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Introduction We are concerned with the average case runtime complexity analysis of a prototypical
imperative language PWHILE in the spirit of Dijkstra’s Guarded Command Language. This language
is endowed with primitives for sampling and probabilistic choice so that randomized algorithms can be
expressed. Complexity analysis in this setting is particularly appealing as efficiency is one striking reason
why randomized algorithms have been introduced and studied: in many cases, the most efficient algorithm
for the problem at hand is randomized [5].

Our staring point towards an automated analysis is the ert-calculus of Kaminski et al. [4], which
constitutes a sound and complete method for deriving expected runtimes of probabilistic programs. The
ert-calculus has been recently automated within [6], showing encouraging results. Indeed, their prototype
Absynth can derive accurate bounds on the expected runtime of a wealth of non-trivial, albeit academic,
imperative programs with probabilistic choice. Since the average case runtime of probabilistic programs
is inherently non-modular (see e.g. [4]), different program fragments cannot be analysed in general
independently within the ert-calculus. This work aims at overcoming this situation, by enriching the
calculus with a form of expected value analysis. Conceptually, our result rests on the observation that if f
and g measure the runtime of deterministic programs C and D as a function in the variables assignment
σ before executing the command, then f (σ) + g(σ ′) for σ ′ the store after the execution of C gives
the runtime of the composed command C;D. Estimating σ ′ in terms of C and σ , and ensuring some
monotonicity property on g, gives rise to a compositional analysis. When C exhibits some probabilistic
behavior though, the command D may be executed after C on several probabilistic branches b, each with
probability pb with a variable assignment σb. Assuming bounding functions f and g on the expected
runtime of C and D respectively, yields a bound f (σ)+∑b pb · g(σb) on the expected runtime of the
probabilistic program C;D. As the number of probabilistic branches b is unbounded for all but the most
trivial programs C, estimating all assignments σb in terms of σ soon becomes infeasible. The crux of
our approach towards a compositional analysis lies in the observation that if we can give the runtime
of D in terms of a concave function (i.e., described by a multi-linear polynomial), the expected runtime
∑b pb ·g(σb) can be bounded in terms of g and the variable assignment ∑b pb ·σb expected after executing
C. This way, a compositional analysis is recovered. This observation then also enables some form of
modularity for the analysis of nested loops.

To prove this machinery sound, we first give a novel structural operational semantics in terms of
weighted probabilistic ARSs. These constitute a refinement to probabilistic ARSs introduced by Bournez
and Garnier [2] where operations do not necessarily have uniform cost. Probabilistic ARSs give rise to
a reduction relation on (multi-)distributions that is equivalent to the standard operational semantic via
stochastic processes [1]. We then generalise the ert-calculus to one for reasoning about expected costs
consumed by a command tick(·), and expected values in final configurations. This machinery is proven
sound and complete with respect to our new operational semantics. Finally, we conclude with some words
on a prototype implementation that we are currently developing.
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〈tick(r)〉(σ)
r−→ σ

[TICK]
〈x := d〉(σ)

0−→ {{pi : σ [x := i] | i ∈ Z, pi = JdK(σ)(i) > 0}}
[ASSIGN]

σ � ψ ∧φ

〈if [ψ] (φ) {C} {D}〉(σ)
0−→ 〈C〉(σ)

[IFT]
σ � ψ ∧¬φ

〈if [ψ] (φ) {C} {D}〉(σ)
0−→ 〈D〉(σ)

[IFF]

σ � ψ ∧φ

〈while [ψ] (φ) {C}〉(σ)
0−→ 〈C;while [ψ] (φ) {C}〉(σ)

[WHT]
σ � ψ ∧¬φ

〈while [ψ] (φ) {C}〉(σ)
0−→ σ

[WHF]

σ � ¬ψ

〈if [ψ] (φ) {C} {D}〉(σ)
0−→⊥

[ABORTIF]
σ � ¬ψ

〈while [ψ] (φ) {C}〉(σ)
0−→⊥

[ABORTWHILE]

〈{C} <> {D}〉(σ)
0−→ 〈C〉(σ)

[CHOICEL]
〈{C} <> {D}〉(σ)

0−→ 〈D〉(σ)
[CHOICER]

〈{C}[p]{D}〉(σ)
0−→ {{p : 〈C〉(σ),1− p : 〈D〉(σ)}}

[PROBCHOICE]

〈C〉(σ)
r−→ {{pi : γi}}i∈I

〈C;D〉(σ)
r−→ {{pi : stepD(γi)}}i∈I

[COMPOSE] where stepD(γ),


〈C;D〉(σ) if γ = 〈C〉(σ)

〈D〉(σ) if γ = σ ∈ Σ

⊥ if γ =⊥.

Figure 1: One-step reduction relation as a weighted probabilistic ARS.

A Probabilistic While Language For a finite set of integer-valued variables Var, we denote by Σ ,
Var→ Z the set of stores. The syntax of program commands Cmd over Var is given as follows:

C,D ::= tick(r) | x := d | if [ψ] (φ) {C} {D} | while [ψ] (φ) {C} | {C} <> {D} | {C}[p]{D} | C;D .

In this grammar, φ ∈ BExp denotes a Boolean expression over Var and d ∈ DExp an Integer-valued
distribution expression over Var. With J·K : DExp→ Σ→ D(Z) we denote the evaluation functions of
distribution expressions, i.e., JdK(σ) gives the result of evaluating d under the current store σ , resulting
in a probability distribution over Z. For Boolean expressions JφK ∈ BExp and σ ∈ Σ, we indicate with
σ � φ that φ holds when the variables in φ take values according to σ . Program commands are fairly
standard. The command tick(r) consumes r ∈ Q+ resource units but otherwise acts as a no-op. The
command x := d assigns a value sampled from d(σ) to x, for σ the current store. This generalises the
usual non-probabilistic assignment x := e for e an integer expression. The commands if [ψ] (φ) {C} {D}
and while [ψ] (φ) {C} have the usual semantics, with ψ being an invariant. Here, an invariant holds
along all probabilistic branches (e.g. probabilistic choice over-approximated with non-determinism) and
can in practice be inferred with off-the shelf methods. In case that ψ does not hold, the program terminates
abnormally. The command {C} <> {D} executes either C or D, in a non-deterministic fashion. In contrast,
the probabilistic choice {C}[p]{D} executes C with probability 0≤ p≤ 1 and D with probability 1− p.

We give the small step operational semantics for our language via a (weighted) probabilistic ARS −→
over configurations Conf , (Cmd×Σ)∪Σ∪{⊥}. Elements (C,σ) ∈ Conf are denoted by 〈C〉(σ) and
signal that the command C is to be executed under the current store σ , whereas σ ∈ Conf and ⊥ ∈ Conf
indicate that the computation has halted, abnormally in the latter case. The probabilistic ARS−→ is depicted
in Figure 1. In this reduction system, rules have the form γ

w−→ µ for γ ∈ Conf and µ a multidistribution
over Conf, i.e., countable multisets of the form {{pi : γi}}i∈I for probabilities 0 < pi ≤ 1 with ∑i∈I pi ≤ 1
and γi ∈ Conf (i ∈ I). A rule γ

w−→ {{pi : γi}}i∈I signals that γ reduces with probability pi to γi, consuming
cost w. By identifying dirac multidistributions {{1 : γ}} with γ , we may write γ

w−→ γ ′ for a reduction step
without probabilistic effect. The weighted one-step reduction relation of −→ is defined by (i) µ

0−→→ µ ,
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etc[skip]( f ), f

etc[tick(r)]( f ), [[[c]]] ··· r+++ f

etc[abort]( f ), 0

etc[x := d]( f ), λσ .EJdK(σ)(λ i. f (σ [x := i]))

etc[if [ψ] (φ) {C} {D}]( f ), [[[ψ ∧φ ]]] ··· etc[C]( f )+++[[[ψ ∧¬φ ]]] ··· etc[D]( f )

etc[while [ψ] (φ) {C}]( f ), µF.[[[ψ ∧φ ]]] ··· etc[C](F)+++[[[ψ ∧¬φ ]]] ··· f

etc[{C} <> {D}]( f ),max(etc[C]( f ),etc[D]( f ))

etc[{C}[p]{D}]( f ), p ··· etc[C]( f )+++(1−p) ··· etc[D]( f )

etc[C;D]( f ), etc[C](etc[D]( f ))

Figure 2: Definition of expectation transformer etc[·] : C→ T→ T.

(ii) {{1 : γ}} w−→→ µ if γ
w−→ µ , and (iii)

⊎
i∈I pi · µi

w−→→
⊎

i∈I pi · νi where w = ∑i∈I pi ·wi, µi
wi−→ νi for all

i ∈ I and ∑i∈I pi ≤ 1 for probabilities 0 < pi ≤ 1. Here,
⊎

i∈I pi ·µi denotes the countable convex union of
multidistributions µi (i∈ I), e.g., 1

2 ·{{1 : a}}] 1
2 ·
{{1

3 : a, 1
2 : b

}}
=
{{1

2 : a, 1
6 : a, 1

4 : b
}}

. Finally, with w−→→ ∗

we denote the weighted multi-step reduction relation defined by µ
w−→→ ∗ ν if µ = µ0

w1−−→→ ·· · wn−−→→ µn = ν

and w = ∑
n
i=1 wi. Expected cost and value functions for f : Σ→ R∞

≥0 are defined by

ec[C](σ), sup{w | 〈C〉(σ)
w−→→ ∗

µ} ev[C](σ)( f ), sup{Eµ�Σ( f ) | 〈C〉(σ)
w−→→ ∗

µ} ,

where µ�Σ denotes the restriction of µ to elements of Σ and Eν( f ), ∑i∈I pi · f (ai) gives the expected
value of f with respect to ν = {{pi : ai}}i∈I .

Expectation Transformers To overcome the problems concerning composability, Kaminski et al. [4]
express the expected runtime in continuation passing style, via an expectation transformer ert[·] : C→
T→ T over expectations T, Σ→ R∞

≥0. Given the cost f of executing a program fragment D, ect[C]( f )
computes the cost of first executing C and then D. We suite this transformer to two transformers ect[C]
and evt[C] that compute the expected cost and expected value function of the program C, respectively.
Their definition coincide up to the case where C = tick(r), the former taking into account the cost r
while the latter is ignoring it. We thus generalise ect[·] : Cmd→ T→ T and evt[·] : Cmd→ T→ T to
a function etc[C] and set ect[C] , et>[C] and evt[C] , et⊥[C], where etc[C] is given in Figure 2. Here,
functions f : (R∞

≥0)
k→ R∞

≥0 are extended pointwise on expectations and denoted in bold face, e.g., for
each r ∈ R∞

≥0 we have a constant function r(σ) , r, f +++ g , λσ . f (σ)+ g(σ) for f ,g ∈ T etc. For
φ ∈ BExp we use Iverson’s bracket [φ ] to denote the expectation function [φ ](σ) , 1 if σ � φ , and
[φ ](σ) , 0 otherwise. Finally, with µF.e we denote the least fixed point of the function λF.e : T→ T
with respect to the pointwise ordering � on expectations. It can be shown that (T,�) forms an ω-CPO
with bottom element 0 and top element ∞∞∞, and that the transformer etc[C] is ω-continuous. Consequently,
etc[C] is well-defined.

We note that evt[C] coincides with the weakest precondition transformer wp[C] of Olmedo et al. [7]
on fully probabilistic programs, i.e., those without non-deterministic choice. In contrast to evt[C], wp[C]
minimises over non-deterministic choice.

For expectations f , we suite the function etc[·]( f ) : Cmd→ Σ→ R∞
≥0 to a function etc( f ) : Conf→

R∞
≥0 by etc( f )(〈C〉(σ)), etc[C]( f )(σ), etc( f )(σ), f (σ) and etc( f )(⊥), 0. The following constitutes

our first technical result. What it tells us is that etc[·]( f ) decreases in expectation along reductions, taking
into account the cost of steps in the case of ect[·]( f ).
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Theorem 1. Eµ(etc( f )) = sup{[c] ·w+Eν(etc( f )) | µ w−→→ ∗ ν}.
To prove this theorem, we first show its variations based on the probabilistic ARS −→ and the single-

step reduction relation −→→ . Both of these intermediate results follow by a straight forward induction on the
corresponding reduction relation. The following is then immediate:

Corollary 1 (Soundness and Completeness of Expectation Transformers). For all commands C ∈ Cmd
and stores σ ∈ Σ, (i) ec[C](σ) = ect[C](0)(σ) and (ii) ev[C](σ)( f ) = evt[C]( f )(σ).

By (i), the expected cost of running C is given by ect[C](0). When C does not contain loops, the latter
is easily computable. To treat loops, Kaminski et al. [4] propose to search for upper invariants: I f : T
is an upper invariant for C= while [ψ] (φ) {D} with respect to f ∈ T if it is a pre-fixpoint of the cost
through which etc[C]( f ) is defined.

Proposition 1 ([4]). [[[ψ ∧φ ]]] ··· etc[D](I f )+++[[[ψ ∧¬φ ]]] ··· f � I f =⇒ etc[while [ψ] (φ) {D}]( f )� I f .

This immediately suggests the following two stage approach towards an automated expected runtime
analysis of a program C via Corollary 1(i): In the first stage, one evaluates etc[C](0) symbolically on some
form of cost expressions CExp, generating constraints according to Proposition 1 whenever a while-loop
is encountered. Based on the collection of generated constraints, in the second phase concrete upper
invariants can be synthesised. From these, a symbolic upper bound to the expected cost ec[C] can be
constructed. Conceptually, this is the approach taken by Absynth [6], where ert[C] is formulated in terms
of a Hoare style calculus, and CExp is amendable to Linear Programming.
Towards A Compositional Analysis With Proposition 1 alone it is in general not possible to modularize
this procedure so that individual components can be treated separately. In particular, nested loops generate
mutual constraints that cannot be solved independently. Of course, this situation is in general unavoidable
as the problem itself is inherently non-modular. Nevertheless, with Theorem 2 drawn below, we give
conditions under which this global analysis can be broken down into a local one.

For expectations ~g = g1, . . . ,gk and f : (R∞
≥0)

k→ R∞
≥0, let us denote the composition λσ . f (~g(σ)) by

f ◦~g. Call f concave if f (p ·~r+(1− p) ·~s)≥ p · f (~r)+(1− p) · f (~s) (where 0≤ p≤ 1) and (weakly)
monotone if~r ≥~s implies f (~r)≥ f (~s). The following presents our central observation:

Lemma 1. ect[C](g ◦ (g1, . . . ,gk))� ec[C]+++g ◦ (evt[C](g1), . . . ,evt[C](gk)) if g is monotone and concave.

The intuition behind this lemma is as follows. The functions gi : σ → R∞
≥0, also referred to as norms,

represent an abstract view on program stores σ . In the most simple case, gi could denote the absolute
value of the ith variable. If g measures the expected resource consumption of D in terms of gi, i.e.,
ec[D](σ)≤ g(g1(σ), . . . ,gk(σ)), by monotonicity of ect[C] this lemma tells us then that

ec[C;D](σ)≤ ect[C](g ◦ (g1, . . . ,gk))(σ)≤ ec[C](σ)+g(evt[C](g1)(σ), . . . ,evt[C](gk)(σ)) .

The expected cost of C;D is thus the expected cost of C, plus the expected cost of D measured in the values
evt[C](gi) of the norms gi expected after executing C. Note that concavity can be dropped when C admits
no probabilistic behaviour. Combining this lemma with Proposition 1 then yields:

Theorem 2. For monotone and concave g,
[[[ψ ∧φ ]]] ···

(
ec[C]+++g ◦ (evt[C](g1), . . . ,evt[C](gk))

)
� g ◦ (g1, . . . ,gk)

∧ [[[ψ ∧¬φ ]]] ··· f � g ◦ (g1, . . . ,gk) =⇒ ect[while [ψ] (φ) {C}]( f )� g ◦ (g1, . . . ,gk) .

Implementation At the moment, we are working on a prototype implementation that accepts PWHILE

programs with finite distributions over integer expressions a in probabilistic assignments. Integer and cost
expressions c,d ∈ CExp over variables x ∈ Var, z ∈ Z, constants q ∈Q≥0 are given as follows:

a,b ::= x | z | a+b | a∗b | . . . c,d ::= q | nat(a) | [[[φ ]]] · c | c+d | c ·d |max(c,d)
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Norms nat(a) lift expressions that depend on the store to cost expressions. For brevity, the interpretation
of norms is fixed to nat(a) , max(0,a). All other operations are interpreted in the expected way. We
denote the evaluation function of cost expressions also by J·K : CExp→ Σ→Q≥0. Notice that JcK ∈ T.
To automate the cost inference of programs we provide a variation of the expectation transformer,
et]c[·] : Cmd→ CExp→ CExp (as well as ect] and evt]), sound in the following sense:

Theorem 3. etc[C](J f K)� Jet]c[C]( f )K, for all commands C ∈ Cmd and cost expressions f ∈ CExp.

The function et]c[·] is defined along the way of etc[·] from Figure 2. As an example consider the
assignment which is defined by et]c[x := {p1 : a1, . . . , p2 : ak}]( f ), ∑16i6k pi · f [x/ai]. To obtain closed-
form expressions on while loops we make use of decomposition (cf. Theorem 2) and should that fail
upper invariants (cf. Proposition 1). Notably, using decomposition we can define a recursive strategy that
infers bounds on loops individually. We comment on the application of Theorem 2 in the implementation.
Assume that we want to compute ect][while [ψ] (φ) {C}]( f ). First, we compute g = ect][C](0). We
heuristically select norms g1, . . . ,gk based on the invariants and conditions of the program (e.g. nat(x− y)
for condition x > y). Second, we recursively compute hi = evt][C](gi) for all gi. We have ect[C](0)� JgK
and evt[C](JgiK)� JhiK. Third, we express the necessary conditions as constraints over cost expressions:

ψ ∧φ � g+h ◦ (h1, . . . ,hk)6 h ◦ (g1, . . . ,gk)

ψ ∧¬φ � f 6 h ◦ (g1, . . . ,gk) .

A constraint φ � c 6 d holds if JφK � JcK � JdK holds for all states. When generating constraints only
h is unknown. To obtain a concrete cost expression for h we follow the method presented in [3]. Here
h is a template expression with undetermined coefficients qi (e.g. λhi→ ∑qi ·hi), and we search for an
assignment such that all constraints hold and qi > 0. We apply case-elimination and case-distinction
to reduce the problem φ � c 6 d to inequality constraints of polynomials. For example, given a norm
nat(a) = max(0,a) we eliminate max when we can show that JaK > 0 for all states that satisfy φ . The
obtained inequality constraints of polynomials have undetermined coefficient variables. We reduce the
problem to certification of non-negativity, which can then be solved using SMT solvers.
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