
POP∗ and Semantic Labeling using SAT?

Martin Avanzini1

Institute of Computer Science, University of Innsbruck, Austria,
martin.avanzini@uibk.ac.at

Abstract. The polynomial path order (POP∗ for short) is a termina-
tion method that induces polynomial bounds on the innermost runtime
complexity of term rewrite systems (TRSs for short). Semantic labeling
is a transformation technique used for proving termination.
In this paper, we propose an efficient implementation of POP∗ together
with finite semantic labeling. This automation works by a reduction to
the problem of boolean satisfiability. We have implemented the technique
and experimental results confirm the feasibility of our approach. By se-
mantic labeling the analytical power of POP∗ is significantly increased.

1 Introduction

Term rewrite systems (TRSs for short) provide a conceptually simple but pow-
erful abstract model of computation. In rewriting, proving termination is a long
standing research field. Consequently, termination techniques applicable in an
automated setting have been introduced quite early. Early research concentrated
mainly on direct termination techniques [24]. One such technique is the use of
recursive path orders, for instance the multiset path order (MPO for short) [11].
Nowadays, the emphasis shifted toward transformation techniques like the de-
pendency pair method [2] or semantic labeling [26]. These methods significantly
increase the possibility to automatically verify termination.

Many termination techniques can be used to analyse the complexity of rewrite
systems. For instance, Hofbauer was the first to observe that termination via
MPO implies the existence of a primitive recursive bound on the derivational
complexity [15]. Here the derivational complexity of a TRS measures the maximal
number of rewrite steps as a function in the size of the initial term. For the
study of lower complexity bounds we recently introduced in [4] the polynomial
path order (POP∗ for short). This order is in essence a miniaturization of MPO,
carefully crafted to induce polynomial bounds on the number of rewrite steps
(c.f. Theorem 1), whenever the initial term is argument-normalised (aka basic).

In this work, we show how to increase the analytical power of POP∗ by se-
mantic labeling [26]. The idea behind semantic labeling is to label the function
symbols of the analysed TRS R with semantic information so that proving ter-
mination of the labeled TRSRlab becomes easier. The transformation is termina-
tion preserving and reflecting. More precisely, every derivation of R is simulated

? This research is supported by FWF (Austrian Science Fund) projects P20133.

step-by-step by Rlab. Thus, besides analysing the termination behavior of R, the
TRS Rlab can also be employed for investigating the complexity of R.

In order to obtain the labeled TRS Rlab from R, one needs to define suit-
able interpretation- and labeling-functions for all function symbols appearing in
R. Naturally, these functions have to be chosen such that the employed direct
technique — in our case POP∗— is applicable to the labeled system. To find a
properly labeled TRS Rlab automatically, we extend the propositional encoding
of POP∗ presented in [4]. Satisfiability of the constructed formula certifies the
existence of a labeled system Rlab that is compatible with POP∗. As we have
implemented the technique, the feasibility of our approach is confirmed. More-
over, experimental evidence indicates that the analytical power of polynomial
path orders is significantly improved.

The automation of semantic labeling together with some base order is not
essentially new. For instance, an automation of semantic labeling together with
recursive path orders has already been given in [17]. Unfortunately, this approach
is inapplicable in our context as the resulting TRS is usually infinite here. Like
many syntactic techniques, soundness of polynomial path orders is restricted
to finite TRSs. To achieve that Rlab is finite, we restrict interpretation- and
labeling-functions to finite domains.

We structure the remainder of this paper as follows: In Section 2 we recall
basic notions and briefly introduce the reader to polynomial path orders POP∗.
In Section 3 we show how polynomial path orders together semantic labeling can
be efficiently automated. In Section 4 we present experimental results, and we
conclude in Section 5.

2 The Polynomial Path Order

We briefly recall the basic concepts of term rewriting, for details [8] provides
a good resource. Let V denote a countably infinite set of variables and F a
signature, that is a set of function symbols with associated arities. The set of
terms over F and V is denoted by T (F ,V). We write � for the subterm relation,
the converse is denoted by �, the strict part of � by �.

A term rewrite system (TRS for short) R over T (F ,V) is a set of rewrite
rules l → r such that l, r ∈ T (F ,V), l 6∈ V and all variables of r also appear
in l. In the following, R always denotes a TRS. If not mentioned otherwise, R
is finite. A binary relation on T (F ,V) is a rewrite relation if it is closed under
contexts and substitutions. The smallest extension of R that is a rewrite relation
is denoted by →R. The innermost rewrite relation i−→R is the restriction of →R
where innermost terms have to be reduced first. The transitive and reflexive
closure of a rewrite relation → is denoted by →∗ and we write s →n t for the
contraction of s to t in n steps. We say thatR is (innermost) terminating if there
exists no infinite chain of terms t0, t1, . . . such that ti →R ti+1 (ti

i−→R ti+1) for
all i ∈ N.

The root symbols of left-hand sides of rewrite rules in R are called defined
symbols and collected in D(R), while all other symbols are called constructor

2

symbols and collected in C(R). A term f(s1, . . . , sn) is basic if f ∈ D(R) and
s1, . . . , sn ∈ T (C(R),V). We write Tb(R) for the set of all basic terms over R. If
every left-hand side of R is basic then R is called constructor TRS. Constructor
TRSs allow us to model the computation of functions in a very natural way.

Example 1. Consider the constructor TRS Rmult defined by

add(0, y)→ y mult(0, y)→ 0

add(s(x), y)→ s(add(x, y)) mult(s(x), y)→ add(y,mult(x, y)).

Rmult defines the function symbols add and mult, i.e. D(R) = {add,mult}. Natu-
ral numbers are represented using the constructor symbols C(R) = {s, 0}. Define
the encoding function p·q : Σ∗ → T (C(R),∅) by p0q = 0 and pn+ 1q = s(pnq).
Then for all n,m ∈ N, mult(pnq, pmq) i−→∗R pn ∗mq. We say that Rmult com-
putes multiplication (and addition) on natural numbers. For instance, the system
admits the innermost rewrite sequence

mult(s(0), 0) i−→ add(0,mult(0, 0)) i−→ add(0, 0) i−→ 0 ,

computing 1∗0 = 0. Note that for the second term, the innermost redex mult(0, 0)
is reduced first.

In [19] it is proposed to conceive the complexity of a rewrite system R as
the complexity of the functions computed by R. Whereas this view falls into
the realm of implicit complexity analysis, we conceive rewriting under R as the
evaluation mechanism of the encoded function. Thus it is natural to define the
runtime complexity based on the number of rewrite steps admitted by R. Let |s|
denote the size of a term s. The (innermost) runtime complexity of a terminating
rewrite system R is defined by

rcR(m) = max{n | ∃s, t. s i−→n t, s ∈ Tb(R) and |s| 6 m} .

To verify whether the runtime complexity of a rewrite system R is polyno-
mially bounded, we employ polynomial path order. Inspired by the recursion-
theoretic characterization of the polytime functions given in [9], polynomial path
orders rely on the separation of safe and normal inputs. For this, the notion
of safe mappings is introduced. A safe mapping safe associates with every n-
ary function symbol f the set of safe argument positions. If f ∈ D(R) then
safe(f) ⊆ {1, . . . , n}, for f ∈ C(R) we fix safe(f) = {1, . . . , n}. The argument
positions not included in safe(f) are called normal and denoted by nrm(f). A
precedence is an irreflexive and transitive order on F . The polynomial path order
>pop∗ is an extension of the auxiliary order >pop, both defined in the following
two definitions. Here we write >= for the reflexive closure of an order >, further
(>)mul denotes its multiset-extension (c.f. [8]).

Definition 1. Let > be a precedence and let safe be a safe mapping. We define
the order >pop inductively as follows: s = f(s1, . . . , sn) >pop t if one of the
following alternatives hold:

3

1. si >
=
pop t for some i ∈ {1, . . . , n}, and if f ∈ D(R) then i ∈ nrm(f), or

2. t = g(t1, . . . , tm), f ∈ D(R), f > g and s >pop ti for all 1 6 i 6 m.

Definition 2. Let > be a precedence and let safe be a safe mapping. We define
the polynomial path order >pop∗ inductively as follows: s = f(s1, . . . , sn) >pop∗ t
if one of the following alternatives hold:

1. s >pop t, or
2. si >

=
pop∗ t for some i ∈ {1, . . . , n}, or

3. t = g(t1, . . . , tm), f ∈ D(R), f > g and
– s >pop∗ tj0 for some j0 ∈ safe(g), and
– for all j 6= j0, either s >pop tj or s� tj and j ∈ safe(g), or

4. t = f(t1, . . . , tm), f ∈ D(R) and
– [si1 , . . . , sip] (>pop∗)mul [ti1 , . . . , tip] for nrm(f) = {i1, . . . , ip}, and
– [sj1 , . . . , sjq] (>=

pop∗)mul [tj1 , . . . , tjq] for safe(f) = {j1, . . . , jq}.

Here [t1, . . . , tn] denotes the multiset with elements t1, . . . , tn. When R ⊆ >pop∗
holds, we say that >pop∗ is compatible with R. The main theorem from [4] states:

Theorem 1. Let R be a finite, constructor TRS compatible with >pop∗, i.e.,
R ⊆ >pop∗. Then the runtime complexity of R is polynomial. The polynomial
depends only on the cardinality of F and the sizes of the right-hand sides in R.

We conclude this section by demonstrating the application of POP∗ on the TRS
Rmult. Below we write 〈i〉 for the i-th case of Definition 2.

Example 2. Reconsider the rewrite system Rmult from Example 1. Consider the
safe mapping safe where the second argument of addition is safe (safe(add) =
{2}) and all arguments of multiplication are normal (safe(mult) = ∅). Further-
more, let the precedence > be defined as mult > add > s > 0.

In order to verify compatibility for this particular instance >pop∗ we need to
show that all the rules inRmult are strictly decreasing, i.e., l >pop∗ r holds for l→
r ∈ Rmult. To exemplify this, consider the rule add(s(x), y)→ s(add(x, y)). From
s(x) >pop∗ x by rule 〈2〉 we infer [s(x)] (>pop∗)mul [x]. Furthermore [y] (>=

pop∗)mul

[y] holds and thus by rule 〈4〉 we obtain add(s(x), y) >pop∗ add(x, y). From add >
s we finally conclude add(s(x), y) >pop∗ s(add(x, y)) by one application of rule
〈3〉. As a consequence of Theorem 1, the number of rewrite steps starting from
mult(pnq, pmq) is polynomially bounded in n and m.

3 A Propositional Encoding of POP∗ and Finite Semantic
Labeling

Before we investigate the propositional encoding of polynomial path orders and
semantic labeling, we briefly explain basic notions of semantic labeling as intro-
duced in [26].

Semantics is given to a TRS R by defining a model. A model is an F-algebra
A, i.e. a carrier A equipped with operations fA : An → A for every n-ary symbol

4

f ∈ F , such that for every rule l → r ∈ R and any assignment α : V → A, the
equality [α]A(l) = [α]A(r) holds. Here [α]A(t) denotes the interpretation of t
with assignment α, recursively defined by

[α]A(t) =

{
α(t) if t ∈ V
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn) .

The system R is labeled according to a labeling ` for A, i.e. a set of mappings
`f : An → A for every n-ary function symbol f ∈ F .1 For every assignment α,
the mapping labα(t) is defined by

labα(t) =

{
t if t ∈ V
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn)

where a = `f ([α]A(t1), . . . , [α]A(tn)). The labeled TRS Rlab is obtained by label-
ing all rules for all assignments α:

Rlab = {labα(l)→ labα(r) | l→ r ∈ R and assignment α}.

The main theorem from [26] states that Rlab is terminating if and only if R is
terminating. In particular, it is shown that

s→R t ⇐⇒ labα(s)→Rlab
labα(t)

holds for α an arbitrary assignment.
To simplify the presentation, we consider only algebras B with carrier B =

{>,⊥} here, although in principle the approach works for arbitrary finite car-
riers. To encode a Boolean function b : Bn → B, we make use of unique propo-
sitional atoms bw1,...,wn for every sequence of arguments w1, . . . , wn ∈ Bn. The
atom bw1,...,wn denotes the result of applying arguments w1, . . . , wn to b. For
each sequence a1, . . . , an of propositional formulas, we denote by pbq(a1, . . . , an)
the following formula: when n = 0, we set pbq = bε. For n > 0, we set

pbq(a1, . . . , an) =
∧

w1,...,wn∈Bn

((n∧
i=1

wi ↔ ai
)
→ bw1,...,wn

)
.

Consider the constraint pbq(a1, . . . , an)↔ r, and suppose ν is a satisfying assign-
ment. One easily verifies that the encoded function b satisfies b(w1, . . . , wn) =
ν(bw1,...,wn) = ν(r) for w1 = ν(a1), . . . , wn = ν(an). We use this observation
below to impose restrictions on interpretation- and labeling-functions.

For every assignment α : V → B and term t appearing in R we introduce the
atoms intα,t and labα,t for t 6∈ V. The meaning of intα,t is the result of [α]B(t) for
the encoded model B, labα,t denotes the label of the root symbol of the labeled

1 The definition from [26] allows the labeling of a subset of F and leave other symbols
unchanged. In our context, this has no consequence and simplifies the translation.

5

term labα(t). To ensure for terms t = f(t1, . . . , tn) and assignments α a correct
valuation of intα,t and labα,t respectively, we introduce constraints

INTα(t) = intα,t ↔ pfBq(intα,t1 , . . . , intα,tn), and

LABα(t) = labα,t ↔ p`fq(intα,t1 , . . . , intα,tn).

Furthermore, we set INTα(t) = intα,t ↔ α(t)2 for t ∈ V. The above constraints
have to be enforced for every term appearing in R. This is covered by

LAB(R) =
∧
α

(∧
R�t

(INTα(t) ∧ LABα(t)) ∧
∧

l→r∈R

(intα,l ↔ intα,r)
)

.

Above � is extended to TRSs in the obvious way: R � t if l � t or r � t for
some rule l → r ∈ R. Notice that

∧
l→r∈R (intα,l ↔ intα,r) enforces the model

condition.

Assume ν is a satisfying assignment for LAB(R) and Rlab denotes the system
obtained by labeling R according to the encoded labeling and model. In order
to show compatibility of Rlab with POP∗, we need to find a precedence > and
safe mapping safe such that Rlab ⊆ >pop∗ holds for the induced order >pop∗. To
compare the labeled versions labα(s) and labα(t) of two concrete terms s, t ∈
T (F ,V) under a particular assignment α, i.e., to check labα(s) >pop∗ labα(t), we
define

ps >pop∗ tqα = ps >(1)
pop∗ tqα ∨ ps >(2)

pop∗ tqα ∨ ps >(3)
pop∗ tqα ∨ ps >(4)

pop∗ tqα.

Here ps >(i)
pop∗ tq refers to the encodings of the case 〈i〉 from Definition 2. We

discuss the cases 〈2〉 – 〈4〉, case 〈1〉, the comparison using the weaker order >pop,
is obtained similarly. The above definition relies on the following auxiliary con-
straints. For every labeled symbol fa ∈ Flab and argument position i of f , we
encode i ∈ safe(fa) by a propositional atom safefa,i. For every unlabeled symbol
f ∈ F and formula a representing the label, the formula SF(fa, i) (respectively
NRM(fa, i)) assesses that depending on the valuation of a, the i-th position of
f> or f⊥ is safe (normal). Similar, for f, g ∈ F and propositional formulas a
and b, the formula pfa > gbq ensures fν(a) > fν(b) in the precedence for satisfy-
ing assignment ν. For the latter, we follow the standard approach of encoding
precedences on function symbols, compare for instance [23].

Notice that si = t if and only if labα(si) = labα(t). Thus case 〈2〉 is perfectly

captured by pf(s1, . . . , sn) >
(2)
pop∗ tqα = > if si = t holds for some si. Otherwise,

we define pf(s1, . . . , sn) >
(2)
pop∗ tqα =

∨n
i=1psi >pop∗ tqα. For the encoding of the

third clause in Definition 2, we introduce fresh atoms δj for each argument posi-
tion j of g. The formula one(δ1, . . . , δm) assures that exactly one atom δj is true.
This particular atom marks the unique safe argument position j of g(t1, . . . , tm)
with the strong comparison labα(s) >pop∗ labα(tj) allowed. We express clause

2 We also use > and ⊥ to denote truth and falsity in propositional formulas.

6

〈3〉 by the propositional formula

pf(s1, . . . , sn) >
(3)
pop∗ g(t1, . . . , tm)qα = pflabα,s > glabα,tq ∧ one(δ1, . . . , δm)

∧
m∧
j=1

((
δj → ps >pop∗ tjqα ∧ SF(glabα,t , j)

)
∧
(
¬δj → ps >pop tjqα ∨ ps� tjq ∧ SF(glabα,t , j)

))
for g ∈ D(R). Here ps� tiq = > when s� ti holds, and otherwise ps� tiq = ⊥.
This is justified as the subterm relation is closed under labeling. Note that in
the above encoding of clause 〈3〉, we assume that the labeled root symbol flabα,s
is a defined symbol of Rlab. For the case that flabα,s is not defined, we add a rule
flabα,s(x1, . . . , xn)→ c with c a fresh constant to the analysed system Rlab. The
latter rule is oriented if we additionally require flabα,s > c in the precedence. For

instance, the constraint pmult(s(x), y) >
(3)
pop∗ add(y,mult(x, y))qα unfolds to

pmultl1 > addl2qα ∧ one(δ1, δ2)

∧
(
δ1 → pmult(s(x), y) >pop∗ yqα ∧ SF(gl2 , 1)

)
∧
(
¬δ1 → pmult(s(x), y) >pop yqα ∨ > ∧ SF(gl2 , 1)

)
∧
(
δ2 → pmult(s(x), y) >pop∗ mult(x, y)qα ∧ SF(gl2 , 2)

)
∧
(
¬δ2 → pmult(s(x), y) >pop mult(x, y)qα ∨ ⊥ ∧ SF(gl2 , 2)

)
for corresponding labels l1 and l2 depending on the encoded model. Additionally
we require pmult> > cq and pmult⊥ > cq to orient the added rules.

To encode the final clause 〈4〉 from Definition 2, we make use of multiset cov-
ers [23]. A multiset cover is a pair of total mappings γ : {1, . . . , n} → {1, . . . , n}
and ε : {1, . . . , n} → B, encoded using fresh atoms γi,j and εi. The underlying
idea is that for the comparison [s1, . . . , sn] (>=

pop∗)mul [t1, . . . , tn] to hold, every
term tj has to be covered by some term si (encoded by γij), either by si = tj
or si >pop∗ tj . The former situation is encoded by ¬εi, the latter by εi. For the
case si = tj , si must not cover any element besides tj . We set

p(γ, ε)q =

m∧
j=1

one(γ1,j , . . . , γn,j) ∧
n∧
i=1

(εi → one(γi,1, . . . , γi,m)) .

Based on this encoding of multiset covers, case 〈4〉 is now expressible as

pf(s1, . . . , sn) >
(4)
pop∗ f(t1, . . . , tn)qα =

(labα,s ↔ labα,t) ∧ p(γ, ε)q ∧
n∨
i=1

(
NRM(flabα,s , i) ∧ ¬εi

)
∧

n∧
i=1

n∧
j=1

(
γi,j →

(
(SF(flabα,s , i)↔ SF(flabα,t , j))

∧ (εi → psi = tjq) ∧ (¬εi → psi >pop∗ tjqα)
))

.

7

The constraint
∨n
i=1

(
NRM(flabα,s , i) ∧ ¬εi

)
is used so that at least one normal

argument decreases. Assuming STRICT(R) and SMSL(R) cover the restrictions
on the precedence and safe mapping, satisfiability of

POP∗SL(R) =
∧
α

∧
l→r∈R

pl >pop∗ rqα ∧ SM(R) ∧ STRICT(R) ∧ LAB(R)

certifies the existence of a model B and labeling ` such that the rewrite system

R′lab = Rlab ∪ {fa(x1, . . . , xn)→ c | f ∈ D(R) and fa ∈ C(Rlab)}

is compatible with >pop∗. The encoding is sound in the following sense.

Theorem 2. Suppose the propositional formula POP∗SL(R) is satisfiable. Then
Rlab ⊆ >pop∗ for some (finite) labeled rewrite system Rlab and polynomial path
order >pop∗.

Since every rewrite sequence of R is simulated step-by-step by Rlab we obtain:

Corollary 1. Let R be a finite constructor TRS. Suppose the propositional for-
mula POP∗SL(R) is satisfiable. Then the induced (innermost) runtime complexity
of R is polynomial.

4 Experimental Results

We have implemented the encoding of POP∗ with semantic labeling (denoted
by POP∗SL below) in OCaml. We compare this implementation to the imple-
mentation without labeling from [4] (denoted by POP∗) and an implementation
of a restricted class of polynomial interpretations (denoted by SMC). To check
satisfiability of the obtained formulas we employ the MiniSat SAT-solver [12].

SMC refers to a restrictive class of polynomial interpretations: Every con-
structor symbol is interpreted by a strongly linear polynomial, i.e., a polynomial
of shape P (x1, . . . , xn) = Σn

i=1xi + c with c ∈ N, c > 1. Furthermore, each
defined symbol is interpreted by a simple-mixed polynomial P (x1, . . . , xn) =
Σij∈0,1ai1...inx

i1
1 . . . x

in
n + Σn

i=1bix
2
i with coefficients in N. Unlike for the gen-

eral case, these restricted interpretations induce polynomial bounds on the run-
time complexity. To find such interpretation functions automatically, we employ
cdiprover3 [20].

Table 1 presents experimental results based on two testbeds. Testbed T
constitutes of the 957 examples from the Termination Problem Database 4.03

(TPDB) that were automatically verified terminating in the competition of
20074. Testbed C is a restriction of T where only constructor TRSs have been
considered (449 in total). All experiments were conducted on a PC with 512 MB
of RAM and a 2.4 GHz Intel® Pentium� IV processor.

3 Available at http://www.lri.fr/~marche/tpdb.
4 C.f. http://www.lri.fr/~marche/termination-competition/2007/.

8

http://www.lri.fr/~marche/tpdb
http://www.lri.fr/~marche/termination-competition/2007/

Table 1. Experimental results on TPDB 4.0.

POP∗ POP∗
SL SMC

T C T C T C

Yes 65 41 128 74 156 83
Maybe 892 408 800 370 495 271
Timeout (60 sec.) 0 0 29 5 306 95

Average Time Yes (sec.) 0.037 0.130 0.183

Table 1 confirms that semantic labeling significantly increases the power of
POP∗, yielding comparable results to SMC. What is noteworthy is that the union
of yes-instances of the three methods constitutes of 218 examples for testbed T
and 112 for testbed C. For these 112 out of 449 constructor TRSs we are able
to conclude a polynomial runtime complexity. Interestingly, POP∗SL and SMC
succeed on a quite different range of systems. There are 29 constructor TRSs
that only POP∗SL can deal with, whereas 38 constructor yes-instances of SMC
cannot be handled by POP∗SL. Table 1 reflects that for both suites SMC runs
into a timeout for approximately every fourth system. This indicates that purely
semantic methods similar to SMC tend to get impractical when the size of the
input system increases. Compared to this, the number of timeouts of POP∗SL is
rather low.

We perform various optimizations in our implementation: First of all, the con-
straints can be reduced during construction. Further, it is beneficial to lazily con-

struct the overall constraint. For example, the formula pf(s1, . . . , sn) >
(2)
pop∗ siqα

reduces to >. Hence pf(s1, . . . , sn) >pop∗ siqα = > can be concluded without
constructing encodings for the remaining cases in Definition 2. Furthermore,
s >pop∗ t is doomed to failure if t contains variables not appearing in s. For this
case, we replace the corresponding constraint by ⊥. SAT-solvers expect their
input in CNF (worst case exponential in size). We employ the transformation
proposed in [21] to obtain an equisatisfiable CNF linear in size. This approach
is analogous to Tseitin’s transformation [25] but the resulting CNF is usually
shorter as the plurality of atoms is taken into account.

5 Conclusion

In this paper we have shown howto automatically verify polynomial runtime
complexities of rewrite systems. For that we employ semantic labeling and poly-
nomial path orders. Our automation works by a reduction to SAT and employing
a state-of-the-art SAT-solver. To our best knowledge, this is the first SAT encod-
ing of some recursive path order with finite semantic labeling. The experimental
results confirm the feasibility of our approach. Moreover, they demonstrate that
by semantic labeling we significantly increase the power of polynomial path or-
ders.

9

Our research seems comparable to [10], where recursive path orders together
with strongly linear polynomial quasi-interpretations are employed in the com-
plexity analysis. In particular, they have a fully automatable (but of course
incomplete) procedure to verify whether the functions computed by the TRS
under consideration are feasibly, i.e., polytime, computable. Opposed to [10],
we study the length of derivations here. In [7] it is shown that polynomially
bounded innermost runtime-complexity entails polytime computability of the
functions defined. As a by-product of Corollary 1, [7] gives us a procedure for
the complexity analysis of the functions defined. Finally, we also mention that
semantic labeling over a Boolean carrier has been implemented in the termina-
tion prover TPA [16], where heuristics are used to find an appropriately labeled
TRS Rlab. Unlike their approach, we leave all choices concerning the labeling to
a state-of-the-art SAT-solver.

In the meantime, polynomial path orders have been extended in various ways.
Inspired by the concept of predicative recursion and parameter substitution (see
[9]), [6] extends polynomial path orders, widening their applicability. Our in-
tegration of semantic labeling naturally translates to this extension. Second,
polynomial path orders can also be defined over quasi-precedences, compare [5].
Further, in [5] polynomial path orders have been combined with weak depen-
dency pairs [14], a version of the dependency pair method suitably adapted
for the study of runtime-complexities. In principle, this allows the use of those
techniques that were developed in the context of dependency pairs for termina-
tion analysis, also for complexity analysis. In [5] we exploit two such techniques,
namely argument filterings [18] and the usable rules criterion [2]. All above men-
tioned extensions have been implemented in the Tyrolean Complexity Tool, an
open source complexity analyser for TRSs5.

Finally, we conclude with an application of our research. There is a long
interest in the functional programming community to automatically verify com-
plexity properties of programs. For brevity, we just mention [22,1,10]. Rewriting
naturally models the evaluation of functional programs, and the termination be-
havior of functional programs via transformations to rewrite systems has been
extensively studied. For instance, one recent approach is described in [13] where
Haskell programs are covered. In joint work with Hirokawa, Middeldorp and
Moser [3] we propose a translation from (a pure subset of higher-order) Scheme
programs to term rewrite systems. The transformation is designed to be complex-
ity preserving and thus allows the study of the complexity of a Scheme program
P by the analysis of the transformed rewrite system R. Hence from compatibility
of R with POP∗ we can directly conclude that the number of evaluation steps
of the Scheme program P is polynomially bounded with respect to the input
sizes. All necessary steps can be performed mechanically and thus we arrive at
a completely automatic complexity analysis for (a pure subset of) Scheme, and
eagerly evaluated functional programs in general.

5 For further information, see http://cl-informatik.uibk.ac.at/software/tct/.

10

http://cl-informatik.uibk.ac.at/software/tct/

References

1. H. Anderson, S. Khoo, S. Andrei, and B. Luca. Calculating polynomial runtime
properties. In Proc. 3th APLAS, volume 3780 of LNCS, pages 230–246. Springer,
2005.

2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS,
236(1-2):133–178, 2000.

3. M. Avanzini, N. Hirokawa, A. Middeldorp, and G. Moser. Proving termination of
scheme programs by rewriting. Draft available at http://cl-informatik.uibk.

ac.at/~zini/publications/SchemeTR07.pdf.
4. M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. 9th FLOPS,

volume 4989 of LNCS, pages 130–146. Springer, 2008.
5. M. Avanzini and G. Moser. Dependency pairs and polynomial path orders. In

Proc. 20th RTA, volume 5595 of LNCS, pages 48–62. Springer, 2009.
6. M. Avanzini and G. Moser. Polynomial path orders and the rules of predicative

recursion with parameter substitution. In Proc. 10th WST, 2009.
7. M. Avanzini and G. Moser. Complexity analysis by graph rewriting. In Proc. 11th

FLOPS, LNCS. Springer, 2010. To appear.
8. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.
9. S. Bellantoni and S. A. Cook. A new recursion-theoretic characterization of the

polytime functions. CC, 2:97–110, 1992.
10. G. Bonfante, J. Marion, and R. Pchoux. Quasi-interpretation synthesis by decom-

position. In Proc. 4th ICTAC, volume 4711 of LNCS, pages 410–424. Springer,
2007.

11. N. Dershowitz. Orderings for term-rewriting systems. In 20th Annual Symposium
on Foundations of Computer Science, pages 123–131. IEEE, 1979.

12. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. 6th SAT, volume
2919 of LNCS, pages 502–518. Springer, 2003.

13. J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated termi-
nation analysis for Haskell: From term rewriting to programming languages. In
Proc. 17th RTA, volume 4098 of LNCS, pages 297–312. Springer, 2006.

14. N. Hirokawa and G. Moser. Automated complexity analysis based on the depen-
dency pair method. In Proc. 4th IJCAR, volume 5195 of LNCS, pages 364–380.
Springer, 2008.

15. D. Hofbauer. Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS, 105(1):129–140, 1992.

16. A. Koprowski. Tpa: Termination proved automatically. In Proc. 17th RTA, volume
4098 of LNCS, pages 297–312. Springer, 2006.

17. A. Koprowski and A. Middeldorp. Predictive labeling with dependency pairs using
SAT. In Proc. 21th CADE, volume 4603 of LNCS, pages 410–425. Springer, 2007.

18. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.
In Proc. 1th PPDP, volume 1702 of LNCS, pages 47–61. Springer, 1999.

19. P. Lescanne. Termination of rewrite systems by elementary interpretations. Formal
Aspects of Computing, 7(1):77–90, 1995.

20. G. Moser and A. Schnabl. Proving quadratic derivational complexities using con-
text dependent interpretations. In Proc. 19th RTA, volume 5117 of LNCS, pages
276–290. Springer, 2008.

21. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293–304, 1986.

11

http://cl-informatik.uibk.ac.at/~zini/publications/SchemeTR07.pdf
http://cl-informatik.uibk.ac.at/~zini/publications/SchemeTR07.pdf

22. M. Rosendahl. Automatic complexity analysis. In Proc. 4th FPCA, pages 144–156,
1989.

23. P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving
termination using recursive path orders and SAT solving. In Proc. 6th FroCoS,
volume 4720 of LNCS, pages 267–282. Springer, 2007.

24. TeReSe. Term Rewriting Systems, volume 55 of CTTCS. Cambridge University
Press, 2003.

25. G. Tseitin. On the complexity of derivation in propositional calculus. SCML, Part
2, pages 115–125, 1968.

26. H. Zantema. Termination of term rewriting by semantic labelling. FI, 24(1/2):89–
105, 1995.

12

	POP and Semantic Labeling using SAT
	Martin Avanzini

