ, and

(ii) if s >πpop∗ f(t1, . . . , tn) then s >πpop∗ ti for all i ∈ π(f) or π(f) = i, and

(iii) for π(s) ∈ Val, if s >πpop∗ t then for some position p 6= ε, π(s)|p
s∼ π(t).

Proof. All three statements can be shown by a straight forward induction on
the definition of >πpop∗ or s∼ respectively.

Observe that Lemma 5.12 implies that from π(s) ∈ Val and s >πpop∗ t, π(t) ∈
Val follows. Moreover, the argument can be lifted to substitutions from variables
into values. Precisely, from π(sσ) ∈ Val and s >πpop∗ t, π(tσ) ∈ Val follows. This
observation is crucial for the reasoning carried out below, and will be employed
several times.

In order to certify that the polynomial path order induces polynomial bounds
on the innermost runtime-complexity, we embed innermost rewrite steps into a
finite approximation Ik of the path order for FP. We have seen in Chapter 3
that for a suitable set of starting terms the length of Ik-descents is controlled
by a polynomial in the sizes of terms. By the embedding, this polynomial bound
translates to a polynomial bound on innermost rewrite steps. The embedding
becomes possible, if we represent the size of terms as well as the information
on normal and safe arguments underlying the definition of >pop∗ explicitly. For
that, we interpret the signature F into the normalized signature, defined as
follows:

Fn = {fn | f ∈ F , nrm f = {i1, . . . , ip}, and arity(fn) = p} .

We represent the size of a term t as the unary representation of the Buchholz-
norm ‖t‖ of t. For that, we introduce a fresh nullary function symbol s that
is minimal in the precedence % on F . We define the mapping BN : N →
Seq({s},∅) as BN(t) = (s · · · s) with ‖t‖ occurrences of the constant s. Be-
low, we also write % for the quasi-precedence {(fn, gn) | f % g and f, g ∈ F}
isomorphic to % on F . Moreover, we set fn > ◦ for all f ∈ F and the variadic
symbol ◦.

Definition 5.13. A predicative interpretation is a pair (S,N) of mappings

S,N : T (F ,V)→ Seq(Fn ∪ {s},V)

35

5 The Polynomial Path Order and Relative Rewriting

defined as follows:

S(t) =

{
∅ if t ∈ Val

(fn(N(tj1), . . . ,N(tjp)) S(ti1) · · · S(tiq)) if t = f(t1, . . . , tn).

N(t) = (S(t)) @ BN(t)

Here safe(f) = {i1, . . . , iq} and nrm(f) = {j1, . . . , jp}.

The Buchholz-norm of a term t is reflected in the width of N(t), a property
that is essential for the reasoning carried out below.

Lemma 5.14. For t ∈ T , width(S(t)) 6 width(N(t)) = ‖t‖+ 1.

Proof. As S(t) is a subterm of N(t), it suffices to show width(N(t)) = ‖t‖ + 1.
We perform induction on t. For the base case, that is when t ∈ V the claim
follows from width(N(t)) = width((∅ s)) = 2. For the inductive step, assume
t = f(t1, . . . , tn). Then N(t) = (S(t)) @ BN(t). When t ∈ Val, then S(t) = ∅
and the claim is immediate. So assume t 6∈ Val, and thus

S(t) = (fn(N(t1), . . . ,N(tl)) S(tl+1) · · · S(tn)) .

Here we assume without loss of generality safe(f) = {l + 1, . . . , n}. Unfolding
the definition of width and applying the induction hypothesis on N(ti) for i ∈
{1, . . . , n} we see width(S(t)) 6 ‖t‖. As

width(N(t)) = max{width(S(t)), ‖t‖+ 1} = ‖t‖+ 1 ,

we conclude the lemma.

We now lift Theorem 3.10 to predicative interpretations. In particular,
the next Lemma states that the length of Ik-descents starting from N(t) for
constructor-based terms t is controlled by a polynomial in the size of t.

Lemma 5.15. Let t ∈ Tb ∪ Val. For any k, there exist constants c ∈ N and
d ∈ N such that

Gk(N(t)) 6 c · |t|d .

The constants c and d depend only on the cardinality of the considered signature
F and k.

Proof. First assume t ∈ Val. Thus N(t) = (∅ s · · · s) with ‖t‖ occurrences of
the constant s. Since ‖t‖ 6 |t| and rank(s) = 2, we conclude with the help of
Lemma 3.9 the stronger claim

Gk(N(t)) = 2 · ‖t‖+ 1 6 c · |t|

for some constant c.
Now assume t = f(t1, . . . , tn) ∈ Tb. Thus by the assumption t ∈ Tb

N(t) = ((fn(N(tj1), . . . ,N(tjm)) ∅ · · · ∅)) @ BN(t)

36

where nrm(f) = {j1, . . . , jl}. Let j ∈ nrm(f). As tj ∈ Val it follows that
N(tj) = (∅) @ BN(tj), and by Lemma 3.9 we infer Gk(N(tj)) = 2 · ‖tj‖+ 1. Let
m =

∑
j∈nrm(f) (2 · ‖tj‖+ 1). According to Theorem 3.10 there exist constants

c1 ∈ N and d1 ∈ N with

Gk(fn(N(tj1), . . . ,N(tjm))) 6 c1 · (m+ 2)d1 .

The constants depend only on rank(fn), which is bounded by the cardinality of
F . Let c2 be such that m+ 2 6 c2 · |t|+ n. The constant c2 exists by the fact
‖tj‖ < |t|. From this, and with the help of Lemma 3.8 we conclude

Gk(N(t)) = ‖t‖+ 1 + Gk((fn(N(tj1), . . . ,N(tjm)) ∅ · · · ∅))
6 ‖t‖+ 1 + n+ 1 + Gk(fn(N(tj1), . . . ,N(tjm)))

6 ‖t‖+ 1 + n+ 1 + c1 · (c2 · |t|)d1 .

Thus it is easy to see that we can define constants c and d such that ‖t‖+ 2 +
n+ c1 · (c2 · |t|)d1 6 c · |t|d. The lemma follows.

Assume R ⊆ >πpop∗ and S ⊆ ∼>
π
pop∗. Under these assumptions, a relative step

s i−→ε
R/S t gives rise to a descent N(π(s)) Ik · · · Ik N(π(t)) for some uniform

natural number k. As indicated by Lemma 5.15, starting from a constructor-
based term, the number of descents with respect to Ik is bounded polynomi-
ally in the size of the starting term. From this, a polynomial bound in n on
rc(n, Tb, i−→ε

R/S) is easy to establish. If we dispense argument filterings, the same
observation carries over to relative steps i−→R/S , and thus on i−→R = i−→R/∅. In
the following, we proof these claims.

Due to compatibility of Ik with ∼, in order to assert an embedding of i−→R/S
into I+

k , it suffices to embed steps due to R into I+
k , and steps due to S into

I&∗k:

Lemma 5.16. Let Q : T → Seq be a mapping from terms to sequences. If
s R∪ S−−−→R t =⇒ Q(s) I+

k Q(t), and moreover s R∪ S−−−→S t =⇒ Q(s) I&∗k Q(t),
then

s i−→R/S t =⇒ Q(s) I+
k Q(t)

follows.

Proof. Consider a relative rewrite step s i−→R/S t. There exist terms u and v
such that

s R∪ S−−−→∗S u R∪ S−−−→R v R∪ S−−−→∗S t .

From the assumptions we infer

Q(s) I&∗k Q(u) I+
k Q(v) I&∗k Q(t) .

From the inclusions ∼ · Ik ⊆ Ik and Ik · ∼ ⊆ Ik (cf. Lemma 3.5) and from
the definition I&k = Ik ∪ ∼ we conclude Q(s) I+

k Q(t) as desired.

37

5 The Polynomial Path Order and Relative Rewriting

5.1 A Simulation of Innermost Steps

Consider the relation v−→R, defined as follows:

Definition 5.17. Let R be a TRS, and let Q = {f(x1, . . . , xn) −→ ⊥ | f ∈ D}
for some fresh constant ⊥. We define

v−→R = Q−→R .

Observe that NF(Q) = Val for Q as given in the definition above. So in
other words, whenever s v−→R t then s = C[f(`1σ, . . . , `nσ)] for some rule
f(`1, . . . , `n) −→ r with `iσ ∈ Val for i ∈ {1, . . . , n}. In the remaining, we
embed v−→R into Ik and likewise v−→S into I&k. We will see that this establishes
an embedding of innermost steps: when R and S are constructor TRSs, we
can simulate i−→R/S with the help of v−→R and v−→S provided we add suitable
additional rules U . Before we continue with the embedding, we formally proof
the simulation.

Definition 5.18. Let (F ,R) be a TRS. Without loss of generality, suppose
⊥ ∈ F is a constructor symbol not appearing in R. We define the system U(R)
as

U(R) = {f(t1, . . . , tn) −→ ⊥ | f(t1, . . . , tn) ∈ NF(R) and f ∈ D} .

Observe that U(R) is in any case terminating and confluent, thus it admits
the unique normal form property. So it is justified to write t↓U(R) for the
normal form of t. The rules from U(R) remove defined symbol f in normal
forms t ∈ NF(R) that are not values:

Lemma 5.19. Let R be a TRS and suppose t ∈ NF(R). Then t↓U(R) ∈ Val.

Proof. Easy.

Consider a step s i−→R t. When R is a constructor TRS, we can simulate this
step by a sequence s′ v−→R · −→U(R) t

′. Here s′ and t′ are obtained from s and
t by normalizing with respect to the TRS U(R). More general, the following
lemma holds:

Lemma 5.20. Let R and S be two constructor TRS. Then

s R∪ S−−−→R t =⇒ s↓U(R∪S)
v−→R · →∗U(R∪S) t↓U(R∪S) .

Proof. For brevity, let U = U(R∪S). Assume a step s R∪ S−−−→R t. By definition
s = C[f(`1σ, . . . , `nσ)] and t = C[rσ] for some context C, substitution σ and
rule f(`1, . . . , `n) −→ r ∈ R. Moreover `iσ ∈ NF(R ∪ S) for i ∈ {1, . . . , n}. We
proof the claim by induction on C.

For the base case, assume C = �. Let i ∈ {1, . . . , n}. As R is a constructor
TRS, `i ∈ Val. From this it is easy to see that (`iσ)↓U = `iτ where τ is
given such that τ(x) = σ(x)↓U . Moreover, by Lemma 5.19 it follows that

38

5.1 A Simulation of Innermost Steps

(`iσ)↓U ∈ Val, and so `iτ ∈ Val. From the assumption s R∪ S−−−→R t we derive
s 6∈ NF(R∪ S). We conclude

s↓U = f((`1σ)↓U , . . . , (`nσ)↓U) = f(`1τ, . . . , `nτ) v−→ε
R rτ →∗U (rτ)↓U = (rσ)↓U .

Next, assume we have shown the property for si Q−→R ti and we want to lift
the claim to s = g(s1, . . . , si, . . . , sn) R∪ S−−−→R g(s1, . . . , ti, . . . , sn) = t. Then
s↓U = g(s1↓U , . . . , si↓U , . . . , sn↓U), where we use si↓U 6∈ NF(R∪S). The latter
is a consequence of the induction hypothesis. Applying the induction hypothesis
we see

s↓U v−→R · →∗U g(s1↓U , . . . , ti↓U , . . . , sn↓U)→∗U t↓U

as desired.

Observe that U(R) just replaces terms by ⊥, thus rewrite steps due to U(R)
can be easily embedded in I&k:

Lemma 5.21. Let Q ∈ {S,N} and π be an argument filtering. Then

s −→U(R) t =⇒ Q(π(s)) I&k Q(π(t)) .

Proof. The lemma can be shown by a straight forward inductive argument,
where we employ that Q(π(s)) I&k Q(⊥) holds independent on s.

Via the above simulation and Lemma 5.21, it is easy to establish an embed-
ding of i−→R/S into I+

k , provided we can embed v−→R and v−→S correspondingly.

Lemma 5.22. Let R and S be two constructor TRSs. Let Q ∈ {S,N}. If
s v−→R t =⇒ Q(π(s)) Ik Q(π(t)), and moreover s v−→S t =⇒ Q(π(s)) I&k Q(π(t)),
then

s i−→R/S t =⇒ Q(π(s↓U(R∪S))) I
+
k Q(π(t↓U(R∪S)))

follows.

Proof. For brevity, let U = U(R∪S). First, consider a step s R∪ S−−−→R t for some
terms s and t. From Lemma 5.20 we infer the existence of a term t′ such that
s↓U v−→R t′ →∗U t↓U . Consider the step s↓U v−→R t′. Then from the assumptions of
the lemma Q(π(s↓U)) Ik Q(π(t′)) follows, and moreover Q(π(t′)) I&∗k Q(π(t↓U))
follows from t′ →∗U t↓U according to Lemma 5.21. Summing up, from the
definition I&k = Ik ∪ ∼, compatibility I&k · ∼ ⊆ Ik, and likewise ∼ ·I&k ⊆ Ik
we conclude

s R∪ S−−−→R t =⇒ Q(π(s↓U)) I+
k Q(π(t↓U)) . (i)

By same reasoning, we derive

s R∪ S−−−→S t =⇒ Q(π(s↓U)) I&+
k Q(π(t↓U)) . (ii)

And so the Lemma follows from (i) and (ii) by the application of Lemma 5.16.

39

5 The Polynomial Path Order and Relative Rewriting

In turn, via an appropriate embedding of v−→R and v−→S we can estimate the
number of relative steps i−→R/S in terms of Ik-descents. This is reflected in the
following Lemma.

Lemma 5.23. Let R and S be two constructor TRSs. Let Q : T → Seq be
a mapping from terms to sequences. If s v−→R t =⇒ Q(π(s)) Ik Q(π(t)), and
moreover s v−→S t =⇒ Q(π(s)) I&k Q(π(t)), then

dl(t, i−→R/S) 6 Gk(Q(π(t))) + c

for t ∈ Tb and constant c ∈ N depending only on Q.

Proof. Define U = U(R ∪ S). Assume a maximal derivation starting from
t ∈ Tb:

t = t0
i−→R/S t1 i−→R/S . . . i−→R/S t` .

Thus it suffices to show ` 6 Gk(Q(π(t))) + c. From the assumptions, by Lemma
5.22 we derive

Q(π(t↓U)) = Q(π(t0↓U)) I+
k Q(π(t1↓U)) I+

k · · · I
+
k Q(π(t`↓U)) .

Define c = Gk(Q(⊥)). We differentiate two cases. If t 6∈ NF(Q), from t ∈ Tb
we derive t↓U = t, and clearly ` 6 Gk(Q(π(t↓U))) = Gk(Q(π(t))) proves the
lemma. For the case when t ∈ NF(Q), t↓U = ⊥ and hence Gk(Q(π(t↓U))) =
Gk(Q(⊥)) = c. Again the lemma follows.

Naturally, for the application of the above lemma it suffices to only embed
those steps that can be employed in a derivation starting from a constructor-
based term with respect to the considered relative rewrite relation. For instance,
by inspecting the proofs of Lemma 5.22 and Lemma 5.23, it is easy to see that
when we consider the relation i−→ε

R/S only an embedding of top-steps due to R
needs to be provided.

5.2 The Embedding of Top-Steps

The observations from the previous section justify to consider only steps s v−→R t.
Below, we first show an embedding of top-steps v−→ε

R into Ik, that is, from
compatibility of R with an instance >πpop∗ we show that s v−→ε

R t implies
N(π(s)) Ik N(π(s)) for some fixed k. In the subsequent lemma, we then lift
this embedding to steps below the root. In particular, we show that under the
assumption S ⊆ ∼>

π
pop∗ it follows that s v−→S t implies N(π(s)) I&k N(π(t)). As

a consequence of Lemma 5.23, the number of i−→ε
R/S descents can be estimated

in terms of Ik-descents. We continue with two simple observations.

Lemma 5.24. Let π be an argument filtering and let s, t ∈ T be two terms. If
s

s∼π t then ‖π(s)‖ = ‖π(t)‖ and Q(π(s)) ∼ Q(π(t)) for Q ∈ {S,N}.

Proof. The lemma follows by a straight forward inductive argument.

40

5.2 The Embedding of Top-Steps

Lemma 5.25. Let π be an argument filtering and let s, t ∈ T be two terms
such that π(s) ∈ Val. If s >πpop∗ t or s >πpop t then ‖π(s)‖ > ‖π(t)‖, N(π(s)) m1

N(π(t)) and S(π(s)) = ∅ = S(π(t)).

Proof. As >πpop ⊆ >πpop∗, it suffices to show the lemma for >πpop∗. Let s, t ∈ T
with s >πpop∗ t and π(s) ∈ Val. According to Lemma 5.12 there exists some
position p 6= ε such that π(s)|p

s∼ π(t). From this it is easy to see that π(t) ∈
Val and moreover ‖π(s)‖ > ‖π(t)‖. By inspecting Definition 5.13 the claim
follows.

The embedding of v−→ε
R into Ik is a direct consequence of the following two

Lemmata.

Lemma 5.26. Let σ : V → Val, and let s = f(s1, . . . , sn) ∈ Tb with f ∈ D and
t ∈ T be two terms. If s >πpop t and π does not collapse f then

fn(N(π(si1σ)), . . . ,N(π(silσ))) mk N(π(tσ))

where nrmπ(s) = {si1 , . . . , sil} and k = 3 · ‖π(t)‖.

Proof. For the ease of presentation, without loss of generality we assume that
safe(f) = {p+ 1, . . . , n}, and π(f) = {1, . . . , l}] {p+ 1, . . . ,m}. Let u =
fn(N(π(s1σ)), . . . ,N(π(slσ))), and thus we need to show u mk N(π(tσ)). We
perform induction on >πpop.

– Case s >πpop t (1): For this case, π(f) = i. As π collapses f , the lemma
is vacuously satisfied.

– Case s >πpop t (2): By Definition 5.8, since f ∈ D, there exists some
normal argument position i ∈ {1, . . . , l} such that si ∼>

π
pop t holds. Observe

that N(π(siσ)) is a direct subterm of u. It suffices to show N(π(siσ)) ·&k
N(π(tσ)). By closure under substitution of >πpop∗ (Lemma 5.12) we derive
siσ >

π
pop tσ. Finally, from π(siσ) ∈ Val we conclude the claim with the

help of Lemma 5.25.

– Case s >πpop t (3a): Assume t = g(t1, . . . , tn′), π(g) = j and s >πpop

tj . Then π(tσ) = π(tjσ), and we directly conclude the lemma from the
induction hypothesis u mk N(π(tjσ)) = N(π(tσ)). Notice that we employ
m`
l ⊆ mk for k > ` and k > l. Below we use this fact frequently without

explicitly referring to it.

– Case s >πpop t (3b): For this case, let t = g(t1, . . . , tn′). Without loss of
generality, we assume safe(g) = {p′ + 1, . . . , n′} and π(g) = {1, . . . , l′}]
{p′ + 1, . . . ,m′}. Furthermore, f � g and s >πpop tj for all j ∈ π(g). For
j ∈ π(g), since ‖π(t)‖ > ‖π(tj)‖, specializing the induction hypothesis
(IH) yields

u mk−3 (S(π(tjσ))) @ BN(π(tjσ)) = N(π(tjσ)) . (IH)

41

5 The Polynomial Path Order and Relative Rewriting

First, we show u mk−1 S(π(tσ)). When π(tσ) ∈ Val, then S(π(tσ)) = ∅
and u mk S(π(tσ)) trivially holds. So assume π(tσ) 6∈ Val. By definition,

S(π(tσ)) = (gn(N(π(t1σ)), . . . ,N(π(tl′σ))) S(π(tp′+1σ)) · · · S(π(tm′σ))) .

First, observe that

u = fn(N(π(s1σ)), . . . ,N(π(slσ)) mk−2 g
n(N(π(t1σ)), . . . ,N(π(tl′σ))) (i)

holds by clause (2) from Definition 3.3: We have f � g by assumption,
u mk−2 N(π(tjσ)) follows from (IH) and moreover width(u) + (k− 2) > l′

is a consequence of k = 3 · ‖π(t)‖, ‖π(t)‖ > l′. By (i), and through similar
reasoning as above, we infer

u mk−1 (gn(N(π(t1σ)), . . . ,N(π(tl′σ))) S(π(tp′+1σ)) · · · S(π(tm′σ))) (ii)
= S(π(tσ)) .

Here we employ u mk−3 S(π(tjσ)) for j ∈ {p′ + 1, . . . ,m′}, which is a
direct consequence of (IH). Finally, as we show below,

width(u) + k > width(N(π(tσ))) = ‖π(tσ)‖+ 1 (iii)

holds. Here the last equality follows from Lemma 5.14. By inspecting
clause (3) from Definition 3.3, it can be easily seen that (ii) together with
u m1 s, k > 1 and (iii) suffices to show

u Ik (S(π(tσ))) @ BN(π(tσ)) = N(π(tσ)) .

We finish with a proof of (iii). Let ` = l′+m′− p′, that is, the number of
direct subterms of π(tσ). By definition

‖π(tσ)‖ = max{`,max{‖π(tjσ)‖ | j ∈ π(g)}}+ 1 .

Thus either ‖π(tσ)‖ = ` + 1 or ‖π(tσ)‖ = π(tjσ) + 1 for some argument
position j not erased by the argument filtering. For the first case, it is
easy to see that also ‖π(t)‖ = `+ 1, and thus

width(u) + k = width(u) + 3 · (`+ 1) > (`+ 1) + 1 = ‖π(tσ)‖+ 1 .

For the second case, assume ‖π(tσ)‖ = ‖π(tjσ)‖ + 1 for some j ∈ π(g).
From the induction hypothesis (IH) for the particular subterm tj , with
the help of Lemma 3.6 and Lemma 5.14, we infer

width(u) + (k − 3) > width(N(π(tjσ))) = ‖π(tjσ)‖+ 1 = ‖π(tσ)‖ .

Thus (iii) follows, which proves the lemma.

Lemma 5.27. Let σ : V → Val, and let s = f(s1, . . . , sn) ∈ Tb with f ∈ D and
t ∈ T be two terms. If s >πpop∗ t and π does not collapse f then

42

5.2 The Embedding of Top-Steps

(1) fn(N(π(si1σ)), . . . ,N(π(silσ))) Ik S(π(tσ)), and

(2) (fn(N(π(si1σ)), . . . ,N(π(silσ)))) @ BN(π(sσ)) Ik N(π(tσ)).

Here nrmπ(s) = {si1 , . . . , sil} and k = 3 · ‖π(t)‖.

Proof. We perform induction on >pop∗. For this, without loss of generality
assume safe(f) = {p+ 1, . . . , n}, and π(f) = {1, . . . , l}] {p+ 1, . . . ,m}. Let
u = fn(N(π(s1σ)), . . . ,N(π(slσ))). If s >pop t, then the claim is immediate by
Lemma 5.26. We continue by case analysis. Below, we present only non-trivial
cases.

– Case s >pop∗ t (2): By assumption, there exists some i ∈ π(f) such that
si ∼>

π
pop∗ t holds. Since π(siσ) ∈ Val, Lemma 5.25 reveal N(π(siσ)) I&k

N(π(tσ)) and S(π(tσ)) = ∅. Property (1) is immediate. In order to
conclude Property (2), observe that since π(siσ) is a subterm of π(sσ),
‖π(sσ)‖ > ‖π(siσ)‖ holds. From this, by Lemma 5.25 together with the
assumption si ∼>pop∗ t, closure under substitution of >pop∗ (Lemma 5.12)
and π(siσ) ∈ Val we derive

‖π(sσ)‖+ k > ‖π(siσ)‖+ k > ‖π(tσ)‖ .

From this and Property (1), by one application of clause (5) from Defini-
tion 3.4 we conclude Property (2).

– Case s >πpop t (3b): For this case, let t = g(t1, . . . , tn′). Without loss of
generality, we assume safe(g) = {p′ + 1, . . . , n′} and π(g) = {1, . . . , l′}]
{p′ + 1, . . . ,m′}. Furthermore we have f � g in the precedence, s >πpop∗
tj0 for some j0 ∈ {p′ + 1, . . . ,m′}, and for all j 6= j0 either s >πpop tj , or
π(s)B π(tj) with j ∈ {p′ + 1, . . . ,m′}.
First, we show u mk S(π(tσ)). The only non-trivial case is π(tσ) 6∈ Val.
For this case, by definition

S(π(sσ)) = (gn(N(π(t1σ)), . . . ,N(π(tl′σ))) S(π(tp′+1σ)) · · · S(π(tm′σ))) .

From s >πpop tj for all normal argument positions {1, . . . , l′}, exactly as in
the corresponding case of Lemma 5.26, we derive

u mk−2 g
n(N(π(t1σ)), . . . ,N(π(tl′σ))) . (i)

Next, observe

u mk−2 S(π(tjσ)) for all j 6= j0, j ∈ {p′ + 1, . . . ,m′} . (ii)

We either have si D tj for some i ∈ π(f) or s >pop tj . For the first
case, from π(siσ) ∈ Val we infer π(tjσ) ∈ Val, and thus u mk−2 ∅ =
S(π(tjσ)) trivially holds. For the second case, by Lemma 5.26 we see
u mk−2 N(π(tjσ)) which shows (ii). Furthermore, the induction hypothe-
sis reveals

u Ik−3 S(π(tj0σ)) and (u) @ BN(π(sσ)) Ik−3 N(π(tj0σ)) . (IH)

43

5 The Polynomial Path Order and Relative Rewriting

Let ` = l′ + m′ − p′ be the number of direct subterms of π(tσ). Observe
that k = 3 · ‖π(tσ)‖ > 3 · (` + 1) > (m′ − p′) + 1 holds. Combining this
with (i), (ii) and (IH) we derive

u Ik S(π(tσ)) (iii)

by one application of clause (3) from Definition 3.4. From (iii), in order
to show property (2), that is

(u) @ BN(π(sσ)) Ik (S(π(tσ))) @ BN(π(tσ)) = N(π(tσ)) ,

it suffices (by clause (5) from Definition 3.4 and (iii)) to show

‖π(sσ)‖+ k > ‖π(tσ)‖ . (iv)

In (iv) we employ that both width((u) @ BN(π(sσ))) = ‖π(sσ)‖+ 1 and
width(N(π(tσ))) = ‖π(tσ)‖ + 1, which are consequences of Lemma 5.14.
Let ` = l′ +m′ − p′, and thus

‖π(tσ)‖ = max{`,max{‖π(tjσ)‖ | j ∈ π(g)}}+ 1 .

When ‖π(tσ)‖ = `+1, as in the corresponding case in the proof of Lemma
5.26, we see that k > ‖π(tσ)‖ and conclude (iv). So assume ‖π(tσ)‖ =
‖π(tjσ)‖ + 1 for some j ∈ π(g). By the assumptions, either s >πpop∗ tj ,
s >πpop tj or sB tj . We continue by case analysis.

First, assume s >πpop∗ tj , and thus by the specialized induction hypothesis
(IH) we obtain (u) @ BN(π(sσ)) Ik−3 N(π(tjσ)). From Lemma 3.6 and
5.14 we conclude ‖π(sσ)‖+ (k − 3) > ‖π(tjσ)‖, and (iv) follows.

Next, assume s >πpop tj . Thus u mk−3 N(π(tjσ)) holds according to
Lemma 5.26, and by the inclusion mk ⊆ Ik we conclude (iv) as above
with the help of Lemma 3.6 and 5.14.

Finally, assume s B tj , so si D tj for some unfiltered argument position
i. Clearly ‖π(siσ)‖ > ‖π(tjσ)‖. From ‖π(sσ)‖ > ‖π(siσ)‖ > ‖π(tjσ)‖ we
infer (iv).

– Case s >πpop t (3c): Again, let t = g(t1, . . . , tn′) and assume safe(g) =
{p′ + 1, . . . , n′} and π(g) = {1, . . . , l′}] {p′ + 1, . . . ,m′}. Furthermore,
assume we have f ∼ g and both nrmπ(s) >π,mul

pop∗ nrmπ(t), as well as
safeπ(s) ∼>

π,mul
pop∗ safeπ(t), holds.

From the strict multiset decrease of normal arguments, we infer

(N(π(s1σ)) · · · N(π(slσ))) Ik−1 (N(π(t1σ)) · · · N(π(tl′σ)))

from Lemma 5.25 applied to the arguments s1, . . . , sl and t1, . . . , tl′ re-
spectively. Thus

fn(N(π(s1σ)), . . . ,N(π(slσ))) Ik−1 g
n(N(π(t1σ)), . . . ,N(π(tl′σ))) (v)

44

5.2 The Embedding of Top-Steps

follows from fn ∼ gn. Furthermore, by the assumptions π(siσ) ∈ Val for
i ∈ π(f), the multiset comparison of safe arguments reveals π(tjσ) ∈ Val
for j ∈ {p′ + 1, . . . ,m′} in combination with Lemma 5.12 and Lemma
5.25. From this, we conclude property (1), since

u Ik (gn(N(π(t1σ)), . . . ,N(π(tl′σ))) ∅ · · ·∅) = S(π(tσ))

follows from (v) and one application of clause (3) from Definition 3.4.
Here, we additionally employ k > `+ 1, where ` = l′ + (m′ − p′).
It is easy to see that property (2) follows from property (1) by one appli-
cation of clause (5) from Definition 3.4. However, we additionally need to
proof

width((u) @ BN(π(sσ))) + k > width(N(π(tσ))) . (vi)

Remember that

width((u) @ BN(π(sσ))) = ‖π(sσ)‖+ 1 and
width(N(π(tσ))) = ‖π(tσ)‖+ 1

are consequences of Lemma 5.14. Since k > 1 it is easy to see that
‖π(sσ)‖ > ‖π(tσ)‖ establishes (vi). We finish with a proof of ‖π(sσ)‖ >
‖π(tσ)‖: As safeπ(s) ∼>

π,mul
pop∗ safeπ(t) and nrmπ(s) >π,mul

pop∗ nrmπ(t) hold by
assumption, for each argument tj not erased by π we infer si ∼>

π
pop∗ tj

for some si with i ∈ π(f). From this, since all arguments si ∈ Val
by assumption, by the combination of Lemma 5.12 and Lemma 5.25 we
conclude ‖π(siσ)‖ > ‖π(tjσ)‖ for all arguments tj not erased by the
argument filtering. Thus

‖π(sσ)‖ = max{`,max{‖π(siσ)‖ | i ∈ π(f)}}+ 1
> max{`,max{‖π(tjσ)‖ | j ∈ π(g)}}+ 1
= ‖π(tσ)‖

is immediate.

Lemma 5.28. Let R be a TRS compatible with >πpop∗, i.e. suppose R ⊆ >πpop∗
holds. Define k = 3 ·max{‖π(r)‖ | ` −→ r ∈ R}. If s v−→ε

R t then

(1) either S(π(s)) Ik S(π(t)) or S(π(s)) = ∅ = S(π(t)), and

(2) N(π(s)) Ik N(π(t)).

Proof. By the assumptions, s = f(`1σ, . . . , `nσ) and t = rσ for σ : V → Val and
rule f(`1, . . . , `n) −→ r ∈ R. Moreover, f(`1, . . . , `n) >πpop∗ r by the assumption
R ⊆ >πpop∗. We proceed by case analysis on π(f). First, assume π(f) = i
for some i ∈ {1, . . . , n}, and thus π(s) = π(`iσ) ∈ Val. By closure under
substitution of >πpop∗ and Lemma 5.25 we conclude N(π(s)) Ik N(π(t)) with
π(t) ∈ Val. Moreover, from π(s) ∈ Val and π(t) ∈ Val it is easy to see that
S(π(s)) = ∅ = S(π(t)) holds.

45

5 The Polynomial Path Order and Relative Rewriting

Next, without loss of generality assume π(f) = {1, . . . , q}] {p+ 1, . . . ,m}
with {1, . . . , q} ⊆ nrm(f) and {p+ 1, . . . ,m} ⊆ safe(f). Furthermore, let u =
fn(N(π(`1σ)), . . . ,N(π(`qσ))). By the assumptions on π, we see π(s) 6∈ Val and
so

S(π(s)) = (u ∅ · · ·∅), ,and
N(π(s)) = (S(π(s))) @ BN(π(s)) .

Lemma 5.27 reveals u Ik S(π(t)) and (u) @ BN(π(s)) Ik N(π(t)). From the
first inequality, S(π(s)) Ik S(π(t)) is immediate, and it is not difficult to reason
that from the second inequality also N(s) Ik N(t) follows. This establishes the
lemma.

We now lift the embedding to arbitrary contexts. Naturally, from the as-
sumption R ⊆ >πpop∗ we can only achieve Q(π(s)) I& Q(π(t)) from s v−→R t and
predicative interpretation Q. The primary reason is that π may remove the
rewrite position of s v−→R t, and for that case clearly π(s) = π(t) holds.

Lemma 5.29. Let R be a TRS compatible with >πpop∗, i.e R ⊆ >πpop∗ holds.
Define k = 3 ·max{‖π(r)‖ | ` −→ r ∈ R}, and let Q ∈ {S,N}. Then

s v−→R t =⇒ Q(π(s)) I&k Q(π(t)) .

Proof. Assume s v−→R t, and thus s = C[`σ] and t = C[rσ] for some context
C, ` −→ r ∈ R and substitution σ : V → Val. We continue with a proof by
induction on the context C, where beside Q(π(s)) I&k Q(π(t)) we show

S(π(s)) ∼ S(π(t)) =⇒ ‖π(s)‖ > ‖π(t)‖ .

For the base case C = �, the Lemma follows from Lemma 5.28. Observe
that when S(π(s)) ∼ S(π(t)) then S(π(s)) = ∅ = S(π(t)) and so N(π(t)) =
(∅) @ BN(π(t)) I&k (∅) @ BN(π(s)) = N(π(s)). From this it is easy to see that
‖π(s)‖ > ‖π(t)‖ holds.

For the inductive step, suppose C = f(s1, . . . , C ′, . . . , sn) for some context C ′.
Let si = C ′[`σ] and ti = C ′[rσ]. The induction hypothesis yields Q(π(si)) I&k
Q(π(ti)) for Q ∈ {S,N}. Furthermore, ‖π(si)‖ > ‖π(ti)‖ when S(π(si)) ∼
S(π(ti)). When π(f) = i then the Lemma follows directly from induction
hypothesis, so assume π(f) = {1, . . . , l}] {p+ 1, . . . ,m} and let Q ∈ {S,N}.
When i 6∈ π(f) then Q(π(s)) = Q(π(t)) and we directly conclude the lemma.
Notice that N(π(s)) = N(π(t)) almost trivially yields ‖π(s)‖ = ‖π(t)‖. On the
other hand, assume i ∈ π(f). Two cases are possible:

– Case π(s) ∈ Val: Then clearly π(si) ∈ Val, and the induction hypothesis
can be specialized to S(π(si)) = ∅ = S(π(ti)). So π(ti) ∈ Val by definition
of S and hence π(t) ∈ Val follows. Moreover, the induction hypothesis
yields ‖π(si)‖ > ‖π(ti)‖ and we conclude ‖π(s)‖ > ‖π(t)‖ by definition
of ‖·‖. Clearly N(π(t)) = (∅) @ BN(π(t)) I&k (∅) @ BN(π(s)) = N(π(s))
follows.

46

5.2 The Embedding of Top-Steps

– Case π(s) 6∈ Val: Then

S(π(s)) = (fn(N(π(s1)), . . . ,N(π(sl))) S(π(sp+1)) · · · S(π(sm))) .

From the induction hypothesis, we infer Q(π(si)) I&k Q(π(ti)). It is not
difficult to argue that S(π(s)) I&k S(π(t)) follows by induction hypothesis:
From Q(π(si)) ∼ Q(π(tj)) we see that S(π(s)) ∼ S(π(t)) follows. From
Q(π(si)) Ik Q(π(tj)) we infer S(π(s)) Ik S(π(t)) with either one or two
applications of Definition 3.4, depending on whether i ∈ safe(f) or not.
Thus, in order to conclude the lemma, we need to show

N(π(s)) = (S(π(s))) @ BN(π(s)) I&k (S(π(t))) @ BN(π(t)) = N(π(t))

and ‖π(s)‖ > ‖π(t)‖ when S(π(s)) ∼ S(π(t)).

First, assume S(π(s)) ∼ S(π(t)). Let Q = S if i ∈ safe(f) and Q =
N otherwise. As S(π(t)) can be obtained from S(π(s)) by replacing
Q(π(si)) with Q(π(ti)) we conclude Q(π(si)) ∼ Q(π(ti)) and in particular
S(π(si)) ∼ S(π(ti)) independent on Q. Thus by the induction hypothesis
‖π(si)‖ > ‖π(ti)‖ and so we derive ‖π(s)‖ > ‖π(t)‖. Clearly, from this
also N(π(s)) I&k N(π(t)) follows.

On the other hand, assume S(π(s)) Ik S(π(t)). In order to conclude the
lemma, we show N(π(s)) Ik N(π(t)). By the assumption and clause (5)
from Definition 3.4 it suffices to prove

width(N(π(s))) + k > width(N(π(t))) .

From the induction hypothesis we infer N(π(si)) I&k N(π(ti)), so either
N(π(si)) ∼ N(π(ti)) or N(π(si)) Ik N(π(ti)). For the former case we see
width(N(π(si))) = width(N(π(ti))), and for the latter width(N(π(si))) +
k > width(N(π(ti))) follows from Lemma 3.6. Observe that k > 1. With
the help of Lemma 5.14 the above inequalities translate to ‖π(si)‖+ k >
‖π(ti)‖. Thus ‖π(s)‖ + k > ‖π(t)‖, and with Lemma 5.14 we conclude
width(N(π(s))) + k > width(N(π(t))) as desired.

Lemma 5.30. Let R be a TRS compatible with ∼>
π
pop∗, i.e R ⊆ ∼>

π
pop∗ holds.

Define k = 3 ·max{‖π(r)‖ | ` −→ r ∈ R}, and let Q ∈ {S,N}. Then

s v−→R t =⇒ Q(π(s)) I&k Q(π(t)) .

Proof. By Lemma 5.29, it suffices to consider the additional case s = C[`σ] v−→R
C[rσ] = t with `

s∼π r. From `
s∼π r, as s∼π is closed under context and

substitutions, we derive s s∼ t and thus Q(π(s)) ∼ Q(π(t)) follows by Lemma
5.24. From ∼ ⊆ I& we conclude the claim.

Theorem 5.31. Let R and S be two constructor TRSs over the signature F .
If R ⊆ >πpop∗ and S ⊆ ∼>

π
pop∗ then there exists a polynomial p with

dl(t, i−→ε
R/S) 6 p(|t|)

for any constructor-based term t ∈ Tb. The polynomial p depends only on R
and S.

47

5 The Polynomial Path Order and Relative Rewriting

Proof. Let k = 3 ·max{‖π(r)‖ | ` −→ r ∈ R}. From the assumption R ⊆ >πpop∗
and S ⊆ ∼>

π
pop∗, we derive

s v−→ε
R t =⇒ N(π(s)) Ik N(π(t)) and s v−→S t =⇒ N(π(s)) I&k N(π(t))

from Lemma 5.28 and Lemma 5.30 respectively. As R and S are constructor
TRSs, the above implications yield

dl(t, i−→ε
R/S) 6 Gk(N(π(t))) + c

for t ∈ Tb and fixed constant c according to Lemma 5.23 (again notice that
as mentioned earlier, an embedding of top-steps s v−→ε

R t is sufficient for the
application of Lemma 5.23). With the help of Lemma 5.15 we derive constants
d1, d2 ∈ N such that

Gk(N(π(t))) 6 d1 · |π(t)|d2 .

The constants d1 and d2 depend only on k and the signature F . As |π(t)| 6 |t|,
we conclude the theorem.

5.3 The Embedding of Arbitrary Steps

Up to now we have only seen howto embed top-steps into the strict order
Ik, whereas we have embedded steps below the root into the extension I&k.
Below, we present an embedding of v−→R into Ik from the assumption R ⊆
>pop∗. We specialize Lemma 5.28 and Lemma 5.29 to the polynomial path order
without argument filterings. A proof of these lemmas can be easily obtained
by restricting the considerations in the proceeding section to those cases where
π does not collapse symbols.

Lemma 5.32. Let R be a TRS compatible with >pop∗, i.e R ⊆ >pop∗ holds.
Define k = 3 ·max{‖r‖ | ` −→ r ∈ R}, and let Q ∈ {S,N}. Then

s v−→ε
R t =⇒ Q(s) Ik Q(t) .

Lemma 5.33. Let R be a TRS compatible with >pop∗, i.e R ⊆ >pop∗ holds.
Define k = 3 ·max{‖r‖ | ` −→ r ∈ R}, and let Q ∈ {S,N}. Then

s v−→R t =⇒ Q(s) Ik Q(t) .

Theorem 5.34. Let R and S be two constructor TRSs over the signature F .
If R ⊆ >pop∗ and S ⊆ ∼>pop∗ then there exists a polynomial p with

dl(t, i−→R/S) 6 p(|t|)

for any constructor-based term t ∈ Tb. The polynomial p depends only on R
and S.

Corollary 5.35. Let R be a constructor TRS compatible with >pop∗, i.e. R ⊆
>pop∗ holds. There exists a polynomial p : N→ N such that

rci
R(n) 6 p(n)

for all n ∈ N. The polynomial p depends only on the cardinality of F and the
sizes of the right-hand sides in R.

48

5.4 Controlling the Growth Rate of Term-Sizes

Proof. As i−→R = i−→R/∅, the claim becomes immediate from the definition of
rci
R and Theorem 5.34.

5.4 Controlling the Growth Rate of Term-Sizes

Finally, we show that under the assumption that the signature is simple, com-
patibility of R with a polynomial path order certifies that the size of each term
in a derivation is polynomially bounded with respect to the size of the start-
ing term. For that, we employ that a simple signature certifies the following
relationship between the Buchholz-norm and size for values:

Proposition 5.36. Let C be a set of constructors from a simple signature.
There exists a constant d ∈ N such that for each term t ∈ Val whose rank is r,
|t| 6 dr · ‖t‖r+1.

Proof. The easy proof can be found in [40, Proposition 17].

We now proof the claim employed in Theorem 4.15.

Lemma 5.37. Let R be a constructor TRS based on a simple signature such
that R is compatible with an instance >pop∗, i.e. the inclusions R ⊆ >pop∗
holds. Let t ∈ Tb. There exists a polynomial q such that for all s with t i−→∗R s
it holds that |s| 6 q(|t|).

Proof. Assume t i−→∗R s. As observed in the proof of Theorem 5.34 the sequence
from t to s translates to a descent with respect to Ik for some fixed k. That is,
N(t) I∗k N(s) holds (again we employ −→R=−→R/∅). In particular, this implies
Gk(N(t)) > Gk(N(s)). One can show that for all terms t,

Gk(N(t)) + 1 > |N(t)| and (i)

c|N(t)|d > |t| (ii)

for some constants 0 < c, d ∈ N. These properties are simple to verify: property
(i) follows from induction on the structure of terms where we employ for the
inductive step that f(t1, . . . , tn) Ik (t1 · · · tn) and Gk((t1 · · · tn)) = Σn

i=1Gk(ti)+
n (cf. Lemma 3.8). For property (ii), one shows by a straight forward induction
on t that er · (|S(t)| · ‖t‖r+1) > |t| where r is the maximal rank of a symbol in
C and e is as given from Proposition 5.36. As |N(t)| > |S(t)| and |N(t)| > ‖t‖,
property (ii) follows. From the assumption t ∈ Tb, by Lemma 5.15 there exists
a monotone polynomial p such that Gk(N(t)) 6 p(|t|). Putting things together,
we conclude

c · (p(|t|) + 1)d > c · (Gk(N(t)) + 1)d > c · (Gk(N(s)) + 1)d > c · |N(s)|d > |s| .

The lemma follows by setting q(m) = c · (p(m) + 1)d + 1.

49

5 The Polynomial Path Order and Relative Rewriting

50

6 Transformation Techniques

Early efforts to automatically establish termination of rewrite systems were
mainly centered around direct methods, for instance the use of recursive path
orders or polynomial interpretations. In recent years, the attention shifted
towards transformation techniques. In the context of termination analysis, the
employed transformation technique has to preserve non-termination at least. In
the context of complexity analysis, complexity certificates on the transformed
problem need to be transferable back to the original problem additionally.

The dependency pair method [5] and semantic labeling [58] are in particular
popular instances of transformation techniques. Both methods significantly
increase the possibility to verify termination. In this Chapter, we show that
suitable adaptations can be employed together with polynomial path orders for
an analysis of the runtime-complexity.

6.1 POP∗ and Dependency Pairs

The dependency pair method [5] is a well known transformation technique estab-
lished for the termination analysis of rewrite systems. It is extremely powerful,
and most decent automatic termination provers rely on the dependency pair
method nowadays. Let R be a TRS. In order to study the termination behav-
ior of R, a set of dependency pairs DP(R) is extracted. Termination of R is
given when −→ε

DP(R)/R is well-founded. Recent work by Hirokawa and Moser
[29] has shown that a similar observation carries over to the analysis of the
runtime-complexity of R. We first recall the central concepts from [29].

Definition 6.1. Let F be a signature partitioned into defined symbols D and
constructors C. With D] we denote the set of (marked) defined symbols D ∪
{f]|f ∈ D}. Here f] denotes a fresh function symbol with the same arity as f .
For a term t = f(t1, . . . , tn) we write t] to denote the term t = f](t1, . . . , tn).
Furthermore, we define F] = D] ∪ C.

We abbreviate the set of terms T (F],V) by T], likewise we write T #
b for

the set of constructor-based terms Tb(F],V) with respect to the set of defined
symbols D] and constructors C.

The notion of dependency pairs is often to weak for a complexity analysis.
To deal with that, the so called weak dependency pairs or weak innermost
dependency pairs respectively are introduced:

Definition 6.2. Let R be a TRS. Let COM(t1, . . . , tn) = t1 if n = 1 and
COM(t1, . . . , tn) = c(t1, . . . , tn). Here c is a fresh constructor symbol, called a
compound symbol and collected in CCOM.

51

6 Transformation Techniques

If ` −→ r ∈ R and r = C〈u1, . . . , un〉D∪V then the rule `] → COM(u]1, . . . , u
]
n)

is called a weak dependency pair of R. The set of all weak dependency pairs is
denoted by WDP(R). Furthermore, if ` −→ r ∈ R and r = C〈u1, . . . , un〉D then
the rewrite rule `] → COM(u]1, . . . , u

]
n) is called a weak innermost dependency

pair of R. The set of all weak innermost dependency pairs is denoted by
WIDP(R).

Example 6.3. Reconsider the rewrite system Rbits from Example 4.9. The set
of weak and weak innermost dependency pairs is given as follows:

half](0) −→ c1 bits](0) −→ c3

half](s(0)) −→ c2 bits](s(0)) −→ c4

half](s(s(x))) −→ half](x) bits](s(s(x))) −→ bits](s(half(x)))

Any sequence of −→R steps starting from a term t can be simulated as a
sequence of −→WDP(R)∪R steps starting from the marked term t]. Furthermore,
for innermost derivations we are allowed to replace WDP(R) by WIDP(R).
Let P denote the set of weak or weak innermost dependency pairs, and let t]

denote the marked version of a constructor-based term t. In a −→P∪R derivation,
usually not every rule from R can be triggered, independent on t. In fact, only
the usable rules U(P) ⊆ R can be triggered. Often, these are a strict subset of
R.

Definition 6.4. We write f Bd g if there exists a rewrite rule `→ r ∈ R such
that f = root(`) and g is a defined symbol in Fun(r). For a set G of defined
symbols we denote by R�G the set of rewrite rules `→ r ∈ R with root(`) ∈ G.
The set U(t) of usable rules of a term t is defined as

R�{g | f B∗d g for some f ∈ Fun(t)} .

Finally, if P is a set of weak or weak innermost dependency pairs then

U(P) =
⋃

`→r∈P
U(r) .

Example 6.5. Reconsider the rewrite system Rbits from Example 4.9 together
with the weak innermost dependency pairs as given in Example 6.3. The set of
usable rules U(WIDP(R)) consists of the following three rules

half(0) −→ 0 half(s(0)) −→ 0 half(s(s(x))) −→ half(x) .

By the above observations, the following proposition is immediate:

Proposition 6.6 ([29]). Let R be a terminating TRS, and let P denote the set
of weak or weak innermost dependency pairs. Then

dl(t, i−→R) 6 dl(t], i−→P∪U(P))

for all constructor-based terms t ∈ Tb.

52

6.1 POP∗ and Dependency Pairs

As a consequence of Theorem 4.10 and Proposition 6.6, from compatibility
of P ∪ U(P) with a polynomial path order >pop∗ we derive a polynomial bound
on the innermost runtime-complexity of R. Ultimately, we want to estimate
rci
R in terms of P steps relative to the usable rules U(P). In [29] it is shown

that at least under certain conditions, this is indeed possible:

Proposition 6.7 ([29]). Let R be a terminating TRS, and let P denote the
set of weak or weak innermost dependency pairs. Assume P is non-duplicating,
and suppose U(P) ⊆ >A for some strongly linear interpretation A. Then there
exist constants K,L 6 0 (depending on R and A only) such that

dl(t, i−→R) 6 K · dl(t], i−→P/U(P)) + L · |t]|

for all constructor-based terms t ∈ Tb.

Consider a derivation starting from the constructor-based term t]:

t] = t]0
i−→P/U(P) t

]
0

i−→P/U(P) t
]
1

i−→P/U(P) . . .
i−→P/U(P) t

]
`

In the previous chapter, we have seen that polynomial path orders can be
employed for the analysis of relative steps. For the case when all compound
symbols in P are nullary, it is easy to see that all steps due to P happen at the
root, that is, t]i

i−→ε
P/U(P) t

]
i+1 holds for all i. By Theorem 5.31, the inclusions

P ⊆ >πpop∗ and U ⊆ ∼>
π
pop∗ certify a polynomial bound on dl(t], i−→P/U(P)) in the

size of t]. Proposition 6.7 translates this bound to a polynomial bound on rci
R.

On the other hand, when P contains n-ary compound symbols with n > 1,
then steps due to P need not be top-steps anymore. That is, rather than
t]i

i−→ε
P/U(P) t

]
i+1 we have

t]i = C[u]1, . . . , u
]
i , . . . , u

]
n] i−→P/U(P) C[v]1, . . . ,COM(w]1, . . . , w

]
m), . . . , v]n] = t]i+1

where u]i
i−→ε
P/U(P) COM(w]1, . . . , w

]
m) and u]j

P ∪ U(P)−−−−−−→U(P) v
]
j for j 6= i. In

particular, the context C is solely build from compound symbols. In order to
handle steps of the above shape, we require that the argument filtering π is
safe, that is it does not erase redexes with respect to the dependency pairs P:

Definition 6.8. An argument filtering π is called safe if π(c) = [1, . . . , n] for
each n-ary compound symbol c.

Unfortunately, Theorem 5.31 still does not extend to i−→P/U(P) in general.
Remember that in the reasoning carried out, we essentially rely on the em-
bedding of i−→P/U(P) into I+

k via the predicative interpretation N. However,
this embedding fails, even for safe argument filterings. The following example
clarifies the situation:

Example 6.9. Consider the TRS given by the following rewrite rules

f(0) −→ nil p(s(x)) −→ x f(s(x)) −→ cons(p(s(x)), f(x))

53

6 Transformation Techniques

The set of weak dependency pairs P is given by

f](0) −→ c1 p](s(x)) −→ x f](s(x)) −→ c2(p](s(x)), f](x)) ,

and U(P) = ∅. Then i−→P/U(P) = i−→P admits the derivation

f](s(0)) i−→P c2(p](s(0)), f](0)) i−→P c2(p](s(0)), c1) i−→P c2(0, c1) .

Let π denote the safe argument filtering that collapses p], but else maps each
function symbol to the complete list of argument positions. Then it can be
shown that P ⊆ >πpop∗ for some precedence and safe mapping. On the other
hand, we cannot embed the final step c2(p](s(0)), c1) i−→P c2(0, c1):

N(π(c2(p](s(0)), c1))) = (∅ s s s) = N(π(c1(0, c2))) .

The problem above is introduced from interpreting the redex p](s(0)) via
the interpretation S rather than N (remember that all arguments positions of
constructors are safe). In the previous chapter, we have seen that P ⊆ >πpop∗
does not necessarily guarantee an embedding of innermost top-steps into Ik
via the interpretation S (cf. Lemma 5.28). To circumvent this problem, we
slightly adapt the predicative interpretation, so that redexes with respect to P
are interpreted by N. For that, we interpret compound symbols as sequences:

Definition 6.10. The extended predicative interpretation

Ns : T (F ∪ CCOM,V)→ Seq(Fn ∪ {s},V)

is defined as follows:

Ns(t) =

{
(Ns(t1) · · · Ns(tn)) if t = c(t1, . . . , tn) and c ∈ CCOM

(N(t)) otherwise.

We now proof an embedding of −→P/U(P) into I+
k for some fixed k via the

interpretation Ns. For that, we proceed exactly as in Chapter 5: we first show
an embedding of top-steps v−→ε

R. Afterwards, we lift the embedding to contexts.

Lemma 6.11. Let R be a TRS, and let P denote the set of weak or weak
innermost dependency pairs. Suppose P is compatible with >πpop∗, i.e. suppose
P ⊆ >πpop∗ holds. Define k = 3 ·max{‖π(r)‖ | ` −→ r ∈ P}. Then

s v−→ε
P t =⇒ Ns(π(s)) Ik Ns(π(t)) .

Proof. Assume s v−→ε
P t due to a rule f](`1, . . . , `n) −→ COM(r]1, . . . , r

]
m) ∈ P.

Hence s = f](`1σ, . . . , `nσ) with `iσ ∈ Val for all i ∈ {1, . . . , n} and t =
COM(r]1σ, . . . , r

]
mσ). From the shape of s we conclude Ns(π(s)) = (N(π(s))).

We continue by case analysis on the shape of r = COM(r]1, . . . , r
]
m). When

root(r) 6∈ CCOM then Ns(π(t)) = (N(π(t))). From Lemma 5.28 we see N(π(s)) Ik
N(π(t)), and by one application of clause (5) from Definition 3.4 the lemma
follows. Finally, assume r = c(r]1, . . . , r

]
m) where c ∈ CCOM is a compound

symbol. With the help of Lemma 5.12 we see s >πpop∗ r
]
j for j ∈ {1, . . . ,m},

54

6.1 POP∗ and Dependency Pairs

and by inspecting Lemma 5.28 together with clause (3) from Definition 3.4 it
is easy to conclude N(π(s)) Ik (N(π(r]jσ))) = Ns(π(r]jσ)) for j ∈ {1, . . . ,m}.
From clause (5) of Definition 3.4 we derive

Ns(π(s)) = (N(π(s))) Ik (Ns(π(r]1σ)) . . . Ns(π(r]mσ))) = Ns(π(t))

as desired. For the above, observe k > m.

Next we close the embedding under contexts build from compound symbols.

Lemma 6.12. Let R be a TRS, and let P denote the set of weak or weak
innermost dependency pairs. Suppose P is compatible with >πpop∗, i.e. suppose
P ⊆ >πpop∗ holds. Define k = 3 ·max{‖π(r)‖ | ` −→ r ∈ P}. Then

s v−→ε
P t =⇒ Ns(π(C[u1, . . . , s, . . . , un])) Ik Ns(π(C[u1, . . . , t, . . . , un]))

for every safe argument filtering π and context C ∈ T (CCOM ∪ {�},V) build
from compound symbols.

Proof. We prove the lemma by induction on C. For the base case, that is when
C = �, we conclude the claim with the help of Lemma 6.11. For the inductive
step, suppose

C[u1, . . . , s, . . . , un] = c(v1, . . . , C ′[ui1 , . . . , s, . . . , uip], . . . , vm)

with c ∈ CCOM, C ′ ∈ T (CCOM ∪ {�},V) and 1 6 i1 6 · · · 6 ip 6 n. The
induction hypothesis reveals

Ns(π(C ′[ui1 , . . . , s, . . . , uip])) Ik Ns(π(C ′[ui1 , . . . , t, . . . , uip])) .

It is easy to see that from the induction hypothesis and one application of clause
(5) from Definition 3.4,

(Ns(π(v1)) · · · Ns(π(C ′[ui1 , . . . , s, . . . , uip])) · · · Ns(π(vm)))
Ik (Ns(π(v1)) · · · Ns(π(C ′[ui1 , . . . , t, . . . , uip])) · · · Ns(π(vm)))

follows. By definition of Ns this proves the lemma.

Finally, we need to adapt Lemma 5.30 to the interpretation Ns.

Lemma 6.13. Let R be a TRS compatible with ∼>
π
pop∗, i.e R ⊆ ∼>

π
pop∗ holds.

Define k = 3 ·max{‖π(r)‖ | ` −→ r ∈ R}, and let Q ∈ {S,N}. Then

s v−→R t =⇒ Ns(π(s)) I&k Ns(π(t)) .

Proof. Assume s v−→R t, and thus s = C[`σ] and t = C[rσ] for some context C,
` −→ r ∈ R and substitution σ : V → Val. We continue with a proof by induction
on the context C. Again the base case follows either by Lemma 6.11 or Lemma
5.24 correspondingly. For the inductive step, suppose C = f(s1, . . . ,�, . . . , sn).
When f ∈ CCOM, then

Ns(π(s)) = (Ns(π(s1)), . . . ,Ns(π(C ′[`σ])), . . . ,Ns(π(sn))) and
Ns(π(t)) = (Ns(π(s1)), . . . ,Ns(π(C ′[rσ])), . . . ,Ns(π(sn)))

55

6 Transformation Techniques

and the induction hypothesis reveals Ns(π(C ′[`σ])) I&k Ns(π(C ′[rσ])). For the
case when f 6∈ CCOM it follows that Ns(π(s)) = (N(π(s))) and Ns(π(t)) =
(N(π(t))). From Lemma 5.29 it is easy to infer N(π(s)) I&k N(π(t)). Thus
for both cases, either one application of Definition 5.7 or Definition 5.9 suffices
to conclude the lemma.

Theorem 6.14. let R be a constructor TRS, and let P denote the set of weak
or weak innermost dependency pairs. If P ⊆ >πpop∗ and U(P) ⊆ ∼>

π
pop∗ then

there exists a polynomial p with

dl(t], i−→P/U(P)) 6 p(|t|)

for any constructor-based term t ∈ Tb. The polynomial p depends only on R.

Proof. Define k = 3 · max{‖π(r)‖ | ` −→ r ∈ R}. Let t ∈ Tb, and assume a
maximal derivation

t] = t]0
i−→P/U(P) t

]
1

i−→P/U(P) . . .
i−→P/U(P) t

]
` .

Consider a relative step t]i
i−→P/U(P) t

]
i+1 for i ∈ {1, . . . , `− 1}. There exists

terms u] and v] such that

t]i
P ∪ U(P)−−−−−−→∗U(P) u

] P ∪ U(P)−−−−−−→P v] P ∪ U(P)−−−−−−→∗U(P) t
]
i+1 .

From the shape of P and the assumption t ∈ Tb we conclude that for some
context C ∈ T (CCOM ∪ {�},V), we have u] = C[u]1, . . . , u

]
i, . . . , u

]
p] and v] =

C[u]1, . . . , v
]
i , . . . , u

]
p] with u]i

v−→ε
P v

]
i . Observe that

3 ·max{‖π(r)‖ | ` −→ r ∈ P ∪ U(P)} 6 k ,

and moreover since R is a constructor TRS, P and U(P) are constructor TRSs
with respect to the signature F] partitioned into defined symbols D] and con-
structors C ∪CCOM. Hence for the assumed maximal derivation, by Lemma 6.12
we infer that whenever a rule from P is triggered, i.e. u v−→P v for some terms
u and v, then Ns(π(u)) Ik Ns(π(v)) follows. Furthermore, u v−→U(P) v implies
Ns(π(u)) I&k Ns(π(v)) for arbitrary terms u and v according to Lemma 6.13.
Notice that Lemma 5.23 can be easily adapted to the interpretation Ns. From
this and the above observations, we derive

dl(t], i−→P/U(P)) 6 Gk(Ns(π(t]))) + c

for some constant c ∈ N. Thus in order to conclude the theorem, it suffices to
verify that Gk(Ns(π(t]))) is polynomially bounded. Observe that t] ∈ T #

b im-
plies Ns(π(t])) = (N(π(t]))). With the help of Lemma 5.15 we derive constants
d1, d2 ∈ N such that

Gk(N(π(t]))) 6 d1 · |π(t])|d2 .

The constants d1 and d2 depend only on k and the signature F . Moreover,
Gk((s1 · · · sn)) = n+

∑n
i=1 Gk(si) for sequences si according to Lemma 3.8, and

hence
Gk(Ns(t])) = Gk(N(π(t]))) + 1 6 c · |π(t])|d + 1 .

As |π(t])| 6 |t|, it is easy to see how to define the polynomial p. We conclude
the theorem.

56

6.1 POP∗ and Dependency Pairs

Corollary 6.15. Let R be a terminating constructor TRS, and let P denote the
set of weak or weak innermost dependency pairs. Assume P is non-duplicating.
Let % be a precedence, safe be a safe mapping and π be a safe argument filtering
for F] ∪ CCOM. If P ⊆ >πpop∗ and U(P) ⊆ ∼>

π
pop∗ for the induced order >πpop∗

then there exists a polynomial p with

rci
R(n) 6 p(n) .

The polynomial p depends only on R and A.

Proof. The corollary is immediate from Proposition 6.7 and Theorem A.20.

We conclude this section with a final example.

Example 6.16. Reconsider the rewrite system Rbits from Example 4.9. The
set P of weak innermost dependency pairs is given as follows:

1 : half](0) −→ c1 4 : bits](0) −→ c3

2 : half](s(0)) −→ c2 5 : bits](s(0)) −→ c4

3 : half](s(s(x))) −→ half](x) 6 : bits](s(s(x))) −→ bits](s(half(x)))

The set of usable rules U(P) of consists of the three rewrite rules

7 : half(0) −→ 0 9 : half(s(0)) −→ 0

8 : half(s(s(x))) −→ half(x) .

By taking the strongly linear interpretation A with

0A = 0 sA(x) = x+ 1 halfA(x) = x+ 1

we obtain U(P) ⊆ >A and moreover, observe that P is non-duplicating. Next,
we choose the safe argument filtering π defined by

π(bits]) = [1] π(half) = 1 π(half]) = [1] π(s) = [1] .

We define the safe mapping safe such that all argument positions of defined
symbols are marked normal, that is

safe(bits]) = ∅ safe(half) = ∅ safe(half]) = ∅ safe(s) = {1} .

Furthermore we define the precedence % such that 0 ∼ c1 ∼ c2 ∼ c3 ∼ c4. For
the induced order >pop∗ we derive

1 : half](0) >pop∗ c1 4 : bits](0) >pop∗ c3

2 : half](s(0)) >pop∗ c2 5 : bits](s(0)) >pop∗ c4

3 : half](s(s(x))) >pop∗ half](x) 6 : bits](s(s(x))) >pop∗ bits](s(x))

7 : 0 ∼>pop∗ 0 9 : s(0) ∼>pop∗ 0

8 : s(s(x)) ∼>pop∗ x ,

that is π(P) ⊆ >pop∗ and π(U(P)) ⊆ ∼>pop∗. According to Lemma 5.11 this
establishes P ⊆ >πpop∗ and U(P) ⊆ ∼>

π
pop∗. By Corollary 6.15 we conclude a

polynomial runtime-complexity of Rbits.

57

6 Transformation Techniques

We stress that all steps in the above examples can be performed in a purely
mechanical fashion. We investigate the automation in the next Chapter. Before
that, we present polynomial path orders together with the semantic labeling
transformation.

6.2 POP∗ and Semantic Labeling

Besides the dependency pair method, semantic labeling [58] is another popular
transformation technique. The idea behind semantic labeling is to incorporate
semantic information of a TRS R directly into the rewrite system, yielding a
labeled rewrite system Rlab. Termination of Rlab is equivalent to termination of
R. More precise, every step from R corresponds to a step from Rlab, and vice
versa. In this section, we briefly recall semantic labeling as initially proposed
by Zantema [58] for the termination analysis of rewrite systems. Furthermore,
we will see that semantic labeling, although in a restricted setting, can also be
applied for the analysis of the runtime-complexity of R.

In order to incorporate semantic information, one labels the rules of the
input system by labeling certain function symbols according to the value of
their arguments. The value of an argument is obtained by the interpretation
under an F-algebra A. Below, we always write A for an F-algebra with carrier
A.

Definition 6.17. A labeling ` for F consists of a set of labels Lf for each n-ary
function symbol f ∈ F together with labeling function `f : An → Lf whenever
Lf 6= ∅. For a labeling ` and signature F , the labeled signature Flab is given
by the set

Flab = {fa | f ∈ F and a ∈ Lf} .

The labeling ` defines the label attached to a root-symbol in a term f(t1, . . . , tn)
based on the values of the arguments t1, . . . , tn.

Definition 6.18. For a labeling ` and every assignment α : V → A we define
a mapping labα : T (F ,V)→ T (Flab,V) inductively defined by

labα(t) =


t if t ∈ V,
f(labα(tn), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅,
fa(labα(tn), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf 6= ∅.

Here a denotes the label `f ([α]A(t1), . . . , [α]A(tn)).

In order to obtain from R a labeled rewrite system Rlab, one labels all rewrite
rules from R according to labα for every assignment α.

Definition 6.19. The labeled rewrite system Rlab over the signature Flab is
given by

Rlab = {labα(`) −→ labα(r) | ` −→ r ∈ R and assignment α}.

58

6.2 POP∗ and Semantic Labeling

One of the main results from [58] states that termination of Rlab is equivalent
to termination of R when the employed F-algebra A is a model of R.

Definition 6.20. An F-algebra A is a model of R if [α]A(`) = [α]A(r) holds
for every rule `→ r ∈ R and assignment α : Var(`)→ A.

Proposition 6.21. Let A be a non-empty model of R and ` a labeling.

s→R t⇐⇒ labα(s)→Rlab
labα(t)

for all assignment α.

In particular, the above proposition yields dl(t,−→R) = dl(labα(t),−→Rlab
) for

any assignment α. This suggests that in principle semantic labeling can be
employed for a complexity analysis of R. Unfortunately, when Rlab becomes
infinite, we cannot conclude fromRlab ⊆ >pop∗ a polynomial innermost runtime-
complexity of R. In this case, Theorem 4.10 is not applicable. Finiteness of
the signature of the considered rewrite system is essential for Theorem 4.10, as
illustrated in the following example.

Example 6.22. Reconsider the rewrite system Rexp from Example 4.8, mod-
eling the exponentiation function with obvious exponential innermost runtime-
complexity. We choose the model N over the carrier N giving the most natural
interpretation of the symbols from Rexp:

doubleN (x) = 2x expN (x) = 2x sN (x) = x+ 1 0N = 0 .

We label the symbol double with its argument and leave all other symbols
unlabeled. That is, we define Ldouble = N with `double(x) = x, and furthermore
Lexp = Ls. Labeling Rexp results in the infinite rewrite system

double0(0) −→ 0 exp(0) −→ s(0)
doublei+1(s(x)) −→ s(s(doublei(x))) exp(s(x)) −→ double2i(exp(x)) .

Then we can orient the labeled rewrite system using the polynomial path order
induced by the safe mapping

safe(exp) = ∅ safe(doublei) = {1} safe(s) = {1}

and the infinite precedence

exp � doublei+1 � doublei � s .

The above example illustrates that the polynomial path order cannot certify
polytime runtime-complexities in conjunction with (unrestricted) semantic la-
beling. The problem appears even in a more general setting, and is inherent
to simplification orders like MPO. Middeldorp, Ohsaki and Zantema [43] have
shown that every rewrite system R can be labeled in such a way that Rlab

is precedence terminating (it should be noted that they employ quasi-models
[58] instead of models). It is clear howto define a rewrite system R admit-
ting a non-primitive recursive derivation length, for instance by encoding the

59

6 Transformation Techniques

Ackermann-function. The above observation implies that the labeled system
Rlab is compatible with an instance >mpo, and clearly the result established by
Hofbauer [31] does not extend to the system Rlab and in turn R respectively.

We circumvent the problem by demanding that the employed model ranges
over a finite carrier. Henceforth, we call semantic labeling over a finite carrier
finite semantic labeling. For this case, Rlab becomes finite provided that R is
finite. In particular, the signature of Rlab is finite.

Theorem 6.23. Let R be a constructor TRS. Let Rlab denote the labeled rewrite
system for some non-empty model A with finite carrier. If Rlab is compatible
with >pop∗, i.e Rlab ⊆ >pop∗ holds, then there exists a polynomial p such that

rci
R(n) 6 p(n)

for all n ∈ N. The polynomial p depends only on the cardinality of F and the
sizes of the right-hand sides in R.

Proof. Assume A is a non-empty model of R with finite carrier. Observe that
every−→R step translates to a corresponding−→Rlab

step according to proposition
6.21. Notice that when u ∈ NF(R) then labα(t) ∈ NF(Rlab) independent on the
assignment α. Thus in particular, every i−→R step translates to a corresponding
i−→Rlab

step. Hence
dl(t, i−→R) 6 dl(labα(t), i−→Rlab

)

for any assignment α : Var(t) → A. As R is a (finite) constructor TRS, and
since A ranges over a finite carrier, it follows that Rlab is a finite constructor
TRS. Thus from the assumption Rlab ⊆ >pop∗, according to Theorem 4.10,
there exists a polynomial pRlab

such that

rci
R(n) 6 rci

Rlab
(n) 6 pRlab

(n) .

The polynomial pRlab
depends only on the cardinality of Flab and the sizes of

the right-hand sides in Rlab. Since labeling does not effect term sizes, and the
cardinality of Flab is polynomial in the cardinality of F (depending only on the
carrier size) it is easy to see howto define the polynomial p.

We conclude this section with the application of Theorem 6.23.

Example 6.24. Consider the example AG01/#3.23 from the termination com-
petition database, dubbed Rf:

f(s(x), y) −→ f(f(x, y), y) f(0, y) −→ 0 .

It cannot be oriented with an instance >mpo and thus also the orientation with
a polynomial path orders fails. We choose the following model B for Rf: We
define the carrier B = {0, 1} and we interpret the function symbols by

fB(x, y) = 0 0B = 0 sB(x) = 1 .

It is easy to verify that B is a model of Rf. We choose to label the symbol f
via its first argument, that is we define Lf = {0, 1} and `f(x, y) = x. We choose

60

6.2 POP∗ and Semantic Labeling

not to label the remaining symbols, that is we define Ls = L0 = ∅. Then the
labeled rewrite system Rflab is given by the following three rewrite rules:

f1(s(x), y) −→ f0(f0(x, y), y) f0(0, y) −→ 0
f1(s(x), y) −→ f0(f1(x, y), y)

We define some precedence % such that f1 > f0 and set the second argument of
f1 and all arguments of f0 safe. That is, the safe mapping is given by

safe(f0) = {1, 2} safe(f1) = {2} safe(s) = {2} .

Then Rflab ⊆ >pop∗ and as a consequence of Theorem 6.23 we conclude a
polynomial innermost runtime-complexity of the unlabeled system Rf.

Again we stress that polynomial path orders together with semantic labeling
gives rise to a completely automatic complexity analysis. We give an efficient
implementation in the following Chapter.

61

6 Transformation Techniques

62

7 Implementation Matters

In this chapter we investigate on the technical issues arising from the implemen-
tation of the polynomial path order. We provide an automation of the order in
combination with finite semantic labeling. Moreover, we give an implementa-
tion of the polynomial path order in combination with argument filtering.

The orientation of a rewrite system R with a recursive path order amounts
to finding a precedence % such that R is compatible with the induced order.
The task becomes more involved if we want to show compatibility with a poly-
nomial path order. Besides the precedence a suitable safe mapping needs to
be found. Observe that a signature with m symbols gives rise to Ω(m!) total
quasi precedences. Moreover, we can associate with each n-ary function symbol
2n different safe positions. In other words, the search space is huge. In earlier
work [6] we have shown that the precedence and safe mapping can be found
via a constraint solving approach in reasonable time. However, this approach
gets impractical if one wants to integrate semantic labeling or argument fil-
tering. For the combination of the polynomial path order together with finite
semantic labeling additionally a suitable model as well as a labeling needs to be
found. Again this severely widens the search space, as a single function symbol
of arity n gives rise to mn different interpretation and labeling functions. Here
m denotes the size of the carrier. Moreover, all those parameters are tightly
inter-related: the rewrite system should be labeled suitable for the polynomial
path order, and the precedence and safe mapping should be chosen such that
compatibility with the labeled system holds. The situation is similar if we want
to incorporate argument filterings. Each n-ary function symbol gives rise to
2n + n different filterings. Again the choice of the filtering is tightly coupled to
choice on the precedence and safe mapping.

Kurihara and Kondo [36] where the first to encode compatibility with a re-
cursive path order as a satisfiability problem of propositional logic. Recently,
this approach gained in popularity significantly [3, 24, 48, 57], in particular for
the combination of basic termination methods with transformation techniques
[19, 34, 35, 56]. We follow this approach, and describe both the polynomial
path order and finite semantic labeling as well as the polynomial path order in
combination with argument filterings as Boolean satisfiability problems (SAT).
Via this reduction, all choices on the involved parameters can be left to a state-
of-the-art SAT-solver.

A reduction to SAT of recursive path orders with semantic labeling over an
infinite carrier is given in [35], and a reduction of recursive path orders together
with predictive labeling is covered in [34]. As highlighted in Section 6.2, these
approaches are inapplicable in our context since the employed carrier is usually
infinite. Beside these, semantic labeling over a binary carrier is implemented in
the termination prover TORPA [59]. Here (quasi-)model and labeling are found

63

7 Implementation Matters

according to a heuristic, where the interpretation and labeling functions are
chosen from a restricted set of constants, unary- and binary functions. For this
it is a necessity to preprocess the input system such that all function symbols are
of arity less or equal to two. After the labeling, compatibility with polynomial
interpretations is checked. This approach admits several disadvantages: clearly
the aforementioned transformation breaks the separation of safe and normal
argument positions, it is thus not well-suited for our concerns; the overall pro-
cedure is based on trial and error, as labeling and compatibility with polynomial
interpretations are independent. We consider the proposed translation to SAT
favorable: the choice of labeling suitable for the base order is governed by a
state-of-the-art SAT-solver, embracing the inter-relation ship between labeling
and orientation; our reduction does not rely on heuristics nor on a restriction
of the considered interpretation and labeling functions; experimental evidence
confirm the feasibility of our approach.

We also want to mention [51] where root-labeling is introduced. Root-labeling
is in essence an instance of finite semantic labeling. Here a function symbol is
labeled with the root-symbols of direct subterms. In order to achieve the model
condition, rules need to be closed under flat contexts, that is contexts of depth
one. In particular this implies that root-labeling is inapplicable for our concerns:
from a polynomial (innermost) runtime-complexity of the labeled rewrite system
we cannot conclude a polynomial runtime-complexity of the original system in
general.

The automation of the argument filtering transformation in combination with
recursive path orders has also been extensively studied. Early approaches
mainly concentrated on restricting the search space reasonably [27, 28] such
that trial and error becomes feasible. Nowadays most implementations of ar-
gument filterings work via a transformation to SAT [19, 56]. In this work, we
essentially follow [19, 56] but suitably adapt their encoding for the combination
with the polynomial path order.

7.1 POP∗ Semantic Labeling

In this section we introduce our encoding of the polynomial path order together
with finite semantic labeling. From an unlabeled rewrite system we construct
a propositional formula ψ such that satisfiability of ψ certifies the existence
of a labeled rewrite system Rlab compatible with an instance >pop∗. From a
satisfying assignment, the labeled system Rlab as well as the order >pop∗ can be
extracted. In our encoding, every function symbol is subject to labeling. This
minor delineation from the standard definition of semantic labeling does not
narrow the applicability: labeling every otherwise unlabeled symbol uniformly
results in a renaming of the otherwise labeled system. For the ease of presen-
tation, we assume a two-valued carrier B = {false, true} below. The encoding
can be easily extended to arbitrary finite carriers.

In order to find suitable labeling- and interpretation functions, we first pro-
vide a way to propositional encode Boolean functions in a generic fashion.
Via this encoding, it is possible to restrict the interpretations and labeling

64

7.1 POP∗ Semantic Labeling

suitably. Let b : Bn → B denote an arbitrary Boolean function. To en-
code b, we make use of unique propositional atoms bw for every sequence of
arguments w = w1, . . . , wn ∈ Bn. The atoms bw denote the result of ap-
plying the arguments w1, . . . , wn to b. Let a1, . . . , an be propositional for-
mulas. To impose restrictions on the encoded function b, we introduce the
formula pbq(a1, . . . , an) such that for a satisfying assignment ν, the equality
ν(pbq(a1, . . . , an)) = b(ν(a1), . . . , ν(an)) holds. Here ν is lifted to formulas in
the obvious way. For this, when b denotes a constant, i.e. when n = 0, we
define pbq = bε. For n > 1, we let

pbq(a1, . . . , an) =
∧

w1,...,wn∈Bn

((n∧
i=1

wi ↔ ai
)
→ bw

)
.

For instance, the propositional formula pbq(a1, a2) ↔ r assesses that the en-
coded function b satisfies b(ν(a1), ν(a2)) = ν(r).

For the search of a suitable model B and labeling `, for every assignment
α : V → A and term t appearing in R we introduce fresh atoms intα,t and
labα,t for t 6∈ V. The meaning of intα,t is the result of [α]B(t), whereas labα,t
denotes the label of the root symbol of t labeled under the assignment α. In
order to ensure a correct valuation of intα,t and labα,t for terms t = f(t1, . . . , tn)
and particular assignment α, we define

INTα(t) = intα,t ↔ pfBq(intα,t1 , . . . , intα,tn), and
LABα(t) = labα,t ↔ p`fq(intα,t1 , . . . , intα,tn).

Here pfBq and p`fq correspond to unique encodings for labeling and interpre-
tation functions for the symbol f . Furthermore for t ∈ V we identify intα,t with
α(t). Besides the model condition, the above constraints have to be enforced
for every assignment α and every term appearing in R. This is covered by

LAB(R) =
∧

l→r∈R

∧
α:Var(l)→B

(
intα,l ↔ intα,r ∧

∧
l D t or
r D t

(INTα(t) ∧ LABα(t))
)

.

Assume ν is a satisfying assignment for LAB(R) and Rlab denotes the system
obtained by labeling R according to the encoded labeling and model. In order
to prove compatibility of Rlab with the polynomial path order, we need to find
a precedence % and safe mapping safe such that Rlab ⊆ >pop∗ holds for the
induced order >pop∗. Let fa and gb denote two labeled function symbols. For
the propositional encoding of fa � gb, we introduce fresh atoms �fa,gb , likewise
for fa ∼ gb we introduce the atoms ∼fa,gb . Let a and b be two propositional
formulas that evaluate to the label of f and g respectively. Observe that besides
the condition that the atoms �fa,gb and ∼fa,gb form a quasi-precedence, we also
need to ensure the conditions of Definition 4.2: constructors need to be minimal
in the precedence, and furthermore, the equivalence relation ∼ ⊆ % needs
to respects the separation of the signature Flab into defined and constructor
symbols as given by Rlab. However, a labeled symbol fa need not be defined
with respect to Rlab, although the unlabeled symbol f is a defined symbol of

65

7 Implementation Matters

R. To circumvent this problem, we add the rule fa(x1, . . . , xn) −→ c with c
a fresh constant to the labeled system and require fa � c in the precedence.
Alternatively one could propositionally encode whether fa is a defined symbol
with respect to Rlab and adapt the formulas constructed below accordingly.
However, experimental findings indicate that the former and here described
approach is favorable. We define

pfa > gbq = (pg ∈ Dq → pf ∈ Dq)
∧ (a ∧ b → �ftrue,gtrue)
∧ (¬a ∧ b → �ffalse,gtrue)
∧ (a ∧ ¬b → �ftrue,gfalse)
∧ (¬a ∧ ¬b → �ffalse,gfalse) .

Here pf ∈ Dq = > when f ∈ D and ⊥ else.

Remark. Observe that when f ∈ C and g ∈ D, then the above formula sim-
plifies to ⊥. In our implementation, we exploit this fact via lazy construction
and intermediate simplification. For instance, for a formula A ∧ B, one can
first construct the formula A, simplify A by applying the laws of propositional
logic and check whether the result equals ⊥. In this case, it does not make
sense to even construct B. Similar observations apply for the Boolean connec-
tives ∨,→,↔, For the encoding pfa > gbq from above, such an evaluation
strategy might save us from constructing the case analysis on the labels and
allocating four fresh atoms. At the same time, the approach gives a clean and
readable presentation as well as implementation.

Correspondingly, we define the formula pfa ∼ gbq asserting fa ∼ ga. It is
given by

pfa ∼ gbq = (pf ∈ Dq ↔ pg ∈ Dq)
∧ (a ∧ b → ∼ftrue,gtrue)
∧ (¬a ∧ b → ∼ffalse,gtrue)
∧ (a ∧ ¬b → ∼ftrue,gfalse)
∧ (¬a ∧ ¬b → ∼ffalse,gfalse) .

Beside the precedence, for each labeled function symbol the safe mapping
needs to be encoded. For that, we employ for each defined symbol f ∈ F , label
a ∈ B and argument positions i of f fresh atoms safefa,i. For the unlabeled
symbol f ∈ D and formula a representing the label, the formula

SF(fa, i) = (a→ safeftrue,i) ∧ (¬a→ safeffalse,i)

assesses depending on the valuation of a that either the i-th position of ftrue or
of ffalse is safe. In a similar spirit we encode that the i-th position of fa needs
to be normal with

NRM(fa, i) = (a→ nrmftrue,i) ∧ (¬a→ nrmffalse,i) .

For the case f ∈ C we define SF(fa, i) = > and NRM(ga, i) = ⊥ (remember
that all argument positions of constructor symbols need to be safe).

66

7.1 POP∗ Semantic Labeling

In the following, let s and t be two concrete (unlabeled) terms, and let
α : V → A denote an assignment. In order to compare the labeled versions
of s and t under the equivalence relation s∼ we introduce the formula ps s∼ tqα.
Below we assume that all cases not mentioned are defined as ⊥. Suppose
s = f(s1, . . . , sn) and t = g(t1, . . . , tn). For the comparison s

s∼ t, we need to
assert that f ∼ g and the existence of a permutation π such that si

s∼ tπ(t)

holds for all argument positions i. Furthermore, we have to demand i ∈ safe(f)
exactly if π(i) ∈ safe(g). In order to describe the permutation, we essentially
follow the idea of multiset covers (cf. [48]), also employed later on. We intro-
duce fresh atoms βi,j for i, j ∈ {1, . . . , n}. These represent π in such a way that
βi,j is true if and only if π(i) = j. We define

pβq =
n∧
i=1

one(βi,1, . . . , βi,n) ∧ one(β1,i, . . . , βn,i) .

Here the formula one(a1, . . . , an) ensures that exactly one of the formulas ai for
i ∈ {1, . . . , n} holds. It is given recursively by

one() = ⊥
one(a1, . . . , an) = (a1 → zero(a2, . . . , an)) ∧ (¬a1 → one(a2, . . . , an))

zero() = >
zero(a1, . . . , an) = ¬a1 ∧ zero(a2, . . . , an) .

Hence when pβq holds, the atoms βi,j resemble a one-to-one mapping between
the argument positions of f and g. Summing up, the equivalence s s∼ t becomes
expressible by

pf(s1, . . . , sn) s∼ g(t1, . . . , tn)qα = ps = tqα

∨
(
pflabα,s ∼ glabα,tq ∧ pβq ∧

n∧
i=1

n∧
j=1

(βi,j → psi
s∼ tjqα

∧
(
SF(flabα,s , i)↔ SF(glabα,t , j))

))
where ps = tqα evaluates to > or ⊥ accordingly. It is straight forward to verify
that the subformula SF(flabα,s , i)↔ SF(glabα,t , j) specifies i ∈ safe(fa)⇐⇒ j ∈
safe(gb) where a and b denote the labels of root symbols of labs(α) and labt(α)
respectively.

Based on the encoding for s∼, we give a propositional encoding of labα(s) >pop∗
labα(t) as well as labα(s) ∼>pop∗ labα(t). In the following, we suppose that
s = f(s1, . . . , sn). We introduce formulas

ps >pop∗ tqα = ps >pop tqα ∨ ps >(1)
pop∗ tqα ∨ ps >(2)

pop∗ tqα ∨ ps >(3)
pop∗ tqα, and

ps ∼>pop∗ tqα = psi >pop∗ tqα ∨ psi
s∼ tqα .

Here ps >pop tqα refers to the encoding of labα(s) >pop labα(t), and ps >(i)
pop∗ tq

refer to the encodings for orienting labα(s) and labα(t) via the clause (i) from

67

7 Implementation Matters

Definition 4.5. In the following we discuss the clauses (1) – (3) from the defini-
tion of >pop∗, the comparison using the auxiliary order >pop essentially amounts
to the disjunction of the encodings for clauses (1) and (2).

For the encoding of clause (1), notice that si = t implies labα(si) = labα(t).
Thus it is legal to define pf(s1, . . . , sn) >(1)

pop∗ tqα = > if si = t holds for some
si. Otherwise, we define

pf(s1, . . . , sn) >(1)
pop∗ tqα =

n∨
i=1

ps ∼>pop∗ tqα .

For the encoding of labα(f(s1, . . . , sn)) >pop∗ labα(g(t1, . . . , tm)) via the sec-
ond clause of >pop∗, we introduce fresh atoms δj for each argument position
j of g. The formula pδq = one(δ1, . . . , δm) assures that exactly one atom δj
is true. This particular atom marks the unique safe argument position j0 of t
where labα(s) >pop∗ labα(tj) holds. Assume the unlabeled symbol f is a defined
symbol of R. By the above introduced dummy rules fa ∈ Flab is a defined
symbol of Rlab, independent on the label a. Clause (2) is expressed by

pf(s1, . . . , sn) >(2)
pop∗ g(t1, . . . , tm)qα = pf ∈ Dq ∧ pflabα,s > glabα,tq ∧ pδq

∧
m∧
j=1

((
δj → ps >pop∗ tjqα ∧ SF(glabα,t , j)

)
∧
(
¬δj → ps >πpop tjqα ∨ psB tjq ∧ SF(glabα,t , j)

))
,

where psB tiq = > when s B ti holds, and ⊥ otherwise. This is legal, as the
subterm property is closed under labeling.

To encode multiset comparisons, we make use of multiset covers as employed
in [48]. A multiset cover is a pair of total mappings γ : {1, . . . , n} → {1, . . . ,m}
and ε : {1, . . . , n} → B, encoded using fresh atoms γi,j and εi. The underly-
ing idea is as follows: assume [s1, . . . , sn] �mul [t1, . . . , tm] holds for the strict
multiset extension �mul of some preorder %, and let � and ∼ correspond to
the strict and equivalent part of % respectively. Equivalently, every term tj is
covered by some term si, either by si ∼ tj or si � tj . For the case when si ∼ tj ,
the element si covers no element besides tj and at least one cover is due to a
strict comparison. Again equivalently, there exists a multiset cover (γ, ε) such
that for γ(i) = j, si % tj holds, ε(i) implies si ∼ tj and ε(i) does not hold for at
least one i ∈ {1, . . . , n}. We encode γ(i) = j by γi,j and indicate ε(i) by εi. To
assess the above mentioned constraints for a multiset cover (γ, ε), we introduce
the formula

p(γ, ε)q =
m∧
j=1

one(γ1,j , . . . , γn,j) ∧
n∧
i=1

(εi → one(γi,1, . . . , γi,m)) .

Clause (3) from the definition of >pop∗ requires both nrm(s) >mul
pop∗ nrm(t)

and safe(s) ∼>
mul
pop∗ safe(t). It can be verified that the above corresponds to

nrm(s)] safe(s) ∼>
mul
pop∗ nrm(t)] safe(t) provided the corresponding multiset

cover (γ, ε) satisfies that (i) the mapping γ respects the separation of safe and

68

7.1 POP∗ Semantic Labeling

normal argument positions and furthermore (ii) ε(i) is false for some normal
argument position i of root(s). The latter observation gives rise to a concise
encoding of clause (3). We define

pf(s1, . . . , sn) >(3)
pop∗ g(t1, . . . , tm)qα =

pf ∈ Dq ∧ pf ∼ gq ∧ p(γ, ε)q ∧
n∨
i=1

(
NRM(flabα,s , i) ∧ ¬εi

)
∧

m∧
i=1

n∧
j=1

(
γi,j →

(
(εi → psi

s∼ tjqα) ∧ (¬εi → psi >pop∗ tjqα)

∧ (SF(flabα,s , i)↔ SF(glabα,t , j))
))

.

Above we enforce that for a valid multiset cover, depending on ε, either si
s∼

tj or si >
π
pop∗ tj holds for all i, j with γ(i) = j. We assert the separa-

tion of normal and safe argument positions by the subformula SF(flabα,s , i) ↔
SF(glabα,t , j). Moreover, the subformula

∨n
i=1

(
NRM(flabα,s , i) ∧ ¬εi

)
demands

at least one strict comparison of normal arguments. This completes the defini-
tion of pf(s1, . . . , sn) >pop∗ g(t1, . . . , tn)qα.

To verify that the labeled systemRlab is compatible with an instance of >pop∗,
we enforce the constraint pl >pop∗ rqα for every rule l→ r ∈ R and assignment
α : Var(l) → B. Moreover, we need to assert a valid encoding for the quasi
precedence, that is the employed atoms pfa > gbq form a proper order, and the
atoms pfa ∼ gbq define an equivalence relation on Flab. One way to do so is to
encode transitivity and so forth directly. However, a straight forward encoding
is of size Ω(n2) where n is the cardinality of Flab. For a more concise encoding
we follow [19]. We embed the precedence % into the usual preorder > on the
segment {0, . . . , 2dlog(n)e − 1} of natural numbers. Then % is a quasi-precedence
if there exists a order preserving map φ such that when f � g then φ(f) > φ(g)
and f ∼ g implies φ(f) = φ(g). For each function symbol f ∈ Flab we introduce
a list of dlog(n)e fresh atoms encoding φ(f) and denoted by ~φf . We define1

PREC(F) =
∧
f∈F

∧
g∈F

(pfa > gbq → p ~φf > ~φgq) ∧ (pfa ∼ gbq → p ~φf = ~φgq) .

Here p ~φf > ~φgq and p ~φf = ~φgq denote the straight forward encoding of > and
= over k-bit naturals into propositional formulas. The resulting constraint is
of size O(n · log(n)). Summing up, satisfiability of the formula

POP∗SL(R) = PREC(Flab) ∧ LAB(R) ∧
∧

α:Var(l)→B

∧
l−→r∈R

pl >pop∗ rqα

certifies the existence of a model B and labeling ` such that the rewrite system

Rlab ∪ {fa(x1, . . . , xn) −→ c | f ∈ D}

is compatible with an instance >pop∗. Thus from Theorem 6.23, satisfiability
of POP∗SL(R) asserts a polynomial bound on the innermost runtime-complexity
of R.

1In our implementation, we restrict the constraint to atoms pfa > gbq referenced byV
l−→r∈R

V
αpl >pop∗ rqα.

69

7 Implementation Matters

7.2 POP∗ and Dependency Pairs

In order to encode R ⊆ >πpop∗ for some instance >πpop∗ and rewrite system R,
we essentially follow the approach described in Section 7.1. For each pair of
function symbols we again introduce fresh atoms �f,g and ∼f,g. To assess that
the encoded precedence % is admissible for >πpop∗, and for a concise encoding,
we identify �f,g with ⊥ for f ∈ C and g ∈ D. Moreover, we identify ∼f,g with
⊥ when f ∈ D and g ∈ C and vice versa. Again we use fresh atoms safef,i
with the meaning that the i-th position of the function symbol f is safe and
identify safef,i with > for f ∈ C and argument position i of f . Beside the
precedence and safe mapping, an instance >πpop∗ is induced by an argument
filtering π. In order to encode π, we follow the standard approach, cf. [56]
for instance. For each function symbol f of arity n, we introduce an atom πlist

f

with the meaning that π is non-collapsing for f , i.e. π(f) = [i1, . . . , ij] for some
1 6 i1 6 · · · 6 ij 6 n. Beside these, we introduce for each argument position i
of f the atom πif , indicating that depending on πlist

f , either i ∈ π(f) or π(f) = i.
In the following, we exploit that when π collapses f , then exactly one of the
atoms πif holds. We enforce this via the formula

pπq =
∧
f∈F
¬πlist

f → one(π1
f , . . . , π

n
f) .

In a similar spirit to Section 7.1, we first give constraints for s s∼π t, s >πpop t
and s >πpop∗ t with concrete terms s and t. We continue with the encoding of
s

s∼π t. Again, all cases not defined below are defined as ⊥. Let s and t be two
terms. We define

ps
s∼π tq = ps = tq ∨ ps s∼(2)

π tq ∨ ps s∼(3)

π tq

where the formulas ps s∼(2)

π tq and ps s∼(3)

π tq correspond to the encoding of clause
(2) and (3) of Definition 5.7 respectively. For the case when s = f(u1, . . . , un)
and t = x ∈ V, or s = x ∈ V and t = f(u1, . . . , un) we define

ps
s∼(2)

π tq = ¬πlist
f ∧

n∧
i=1

(πif → pui
s∼π xq)

In the above constraint, ¬πlist
f enforces that the argument filtering π collapses

f . Observe that by the additional constraints on the encoding of π there exists
exactly one argument position such that πif evaluates to a true value. For this
particular argument position i, the above formula requires ui

s∼π x.
When s = f(s1, . . . , sn) and t = g(t1, . . . , tm) we define

ps
s∼(3)

π tq =
(
¬πlist

f →
n∧
i=1

(πif → psi
s∼π tq)

)
∧
(
πlist
f →

(
(¬πlist

g →
m∧
j=1

(πjg → ps
s∼π tjq))

∧ (πlist
g → pf ∼ gq ∧ p[s1, . . . , sn] s∼π [t1, . . . , tm]q)

)
,

70

7.2 POP∗ and Dependency Pairs

where we perform case distinction on πlist
f and πlist

g : when π collapses f or g,
then psi

s∼π tq or ps s∼π tjq is enforced respectively. For the remaining case, by
the formula p[s1, . . . , sn] s∼π [t1, . . . , tm]q we encode that the multisets nrmπ(s)
and nrmπ(t) as well as safeπ(s) and safeπ(t) are equivalent under s∼π. For that,
similar to the corresponding encoding from Section 7.1, we introduce the atoms
βi,j for argument positions i of f and j of g. Again, the meaning of βi,j is
that the i-th (not erased) argument of s is compared with the j-th (not erased)
argument of t. We define

p[s1, . . . , sn] s∼π [t1, . . . , tm]q =

pβq ∧
n∧
i=1

m∧
j=1

(βi,j → πif ∧ πjg ∧ (safef,i ↔ safeg,j) ∧ psi
s∼π tjq) ,

where the formula

pβq =
n∧
i=1

(πif → one(βi,1, . . . , βi,m)) ∧
n∧
i=1

(πjg → one(β1,j , . . . , βn,j))

enforces that every argument of s and t not erased by π is covered respectively.
Next, we develop the encoding for >πpop∗ and >πpop in two steps: we provide

an encoding of the individual clauses of Definition 5.8 and 5.9. For each order
the disjunction of those formulas provide a sound but quite inefficient encoding
for the comparison of two terms. Unlike the polynomial path order together
with semantic labeling, the encodings of the individual clauses from >πpop∗ and
>πpop share recursively computed subformulas. For instance, both clauses (1)
and (2) from the definition of >πpop reference si >πpop t. It is thus natural to
combine the encoding of both clauses, by applying laws of propositional logic.
This severely decreases the size of the encoding.

Let s = f(s1, . . . , sn) and t be two terms. We start with ps >πpop tq, the
encoding for auxiliary order >πpop. Below, we assume

ps ∼>
π
pop tq = ps >πpop tq ∨ ps

s∼π tq .

The encoding of clause (1) in Definition 5.8 is expressible by

¬πlist
f ∧

n∨
i=1

πif ∧ psi >πpop tq . (i)

In a similar spirit, we encode the second clause by

πlist
f ∧

n∨
i=1

πif ∧ psi ∼>
π
pop tq ∧ (pf 6∈ Dq ∨ ¬ safef,i) . (ii)

As psi ∼>
π
pop tq = psi >πpop tq ∨ psi

s∼π tq, it is not difficult to argue that the
formula

ps >π (1, 2)
pop tq =
n∨
i=1

πif ∧
(
psi >

π
pop tq ∨ (psi ∼ tq ∧ πlist

f)
)
∧(¬πlist

f ∨ pf 6∈ Dq ∨ ¬ safef,i)

71

7 Implementation Matters

exactly expresses the disjunction of (i) and (ii), yielding a concise encoding of
clauses (1) and (2). Next, assume t = g(t1, . . . , tm). We initially formulate
clause (3) by the propositional formula

πlist
f ∧

(
¬πlist

g →
m∧
j=1

(πjg → ps >πpop tjq)
)

(
πlist
g →

m∧
j=1

(
πjg → ps >πpop tjq

)
∧ pf ∈ Dq∧ �f,g

)
.

where we perform case distinction on whether π collapses g or not (again we
exploit that whenever πlist

g does not hold, then exactly one of πig for 1 6 i 6 m
evaluates to >). From the above, it is easy to see that

ps >π (3)
pop tq = πlist

f ∧
m∧
j=1

(πjg → ps >πpop tjq) ∧ (πlist
g → pf ∈ Dq ∧ pf � gq)

expresses clause (3) from Definition 5.8 equivalently. We define

ps >πpop tq = ps >π (1, 2)
pop tjq ∨ ps >π (3)

pop tjq

which gives the final encoding of the auxiliary order >πpop.
In order to give the propositional formula ps >πpop∗ tq, that is an encoding of

s >πpop∗ t, we essentially proceed as above. First, we provide an encoding for
the disjunction of clause (1) and (2):

ps >π (1, 2)
pop tq =

n∨
i=1

πif ∧ (psi >πpop∗ tq ∨ psi
s∼π tq ∧ πlist

f) .

For the encoding of clause (3a) and (3b) from the Definition of >πpop∗, observe
that we need to demand in both cases s >πpop∗ tj for some argument position j.
First, we start with the naive encoding

πlist
f ∧ (¬πlist

g → ps >π (3a)
pop∗ tq) ∧ (πlist

g → ps >π (3b)
pop∗ tq) (iii)

where the formulas

ps >π (3a)
pop∗ tq =

m∧
j=1

(¬πjg ∨ ps >πpop∗ tjq) and

ps >π (3b)
pop∗ tq = pf ∈ Dq ∧ pf > gq ∧ one(δ1, . . . , δn)

∧
m∧
j=1

((
δj → ps >πpop∗ tjq ∧ πjg ∧ safeg,j

)
∧
(
¬δj → ¬πjg ∨ ps >πpop tjq ∨ safeg,j ∧psB tjq

))
give a direct encoding of clauses (3a) and (3b) respectively. For clause (3b) we
again employ m fresh atoms δj , and by the formula one(δ1, . . . , δm) we enforce

72

7.2 POP∗ and Dependency Pairs

that exactly one of them evaluates to >. This particular positive atom δj0
marks the safe argument position of g where the comparison using >πpop∗ is
allowed. With all other atoms δj with j 6= j0, we enforce that the argument
position j is either erased by the argument filtering, or there is a strict decrease
with respect to the auxiliary order or subterm relation. For the last case, we
additionally demand j ∈ safe(g) as required in clause (3b) from Definition 5.9.
Consider the abbreviations

A = pf ∈ Dq ∧ pf > gq ∧ one(δ1, . . . , δn) and

B = (δj → πjg ∧ safeg,j)

∧ (¬δj → ¬πjg ∨ ps >πpop tjq ∨ safeg,j ∧psB tjq) .

By exploiting the equivalence

δj → ps >πpop∗ tjq ∧ πjg ∧ safeg,j ≡ (¬δj ∨ ps >πpop∗ tjq) ∧ (δj → πjg ∧ safeg,j)

it is easy to see that for the encoding of clause (3b) given above,

ps >π (3b)
pop∗ tq ≡ A ∧

m∧
j=1

((
(¬δj ∨ ps >πpop∗ tjq) ∧B

))
holds. By pushing the implication in πlist

g → ps >
π (3b)
pop∗ tq inward, and by the

equivalence a→ b ≡ ¬a ∨ b, we obtain

πlist
g → ps >π (3b)

pop∗ tq ≡ (πlist
g → A)

∧
m∧
j=1

(
(¬πlist

g ∨ ¬δj ∨ ps >πpop∗ tjq) ∧
(
πlist
g → B

))
.

In a similar spirit, we derive

¬πlist
g → ps >π (3a)

pop∗ tq ≡
m∧
j=1

(
πlist
g ∨ ¬πjg ∨ ps >πpop∗ tjq

)
) .

And so, we can reformulate the propositional formula (iii), the naive encoding
of clause (3a) and (3b), as

πlist
f ∧

m∧
j=1

(
πlist
g ∨ ¬πjg ∨ ps >πpop∗ tjq

)
∧ (πlist

g → A) ∧
m∧
j=1

(
(¬πlist

g ∨ ¬δj ∨ ps >πpop∗ tjq) ∧
(
πlist
g → B

))
≡ πlist

f ∧ (πlist
g → A) ∧

m∧
j=1

(
(πlist
g ∨ ¬πjg ∨ ps >πpop∗ tjq)

∧ (¬πlist
g ∨ ¬δj ∨ ps >πpop∗ tjq) ∧ (πlist

g → B)
)

.

73

7 Implementation Matters

The last formula still contains twice the subformula ps >πpop∗ tjq. We get rid of
this duplication by exploiting the equivalence

(πlist
g ∨ ¬πjg ∨ ps >πpop∗ tjq) ∧ (¬πlist

g ∨ ¬δj ∨ ps >πpop∗ tjq)

≡ ps >πpop∗ tjq ∨ (¬πlist
g ∧ ¬πjg) ∨ (πlist

g ∧ ¬δj)

from which we derive the final constraint

ps >π (3a, b)
pop∗ tq = πlist

f ∧
(
πlist
g → pf ∈ Dq ∧ pf > gq ∧ one(δ1, . . . , δn)

)
∧

m∧
j=1

((
ps >πpop∗ tjq ∨ (¬πlist

g ∧ ¬πjg) ∨ (πlist
g ∧ ¬δj)

)
∧
(
πlist
g →

(
δj → πjg ∧ safeg,j

)
∧
(
¬δj → ¬πjg ∨ ps >πpop tjq ∨ ∧ safeg,j ∧psB tjq

)))
.

For the encoding of the final clause (3c) from the definition of >πpop∗, suppose
we consider terms s = f(s1, . . . , sn) and s = g(t1, . . . , tm) such that the argu-
ment filtering π is non-collapsing for both f and g. Furthermore, assume f ∼ g.
In the encoding for this case, we need to assert both nrmπ(s) >π,mul

pop∗ nrmπ(t) and
safeπ(s) ∼>

π,mul
pop∗ safeπ(t). Similar to the encoding of the corresponding clause in

Section 7.1, we make use of multiset covers (γ, ε) and basically encode

nrmπ(s)] safeπ(s) ∼>
π,mul
pop∗ nrmπ(t)] safeπ(t) .

Via the atoms γi,j , where a true assignment denotes that si is compared with
tj , we are able to enforce the separation of safe and normal arguments. Fur-
thermore, we demand that at least one atom εi for some (not erased) normal
argument position of f evaluates to a false value. This asserts a strict decrease
at a normal argument position. In addition to the usual restrictions on the
multiset cover (γ, ε), we need to assert that the cover spans only over argu-
ment positions not erased by the argument filtering. We enforce this using the
propositional formula

p(γ, ε)q =
n∧
i=1

(¬πif →
m∧
j=1

¬γi,j) ∧
m∧
j=1

(¬πjg →
n∧
i=1

¬γi,j)

∧
m∧
j=1

(πjg → one(γ1,j , . . . , γn,j)) ∧
n∧
i=1

(εi → one(γi,1, . . . , γi,n)) .

Here, the first line asserts that whenever the i-th argument position of f or the
j-th argument position of g is erased by π, then tj cannot be covered by si.
With the second line, we assess that every subterm tj of t that is not erased
by π is covered by exactly one subterm si of s. Furthermore, when si ∼ tj
(indicated by a positive valuation of εi) then besides tj no other element may
be covered by si. Exactly as in the corresponding encoding described in Section

74

7.3 Experimental Findings

7.1, the formula

pf(s1, . . . , sn) >(3c)
pop∗ g(t1, . . . , tn)qα =

pf ∈ Dq ∧ pf ∼ gq ∧ p(γ, ε)q ∧
n∨
i=1

(
πif ∧ ¬ safef,i ∧¬εi

)
∧

n∧
i=1

n∧
j=1

(
γi,j → (εi → psi

s∼ tjqα) ∧ (¬εi → psi >pop∗ tjqα)

∧ (safef,i ↔ safeg,j)
)

expresses the final clause from the definition of >πpop∗. Summing up, we define

ps >πpop∗ tq = ps >πpop tq ∨ ps >π (1, 2)
pop∗ tq ∨ ps >π (3a, b)

pop∗ tq ∨ ps >π (3c)
pop∗ tq and

ps ∼>
π
pop∗ tq = ps >πpop∗ tq ∨ ps

s∼π tq .

Let R and S be two rewrite system. In order to verify R ⊆ >πpop∗ and
S ⊆ ∼>

π
pop∗ we orient every rewrite rule ` −→ r using the propositional formulas

p` >πpop∗ rq and p` ∼>
π
pop∗ rq respectively. Also, a valid encoding of the prece-

dence and the safe argument filtering has to be enforced. Remember that pπq
asserts a valid evaluation of the employed atoms πlist

f and πif . In order to apply
>πpop∗ in the context of a dependency pair analysis as described in section 6.1,
the argument filtering >πpop∗ needs to be safe, that is π(c) = [1, . . . , n] for any
n-ary compound symbol c. For a set of compound symbols C we define

AF(C) =
∧
c∈C

πlist
c ∧

arity(c)∧
i=1

πic .

Let the propositional formula PREC be defined exactly as in Section 7.1.
Putting things together, the propositional formula

POP∗RP(R,S) = PREC(F] ∪ CCOM) ∧AF(CCOM)

∧
∧

`−→r∈R
p` >πpop∗ rq ∧

∧
`−→r∈S

p` ∼>
π
pop∗ rq

certifies the existence of a safe mapping safe, precedence % and (safe) argument
filtering π such that for the induced order >πpop∗, the inclusions R ⊆ >πpop∗ and
S ⊆ ∼>

π
pop∗ holds.

7.3 Experimental Findings

Both encodings described in Section 7.1 and Section 7.2 have been integrated
into the Tyrolean Complexity Tool (TCT for short). TCT is a complexity analyzer
written in OCaml [50] for automatically proving lower and upper bounds on the
derivational and runtime-complexity of term rewriting systems. It is strongly
based on the automatic termination prover TTT2

2. TCT, including the here
described implementations of POP∗, is open source and freely available under

2For more information on TTT2 see http://colo6-c703.uibk.ac.at/ttt2/.

75

http://colo6-c703.uibk.ac.at/ttt2/

7 Implementation Matters

http://cl-informatik.uibk.ac.at/software/tct/ .

Our implementation of POP∗ extends TCT by a total of 2221 lines of code.
Here interface-files are not take into account. From the total, 974 lines of code
are devoted to the SAT-encoding of the polynomial path order in conjunction
with semantic labeling over a finite, but else arbitrary, carrier. The imple-
mentation of the encoding of POP∗ with argument filterings takes another 499
lines of code. For the construction of the Boolean formulas we make use of the
PLogic library from TTT2 integrated into TCT. This library has been extended by
an interface for the construction and intermediate simplification of propositional
formulas in a lazy fashion, as briefly described in Section 7.1. The lazy inter-
face to PLogic takes another 236 lines of code. The remaining 512 lines of code
provide various utility functions, including a general efficient SAT-encoding of
argument filterings, precedences and safe mappings.

SAT-solvers expect their input in CNF. For a concise construction of the final
CNF formula from our constraints we employ PLogic that implements the trans-
formation proposed by Plaisted and Greenbaum [47] to obtain an equisatisfiable
CNF linear in size. This approach is analogous to Tseitin’s transformation [54]
but additionally takes the plurality of atoms into account. Satisfying assign-
ments for the resulting CNF are found by employing the state-of-the-art SAT
solver MiniSat [21].

In order to apply the polynomial path order as (safe) “reduction pair” in the
context of the dependency pair method for complexity analysis [29], we make
use of the standard implementation of weak and weak innermost dependency
pairs found in TCT. Also for the orientation of the usable rules with strongly
linear interpretations, we employ the standard implementation from TCT, which
works again via a reduction to SAT and essentially follows [24].

In its most simple setting, TCT is invoked via the shell command

tct -s 〈strategy〉 〈file〉

where 〈strategy〉 defines the employed strategy and 〈file〉 refers to the input
file specifying the input TRS. The input file needs to be in conformance with
the Termination Problem Data Base file format3. With the shell command as
given above, TCT will either output YES or MAYBE, depending on whether the
given strategy succeeds on the input file or not. A detailed proof output can be
obtained by additionally specifying the command line option -p. In conjunction
with the polynomial path order, the following strategies are of interest:

– ”pop* [-sp] [-s 〈n〉] [-i]”: Without any additional options the strategy
”pop*” defines that the input system should be oriented using an instance
of the polynomial path order. The optional switch -sp asserts that a strict
precedence is employed. Although this limits the applicability, it results
in a more concise translation to SAT.

When the optional switch -s 〈n〉 is supplied, then the input system is
transformed with semantic labeling over a finite carrier. The additional

3For more information revise http://www.lri.fr/~marche/tpdb/format.html.

76

http://cl-informatik.uibk.ac.at/software/tct/
http://www.lri.fr/~marche/tpdb/format.html

7.3 Experimental Findings

argument n > 2 defines the carrier size of the model. Finally, the op-
tional switch -i specifies that on failure, the carrier size of the employed
model should be incrementally increased. Thus, the strategy ”pop* -i”
first tries to prove compatibility of the input system with an instance of
the polynomial path order. If the orientation fails, TCT searches for a
model with carrier {0, 1} and tries to orient a labeled rewrite system. For
that, it employs the transformation to SAT as given in Section 7.1. If
this fails in turn, the carrier is set to {0, 1, 2} and the process is repeated
ad infimum. In order to abort the execution, TCT allows the specification
of a timeout in square brackets. For instance, the strategy ”pop* -i[60]”
aborts execution after 60 seconds.

– ”wdprp [-b 〈n〉] [-i]; pop*”: In its most simple form ”wdprp; pop*”, this
strategy instructs TCT to compute the weak dependency pairs and usable
rules and applies POP∗ as a reduction pair. For that, it employs the
transformation to SAT as given in Section 7.2. Furthermore compatibility
of the usable rules with a strongly linear interpretation is asserted. The
optional switch -b 〈n〉 with n > 1 specifies a bound on the employed
coefficients, the optional switch -i advises TCT to incrementally increase
the bound upon failure. The default bound is 63, that is all employed
coefficients are encoded with 8 bits.

– ”widprp [-b 〈n〉] [-i] [-fdp] [-fwdp]; pop*”: This strategy works similar to
the above strategy for weak dependency pairs, but instead weak inner-
most dependency pairs or standard dependency pairs are computed. The
latter case applies when all compound symbols from the set of weak in-
nermost dependency pairs are nullary. Via the switch -fdp construction
of standard dependency pairs are enforced, and the switch -fwdp advises
TCT to construct weak innermost dependency pairs.

We demonstrate our implementation on the rewrite system AG01/#3.23 from
the termination competition database.

Example 7.1. TCT when run on the TRS Rf from Example 6.24 with strategy
pop* -i produces the following output:

tct −p −s ”pop* -i” tpdb-4.0/TRS/AG01/#3.23.trs
YES
TRS:
{ f (0 () , y) −> 0 () ,

f (s (x) , y) −> f (f (x , y) , y)}
POP∗ :

P r e d i c a t i v e r e w r i t e system :
{

f s l =0(;0 s l =0() , y) −> 0 s l =0() ,
f s l =1(s s l =0(;x) , y ;) −> f s l =0(; f s l =0(;x , y) , y) ,
f s l =1(s s l =0(;x) , y ;) −> f s l =0(; f s l =1(x , y ;) , y)}

Safe p o s i t i o n s : s a f e (s s l =1ˆ1) = [1] ,
s a f e (s s l =0ˆ1) = [1] ,
s a f e (f s l =0ˆ2) = [1 , 2]

77

7 Implementation Matters

Precedence : f s l =1 > f s l =0

I n t e r p r e t a t i o n : 0ˆ0 :
0

f ˆ2 :
x 1 x 2 |
0 0 |0
0 1 |0
1 0 |0
1 1 |0

s ˆ1 :
x 1 |
0 |1
1 |1

Labe l ing : 0ˆ0 :
0

f ˆ2 :
x 1 x 2 |
0 0 |0
0 1 |0
1 0 |1
1 1 |1

s ˆ1 :
x 1 |
0 |0
1 |0

Qed

As visible from the output, TCT finds the labeled rewrite system Rlab and suit-
able instance >pop∗ exactly as given in Example 6.24. The labeled rewrite
system is given in predicative notation, that is a term f(t1, . . . , tn) is displayed
as f(ti1 , . . . , tip ; tj1 , . . . , tjq) where safe(f) = [i1, . . . , ip] and nrm(f) = [j1, . . . , jq]
respectively. Notice that TCT employs the notation f sl=a to denote the func-
tion symbol f with label a. Below the labeled rewrite system, the safe mapping
and precedence defining the concrete instance >pop∗ with Rlab ⊆ >pop∗ is given.
These are followed by a textual representation of the interpretation- and label-
ing functions.

7.4 Experimental Results

We have tested the implementation of our SAT-encodings on two testbeds:
Testbed C constitutes of the 638 constructor TRSs of the 1393 examples from

78

7.4 Experimental Results

the Termination Problem Database Version 4.04 that were used in the runtime-
complexity category of the termination competition 20085. We have chosen
testbed C as our main results are only stated for constructor TRSs. Further-
more, testbed FP is a meaningful subset of C in the sense that first order
functional programs can be understood as orthogonal rewrite systems [10].

All experiments were performed on a standard PC with a Intel R© Pentium
TM

IV processor of 2.66 GHz, 512kB L2 cache and 512Mb SD-RAM running under
GNU Linux 2.6. For all experiments, we have set a timeout of 10 seconds. In
the tables below, we highlight for each testbed and method the total number of
yes-instances (that is those systems that can be oriented), the total number of
maybe-instances (i.e. those examples where a proof fails) and the total number
of timeouts. Furthermore, for each method we give average orientation time of
yes-instances in seconds.

Below, we compare the polynomial path order to multiset path orders as im-
plemented in TTT2 and simple-mixed, constructor-restricted polynomial interpre-
tations [13] as implemented in TCT. For SMC, defined symbols are interpreted
by simple-mixed polynomials [13] (a restrictive form of quadratic polynomial
interpretations), whereas constructors are interpreted by weight functions. The
former comparison is meaningful as the polynomial path order is a tamed ver-
sion of MPO. For the latter, it is trivial to show that SMC interpretations induce
polynomial runtime complexities. Thus compatibility yields similar results to
our techniques.

Table 7.1: Polynomial Path Order

MPO
POP∗

SMC
strict quasi

C Yes 66 38 40 78
Maybe 572 600 598 368
Timeout 0 0 0 137

Average time 0.05 0.02 0.02 3.38

FP Yes 59 33 35 65
Maybe 321 347 345 221
Timeout 0 0 0 94

Average time 0.05 0.02 0.02 3.21

What is noteworthy is that almost two from three yes-instances of MPO can
be handled by POP∗directly. As MPO induces primitive recursive derivational
complexity (and this bound is tight), from a complexity theoretic perspective
compatibility with a polynomial path order yields a much stronger result at
a reasonable expense. SMC polynomial interpretations outperform POP∗ if
we compare numbers of yes-instances, independent on the testbed. On the

4Available at http://www.lri.fr/~marche/tpdb.
5 Cf.http://colo5-c703.uibk.ac.at:8080/termcomp.

79

http://www.lri.fr/~marche/tpdb
Cf. http://colo5-c703.uibk.ac.at:8080/termcomp.

7 Implementation Matters

other hand, POP∗ is a purely syntactic technique. Those tend to scale better
than semantic methods like polynomial interpretations. This is reflected if one
compares the number of timeouts and the average execution times. Moreover,
we also want to highlight the execution time of our implementation compared to
MPO. Even thought the definition of POP∗ relies on two separate orderings,
the average time needed for orientation of a rewrite system lies around 20
milliseconds. This is twice as fast as the implementation of MPO (and more
that 150 times faster than SMC). Compared to MPO the gain in speed seems
to be mainly due to the lazy interface to the PLogic library.

Table 7.2: Polynomial Path Order and Transformations

dependency pairs semantic labeling
WIDP WDP CS 2 CS 3 CS 4

C Yes 55 45 74 75 70
Maybe 580 590 547 408 238
Timeout 3 3 17 155 330

Average time 0.30 0.31 0.09 0.43 0.83

FP Yes 47 39 64 65 61
Maybe 331 339 300 167 226
Timeout 1 2 16 148 309

Average time 0.27 0.27 0.07 0.39 0.84

In Table 7.2 we present experimental results where the polynomial path order
is applied together with the transformation techniques as described in Chapter
6. In the first two columns we highlight the application of the polynomial path
on weak dependency pairs (column WDP) and weak innermost dependency
pairs (column WIDP). Numbers drawn reflect the total on the union of yes-
instances (maybe-instances, no-instances) given by the application of Propo-
sition 6.6 and Corollary 6.15 respectively. More precise, each yes-instance R
obeys either P ∪ U(P) ⊆ >pop∗ or U(P) ⊆ ∼>

π
pop∗, P ⊆ >πpop∗ and the side-

conditions of Corollary 6.15. Here P refers to WIDP(R) or WDP(R) depending
on the column. For the orientation, we use the propositional encoding of Section
7.2. The results indicate that polynomial path orders can certify polynomial
runtime-complexities of 55 examples in combination with WIDPs, achieving
slightly better results than in combination with WDPs.

Remark. Although reflected in our tests, polynomial path orders and weak
innermost dependency pairs do not subsume polynomial path orders in com-
bination with weak dependency pairs. For this, suppose the input system R
contains the rule f(s(x)) −→ x. Then WIDP(R) contains f](s(x)) −→ c for some
compound symbol c, whereas WDP(R) contains f](s(x)) −→ x. Fix an argu-
ment filtering π such that π(f]) = 1. Then f](s(x)) >πpop∗ x independent on
>πpop∗. To the contrary, the rule from WIDP(R) cannot be oriented, which is a
consequence of Lemma 5.12.

80

7.4 Experimental Results

In the last three columns of Table 7.2 we present the application of the
polynomial path order together with finite semantic labeling and carrier sizes
of two, three and four respectively. Here we employ the propositional encoding
from Section 7.1 generalized to arbitrary finite carriers. Best results are achieved
with carriers of size 3. Observe that increasing the carrier size above 3 results
in a decrease of the total on yes-instances. Simultaneously number of timeouts
significantly increase, which explains the drop in yes-instances. Remember that
in the encoding, we need to apply the constraint p` >pop∗ rqα for every rule
` −→ r and assignment α. That is, the encoding grows linear in the number
of rules and assignments. The latter is given by sn where s is the size of the
carrier and n the number of variables from `, which explains the high amount
of timeouts in the last column.

We conclude this Chapter with Table 7.3, where we summarize results drawn
in Table 7.1 and Table 7.2. In Table 7.3 we contrast SMC polynomial interpre-

Table 7.3: Polynomial Runtime-Complexity

SMC POP∗

direct WIDP union direct WIDP SL union

C Yes 78 83 83 40 55 75 91
Maybe 368 337 – 598 580 408 –
Timeout 137 218 – 0 3 155 –

Average time 3.38 0.71 – 0.02 0.31 0.43 –

FP Yes 65 70 70 35 39 65 78
Maybe 221 166 – 345 339 167 –
Timeout 94 144 – 0 2 148 –

Average time 3.21 0.68 – 0.02 0.27 0.39 –

tations and polynomial path orders together with selected transformations. For
a meaningful comparison of polynomial path orders and SMC polynomial inter-
pretations, we additionally state experimental results of SMC interpretations
in combination with weak innermost dependency pairs. Again we highlight
experiments resulting from Proposition 6.6 and Proposition 6.7 with SMC in
correspondence to POP∗ and WIDP. On the other hand, we do not combine
SMC with finite semantic labeling, due to the following two reasons: SMC to-
gether with finite semantic labeling is hard to implement efficiently; we do not
expect a practical increase in power by combining two semantical techniques.

Our experimental results show that weak innermost dependency pairs give 15
additional constructor TRSs from testbed C that cannot be shown compatible
with an instance >pop∗ directly. For finite semantic labeling 35 examples are
gained, and hence experimental results indicate that the strength of POP∗ is
almost doubled by labeling. In Table 7.3 we additionally highlight the union of
yes-instances, both for POP∗ and SMC. We stress that the combination of poly-
nomial path orders with transformations clearly outperform SMC polynomial

81

7 Implementation Matters

interpretations in power. The difference is even more significant if we compare
the execution time. Our experiments show that the here proposed techniques
certify a polynomial innermost runtime-complexity of 91 TRSs for testbed C,
and 78 TRSs for testbed FP respectively. That is, from our testbeds poly-
nomial path orders certify feasible complexity of approximately every seventh
system.

82

8 Related Work

The polynomial path order is to some extent related to the light multiset path
order (LMPO for short) introduced by Marion [40]. Roughly speaking the
light multiset path order is a miniaturization of the multiset path order, char-
acterizing the functions computable in polynomial time. To assert polytime
computability, LMPO relies on non-standard evaluation techniques that in-
volve eager evaluation and memoization. To the contrary, POP∗ relies only on
a standard concept from term rewriting, namely rewriting under the innermost
rewrite relation (akin to eager evaluation of functional programs). As a par-
ticular consequence, transformation techniques can be employed to boost the
strength of POP∗. For LMPO this is not entirely clear, as not rewriting steps
but evaluation steps within the above mentioned framework are counted. How-
ever, at least for finite semantic labeling, it is expected that the transformation
technique can be employed in conjunction with LMPO.

In [41] quasi-friendly sup-interpretations are introduced. As LMPO, the re-
sults presented in [41] fall into the realm of implicit complexity analysis, to
characterize the polytime computable functions. Here product path orders (a
restricted form of multiset path orders) and sup-interpretations are employed.
The latter can be conceived as a special program interpretation. These seem
reminiscent to [18], providing upper bound to recursively computed results. Ex-
perimental results from [9] indicate that quasi-friendly sup-interpretations and
POP∗ are of similar power on practical results. However as indicated above for
LMPO, we think that our Main Theorem implies a theoretical and practical
stronger result.

We have already compared the polynomial path order to SMC polynomial
interpretations in Chapter 7. Like the polynomial path order, those interpre-
tations directly yield polynomial runtime-complexities on compatible rewrite
systems. As our experiments indicate, SMC polynomial interpretations outper-
form POP∗ as a direct termination technique. To the contrary, by its syntactic
nature the polynomial path order provides a much faster automation, and by in-
corporating transformations the polynomial path order beats SMC polynomial
interpretations both in strength and in speed.

Our work seems also to some extend related to [2]. Here, it is assumed
that an affine size-change terminating program P (cf. [1]) is transformed into
an abstract program A, operating like P but on value sizes. From A a set of
constraint reflecting the runtime-complexity of P is extracted. When A ad-
mits an exact polynomial runtime-complexity, that is when for all arguments
~x the runtime-complexity is exactly p(~x) for some polynomial p, from these
constraints a precise symbolic representation of the complexity-function can
be extracted. This seems to present a severe restriction. On the other hand,
all steps can be performed in an automatic fashion, provided the abstract pro-

83

8 Related Work

gram A is given. Moreover, the approach extends naturally to other polynomial
complexity measures.

Finally, although incomparable to our approach we also want to mention [33].
In this seminal work by Hofmann a functional language is introduced, carefully
restricted such that all definable functions are computable in polynomial time.
Notably, he allows the definition of higher-order functions in his language. Poly-
time computability is asserted by a clever choice on recursion operators and a
type system that asserts linearity of expressions. It seems possible to use ideas
from [33] that circumvent the limitations of predicative recursion also in our
setting. This is subject to future research.

84

9 Conclusion

In this thesis we have covered the polynomial path order, a tamed version of
the multiset path order that certifies polynomial runtime-complexities of rewrite
systems. In particular, the inclusion R ⊆ >pop∗ certifies that the length ` of
every sequence

f(v1, . . . , vn) i−→R t1 i−→R · · · i−→R t`
with values vi is polynomially bounded in the sizes of vi. As a particular ap-
plication, this allows in principle the (automated) complexity analysis of strict
functional programs. The evaluation of such programs is naturally captured
by the innermost rewriting relation. Moreover, the polynomial path order is
complete in the sense that the class of polytime computable functions can be
identified with the class of those functions computed by certain syntactically
restricted rewrite systems compatible with POP∗.

In Chapter 6 we have combined the polynomial path order with two promi-
nent transformation techniques originally invented for the termination analysis.
As a preparation step, we have shown that the polynomial path order can be
employed for estimating polynomial derivation lengths with respect to (inner-
most) relative rewrite steps. For the special case of relative top-steps, argument
filterings can be additionally employed. Counter-intuitively, the extension to
argument filterings is a non-trivial task. By slightly extending the results es-
tablished for relative rewriting, we have shown that a pair (∼>

π
pop∗, >

π
pop∗) can

be employed as (safe) “reduction pair” in the context of [29]. Furthermore,
we briefly investigated on the combination of polynomial path order combined
with finite semantic labeling.

All those techniques give rise to an efficient implementation. In particular,
we have shown that compatibility of polynomial path orders (together with
transformations) can be reduced to SAT. All necessary steps can be performed
completely automatic. Experimental results confirm the feasibility of the here
presented approaches.

85

9 Conclusion

86

Bibliography

[1] Hugh Anderson and Siau-Cheng Khoo. Affine-based size-change termina-
tion. In Proceedings of the 3th Asian Symposium on Programming Lan-
guages and Systems, volume 2895 of Lecture Notes in Computer Science,
pages 122–140, 2003.

[2] Hugh Anderson and Siau-Cheng Khoo. Calculating polynomial runtime
properties. In Proceedings of the 5th Asian Symposium on Programming
Languages and Systems, volume 3870 of Lecture Notes in Computer Sci-
ence, pages 230–246, 2005.

[3] Elena Annov, Michael Codish, Carsten Fuhs, Jürgen Giesl, Aart Middel-
dorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl. Imple-
menting RPO and POLO using SAT. In Proceedings of Deduction and De-
cision Procedures, number 07401 in Dagstuhl Seminar Proceedings, 2007.

[4] Toshiyasu Arai and Georg Moser. Proofs of termination of rewrite systems
for polytime functions. In Proceedings of the 25th Conference on Founda-
tions of Software Technology and Theoretical Computer Science, volume
3821 of Lecture Notes in Computer Science, pages 529–540, 2005.

[5] Thomas Arts and Jürgen Giesl. Termination of term rewriting using de-
pendency pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

[6] Martin Avanzini. Scheme programs with polynomially bounded evaluation
length. Bachelor Thesis, University of Innsbruck, Faculty for Computer
Science.

[7] Martin Avanzini and Georg Moser. Complexity analysis by rewriting. In
Proceedings of the 9th International Symposium on Functional and Logic
Programming, volume 4989 of Lecture Notes in Computer Science, pages
130–146, 2008.

[8] Martin Avanzini and Georg Moser. Complexity analysis by rewriting.
Technical report, University of Innsbruck, 2008. Available under http:
//cl-informatik.uibk.ac.at/~georg/list.publications.html.

[9] Martin Avanzini, Georg Moser, and Andreas Schnabl. Automated implicit
computational complexity analysis (system description). In Proceedings of
the 4th International Joint Conference on Automated Reasoning, volume
5195 of Lecture Notes in Computer Science, pages 132–138, 2008.

[10] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

87

http://cl-informatik.uibk.ac.at/~georg/list.publications.html
http://cl-informatik.uibk.ac.at/~georg/list.publications.html

Bibliography

[11] Arnold Beckmann and Andreas Weiermann. A term rewriting character-
ization of the polytime functions and related complexity classes. Archive
for Mathematical Logic, 36:11–30, 1996.

[12] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic charac-
terization of the polytime functions. Computational Complexity, 2(2):97–
110, 1992.

[13] Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélène Touzet.
Algorithms with polynomial interpretation termination proof. Journal of
Functional Programming, 11(1):33–53, 2001.

[14] Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen. Quasi-
interpretations and Small Space Bounds. In Proceedings of the 16th In-
ternational Conference on Rewriting Techniques and Applications, volume
3467 of Lecture Notes in Computer Science, pages 150–164, 2005.

[15] Wilfried Buchholz. Proof-theoretic analysis of termination proofs. Anals
of Pure and Applied Logic, 75(1-2):57–65, 1995.

[16] Vuokko-Helena Caseiro. Equations for defining poly-time functions. PhD
thesis, University of Oslo, Faculty of Mathematics and Natural Sciences,
1997.

[17] Adam Cichon and Andreas Weiermann. Term rewriting theory for the
primitive recursive functions. Anals of Pure and Applied Logic, 83(3):199–
223, 1997.

[18] Alan Cobham. The intrinsic computational difficulty of functions. In Pro-
ceedings of the 1964 International Congress for Logic, Methodology and the
Philosophy of Science, pages 24–30, 1964.

[19] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. Solving partial order
constraints for LPO termination. In Proceedings of the 17th International
Conference on Rewriting Techniques and Applications, volume 4098 of Lec-
ture Notes in Computer Science, pages 4–18, 2006.

[20] Nachum Dershowitz. Orderings for term-rewriting systems. In Proceedings
of the 20th Annual Symposium on Foundations of Computer Science, pages
123–131, 1979.

[21] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceed-
ings of the 6th International Conference on Theory and Applications of
Satisfiability Testing, volume 2919 of Lecture Notes in Computer Science,
pages 502–518, 2003.

[22] Jörg Endrullis, Johannes Waldmann, and Hans Zantema. Matrix inter-
pretations for proving termination of term rewriting. Jornal of Automated
Reasoning, 40(2–3):195–220, 2008.

88

Bibliography

[23] M.C. Fernández Ferreira. Termination of Term Rewriting. Well-
foundedness, Totality and Transformations. PhD thesis, University of
Utrecht, Faculty for Computer Science, 1995.

[24] Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,
René Thiemann, and Harald Zankl. SAT solving for termination analysis
with polynomial interpretations. In Proceedings of the 10th International
Conference on Theory and Applications of Satisfiability Testing, volume
4501 of Lecture Notes in Computer Science, pages 340–354, 2007.

[25] Alfons Geser. Relative Termination. PhD thesis, University of Passau,
Faculty for Mathematics and Computer Science, 1990.

[26] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema.
On tree automata that certify termination of left-linear term rewriting
systems. Information and Computation, 205(4):512–534, 2007.

[27] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René Thie-
mann. Automated termination analysis for Haskell: From term rewriting
to programming languages. In Proceedings of the 17th International Con-
ference on Rewriting Techniques and Application, volume 4098 of Lecture
Notes in Computer Science, pages 297–312, 2006.

[28] Nao Hirokawa and Aart Middeldorp. Automating the dependency pair
method. Information and Computation, 199(1–2):172–199, 2005.

[29] Nao Hirokawa and Georg Moser. Automated complexity analysis based
on the dependency pair method. In Proceedings of the 4th International
Joint Conference on Automated Reasoning, volume 5195 of Lecture Notes
in Computer Science, pages 364–380, 2008.

[30] Nao Hirokawa and Georg Moser. Complexity, graphs, and the dependency
pair method. In Proceedings of the 15th International on Logic Program-
ming, Artificial Intelligence, and Reasoning, volume 5330 of Lecture Notes
in Computer Science, pages 667–681, 2008.

[31] Dieter Hofbauer. Termination proofs by multiset path orderings im-
ply primitive recursive derivation lengths. Theoretical Computer Science,
105(1):129–140, 1992.

[32] Dieter Hofbauer and Clemens Lautemann. Termination proofs and the
length of derivations. In Proceedings of the 3th International Conference
on Rewriting Techniques and Applications, volume 355 of Lecture Notes in
Computer Science, pages 167–177, 1989.

[33] Martin Hofmann. Linear types and non-size-increasing polynomial time
computation. Information and Computation, 138:57–85, 2003.

[34] Adam Koprowski and Aart Middeldorp. Predictive labeling with depen-
dency pairs using SAT. In Proceedings of the 21th International Conference
on Automated Deduction, volume 4603 of Lecture Notes in Computer Sci-
ence, pages 410–425, 2007.

89

Bibliography

[35] Adam Koprowski and Hans Zantema. Automation of recursive path order-
ing for infinite labeled rewrite systems. In Proceedings of the 2th Interna-
tional Joint Conference on Automated Reasoning, volume 4130 of Lecture
Notes in Computer Science, pages 332–346, 2006.

[36] Masahito Kurihara and Hisashi Kondo. Efficient BDD encodings for par-
tial order constraints with application to expert systems in software veri-
fication. In Proceedinsg of the 17th International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems,
volume 3029 of Lecture Notes in Computer Science, pages 827–837, 2004.

[37] Keiichirou Kusakari, Masaki Nakamura, and Yoshihito Toyama. Argument
filtering transformation. In Proceedings of the 1th International ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Programming,
volume 1702 of Lecture Notes in Computer Science, pages 47–61, 1999.

[38] Dallas. S. Lankford. On proving term rewriting systems are noetherian.
Technical report, Technical University of Louisiana, 1979.

[39] Ingo Lepper. Derivation lengths and order types of Knuth-Bendix orders.
Theoretical Computer Science, 269:433–450, 2001.

[40] Jean-Yves Marion. Analysing the implicit complexity of programs. Infor-
mation and Computation, 183:2–18, 2003.

[41] Jean-Yves Marion and Romain Péchoux. Quasi-friendly sup-
interpretations. Computing Research Repository, abs/cs/0608020, 2006.
informal publication.

[42] Jean-Yves Marion and Romain Péchoux. Analyzing the implicit computa-
tional complexity of object-oriented programs. In Proceedings of the 28th
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 08004 of Dagstuhl Seminar Pro-
ceedings, 2008.

[43] Aart Middeldorp, Hitoshi Ohsaki, and Hans Zantema. Transforming ter-
mination by self-labelling. In Proceedings of the 13th International Confer-
ence on Automated Deduction, volume 1104 of Lecture Notes in Computer
Science, pages 373–387, 1996.

[44] Georg Moser. Derivational complexity of knuth-bendix orders revised. In
Proceedings of the 13th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, volume 4246 of Lecture Notes
in Computer Science, pages 75–89, 2006.

[45] Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[46] Isabel Oitavem. New recursive characterizations of the elementary func-
tions and the functions computable in polynomial space. Revista Mathe-
matica de la Universidad Complutense de Madrid, 10:109–125, 1997.

90

Bibliography

[47] David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[48] Peter Schneider-Kamp, René Thiemann, Elena Annov, Michael Codish,
and Jürgen Giesl. Proving termination using recursive path orders and
SAT solving. In Proceedings of the 6th International Symposium Frontiers
of Combining Systems, volume 4720 of Lecture Notes in Computer Science,
pages 267–282, 2007.

[49] Helmut Schwichtenberg. An arithmetic for polynomial-time computation.
Theoretical Computer Science, 357(1–3):202–214, 2006.

[50] Joshua B. Smith. Practical OCaml. Apress, 2006.

[51] Christian Sternagel and Aart Middeldorp. Root-labeling. In Proceedings
of the 19th International Conference on Rewriting Techniques and Appli-
cations, Lecture Notes in Computer Science, pages 336–350, 2008.

[52] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 2003.

[53] René Thiemann. The DP Framework for Proving Termination of Term
Rewriting. PhD thesis, University of Aachen, Department of Computer
Science, 2007.

[54] Grigori S. Tseitin. On the complexity of derivation in propositional cal-
culus. Studies in Constructive Mathematics and Mathematical Logic II,
pages 115–125, 1968.

[55] Andreas Weiermann. Termination proofs for term rewriting systems with
lexicographic path ordering imply multiply recursive derivation lengths.
Theoretical Computer Science, 139:355–362, 1995.

[56] Harald Zankl, Nao Hirokawa, and Aart Middeldorp. Constraints for argu-
ment filterings. In Proceedings of the 33rd Conference on Current Trends
in Theory and Practice of Computer Science, volume 4362 of Lecture Notes
in Computer Science, pages 579–590, 2007.

[57] Harald Zankl and Aart Middeldorp. Satisfying KBO constraints. In Pro-
ceedings of the 18th International Conference on Rewriting Techniques and
Applications, volume 4533 of Lecture Notes in Computer Science, pages
389–403, 2007.

[58] Hans Zantema. Termination of term rewriting by semantic labelling. Fun-
damenta Informaticae, 24(1/2):89–105, 1995.

[59] Hans Zantema. Torpa: Termination of rewriting proved automatically. In
Proceedings of the 15th International Conference on Rewriting Techniques
and Application, volume 3091 of Lecture Notes in Computer Science, pages
257–266, 2006.

91

Bibliography

92

A Appendix

This chapter is a quick note on the adaption of polynomial path orders to
non-constructor TRSs.

A.1 An extension of Polynomial Path Orders

Throughout the thesis, we have assumed that the input system is a constructor
TRS. Indeed, this assumption is necessary for the definition of polynomial path
orders as presented here. Consider the following example.

Example A.1. Consider the following TRS Re written in predicative notation:

e(x;) −→ f(; g(x;))
f(; g(s(;x);)) −→ d(; g(x;))

d(;x) −→ cons1(;x, f(;x))
cons1(;x, y) −→ cons2(; f(;x), y)

g(⊥;) −→ ⊥

The above rewrite system is not a constructor TRS, as g is defined. Let safe be
the safe mapping as indicated above, and define the precedence � such that

e � g � d � cons1 � cons2 � f .

Then Re ⊆ >pop∗ for >pop∗ as induced by � and safe.
We proof that rci

Re
(n) is at least exponential. For this, it suffices to show

dl(e(sm(0)), i−→Re) > dl(f(g(sm(0))), i−→Re) > 2m .

We continue by induction on m. The base case is trivial, so assume that by
induction hypothesis dl(f(g(sm(0))), i−→Re) > 2m − 1, and we want to show
dl(f(g(sm+1(0))), i−→Re) > 2m+1 − 1. Observe that g(si(0)) ∈ NF(Re) for i ∈ N,
and thus

f(g(sm+1(0))) i−→Re d(g(sm(0)))
i−→Re cons1(g(sm(0)), f(g(sm(0))))
i−→≥ 2m−1
Re

cons1(g(sm(0)), f(g(sm(0)))↓Re
)

i−→Re cons2(f(g(sm(0))), f(g(sm(0)))↓Re
)

i−→≥ 2m−1
Re

cons2(f(g(sm(0)))↓Re
, f(g(sm(0)))↓Re

) .

The claim follows.

93

A Appendix

However, we can rectify the situation by slightly altering the definition of
polynomial path orders. Here, instead of separating defined symbols and con-
structors, we partition the signature into two sets GC and GD . Intuitively, the
set GC plays the rõle of constructors, whereas GD plays the rõle of the set of
defined symbols. Throughout the following, we fix an arbitrary TRS (R,F).
Furthermore, we use C to refer to the constructors from F , and assume that
{root(`) | ` −→ r ∈ R} ∩ C = ∅.

Definition A.2. We define the set GC(R) as the least set such that

1. C ⊆ GC(R), and

2.
⋃

Fun(`i) ⊆ GC(R) for every rule f(`1, . . . , `n) −→ r ∈ R.

Furthermore, we define GD(R) := F \ GC(R).

For brevity, we write GD and GC instead of GD(R) and GC(R) respectively.

Definition A.3. We define Aπpop and Aπpop∗ in correspondence to >πpop from
Definition 5.8 and >πpop∗ from Definition 5.9 respectively, where we replace the
set of defined symbols D by GD . Moreover, we call the precedence % admissible
if it respects the separation F = GC] GD , cf. Definition 4.2. We write wπpop∗
for Aπpop∗ ∪

s∼π.

In the following, we suppose Aπpop∗ is defined in terms of an admissible prece-
dence in the sense of Definition A.3.

Definition A.4. In correspondence to the set of values Val, we define Val′ =
T (GC ,V). Moreover, we set T ′b = {f(v1, . . . , vn) | f ∈ GD ∧ vi ∈ Val′}.

Example A.5. Reconsider Example A.1 from the beginning of this chapter.
We have GC = {g, s}. We cannot conclude Re ⊆ Apop∗ since we fail to orient
the second rule independent on the precedence.

Similar to Chapter 5, we now embed innermost rewrite steps into Ik for
sufficiently large k. We adapt the definition of predicative interpretations by
replacing Val by Val′:

Definition A.6. A predicative interpretation is a pair (S′,N′) of mappings

S′,N′ : T (F ,V)→ Seq(Fn ∪ {s},V)

defined as follows:

S′(t) =

{
∅ if t ∈ Val′

(fn(N′(tj1), . . . ,N′(tjp)) S′(ti1) · · · S′(tiq)) if t = f(t1, . . . , tn).

N′(t) = (S′(t)) @ BN(t)

Here safe(f) = {i1, . . . , iq} and nrm(f) = {j1, . . . , jp}.

Finally, we also adapt definition 5.17 accordingly:

94

A.1 An extension of Polynomial Path Orders

Definition A.7. Let Q = {f(x1, . . . , xn) −→ ⊥ | f ∈ GD} for some fresh con-
stant ⊥. We define

v′−→R = Q−→R and v′−→ε
R/S = v′−→S · v′−→ε

R · v′−→S

Similar as in Chapter 5, we can simulate innermost steps by v′−→:

Definition A.8. Without loss of generality, suppose ⊥ ∈ F is a constructor
symbol not appearing in R. We define the system U ′(R) as

U ′(R) = {f(t1, . . . , tn) −→ ⊥ | f(t1, . . . , tn) ∈ NF(R) and f ∈ GD} .

Lemma A.9. Let R and S be two TRSs. Then for S ′ = S ∪ U ′(R∪ S),

s i−→R/S t =⇒ s↓U ′(R∪S)
v′−→R/S′ t↓U ′(R∪S) .

Proof. The lemma follows by exactly same reasoning as in Lemma 5.20.

The reformulation of values implies a partitioning of R as follows.

Definition A.10. We set RB = {`→ r | ` ∈ Val′ ∧ `→ r ∈ R} and R′ = R \
RB.

A crucial observation is that for R′ it follows that for every left-hand side
`, ` ∈ T ′b . Moreover, by definition every left-hand side from RB is an element
from Val′. Observe that we can adopt Lemma 5.12 as follows:

Lemma A.11. For π(s) ∈ Val′, if s >πpop∗ t then for some position p 6= ε,
π(s)|p

s∼ π(t).

And thus, if we have R ⊆ Aπpop∗ then for `→ r ∈ RB it follows that π(r) ∈
Val′. Hence top-steps due to RB can be easily embedded into Ik via the
interpretation N′.

Lemma A.12. Assume R ⊆ Aπpop∗, and suppose s −→ε
RB t. Then

(1) S′(π(s)) I&1 S′(π(t)), and

(2) N′(π(s)) I1 N′(π(t)).

Proof. Suppose s = `σ R−→ε
RB rσ = t for some rule ` −→ r ∈ RB. From RB ⊆

Aπpop∗ together with Lemma A.11 we see that π(r) ∈ Val′. And hence, when
π(s) ∈ Val′, then π(t) ∈ Val′ and S′(π(s)) = ∅ = S′(π(t)) follows. For the case
π(s) 6∈ Val′, then either S′(π(t)) = ∅ or S′(π(s)) B S′(π(t)). For both cases it
is easy to derive the desired result. Finally, as ‖π(s)‖ > ‖π(t)‖, we also derive
N′(π(s)) I1 N′(π(t)).

Lemma A.13. Assume R ⊆ Aπpop∗. Then s −→RB t =⇒ Q(π(s)) I&1 Q(π(t))
for Q ∈ {S′,N′}.

Proof. The Lemma follows by induction with the help of Lemma A.12. In
correspondence to Lemma 5.29 we additionally employ ‖π(s)‖ > ‖π(t)‖ here.

95

A Appendix

Lemma A.14. Assume R ⊆ Aπpop∗. Then for k depending only on R′,

(1) s v′−→ε
R′ t =⇒ N′(π(s)) Ik N′(π(t)), and

(2) s v′−→R′ t =⇒ N′(π(s)) I&k N′(π(t)).

Proof. This is just Lemma 5.28 and Lemma 5.29 reformulated.

Summing up, we can proof the following:

Lemma A.15. If R ⊆ Aπpop∗, then for k depending only on R, s v′−→ε
R t =⇒

N′(π(s)) Ik N′(π(t)). Moreover, if R ⊆ wπpop∗, then for k depending only on
R, s v′−→R t =⇒ N′(π(s)) I&k N′(π(t)).

Proof. The Lemma is almost a consequence of Lemma A.13 and Lemma A.15.
The only new case is ` s∼π r for some rule l −→ r ∈ R. For this case, the result
follows as ` s∼π r (where s∼π respect the separation of F into GC and GD) implies
Ns(C[sσ]) ∼ Ns(C[tσ]) for any context C, substitution σ and Ns ∈ {S′,N′}.

A.2 Counting Dependency Pair Steps

The above observations suffice for an embedding of i−→ε
P/U(P) into I+

k . We
can strengthen the observation for weak and weak innermost dependency pairs,
provided we only consider derivations starting from t ∈ T #

b . In correspondence
to Section 6.1 we adapt interpretation N′ for compound symbols:

Definition A.16. The extended predicative interpretation

N′s : T (F ∪ CCOM,V)→ Seq(Fn ∪ {s},V)

is defined as follows:

N′s(t) =

{
(N′s(t1) · · · N′s(tn)) if t = c(t1, . . . , tn) and c is a compound symbol
(N′(t)) otherwise.

In the following, let P denote the weak or weak innermost dependency pairs
of R.

Lemma A.17. Suppose P is compatible with Aπpop∗, i.e. suppose P ⊆ Aπpop∗
holds. Then, for sufficiently large k depending only on R,

s v′−→ε
P t =⇒ N′s(π(s)) Ik N′s(π(t)) .

Proof. The proof equals the proof of Lemma 6.11, where we replace the appi-
cation of Lemma 5.28 by Lemma A.15.

Lemma A.18. Let R be a TRS compatible with wπpop∗, i.e R ⊆ wπpop∗ holds.
Let Q ∈ {S,N}. Then for k depending only on R,

s v−→R t =⇒ N′s(π(s)) I&k N′s(π(t)) .

96

A.2 Counting Dependency Pair Steps

Proof. The Lemma follows by similar reasoning as in Lemma 6.13. Here we
simply replace the application of Lemma 5.29 by Lemma A.15.

Finally, for contexts build from compound symbols we derive an embedding
into the strict relation Ik:

Lemma A.19. Suppose P is compatible with Aπpop∗, i.e. suppose P ⊆ Aπpop∗
holds. Then for k depending only on R,

s v−→ε
P t =⇒ N′s(π(C[u1, . . . , s, . . . , un])) Ik N′s(π(C[u1, . . . , t, . . . , un]))

for every safe argument filtering π and context C ∈ T (CCOM ∪ {�},V) build
from compound symbols.

Proof. Cf. Lemma 6.12.

Theorem A.20. If P ⊆ Aπpop∗ and U(P) ⊆ wπpop∗ then there exists a polynomial
p with

dl(t], i−→P/U(P)) 6 p(|t|)

for any constructor-based term t ∈ Tb. The polynomial p depends only on R.

Proof. Let t ∈ Tb, and assume a maximal derivation

t] = t]0
i−→P/U(P) t

]
1

i−→P/U(P) . . .
i−→P/U(P) t

]
` .

Consider a relative step t]i
i−→P/U(P) t

]
i+1 for i ∈ {1, . . . , `− 1}. We abbreviate

U ′(P ∪ U(P)) by V. Define U = U(P) ∪ V, and observe t′i
v′−→ε
P/U t′i+1 for

t′j = t]j↓V according to Lemma A.9. Hence there exists terms u and v such that

t′i
P ∪ U−−−→∗U u P ∪ U−−−→P v P ∪ U−−−→∗U t′i+1 .

Next observe that N′s(π(t′i)) I&
∗
k N′s(π(u)) and likewise N′s(π(v)) I&∗k N′s(π(t′i+1)),

which follows from Lemma A.18 and the shape of V (cf. Lemma 5.21). From
the shape of P and the assumption t ∈ Tb we conclude that for some context C ∈
T (CCOM∪{�},V), we have u = C[u]1, . . . , u

]
i , . . . , u

]
p] and v = C[u]1, . . . , v

]
i , . . . , u

]
p]

with u]i
v−→ε
P v

]
i . From Lemma A.19 we conclude N′s(π(u)) Ik N′s(π(v)). Sum-

ming up, we derive

N′s(π(t′i)) I
+
k N′s(π(t′i+1))

due to compatibility of Ik with ∼.
From the above, we derive dl(t], i−→P/U(P)) 6 Gk(N′s(π(t]↓V))). It can be

verified that the latter is bounded polynomially in the size of t, and we conclude
the theorem.

97

A Appendix

A.3 POP∗ as Direct Method

In the preceding section we have seen that R can be partitioned into R′ and
RB. Suppose R ⊆ Apop∗ (here Apop∗ refers to Aπpop∗ where π = id). We have
shown that s i−→R′ t implies N′(s) I+

k N′(t) (this is just Lemma 5.33), whereas
for s i−→RB t we can only show N′(s) I&+

k N′(t) (cf. Lemma A.13). However, the
number of RB-steps in an innermost R derivation is tightly controlled by the
number of R′ steps. Consider the following Lemma.

Lemma A.21. Suppose R ⊆ Apop∗.

dl(t, i−→R) 6 (dl(t, i−→R′/RB) + 1)2 ∗ (4R + 1) + |t|

where 4R = max{|r| | ` −→ r ∈ R}.

Proof. Let w(t) = dl(t, R−→RB), and consider the following claim.

Claim. s R−→R′ t implies w(t) 6 w(s) + depth(s) +4R.

Proof of claim. Suppose s = C[`σ], t = C[rσ] and `→ r ∈ R′ such that `iσ ∈
NF(R) for ` = f(`1, . . . , `m). We continue by induction on C. For the base
case, suppose C = �. We continue by induction on r and show the stronger
result w(rσ) 6 |r|. The base case r ∈ V is trivial since then rσ ∈ NF(R) and

RB ⊆ R. So assume rσ = g(r1σ, . . . , rmσ). We have w(rσ) 6 Σm
j=1w(riσ)+1

IH
6

Σm
j=1|ri|+ 1 = |r| and conclude the base case of the claim.
For the inductive step, suppose C[�] = g(s1, . . . , C ′[�], . . . , sm) and thus t =

g(s1, . . . , C ′[rσ], . . . , sm). We have w(s) =
∑

j 6=iw(si)+w(C ′[`σ]) (as we cannot
apply a rule from RB at the root), likewise w(t) 6

∑
j 6=iw(si) +w(C ′[rσ]) + 1.

By induction hypothesis w(C ′[rσ]) 6 w(C ′[`σ]) + depth(C ′[`σ]) + 4R. As
depth(s) > depth(C ′[`σ]) we conclude the claim.

Now consider a maximal sequence of i−→R steps starting from a term t, without
loss of generality of the form

t = t0
R−→l0
RB s0

R−→R′ t1 R−→l1
RB . . . sm−1

R−→R′ tm R−→lm
RB sm .

Clearly, m 6 dl(t, i−→R′/RB), moreover notice that li 6 w(ti) − w(si) for all i.
Observe that si R−→R′ ti+1 implies depth(ti+1) 6 depth(si) + 4R, and more-
over ti+1

R−→li+1

RB si+1 implies depth(si+1) 6 depth(ti+1), we see depth(si+1) 6
depth(si) +4R. Hence

∑m−1
i=0 depth(si) 6 m2 ∗ 4R, a fact we employ below.

98

A.3 POP∗ as Direct Method

Summing up all observations, we derive

m∑
i=0

li 6
m−1∑
i=0

(w(ti+1)− w(si+1)) + l0

6
m−1∑
i=0

(w(si) + depth(si) +4R − w(si+1)) + l0

= m ∗ 4R +
m−1∑
i=0

(w(si)− w(si+1)) +
m−1∑
i=0

depth(si) + l0

= m ∗ 4R + w(s0) +m2 ∗ 4R + l0

6 (m+ 1)2 ∗ 4R + w(s0) + l0

6 (m+ 1)2 ∗ 4R + w(t)

6 (m+ 1)2 ∗ 4R + |t|

As m is bounded by dl(t, i−→R′/RB) and dl(t, i−→R) =
∑m

i=0 li +m we derive the
desired result.

Theorem A.22. If R ⊆ Apop∗ then there exists a polynomial p with

dl(t, i−→R) 6 p(|t|)

for any constructor-based term t ∈ Tb. The polynomial p depends only on R.

Proof. By Lemma A.21 dl(t, i−→R) 6 |t|+dl(t, i−→R′/RB)∗4R where4R depends
only on R. For s i−→R′/RB t have N′(s) I+

k N′(t) by the observation from the
beginning of the section , and thus dl(t, i−→R) 6 |t| + (Gk(t) + 1)2 ∗ c for some
constant c ∈ N. The latter follows from Lemma A.21. As for t ∈ Tb, Gk(t) is
bounded by a polynomial in the size of t, we conclude the theorem.

99

	Introduction
	Preliminaries
	Orders
	Term Rewriting

	The Polynomial Path Order on Sequences
	The Polynomial Path Order POP
	The Polynomial Path Order and Relative Rewriting
	A Simulation of Innermost Steps
	The Embedding of Top-Steps
	The Embedding of Arbitrary Steps
	Controlling the Growth Rate of Term-Sizes

	Transformation Techniques
	POP and Dependency Pairs
	POP and Semantic Labeling

	Implementation Matters
	POP Semantic Labeling
	POP and Dependency Pairs
	Experimental Findings
	Experimental Results

	Related Work
	Conclusion
	Bibliography
	Appendix
	An extension of Polynomial Path Orders
	Counting Dependency Pair Steps
	POP as Direct Method

