Small Polynomial Path Orders in TCT*

Martin Avanzini¹, Georg Moser¹, and Michael Schaper¹

1 Institute of Computer Science, University of Innsbruck, Austria {martin.avanzini,georg.moser,michael.schaper}@uibk.ac.at

— Abstract -

1998 ACM Subject Classification F.2.2, F.4.1, F.4.2, D.2.4, D.2.8

Keywords and phrases Runtime Complexity, Polynomial Time Functions, Rewriting

1 Introduction

In [2] we propose the small polynomial path order (sPOP^{*} for short). This order provides a characterisation of the class of polytime computable function via term rewrite systems (TRSs for short). Any polytime computable function is expressible as a constructor TRS which is compatible with (an instance of) sPOP^{*}. On the other hand, any function defined by a constructor TRS compatible with sPOP^{*} is polytime computable. This order has also ramifications in the *automated complexity analysis* of rewrite systems. The *innermost runtime complexity* of any constructor TRS \mathcal{R} compatible with sPOP^{*} lies in $O(n^d)$. Here $d \in \mathbb{N}$ refers to the maximal depth of recursion of defined symbols f in \mathcal{R} .

This work deals with the implementation of sPOP^* in the *Tyrolean complexity tool*¹ (*T*_C*T* for short). The order has been extended to relative rewriting, and takes also usable arguments [6] into account. As by-product, we obtain a form of *reduction pair* from sPOP^* . Such reduction pairs can be used in the *dependency pair* analysis of Hirokawa and the second author [5] and Noschinski et al. [7]. For details and proofs we refer the reader to [1].

2 Small Polynomial Path Orders

We assume familiarity with rewriting [3]. Let \mathcal{R} be a TRS over a signature \mathcal{F} , with defined symbols in \mathcal{D} . Constructors are denoted by $\mathcal{C} := \mathcal{F} \setminus \mathcal{D}$. Further, let $\mathcal{K} \subseteq \mathcal{D}$ denote a set of recursive symbols, and let \gtrsim denote a a (quasi)-precedence on \mathcal{F} . We denote by > and ~ the proper order and equivalence underlying \gtrsim . We call the precedence \gtrsim admissible for sPOP^{*} if it retains the partitioning of \mathcal{F} in the following sense. If $f \sim g$ then $f \in \mathcal{C}$ implies $g \in \mathcal{C}$, likewise, $f \in \mathcal{K}$ implies $g \in \mathcal{K}$. Small polynomial path orders embody the principle of predicative recursion [4] on compatible TRSs. To this end, arguments of every function symbol are partitioned into normal and safe ones. Notationally we write $f(t_1, \ldots, t_k; t_{k+1}, \ldots, t_{k+l})$ with normal arguments t_1, \ldots, t_k separated from safe arguments t_{k+1}, \ldots, t_{k+l} by a semicolon. For constructors, we fix that all argument positions are safe. We define the equivalence \approx_s on terms respecting this separation as follows: $s \approx_s t$ holds if s = t or $s = f(s_1, \ldots, s_k; s_{k+1}, \ldots, s_{k+l})$ and $t = g(t_1, \ldots, t_k; t_{k+1}, \ldots, t_{k+l})$ where $f \sim g$ and $s_i \approx_s t_i$ holds for all $i = 1, \ldots, k+l$. We write $s \bowtie_{\approx} t$ if t is a subterm (modulo \approx_s) of a normal argument of s.

^{*} This work is partially supported by FWF (Austrian Science Fund) project I-608-N18.

¹ T_CT is open source and available from http://cl-informatik.uibk.ac.at/software/tct.

The following definition introduces small polynomial path orders, also accounting for parameter substitution [2]. We denote by $\mathcal{T}(\mathcal{F}^{\leq f}, \mathcal{V})$ the set of terms built from variables and function symbols $\mathcal{F}^{\leq f} := \{g \in \mathcal{F} \mid f > g\}.$

▶ Definition 2.1. Let $s = f(s_1, \ldots, s_k; s_{k+1}, \ldots, s_{k+l})$. Then $s >_{\mathsf{spop}_{ps}} t$ if either

- 1) $s_i \gtrsim_{spop_{ps}^*} t$ for some argument s_i of s.
- 2) $f \in \mathcal{D}, t = g(t_1, \ldots, t_m; t_{m+1}, \ldots, t_{m+n})$ with f > g and the following conditions hold: (i) $s \bowtie_{\approx} t_j$ for all normal arguments t_j of t, (ii) $s >_{\mathsf{spop}_{ps}^*} t_j$ for all safe arguments t_j of t, and (iii) $t_j \notin \mathcal{T}(\mathcal{F}^{< f}, \mathcal{V})$ for at most one $j \in \{1, \ldots, k+l\}$.
- 3) $f \in \mathcal{K}, t = g(t_1, \ldots, t_k; t_{k+1}, \ldots, t_{k+l})$ with $f \sim g$ and the following conditions hold: (i) $\langle s_1, \ldots, s_k \rangle >_{\mathsf{spop}_{\mathsf{ps}}}^{\mathsf{prod}} \langle t_1, \ldots, t_k \rangle$, (ii) $s >_{\mathsf{spop}_{\mathsf{ps}}} t_j$ for all safe arguments t_j $(j = k+1, \ldots, k+l)$, and (iii) $t_j \in \mathcal{T}(\mathcal{F}^{< f}, \mathcal{V})$ for all $j = 1, \ldots, k+l$.

Here \geq_{spop^*} denotes the extension of $>_{spop_{ps}^*}$ by safe equivalence \approx_s . Further, $>_{spop_{ps}^*}^{prod}$ denotes the product extension of $>_{spop_{ps}^*}$: $\langle s_1, \ldots, s_n \rangle >_{spop_{ps}^*}^{prod} \langle t_1, \ldots, t_n \rangle$ if $s_i \gtrsim_{spop^*} t_i$ for all $i = 1, \ldots, n$, and $s_{i_0} >_{spop_{ps}^*} t_{i_0}$ for some $i_0 \in \{1, \ldots, n\}$.

The depth of recursion $\mathsf{rd}_{\geq,\mathcal{K}}(f)$ of $f \in \mathcal{F}$ is recursively defined by $\mathsf{rd}_{\geq,\mathcal{K}}(f) := 1 + d$ if $f \in \mathcal{K}$ and $\mathsf{rd}_{\geq,\mathcal{K}}(f) := d$ if $f \notin \mathcal{K}$, where $d = \max\{0\} \cup \{\mathsf{rd}_{\geq,\mathcal{K}}(g) \mid f > g\}.$

▶ Proposition 2.2 ([2]). Let \mathcal{R} be a constructor TRS compatible with an instance $>_{spop_{ps}}$ based on an admissible precedence \gtrsim with recursive symbols \mathcal{K} . Then the innermost runtime complexity of \mathcal{R} lies in $O(n^d)$, where $d = \max\{0\} \cup \{\mathsf{rd}_{\geq,\mathcal{K}}(f) \mid f \in \mathcal{D}\}$.

3 Polynomial Path Orders as Complexity Processors

Our tool TCT operates internally on *complexity problems* $\mathcal{P} = \langle S/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$, where $S, \mathcal{W}, \mathcal{Q}$ are TRSs and \mathcal{T} denotes a set of ground terms. The set \mathcal{T} is called the set of *starting terms* of \mathcal{P} . Throughout the following, this complexity problem is kept fixed. The *complexity* (function) $cp_{\mathcal{P}} : \mathbb{N} \to \mathbb{N}$ of \mathcal{P} is defined as the partial function

$$\mathsf{cp}_{\mathcal{P}}(n) := \max\{\mathsf{dh}(t, \underbrace{\mathcal{Q}}_{\mathcal{S}/\mathcal{W}}) \mid \exists t \in \mathcal{T} \text{ and } |t| \leq n\}.$$

Here $\mathcal{Q}_{S/\mathcal{W}} := \mathcal{Q}_{\mathcal{W}} \cdot \mathcal{Q}_{S} \cdot \mathcal{Q}_{\mathcal{W}}$ denotes the \mathcal{Q} -restricted rewrite relation of S relative to \mathcal{W} , where $\mathcal{Q}_{\mathcal{R}}$ is the restriction of $\rightarrow_{\mathcal{R}}$ where all proper subterms of the redex are in \mathcal{Q} normal form. We call the complexity problem \mathcal{P} a runtime complexity problem if all terms in \mathcal{T} are basic, i.e., of the form $f(t_1, \ldots, t_k)$ for $f \in \mathcal{D}$ and constructor terms t_1, \ldots, t_k . It is called an *innermost complexity problem* if all normal forms of \mathcal{Q} are normal forms of $S \cup \mathcal{W}$.

A (complexity) judgement is a statement $\vdash \mathcal{P} \colon f$ where \mathcal{P} is a complexity problem and $f \colon \mathbb{N} \to \mathbb{N}$. This judgement is valid if $\mathsf{cp}_{\mathcal{P}}$ is defined on all inputs, and $\mathsf{cp}_{\mathcal{P}} \in \mathcal{O}(f)$. A complexity processor is an inference rule

$$\frac{\vdash \mathcal{P}_1 \colon f_1 \quad \cdots \quad \vdash \mathcal{P}_n \colon f_n}{\vdash \mathcal{P} \colon f}$$

This processor is *sound* if $\vdash \mathcal{P}$: f is valid whenever the judgements $\vdash \mathcal{P}_1$: $f_1, \ldots, \vdash \mathcal{P}_n$: f_n are valid. We follow the usual convention and annotate side conditions as premises to inference rules. An inference of $\vdash \mathcal{P}$: f using sound processors is called a *complexity proof*. If this inference admits no assumptions, then the judgement $\vdash \mathcal{P}$: f is valid.

In the following, we propose a complexity processors based on sPOP^* that operates on innermost runtime complexity problems. In essence, this processor requires that $\mathcal{W} \subseteq \gtrsim_{\text{spop}_{sc}^*}$

and $S \subseteq >_{\mathsf{spop}_{p^s}}$ holds, and that W and S are constructor TRSs. If these requirements are met, then the complexity of \mathcal{P} lies in $\mathcal{O}(n^d)$ for $d \in \mathbb{N}$ the maximal depth of recursion as in Proposition 2.2. To weaken monotonicity requirements, we integrate *argument filterings* into the order. The argument filtering is constrained, so that in derivations of starting terms, no redex is removed. Compare [6], where μ -monotone orders are used in a similar spirit.

An argument filtering (for a signature \mathcal{F}) is a mapping π that assigns to every k-ary function symbol $f \in \mathcal{F}$ an argument position $i \in \{1, \ldots, k\}$ or a (possibly empty) list $[i_1, \ldots, i_l]$ of argument positions with $1 \leq i_1 < \cdots < i_l \leq k$. If $\pi(f)$ is a list we say that π is non-collapsing on f. Below π always denotes an argument filtering. For each $f \in \mathcal{F}$, let f_{π} denote a fresh function symbol associated with f. We define $\mathcal{F}_{\pi} := \{f_{\pi} \mid f \in \mathcal{F} \text{ and } \pi(f) = [i_1, \ldots, i_l]\}$. The sets \mathcal{D}_{π} and \mathcal{C}_{π} denote the defined symbols and constructors in \mathcal{F}_{π} , as given by the restriction of \mathcal{F}_{π} to symbols f_{π} associated with $f \in \mathcal{D}$ and $f \in \mathcal{C}$ respectively. We denote by π also its extension to terms: $\pi(t) := t$ if t is a variable, and for $t = f(t_1, \ldots, t_k)$, $\pi(t) := \pi(t_i)$ if $\pi(f) = i$ and $f(\pi(t_{i_1}), \ldots, \pi(t_{i_l}))$ if $\pi(f) = [i_1, \ldots, i_l]$. For an order \succ on terms over \mathcal{F}_{π} , we define $s \succ^{\pi} t$ if $\pi(s) \succ \pi(t)$ holds.

A map $\mu: \mathcal{F} \to \mathcal{P}(\mathbb{N})$ with $\mu(f) \subseteq \{1, \ldots, k\}$ for every k-ary $f \in \mathcal{F}$ is called a replacement map on \mathcal{F} . The set $\mathcal{P}os_{\mu}(t)$ of μ -replacing positions in a term t is given by $\mathcal{P}os_{\mu}(t) := \emptyset$ if t is a variable, and $\mathcal{P}os_{\mu}(t) := \{\epsilon\} \cup \{i \cdot p \mid i \in \mu(f) \text{ and } p \in \mathcal{P}os_{\mu}(t_i)\}$ if $t = f(t_1, \ldots, t_k)$. For a binary relation \to on terms we denote by $\mathcal{T}_{\mu}(\to)$ the set of terms t where sub-terms at non- μ -replacing positions are in normal form: $t \in \mathcal{T}_{\mu}(\to)$ if for all positions p in t, if $p \notin \mathcal{P}os_{\mu}(t)$ then $t|_p \to u$ does not hold for any term u. Let \mathcal{R} denote a set of rewrite rules. A replacement map μ is called a usable replacement map for \mathcal{R} in \mathcal{P} , if $\rightarrow^*_{\mathcal{S}\cup\mathcal{W}}(\mathcal{T}) \subseteq \mathcal{T}_{\mu}(\mathcal{Q}_{\mathcal{R}})$. For a usable replacement map μ and argument filtering π , we say that π agrees with μ if for all function symbols f in the domain of μ , either (i) $\pi(f) = i$ and $\mu(f) \subseteq \{i\}$ or otherwise (ii) $\mu(f) \subseteq \pi(f)$ holds.

▶ **Theorem 3.1.** Let $\mathcal{P} = \langle S/W, Q, T \rangle$ be an innermost complexity problem, where S and W are constructor TRSs. Let π denote an argument filtering on the symbols in \mathcal{P} that agrees with a usable replacement map for S in \mathcal{P} , and that is non-collapsing on defined symbols of S. Let $\mathcal{K}_{\pi} \subseteq \mathcal{D}_{\pi}$ denote a set of recursive function symbols, and \gtrsim an admissible precedence on \mathcal{F}_{π} . The following processor is sound, for $d := \max\{0\} \cup \{\mathsf{rd}_{\gtrsim,\mathcal{K}_{\pi}}(f_{\pi}) \mid f_{\pi} \in \mathcal{F}_{\pi}\}$.

$$\frac{\mathcal{S} \subseteq {}^{\pi}_{\mathsf{spop}_{\mathsf{ps}}^*} \quad \mathcal{W} \subseteq {}^{\pi}_{\mathsf{spop}_{\mathsf{ps}}^*}}{\vdash \langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon n^d}$$

We remark that the restriction that π is non-collapsing on defined symbols of S is essential, compare also [1]. In TCT, Theorem 3.1 is usually applied in combination with the relative decomposition processor [1], This processor allows the iterated combination of different techniques, by translating the judgement $\vdash \langle S/W, Q, T \rangle$: f into the two judgements $\vdash \langle S_1/S_2 \cup W, Q, T \rangle$: f and $\vdash \langle S_2/S_1 \cup W, Q, T \rangle$: f, where $S_1 \cup S_2 = S$. Theorem 3.1 is tight, in the sense that for any $d \in \mathbb{N}$ one can find a complexity problem \mathcal{P} that satisfies the pre-conditions, and whose complexity function lies in $\Omega(n^d)$ [2]. The next example illustrates the application of Theorem 3.1.

▶ **Example 3.2.** Consider the innermost complexity problem $\mathcal{P}_{\mathsf{log}}^{\sharp} = \langle S_{\mathsf{log}}^{\sharp} / \mathcal{W}_{\mathsf{log}}, S_{\mathsf{log}}^{\sharp} \cup \mathcal{W}_{\mathsf{log}}, \mathcal{T}_{\mathsf{log}}^{\sharp} \rangle$ where the TRS $S_{\mathsf{log}}^{\sharp}$ consisting of the rewrite rules

$$\mathsf{half}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^{\sharp}(x) \qquad \qquad \mathsf{log}^{\sharp}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{log}^{\sharp}(\mathsf{s}(\mathsf{half}(x)))$$

the TRS \mathcal{W}_{log} consists of the rules

$$half(0) \rightarrow 0$$
 $half(s(s(x))) \rightarrow s(half(x))$

and \mathcal{T}^{\sharp} consists of the basic terms $f(\mathbf{s}^{n}(0))$ for $n \in \mathbb{N}$ and $f \in \{\mathsf{half}^{\sharp}, \mathsf{log}^{\sharp}\}$. Observe that the rules in $\mathcal{S}^{\sharp}_{\mathsf{log}}$ can only be applied on root positions in derivations starting from $\mathcal{T}^{\sharp}_{\mathsf{log}}$. It follows that the map μ_{\varnothing} , which maps any function symbol f in $\mathcal{P}^{\sharp}_{\mathsf{log}}$ to \varnothing , is a usable replacement map for $\mathcal{S}^{\sharp}_{\mathsf{log}}$ in $\mathcal{P}^{\sharp}_{\mathsf{log}}$. Consider the argument filtering π with $\pi(\mathsf{half}) = 1$ and $\pi(f) = [1]$ for $f \neq \mathsf{half}$. Note that π trivially agrees with μ_{\varnothing} . Using $\mathcal{K}_{\pi} := \{\mathsf{half}^{\sharp}, \mathsf{log}^{\sharp}\}$ and the empty precedence one can show $\mathcal{S}^{\sharp}_{\mathsf{log}} \subseteq >^{\pi}_{\mathsf{spop}^*_{\mathsf{ps}}}$ and $\mathcal{W}_{\mathsf{log}} \subseteq \gtrsim^{\pi}_{\mathsf{spop}^*_{\mathsf{ps}}}$. Trivially $\mathsf{rd}_{\gtrsim,\mathcal{K}_{\pi}}(\mathsf{s}_{\pi}) =$ $\mathsf{rd}_{\gtrless,\mathcal{K}_{\pi}}(\mathsf{log}_{\pi}) = 0$, as neither $\mathsf{half}^{\sharp}_{\pi} > \mathsf{log}^{\sharp}_{\pi}$ nor $\mathsf{log}^{\sharp}_{\pi} > \mathsf{half}^{\sharp}_{\pi}$ holds, we see that $\mathsf{rd}_{\gtrless,\mathcal{K}_{\pi}}(\mathsf{half}^{\sharp}_{\pi}) =$ $\mathsf{rd}_{\gtrless,\mathcal{K}_{\pi}}(\mathsf{log}^{\sharp}_{\pi}) = 1$. By Theorem 3.1, the complexity of $\mathcal{P}^{\sharp}_{\mathsf{log}}$ is bounded by a linear function.

4 Polynomial Path Orders and Dependency Pairs

In TCT, a *dependency pair* problem (DP problem for short) is a complexity problem whose strict and weak component contains also *dependency pairs*. Unlike for termination analysis, we allow *compound symbols* in right hand sides of dependency pairs. The purpose of these symbols is to group function calls. The example considered above is a DP problem that was generated by T_CT on AG01/#3.7 from the *termination problem data* $base^2$ (*TPDB* for short). For each k-ary $f \in \mathcal{D}$, let f^{\sharp} denote a fresh function symbol also of arity k, the dependency *pair symbol* (of f). The least extension of \mathcal{F} to all dependency pair symbols is denoted by \mathcal{F}^{\sharp} . We define $t^{\sharp} := f^{\sharp}(t_1, \ldots, t_k)$ if $t = f(t_1, \ldots, t_k)$ and $f \in \mathcal{D}$, and $t^{\sharp} := t$ otherwise. For a set of terms T, we denote by T^{\sharp} the set of marked terms $T^{\sharp} := \{t^{\sharp} \mid t \in T\}$. Consider the infinite signature Com that contains for each $i \in \mathbb{N}$ a fresh constructor symbol $c_i \in Com$ of arity i. Symbols in Com are called *compound symbols*. We denote by COM(t) the term t, and overload this notation to sequences of terms such that $COM(t_1, \ldots, t_k) = c_k(t_1, \ldots, t_k)$ for $k \neq 1$. A dependency pair (DP for short) is a rewrite rule $l^{\sharp} \to \operatorname{COM}(r_1^{\sharp}, \ldots, r_k^{\sharp})$ where $l, r_1, \ldots, r_k \in \mathcal{T}(\mathcal{F}, \mathcal{V})$. Let \mathcal{S} and \mathcal{W} be two TRSs over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, and let \mathcal{S}^{\sharp} and \mathcal{W}^{\sharp} be two sets of dependency pairs. A dependency pair complexity problem, or simply DP problem, is a runtime complexity problem $\mathcal{P}^{\sharp} = \langle \mathcal{S}^{\sharp} \cup \mathcal{S} / \mathcal{W}^{\sharp} \cup \mathcal{W}, \mathcal{Q}, \mathcal{T}^{\sharp} \rangle$ over marked basic terms \mathcal{T}^{\sharp} . We keep the convention that \mathcal{S}^{\sharp} and \mathcal{W}^{\sharp} denote dependency pairs. Our notion DP problem is general enough to capture images of the transformations proposed in the literature [5, 7] for polynomial complexity analysis, compare [1]. In the following, we suppose $\mathcal{S} = \emptyset$, i.e., the complexity function of \mathcal{P}^{\sharp} accounts for dependency pairs only. We emphasise that for innermost runtime complexity analysis, TCT always constructs a DP problem of this shape, by either applying the weightgap condition [5] or using dependency tuples [7] only.

As a consequence of the following simple observation, the argument filtering employed in Theorem 3.1 has to fulfil, besides the non-collapsing condition on defined symbols of S^{\sharp} , only mild conditions on compound symbols.

▶ Lemma 4.1. Let $\mathcal{P}^{\sharp} = \langle S^{\sharp}/\mathcal{W}^{\sharp} \cup \mathcal{W}, \mathcal{Q}, \mathcal{T}^{\sharp} \rangle$ be a DP problem. Suppose μ denotes a usable replacement map for dependency pairs S^{\sharp} in \mathcal{P}^{\sharp} . Then μ_{COM} is a usable replacement map for S^{\sharp} in \mathcal{P}^{\sharp} . Here μ_{COM} denotes the restriction of μ to compound symbols in the following sense: $\mu_{\text{COM}}(\mathbf{c}_n) := \mu(\mathbf{c}_n)$ for all $\mathbf{c}_n \in \text{Com}$, and otherwise $\mu_{\text{COM}}(f) := \emptyset$ for $f \in \mathcal{F}^{\sharp}$.

For DP problems, one can remove the non-collapsing condition on the employed argument filtering. The inferred complexity bound is less fine grained however.

▶ **Theorem 4.2.** Let $\mathcal{P}^{\sharp} = \langle \mathcal{S}^{\sharp} / \mathcal{W}^{\sharp} \cup \mathcal{W}, \mathcal{Q}, \mathcal{T}^{\sharp} \rangle$ be an innermost DP problem, where $\mathcal{S}^{\sharp}, \mathcal{W}^{\sharp}$ and \mathcal{W} are constructor TRSs. Let μ denote a usable replacement map for $\mathcal{S}^{\sharp} \cup \mathcal{W}^{\sharp}$ in \mathcal{P}^{\sharp} , Let

² See http://termination-portal.org/wiki/Termination_Competition.

 π denote an argument filtering on the symbols in \mathcal{P} that agrees with a usable replacement map for all dependency pairs in \mathcal{P}^{\sharp} . Let $\mathcal{K}_{\pi} \subseteq \mathcal{D}_{\pi}^{\sharp}$ denote a set of recursive function symbols, and \gtrsim an admissible precedence where $c_{\pi} \sim d_{\pi}$ only holds for non-compound symbols $c, d \notin \text{Com}$. The following processor is sound, for $d := \max\{0\} \cup \{\text{rd}_{\gtrsim,\mathcal{K}_{\pi}}(f_{\pi}) \mid f_{\pi} \in \mathcal{F}_{\pi}^{\sharp}\}.$

$$\begin{split} \mathcal{S}^{\sharp} &\subseteq >_{\mathsf{spop}_{\mathsf{ps}}^{*}}^{\pi} \quad \mathcal{W}^{\sharp} \cup \mathcal{W} \subseteq \gtrsim_{\mathsf{spop}_{\mathsf{ps}}^{*}}^{\pi} \\ \vdash \langle \mathcal{S}^{\sharp} / \mathcal{W}^{\sharp} \cup \mathcal{W}, \mathcal{Q}, \mathcal{T}^{\sharp} \rangle \colon n^{\max(1, 2 \cdot d)} \end{split}$$

We remark that the pre-conditions of the theorem are essential, and the estimated complexity is asymptotically optimal in general [1].

5 Conclusion

In this work we have outlined the implementation of $sPOP^*$ in T_CT. We conclude with an empirical evaluation of this method. In Table 1 we contrast $sPOP^*$ to *matrix interpretations* (MI for short). Here the subscript DP denotes that the input is first transformed into a DP problem and syntactically simplified, compare [1, Section 14.5]. As testbed we used the 757 well-formed constructor TRSs from the TPDB 8.0.³

bound	sPOP^{\star}	sPOP_{DP}^\star	MI_{DP}
$\mathcal{O}(1)$	4\0.17	20\0.28	20\0.27
$\mathcal{O}(n^1)$	20\0.17	72\0.31	98\0.48
$\mathcal{O}(n^2)$	23\0.19	11 0.44	17\4.67
$\mathcal{O}(n^3)$	6\0.23	3\0.60	8\14.7
total	54\0.19	106\0.32	143\1.55
maybe	703\0.34	652\1.20	613\18.3

Comparing $sPOP^*$ and $sPOP^*_{DP}$ we see a significant increase in precision and power. This can be attributed to the relaxed conditions on the employed

Table 1 Number of oriented problems and average execution time (secs.)

argument filtering. On the testbed, $\text{sPOP}_{\mathsf{DP}}^{\star}$ cannot cope in power with $\mathsf{MI}_{\mathsf{DP}}$, but the average execution time of $\text{sPOP}_{\mathsf{DP}}^{\star}$ is significantly lower. Worthy of note, $\text{sPOP}_{\mathsf{DP}}^{\star}$ and $\mathsf{MI}_{\mathsf{DP}}$ are incomparable. Their combination can handle 149 examples.

— References

- 1 M. Avanzini. Verifying Polytime Computability Automatically. PhD thesis, University of Innsbruck, Institute for Computer Science, 2013. Submitted. Available at http: //cl-informatik.uibk.ac.at/~zini/publications/.
- 2 M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characterisation of the Polytime Computable Functions. In *Proc. of 10th APLAS*, volume 7705 of *LNCS*, pages 280–295, 2012.
- 3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UP, 1998.
- 4 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime Functions. *Computational Complexity*, 2(2):97–110, 1992.
- 5 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency Pair Method. In Proc. of 4th IJCAR, volume 5195 of LNAI, pages 364–380, 2008.
- **6** N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency Pair Method. 2012. To appear.
- 7 L. Noschinski, F. Emmes, and J. Giesl. A Dependency Pair Framework for Innermost Complexity Analysis of Term Rewrite Systems. In Proc. of 23rd CADE, volume 6803 of LNAI, pages 422–438. Springer, 2011.

³ See http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2013 for full experimental evidence and explanation on the setup.