
172

A Modular Cost Analysis for Probabilistic Programs∗

MARTIN AVANZINI, INRIA Sophia Antipolis, France

GEORG MOSER, University of Innsbruck, Austria

MICHAEL SCHAPER, University of Innsbruck, Austria

We present a novel methodology for the automated resource analysis of non-deterministic, probabilistic

imperative programs, which gives rise to a modular approach. Program fragments are analysed in full indepen-

dence. Moreover, the established results allow us to incorporate sampling from dynamic distributions, making

our analysis applicable to a wider class of examples, for example the Coupon Collector’s problem. We have

implemented our contributions in the tool eco-imp, exploiting a constraint-solver over iterative refineable cost
functions facilitated by off-the-shelf SMT solvers. We provide ample experimental evidence of the prototype’s

algorithmic power. Our experiments show that our tool runs typically at least one order of magnitude faster
than comparable tools. On more involved examples, it may even be the case that execution times of seconds

become milliseconds. At the same time we retain the precision of existing tools. The extensions in applicability

and the greater efficiency of our prototype, yield scalability of sorts. This effects into a wider class of examples,

whose expected cost analysis can be thus be performed fully automatically.

CCS Concepts: • Theory of computation→ Program analysis; Automated reasoning.

Additional Key Words and Phrases: probabilistic programs, average complexity, automation, modularity

ACM Reference Format:
Martin Avanzini, Georg Moser, and Michael Schaper. 2020. A Modular Cost Analysis for Probabilistic Programs.

Proc. ACM Program. Lang. 4, OOPSLA, Article 172 (November 2020), 42 pages. https://doi.org/10.1145/3428240

1 INTRODUCTION
Resource analysis is a subfield of static analysis, studying a non-functional property of programs,

namely the use of resources (see [Cohen and Zuckerman 1974; Wegbreit 1975, 1976] for early

references). Resource analysis impacts on the correctness or safety of programs. Programs that

over-exceed available computing resources are most likely to fail, and hence cannot run correctly.

See eg. Albert et al. [2019] for an application of resource analysis on the safety of smart contracts.
In the last decades there has been significant progress in the area of fully automated resource

analysis, where no user interaction is required. This resulted in significant success stories showing

that resource analysis can be practicable and scalable, cf. [Frohn and Giesl 2017; Gulwani et al. 2009;

Hoffmann et al. 2017; Wilhelm et al. 2008; Wilhelm and Grund 2014]. Modularity of the analysis

turned out as a key ingredient to the scalability of automated resource analysis, as modularity

allows for code fragments to be analysed in full independence, so that, whole-program analyses

can be overcome. This may significantly speeds up the analysis without affecting the precision of

∗
This work is partially supported by the French ANR: “Agence National de Recherche” under Grant “PPS: Probabilistic

Program Semantics”, No. ANR-19-CE48-0014, and the Inria associated team TC(Pro)3.

Authors’ addresses: Martin Avanzini, martin.avanzini@inria.fr, INRIA Sophia Antipolis, France; Georg Moser, georg.moser@

uibk.ac.at, University of Innsbruck, Austria; Michael Schaper, michael.schaper@student.uibk.ac.at, University of Innsbruck,

Austria.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART172

https://doi.org/10.1145/3428240

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240

172:2 Martin Avanzini, Georg Moser, and Michael Schaper

the analysis. See for example [Avanzini et al. 2016; Brockschmidt et al. 2016; Frohn and Giesl 2017;

Gulwani and Zuleger 2010; Moser and Schaper 2018; Sinn et al. 2016, 2017] for references to the

literature on fully automated resource analysis methods of imperative programs.

Apart from modularity, the study of non-deterministic programs has proven immensely useful.

Non-determinism appears naturally through program abstraction. Program abstraction allows to

focus on those program behaviours essential for resource analysis, while ignoring other aspects.

For example, in a conditional statement typically the resource usage of both branches needs to

be analysed, while the condition’s guard is not essential. Thus, the conditional can be abstracted

by allowing for non-deterministic choice. In particular, in the analysis of imperative programs,

program abstractions form an integral part. They provide the stepping stone for the modularity of

static program analysis itself, for example throughmodular combinations of abstract interpretations,

cf. [Cousot and Cousot 2002; Dillig 2011; Gulwani and Tiwari 2006]. For instance, it is due to program

abstractions that sophisticated, fully automated analyses of complex, pointer-based programs have

become possible. (See Fiedor et al. [2018] also for further pointers to the literature.)

Interrelations between computer science and probability theory are well-studied. Indeed, proba-

bilistic variations onwell-knownmodels like automata, Turingmachines or the 𝜆-calculus have been

studied since the early days of theoretical computer science (see Kozen [1981] for an early reference).

Generalising the model of computation further and allowing for probabilistic, non-deterministic
programs, induces new challenges to an automated resource analysis.

First, non-deterministic probabilistic programs have not received much attention in the literature.

Predominately, the semantics of languages with non-deterministic choice are modelled in terms

of Markov Decision Processes so that schedulers resolve non-deterministic choices based on the

current history of states. These constructions are technical and heavy handed; in our opinion

a new foundation is essential. Second, automation, in particular automation of the push-button

variety is not yet firmly established. Only few prototypes exist and the literature is lacking clear

experimental comparisons. Further, intuitive textbook examples, like the Coupon Collector’s problem
(see Figure 1c) cannot be represented properly in existing tools. This is due to the lack of support

for dynamic distributions, ie. for sampling from distributions whose support or value depends on

the current environment. Third, and most crucially, modularity of the analysis is not provided for.

Instead, the automated analysis in all existing prototypes degenerates to a whole-program analysis.

Indeed, in a probabilistic setting this is not too straight forward, as running a command results in a

distribution of possible end states. The established results in this paper overcome all these issues.

We are concerned with an automated average runtime analysis of a prototypical imperative
language pWhile in the spirit of Dijkstra’s Guarded Command Language. This language is endowed
with primitives for sampling and non-deterministic choice so that randomised algorithms can be

expressed. Further, a dedicated command consume(𝑒) allows for the representation of unbounded
non-negative costs given by the expression 𝑒 . Non-negativity is required so as to ensure that the

expected cost of a program is well-defined. Thus our automated analysis provides an expected cost
analysis. By instrumenting the program so that every program statement is attributed cost one, this

analysis can be used to assess the mean-time to termination and, as such, assesses that a program

is (positive) almost-surely terminating Bournez and Garnier [2005].

Contributions. We present a novel modular methodology for the automated resource analysis of

non-deterministic, probabilistic programs. Precisely,

• we present a novel structural operational semantics in terms of probabilistic abstract reduction
systems originally due to Bournez and Garnier—significantly simplifying the formal develop-

ment; following Avanzini and Yamada [2020], we refine this model by attributing costs to rules,

so as neatly express the expected cost of computations.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:3

while (p > min ≥ 0) {
b B Bernoulli(1/4);
if (b) {p B p + 1} {p B p - 1};
n B Uniform(0,10);
while (n > 0) {
consume(p); n B n - 1 }}

(a) Trader Ctrader .

b B 1;
x B 1;
while (b = 1) {

consume(1);
x B x * 2;
b B Bernoulli(1/2) }

(b) Geometric Cgeo.

coupons B 0;
while (0 ≤ coupons < n) {

consume(1);
draw B Uniform(1,n);
if (draw > coupons) {

coupons B coupons + 1 }}

(c) Coupon Collector Ccoupons.

Fig. 1. Motivating Examples.

• we generalise the expected runtime transformer of Kaminski et al. [2016] to a cost transformer

and formally prove it sound wrt. our novel operational semantics;

• we establish a novel alternating expected cost and expected value analysis, which gives rise to

the first fully modular resource analysis of non-deterministic, probabilistic programs;

• we demonstrate how sampling from dynamic distributions can be incorporated, making the

analysis applicable to a wider class of programs; specifically, we allow for uniform sampling

from an interval dependent on program states;

• we have implemented our method in the tool eco-imp and show efficiency and scalability of this

automation by comparison with existing prototypes in the literature; while eco-imp parallels
other tools in precision, its analysis times are significantly faster;

• finally, we detail our resource analysis algorithm underlying our prototype eco-imp, together
with an in-depth discussion on the employed constraint solving mechanism.

Our prototype facilitates off-the-shelf SMT solvers for the iteratively refineable synthesis of

cost expressions. In benchmarking, we focus on complex and novel scenarios, thus emphasising

the algorithmic power and scalability of our approach. We validate its effectiveness on a set of 66
challenging probabilistic programs taken from the literature. In particular, for programs with

non-linear bounds and nested loop structure our analysis is upto three orders of magnitude faster
than existing prototypes. At the same time we retain the precision.

Outline. We start with motivating our quest for a modular framework in Section 2, where we

also provide a high-level introduction to automated expected cost analysis. Our novel, modular

approach is outlined in Section 3. Probabilistic abstract reduction systems, which form the theoretical

underpinning, and our imperative language are presented in Section 4 and 5, respectively. Section 6

details a weakest precondition calculus due to Kaminski et al. [2018], which is generalised in

Section 7 to serve our needs of a modular analysis. In Section 8, the actual implementation is

described and ample experimental evidence is given. In this section, we also explain our dedicated

constraint solver and highlight our methodology on a handful of interesting examples. Section 9

discusses related work and we conclude in Section 10.

2 AUTOMATED EXPECTED COST ANALYSIS
We motivate the central contribution of our work: an automated and modular expected cost

analysis of non-deterministic, probabilistic programs. First, we present a classic analysis of an

algorithm incorporating a one-dimensional random walk, cf. Figure 1a. Second, we highlight the

need for a more refined analysis technique, when it comes to compositionality of the analysis.

Third, we detail the challenges of automated verification techniques. Finally, we motivate the need

for modularity of the analysis in this context. Our contributions to this respect are highlighted in

Section 3 below.

Recurrence equations. A classical way to analyse the runtime of a program is to set up a set

of recurrence equations, whose closed-form provides the sought runtime. Wegbreit [1975, 1976]

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:4 Martin Avanzini, Georg Moser, and Michael Schaper

was the first to automate this approach for deterministic programs. This idea generalises straight

forward to probabilistic programs.

Consider the program Ctrader due to Ngo et al. [2018] in Figure 1a, which illustrates the behaviour

of a stock trader. While the stock price (𝑝) is above the minimum (𝑚𝑖𝑛), the trader decides to buy

shares. The stock price is governed by a one-dimensional random walk. With probability
1/4 the

price increases (by one), and with probability
3/4 the price decreases. To this end, an integer 𝑏 is

sampled from the Bernoulli distribution with parameter
1/4, that is, the distribution assigns 1 to 𝑏

with probability
1/4, and 0 with probability

3/4. After the change of the stock price takes effect, the

trader decides to buy upto 10 shares, all with equal probability. In the program, this is modelled by

sampling the number of shares 𝑛 from a uniform distribution of values from the interval [0, 10].
The cost for the trader is given as the total amount invested. This is indicated by the command

consume(𝑝), which signals that 𝑝 units of resources are required.

Clearly, the total cost of bought shares is unbounded in some scenarios, namely, when the price

𝑝 stays above the minimum price. However, the combined probability of all such cases is 0. Worst

case bounds are thus not informative in this context. A more informative measure, and the one we

are interested in, is given by the expected cost. Ie. the average cost emitted on all the computational

branches, weighted by their probability. Simplifying the analysis by assuming𝑚𝑖𝑛 = 0 for now, the

expected cost of Ctrader is expressed by the recurrence

𝑇 (𝑝) = 1/4 ·∑10
𝑛=0

1/11 ·
(
𝑛 · (𝑝 + 1) +𝑇 (𝑝 + 1)

)
+ 3/4 ·∑10

𝑛=0
1/11 ·

(
𝑛 · (𝑝 − 1) +𝑇 (𝑝 − 1)

)
= 5 · 𝑝 − 5/2 + 1/4𝑇 (𝑝 + 1) + 3/4𝑇 (𝑝 − 1) .

Here, the two sums, weighted by probabilities
1/4 and 3/4, respectively, give the expected cost of

an increasing and decreasing stock price. The terms 𝑛 · (𝑝 + 1) and 𝑛 · (𝑝 − 1), with 𝑛 taking

a value between 0 and 10 with probability
1/11, account for the cost incurred by the inner loop.

This recurrence 𝑇 is a non-homogeneous linear second-order recurrence, whose closed-form can

be computed as 5 · 𝑝 · (𝑝 + 1). While the general solution of the corresponding homogeneous

recurrence can be derived directly (see Levitin [2007]), the manual computation of the closed-form

of 𝑇 requires some work. It is well-known that in general such a manual analysis—even for small

and simple programs as in the case of Ctrader—is tedious, error prone and fragile to small changes

of the recurrence equations.

Compositionality of the Analysis. A central observation in the seminal work by Kaminski et al.

[2018] is that an expected runtime analysis is inherently non-compositional, that is, from finite

expected runtimes of program parts, we cannot conclude finite expected runtime of the whole

program. A related issue has been encountered—and overcome—in the context of unbounded

updates of non-deterministic (but non-probabilistic) programs, cf. [Ben-Amram 2011; Ben-Amram

2015; Ben-Amram and Hamilton 2019; Ben-Amram and Kristiansen 2012; Hirokawa and Moser

2008; Jones and Kristiansen 2009].

To illustrate, let us first consider the program Cgeo depicted in Figure 1b. In this example, the

final value of 𝑥 follows a geometric distribution, more precisely, the loop will exit after 𝑖 = 1, 2, . . .
iterations with probability

1/2𝑖−1, in which case the variable 𝑥 will hold the value 2𝑖 . While also this

example potentially diverges, its expected cost—the number of loop iterations—is given as:

1 + 1/2 + 1/4 + · · · = ∑∞
𝑖=1

1/2𝑖−1 = 2 .

Second, consider the composition of Cgeo with a program D, whose expected cost is given by 𝑓 (𝑥).
Then the expected cost of Cgeo; D, that is, running the two programs in sequence, becomes∑∞

𝑖=1
1/2𝑖−1 +∑∞𝑖=1 1/2𝑖−1 · 𝑓 (2𝑖) = ∑∞

𝑖=1
1/2𝑖−1 · (1 + 𝑓 (2𝑖)) . (1)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:5

When 𝑓 grows at least linearly, this sum is infinite. Conclusively, while the expected costs of Cgeo
and D are finite, the expected cost of their composition is not. This is in contrast to non-probabilistic

programs, where the sequential composition of two programs with bounded runtime yields again a

program with bounded runtime.

Generalising a weakest precondition calculus à la Dijkstra’s to an expected runtime transformer ert,
Kaminski et al. overcome this issue through the expression of the expected runtime in continuation

passing style, cf. [Kaminski and Katoen 2017; Kaminski et al. 2016, 2018; Olmedo et al. 2016]. As

already observed by Kaminski et al.—and as we will see later in Section 6—this transformer in turn

generalises seamlessly to an expected cost transformer

ect[C] : (Σ→ R∞≥0) → (Σ→ R∞≥0) ,
for reasoning about expected costs. Informally, when 𝑓 : Σ→ R∞≥0 measures the expected cost of

a continuation in terms of a valuation 𝜎 ∈ Σ, ect[C] (𝑓) yields the overall cost of first executing
C, followed by the continuation. The expected cost of a program C is then given by ecost[C] ≜
ect[C] (𝜆𝜎.0), ie. by attributing the continuation a cost of 0.
Formalising the expected cost in terms of a cost transformer facilitates a recursive definition

of program costs. If 𝑒 evaluates to a natural 𝑖 under a given store, we set ect[consume(𝑒)] (𝑓) ≜
𝜆𝜎.𝑖 + 𝑓 (𝜎), which accounts for the fact that consume(𝑒) incurs an additional cost of 𝑖 . If 𝑑 evaluates

to a distribution assigning probabilities 𝑝𝑖 to integers 𝑖 under a given store𝜎 , we let ect[𝑥 B 𝑑] (𝑓) ≜
𝜆𝜎.

∑
𝑖∈Z 𝑝𝑖 · 𝑓 (𝜎 [𝑥/𝑖]). Ie. the expected cost is set as the mean value of 𝑓 on stores 𝜎 with 𝑥 updated

by the sampled value 𝑖 . Expected cost of two sequentially composed commands C; D becomes

expressible via composition of the transformer: ect[C; D] ≜ ect[C] ◦ ect[D]. For straight line
programs, expected costs can thus be derived simply by unfolding definitions. On the other hand,

the expected cost of a loop while (𝜙) {C}, wrt. the cost of a continuation 𝑓 , is definable as

𝜙 ⊨ ect[while (𝜙) {C}] (𝑓) = ect[C; while (𝜙) {C}] (𝑓) ¬𝜙 ⊨ ect[while (𝜙) {C}] (𝑓) = 𝑓 , (2)

where 𝜙 ⊨ 𝑓 = 𝑔 indicates that 𝑓 coincides with 𝑔 on inputs satisfying 𝜙 . Following standard

semantics, the expected cost thus equals the cost of unrolling the loop once in case the guard 𝜙

holds, or the cost 𝑓 of the continuation when the guard does not hold. To illustrate this, re-consider

the program Cgeo from Figure 1b. Let us denote by 𝐶 (𝑏, 𝑥) the expected cost of the while-loop wrt.

a cost of the continuation 𝑓 , measured in the program variable 𝑥 . Then (2) translates to

𝑏 = 1 ⊨ 𝐶 (𝑏, 𝑥) = 1 + 1/2 ·𝐶 (1, 2 · 𝑥) + 1/2 ·𝐶 (0, 2 · 𝑥) 𝑏 ≠ 1 ⊨ 𝐶 (𝑏, 𝑥) = 𝑓 (𝑥) .
Since 𝑏 and 𝑥 are initialized to one, 𝐶 (1, 1) then gives the cost (1) of Cgeo. To derive closed forms

for the expected cost, we can again resort to methods for solving such (conditional) recurrences,

unlike above however, recurrences can be extracted in a systematic, compositional way.

To sum up, the ert-calculus and its expected cost derivative, are more refined technical tools

for the analysis of probabilistic programs than the classical analysis through recurrence relations.

The analysis becomes clean and is less fragile. Kaminski et al. have shown that the ert-calculus
allows an optimal analysis of a variety of interesting case studies, like eg. the Coupon Collector’s
Problem formulated with the program Ccoupons from Figure 1c. However, Kaminski et al. [2018] do

not provide an automation and also only superficially concepts automation. So the method remains

tedious.

Automation. The crux of turning such a calculus into a fully automated analysis lies in deriving

closed forms for expected costs of loops. Related problems have been extensively studied in

the literature, eg. [Contejean et al. 2005; Fuhs et al. 2007; Podelski and Rybalchenko 2004]. One

prominent approach lies in assigning templates to cost functions, by which the recurrences can be

reduced to a set of constraints treatable with off-the-shelf SMT solvers.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:6 Martin Avanzini, Georg Moser, and Michael Schaper

The Absynth prototype provided by Ngo et al. [2018] has been the first automated expected

resource analysis of probabilistic programs, implementing such an approach, thereby demonstrating

the feasibility of an automated analysis. For instance, Absynth infers the manual bound on the

expected cost of Ctrader shown above, fully automatically. Conceptually, this tool can be seen as

a specialised automation of Kaminski’s ert-calculus. The transformer is coached into a Hoare-

style calculus and expected cost functions are formalised as potential functions [Ngo et al. 2018].

Automation is achieved by specialising these potential functions to linear combinations of base
functions, the latter abstracting stores as non-negative numbers.

Recently, Wang et al. [2019] provides a resource analysis, based on martingale theory. Notably,

their methodology is the first to also account for negative costs. The main challenge in accommodat-

ing negative costs lies in ensuring that the overall expected cost remains well-defined. Wang et al.

ensures this by requiring that in the presence of negative costs, program updates are generally

bounded and almost-sure termination is required.

Modularity of the Analysis. It is perhaps important to emphasise that composability of the analysis
of the expected cost of sequential commands does not induce composability of the synthesis of the
corresponding bounding functions. We illustrate the difference wrt. Ctrader. Concretely, as Ctrader
features a nested loop, its expected cost is driven by the following inter-dependent constraints.

Below, 𝐼 (𝑛, 𝑝,𝑚𝑖𝑛) and 𝑂 (𝑛, 𝑝,𝑚𝑖𝑛) stands for the cost before entering the inner and outer loop,

respectively.

𝑝 > 𝑚𝑖𝑛 ≥ 0 ⊨ 𝑂 (𝑛, 𝑝,𝑚𝑖𝑛) = 1/4 ·∑10
𝑛=1

1/11 · 𝐼 (𝑛, 𝑝 + 1,𝑚𝑖𝑛) + 3/4 ·∑10
𝑛=1

1/11 · 𝐼 (𝑛, 𝑝 − 1,𝑚𝑖𝑛)
¬(𝑝 > 𝑚𝑖𝑛 ≥ 0) ⊨ 𝑂 (𝑛, 𝑝,𝑚𝑖𝑛) = 0

𝑛 ≥ 0 ⊨ 𝐼 (𝑛, 𝑝,𝑚𝑖𝑛) = 𝑝 + 𝐼 (𝑛 − 1, 𝑝,𝑚𝑖𝑛)
¬(𝑛 ≥ 0) ⊨ 𝐼 (𝑛, 𝑝,𝑚𝑖𝑛) = 𝑂 (𝑛, 𝑝,𝑚𝑖𝑛) .

Here, through the first equation, the cost of the outer loop 𝑂 (𝑛, 𝑝,𝑚𝑖𝑛) depends on the cost of

the inner loop. Vice verse, since the execution of the inner loop eventually gives back control,

the cost of the inner loop 𝐼 (𝑛, 𝑝,𝑚𝑖𝑛) is also dependent on the outer loop. Therefore, the costs

𝐼 (𝑛, 𝑝,𝑚𝑖𝑛) and 𝑂 (𝑛, 𝑝,𝑚) cannot be considered in isolation. In general, synthesis degenerates to a

whole-program analysis, ie. program parts cannot be treated in isolation.

Indeed, the aforementioned tool Absynth [Ngo et al. 2018] and the prototype described by Wang

et al. perform such a whole-program analysis, which is not modular and results in issues with

scalability even on small, handcrafted examples. To whit, consider a more realistic variant of Ctrader,

where the stock trader is choosing uniformly upto 100.000 shares. In this setting, Absynth is no
longer able to compute a bound, while the prototype established by Wang et al. [2019] requires

upto 20 seconds of runtime—additionally a significant amount of user guidance is required. Similar

issues hold wrt. multiple nested loops (see Figure 8). In contrast, we provide a novel modular and

efficient automation, inspired by the continuation-passing style analysis method formalised in the

ert-calculus, which is free of the aforementioned scalability issues. In the following, we refer to the

composability of the synthesis of upper invariants as modularity of the (expected) cost analysis. In

the next section we provide a high-level overview of the crucially needed concepts to provide such

a modular analysis.

3 A MODULAR EXPECTED COST ANALYSIS
Modularity requests that the cost analysis for a program can be broken into an independent cost

analysis of program parts. This establishes a crucial stepping stone for the scalability of the analysis.

For that, we suite the approach outlined in the preceding section to one that interleaves a value
analysis.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:7

It is well known that a modular cost analysis can be obtained by combining cost with an analysis

on how values evolve within a program [Avanzini et al. 2016; Brockschmidt et al. 2016; Frohn and

Giesl 2017; Gulwani and Zuleger 2010; Moser and Schaper 2018; Sinn et al. 2016, 2017]. Consider

for instance a sequential command C; D. To determine the cost of this command from the costs of

C and D, given as functions in their input states, it is necessary to determine how the program’s

state evolves to the point where the second command is executed. A value analysis provides such
additional information. The case is similar for loops, that sequentially execute a given command

several times.

Combining Cost with Value Analysis. Since it is clearly infeasible to reason how program values

evolve in all—possibly uncountable many—execution paths, we focus on incorporating an expected,
or mean value analysis. To this end, we start with an expected cost transformer as outlined above.

As in previous approaches, we express program costs as linear combination of base functions 𝑏𝑖 ,
mapping program valuations to (positive) real numbers. These base functions serve as a numerical

abstraction of program stores. Base functions encompass a variety of common abstractions, for

example the absolute value of a variable, the difference between two variables and more generally

arbitrary polynomial combinations thereof.

In the majority of cases, expected costs can be computed symbolically on such cost expressions.
Particularly, we express the cost of a loop while (𝜙) {C} as a linear combination 𝜅 (𝑏1, . . . , 𝑏𝑛) of
base functions. Rather than directly subjecting this symbolic bound to recurrences (2) however, we

seek for an upper-bound satisfying

𝜙 ⊨ 𝜅 (𝑏1, . . . , 𝑏𝑛) ≥ ecost[C] + 𝜅 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑛)) ¬𝜙 ⊨ 𝜅 (𝑏1, . . . , 𝑏𝑛) ≥ 0
(3)

Here, ecost[C] amounts to the cost of executing the loop’s body C once; evalue[C] (𝑏𝑖) gives the
mean value of measures 𝑏𝑖 after executing C. In other words, evalue[C] (𝑏𝑖) amounts to the expected
value of the base function 𝑏𝑖 on the distribution of final states obtained from executing the loop’s

body C. For instance,

evalue[x B x + 1; b B Bernoulli(1/2)] (𝜆𝜎.𝜎 (𝑏) · 𝜎 (𝑥)) = 𝜆𝜎.1/2 · (𝜎 (𝑥) + 1) .

The constraints (3) thus witnesses that the inferred cost 𝜅 (𝑏1, . . . , 𝑏𝑛) of the loop while (𝜙) {C}
dominates the cost of an iteration (ecost[C]), plus the cost of re-iterating the loop, in terms of

measures 𝑏𝑖 after the execution (𝜅 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑛))).
In contrast to the constraints given by (2), in (3), the cost 𝜅 (𝑏1, . . . , 𝑏𝑛) is not passed down along

the transformer given by the body C. Indeed, ecost[C], as well as the expected values evalue[C] (𝑏𝑖)
of base functions 𝑏𝑖 can be pre-computed and substituted into the above upper bounds, and then

offloaded to a constraint solver to determine a concrete bound, in isolation. To whit, reconsider the

trader example Ctrader from Figure 1a. Rather than proceeding top-down to extract the recurrences

in the preceding section, we proceed inside out and start with the analysis of the inner loop

while (n > 0) { consume(p); n B n - 1 }

While the body is iterated 𝑛 > 0 times, the cost of the loop’s body is 𝑝 ≥ 0. This suggests 𝑛
and 𝑝 play a role in the cost of this loop. Let us thus choose the template 𝜅 (⟨𝑛⟩, ⟨𝑝⟩, ⟨𝑛⟩ · ⟨𝑝⟩), a
simple-mixed template [Contejean et al. 2005] over (non-negative) base-functions ⟨𝑛⟩ = max(𝑛, 0)
and ⟨𝑝⟩ = max(𝑝, 0). Since 𝑛 is decremented in the loop body while 𝑝 remains unchanged, the

(expected) value of the three given base functions is given by ⟨𝑛−1⟩, ⟨𝑝⟩ and ⟨𝑛−1⟩ ·⟨𝑝⟩, respectively.
Based on these, the upper bounds (3) translates to

𝑛 > 0 ⊨ 𝜅 (⟨𝑛⟩, ⟨𝑝⟩, ⟨𝑛⟩ · ⟨𝑝⟩) ≥ 𝑝 + 𝜅 (⟨𝑛 − 1⟩, ⟨𝑝⟩, ⟨𝑛 − 1⟩ · ⟨𝑝⟩) 𝑛 ≤ 0 ⊨ 𝜅 (⟨𝑛⟩, ⟨𝑝⟩, ⟨𝑛⟩ · ⟨𝑝⟩) ≥ 0 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:8 Martin Avanzini, Georg Moser, and Michael Schaper

The inequalities hold by taking 𝜅 (𝑥,𝑦, 𝑧) ≜ 𝑧 as indeed, 𝑛 > 0 entails ⟨𝑛⟩ · ⟨𝑝⟩ ≥ 𝑝 + ⟨𝑛 − 1⟩ · ⟨𝑝⟩,
and ⟨𝑛⟩ · ⟨𝑝⟩ is always non-negative. The cost of the program is thus (tightly) upper-bounded by

⟨𝑛⟩ · ⟨𝑝⟩. One can now proceed with the outer loop, by substituting this bound in the recurrence (3)

and derive the bound

10 · ⟨𝑚𝑖𝑛 + 1⟩ · ⟨𝑝 −𝑚𝑖𝑛⟩ + 5 · ⟨𝑝 −𝑚𝑖𝑛⟩2 . (4)

See Section 7.1 for further details.

Proving that (3) yields indeed an upper-bound 𝜅 (𝑏1, . . . , 𝑏𝑛) on the cost of loops is non-trivial

in the presence of probabilistic sampling. Indeed, our main theorem witnessing the soundness of

this approach, Theorem 7.5, relies essentially on the fact that 𝜅 is assumed a linear, more generally

concave, function.

Computing Expected Values. A crucial insight is that the ect-calculus keeps track of expected

values on cost functions 𝑓 . As it turns out, this machinery can be turned into one for reasoning

about expected values. Indeed, we have ect[C] (𝑓) = ecost[C] + evalue[C] (𝑓) for probabilistic
programs

1 C. By removing all cost emitting statements consume(𝑒) from C, or alternatively, by
setting evalue[consume(𝑛)] (𝑓) ≜ 𝑓 , but otherwise defining the expected value along the way of

the expected cost transformer, we obtain a recursive definition that can be inferred by exactly the

same procedure we employ to reason about expected costs.

Automating our Approach. We have successfully automated this approach in our tool eco-imp,
see Section 8. This tool proceeds with an analysis as just outlined, and integrates a dedicated

constraint solver for solving constraints of the form (3). Our tool derives the bound (4) in 25ms.

This constitutes a significant speedup to the Absynth prototype—which can be considered among

the most efficient implementations of such an analysis to date—which requires more than 3 seconds,

and the prototype of Wang et al. [2019] which requires 10 seconds to analyse this example. Our

implementation significantly benefits from the fact that program fragments can be considered

in isolation. For one, the recurrences handled are considerably simpler, as they describe a single

loop, rather than the whole program’s cost behaviour. But also heuristics, such as for constructing

suitable templates from a given program can be made more precise, and simpler. Indeed, as it

turned out, we do not even require the (brittle) use of invariant generation tools [Ngo et al. 2018]

or manual annotations for this task [Wang et al. 2019]. Unsurprisingly, the approach is particularly

effective in the analysis of nested loops, which has direct consequences for the scalability and speed

of the analysis. Benefits are, of course, most pronounced when the program under consideration

contains nested loops, see Section 8.2 where we present our experimental evaluation.

An Intuitive Textbook Example. We conclude this section with a non-trivial example that is beyond

the scope of pre-existing tools. Following the formulation of Mitzenmacher and Upfal [2005], the

above mentioned Coupon Collector’s problem states as follows. Given a box with 𝑛 different coupons,

one is interested in the expected number of draws (with replacement) that are needed before having

drawn each coupon at least once. The corresponding code Ccoupons is depicted in Figure 1c. Here,

coupons represents the number of unique coupons collected; draw is sampled uniformly from the

interval [1,n], with n an input parameter. The chosen cost model reflects the number of trials. Note,

that the probability of collecting a new coupon drops in proportion of the collected coupons, that

is, in proportion
1/𝑐𝑜𝑢𝑝𝑜𝑛𝑠 + 1. In particular, the expected cost is finite.

The full pen-and-paper analysis of Ccoupons given by Kaminski et al. [2018]—which provides

the optimal expected time bound O(𝑛 log𝑛)—spans several pages and requires non-trivial estima-

tions. Thus, non surprisingly, automation poses significant challenges. So far, to the best of our

1
When C features also non-deterministic choice, as we do later on in this work, this equality turns into an inequality, see

Lemma 7.2.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:9

knowledge, the Coupon Collector’s problem has been elusive to an automated analysis. As already

mentioned, no existing tool can even represent the corresponding code Ccoupons. To date support

for dynamic probabilistic branching—when sampling draws a number of samples not statically

bounded—is lacking. When sampling is in contrast static, expectations are finite, weighted sums,

and consequently can be encoded by their unfolding. When sampling is dynamic though, such as

within the program Ccoupons through the assignment draw B Uniform(1,n), such an unfolding is no

longer possible. To illustrate this, observe

ect[draw B Uniform(1,n)] (𝑓) = 𝜆𝜎.
∑𝜎 (𝑛)

𝑖=1
1/𝜎 (𝑛) · 𝑓 (𝜎 [𝑑𝑟𝑎𝑤/𝑖]) .

To reason about such costs, we define the sum in terms of a constraint of the form (3), and make

use of our dedicated constraint solver to find an upper bound. See Section 8 for the details.

Through this encoding, our prototype eco-imp is able to derive the (non-optimal) bound𝑛+1/2·𝑛2
fully automatically in a fraction of a second for the expected cost of Ccoupons. If the distribution

is set statically, eg. to a uniform distribution of 10 coupons, the example becomes expressible by

existing tools through unrolling. Alas, only the Absynth tool can provide a (non-optimal) bound

(see Section 8.2). Still the employed potential functions are not amenable to express the subtle

dependency of the expected cost of Ccoupons on the (now) static distribution governing the draw. Ie.

the generated constraint grows linearly to the number of coupons. Wrt. tool execution time this

implies that our prototype eco-imp handles a uniform distribution of upto 100 coupons in seconds.

On the other hand the Absynth tool and the prototype by [Wang et al. 2019] cannot provide bounds

for larger numbers, even after several minutes of runtime, cf. Table 2 (d).

4 PROBABILISTIC REDUCTION SYSTEMS
Probabilistic abstract reduction systems are due to Bournez and Garnier [2005] and form a gener-

alisation of abstract reduction systems, accounting for probabilistic choice. Avanzini and Yamada

[2020] extend probabilistic abstract reduction systems with weights, allowing for the formulation

of a suitable cost model. We refer to the weighted variant again as probabilistic abstract reduction
systems (PARSs).

Let R∞≥0 denote the set of non-negative real numbers extended with∞, ie. R∞≥0 ≜ R≥0 ∪ {∞}. A
(discrete) subdistribution over 𝐴 is a function 𝛿 : 𝐴→ R≥0 so that

∑
𝑎∈𝐴 𝛿 (𝑎) ≤ 1, and a distribution

if

∑
𝑎∈𝐴 𝛿 (𝑎) = 1. We may write subdistributions 𝛿 as {{𝛿 (𝑎) : 𝑎}}𝑎∈𝐴. The set of all subdistributions

over 𝐴 is denoted by D(𝐴). We restrict to distributions over countable sets 𝐴. The expectation of a

function 𝑓 : 𝐴→ R∞≥0 wrt. a distribution 𝛿 is given by E𝛿 (𝑓) ≜
∑

𝑎∈𝐴 𝛿 (𝑎) · 𝑓 (𝑎).

Probabilistic abstract reduction systems. A PARS over 𝐴 is a set of rules 𝑎 −→ 𝛿 indicating that

𝑎 ∈ 𝐴 reduces to 𝑏 ∈ 𝐴 with probability 𝛿 (𝑏) if 𝛿 (𝑏) ≠ 0. Operationally, a reduction step on 𝑎

involves first picking a rule 𝑎 −→ 𝛿 (among possibly many) and then sampling the reduct from 𝛿 .

To allow for non-uniform costs, we endow each rule with a weight 𝑤 ∈ R≥0, accounting for the
cost of the corresponding reduction step, cf. [Avanzini and Yamada 2020]. Thus formally, a PARS

on 𝐴 is given by ternary relation · ·−→ · ⊆ 𝐴 × R≥0 × D(𝐴), where in a rule 𝑎
𝑤−→ 𝛿 , the weight𝑤

indicates the cost of the rule application. Objects 𝑎 ∈ 𝐴 with no rule 𝑎
𝑤−→ 𝛿 are called terminal, in

notation 𝑎↓. PARSs constitute a universal probabilistic model of computation well-suited to model

small-step operational semantics of our probabilistic language. For instance, the program Cgeo from

Figure 1b is modelled by the PARS −−→geo , defined by

geo(𝑥) 1−−→geo {{1/2 : 2 · 𝑥, 1/2 : geo(2 · 𝑥)}} for all 𝑥 ∈ Z.

Following [Avanzini et al. 2020; Avanzini and Yamada 2020], we define the dynamics of a PARS→ in

terms of a (weight-indexed) reduction relation · ·−→→ · ⊆ M(𝐴) ×R≥0 ×M(𝐴) over multidistributions

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:10 Martin Avanzini, Georg Moser, and Michael Schaper

M(𝐴). These are countable multisets {{𝑝𝑖 : 𝑎𝑖 }}𝑖∈𝐼 over pairs 𝑝𝑖 : 𝑎𝑖 of probabilities 0 < 𝑝𝑖 ≤ 1
and objects 𝑎𝑖 ∈ 𝐴 with

∑
𝑖∈𝐼 𝑝𝑖 ≤ 1. Multidistributions are denoted by 𝜇, 𝜈, The notion of

expectation of a function 𝑓 : 𝐴 → R∞≥0 is extended to multidistributions 𝜇 in the natural way:

E𝜇 (𝑓) ≜
∑
(𝑝:𝑎) ∈𝜇 𝑝 · 𝑓 (𝑎). Finally, the reduction relation is inductively find by

𝜇
0−→→ 𝜇

𝑎
𝑤−→ 𝛿

{{1 : 𝑎}} 𝑤−→→ 𝛿

𝜇𝑖
𝑤𝑖−−→→ 𝜈𝑖⊎

𝑖∈𝐼 𝑝𝑖 · 𝜇𝑖 𝑤−→→ ⊎
𝑖∈𝐼 𝑝𝑖 · 𝜈𝑖 .

In the second rule, distributions are lifted to multidistributions in the obvious way. In the last rule,

𝑤 =
∑

𝑖∈𝐼 𝑝𝑖 ·𝑤𝑖 and 𝑝𝑖 > 0 are probabilities with
∑

𝑖∈𝐼 𝑝𝑖 ≤ 1. Scalar multiplication is performed

component-wise on probabilities,

⊎
refers to the usual notion of multiset union. Ie. 𝜇

𝑤−→→ 𝜈 indicates

that some elements 𝑎𝑖 with associated probability 𝑝𝑖 are replaced by 𝛿𝑖 , re-weighted with probability

𝑝𝑖 , according to rules 𝑎𝑖
𝑤𝑖−−→ 𝛿𝑖 . The overall cost𝑤 is given by the sum

∑
𝑝𝑖 ·𝑤𝑖 , corresponding to

the expected cost of the single reduction step 𝜇
𝑤−→→ 𝜈 . Eg. the PARS −−→geo gives rise to the reduction

{{1 : geo(1)}} 1−−→geo→ {{1/2 : 2, 1/2 : geo(2)}} 1/2−−→geo→ {{1/2 : 2, 1/4 : 4, 1/4 : geo(4)}} 1/4−−→geo→ · · · .
We write 𝜇

𝑤−→→𝑛
𝜈 if 𝜇

𝑤1−−→→ · · · 𝑤𝑛−−→→ 𝜈 for𝑤 =
∑𝑛

𝑖=1𝑤𝑖 .

Expected cost. A reduction from 𝑎 ∈ 𝐴 is a, generally infinite, sequence Δ : {{1 : 𝑎}} 𝑤0−−→→ 𝜇1
𝑤1−−→→

𝜇2
𝑤2−−→→ · · · . The infinite sum 𝑤 =

∑
𝑖∈N𝑤𝑖 gives the expected cost of this specific reduction. Since

the weight 𝑤𝑖 are non-negative, this sum is always well-defined (although it may be infinite).

Throughout the following, the set of costsC is given byR∞≥0. Due to the presence of non-determinism,

expected costs are in general not unique. Taking a demonic view on non-determinism, we define

the expected cost function, denoted as ecost[→] : 𝐴→ C, as the function that associates each 𝑎 ∈ 𝐴
with the maximal expected cost of reductions starting from {{1 : 𝑎}}. Concisely, via the monotone

convergence theorem of real numbers this can be defined as

ecost[→](𝑎) ≜ sup
{
𝑤 | {{1 : 𝑎}} 𝑤−→→𝑛

𝜇
}
.

For instance, we have ecost[−−→geo] (geo(𝑥)) = sup{∑𝑛
𝑖=0

1/2𝑖 | 𝑛 ∈ N} = ∑∞
𝑖=0

1/2𝑖 = 2.

Remark. In the literature, the operational semantics of purely probabilistic programs, are usually
modelled as Markov chains over program states. Here, the 𝑖-th random variable in this chain

gives the probability of being in a state after 𝑖 reduction steps. On the other hand, the operational

semantics of languages with non-deterministic choice are modelled in terms of Markov Decision
Processes (MDPs) (see, eg. [Agrawal et al. 2018; Chakarov and Sankaranarayanan 2013; Kaminski

et al. 2018; Olmedo et al. 2016]). Schedulers (aka policies) resolve non-deterministic choices based

on the current history of states, thereby breaking down reductions again to Markov chains. Such

MDPs𝑀 are naturally modelled as PARSs→𝑀 , so that the Markov chains induced by the schedulers

are in one-to-one correspondence with reductions wrt.→𝑀 . The distribution underlying the 𝑖-th

random variable is represented by the 𝑖-th multidistribution in the corresponding reduction. The

use of multidistributions, rather than distributions, eliminates the need for schedulers, intuitively,

because multidistributions within a reduction implicitly encode histories, cf. Avanzini et al. [2020].

Particularly, Avanzini et al. [2020] proves the following correspondence.

Proposition 4.1 ([Avanzini et al. 2020; Avanzini and Yamada 2020]). Suppose each rule in
the PARS→ is attributed weight one. Then ecost[→] coincides with the expected time to termination
under the standard MDP semantics of Bournez and Garnier [2005].

While the proposition assumes a unitary cost model, where each reduction step is attributed

cost one, the proposition generalises to arbitrary (non-negative) costs as employed in the definition

of ecost[→].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:11

4.1 Expected Cost Transformers for PARSs
In this subsection, we define an expected cost transformer ect[→] for arbitrary PARSs→. This

transformer, generalising the expected cost function, serves as a technical tool to prove soundness

and completeness of our methods.

To this end, we quickly recap notions from program semantics, cf. Winskel [1993]. A poset (𝐴, ⊑)
is called an𝜔-CPO, if every𝜔-chain 𝑎0 ⊑ 𝑎1 ⊑ · · · has a supremum sup{𝑎𝑛 | 𝑛 ∈ N} ∈ 𝐴. A function

𝑓 : 𝐴→ 𝐵 between two 𝜔-CPOs is called (Scott)-continuous if 𝑓 (sup𝑛∈N 𝑎𝑛) = sup𝑛∈N 𝑓 (𝑎𝑛) holds
for all 𝜔-chains (𝑎𝑛)𝑛∈N. Recall that a continuous function is monotone, wrt. the underlying orders

of the poset. Kleene’s Fixed-Point Theorem asserts that, if 𝑓 : 𝐴→ 𝐴 is continuous and 𝐴 features

a least element ⊥, the least fixed-point lfp(𝑓) of 𝑓 is given lfp(𝑓) ≜ sup𝑛∈N 𝑓
𝑛 (⊥) for 𝑓 𝑛 the 𝑛-fold

composition of 𝑓 . Let C𝐴 ≜ {𝑓 | 𝑓 : 𝐴 → C} denote the set of cost functions over 𝐴. We endow

this set with the order ≤ defined by 𝑓 ≤ 𝑔 if 𝑓 (𝑎) ≤ 𝑔(𝑎) for all 𝑎 ∈ 𝐴. We also extend functions

over C point-wise to cost functions and denote these extensions in bold face font, as we already
did above, eg., 𝑓 + 𝑔 ≜ 𝜆𝑎.𝑓 (𝑎) + 𝑔(𝑎) for 𝑓 , 𝑔 ∈ C𝐴 etc. In particular, 0 = 𝜆𝑎.0 and ∞ = 𝜆𝑎.∞. The
proof of the following is standard.

Proposition 4.2 (Cost functions form an 𝜔-CPO). For any 𝐴, (C𝐴,≤) is an 𝜔-CPO, with least
and greatest element 0 and∞, respectively. The supremum of 𝜔-chains (𝑓𝑛)𝑛∈N is given point-wise:
sup𝑛∈N 𝑓𝑛 ≜ 𝜆𝑎. sup𝑛∈N 𝑓𝑛 (𝑎).

The following definition introduces the expected cost transformer of a PARS→. Informally, this

transformer associates each 𝑎 ∈ 𝐴 with its expected cost, plus the expected value of a given cost

function 𝑓 on terminal objects.

Definition 4.3 (Expected Cost Transformer for PARSs). The expected cost transformer ect[→] : C𝐴 →
C𝐴 for a PARS→ is given by ect[→](𝑓) ≜ lfp(𝜒𝑓), where the functional 𝜒𝑓 : C𝐴 → C𝐴 is defined

as

𝜒𝑓 (𝑔) ≜ 𝜆𝑎.

{
𝑓 (𝑎) if 𝑎↓,
sup{𝑤 + E𝛿 (𝑔) | 𝑎 𝑤−→ 𝛿} else.

It can be shown that for any 𝑓 , 𝜒𝑓 (𝑔) is a continuous functional. Hence ect[→](𝑓) is well-defined.
Moreover, it is continuous and hence monotone.

Lemma 4.4 (Central Properties of ect[→]).
(1) continuity: ect[→](sup𝑛∈N 𝑓𝑛) = sup𝑛∈N ect[→](𝑓𝑛) for all 𝜔-chains (𝑓𝑛)𝑛∈N;
(2) monotonicity: 𝑓 ≤ 𝑔 =⇒ ect[→](𝑓) ≤ ect[→](𝑔).

A standard induction reveals that 𝜒𝑛
𝑓
(0) = 𝜆𝑎. sup{𝑤 | 𝑎 𝑤−→→𝑛

𝜇}, where 𝜒𝑛
𝑓
denotes the 𝑛-fold

composition of 𝜒𝑓 . Consequently, the next result follows by Kleene’s Fixed-Point Theorem.

Theorem 4.5 (Expected Cost via Cost Transformer).

ecost[→] = ect[→](0) .

5 A PROBABILISTIC LANGUAGE
We consider an imperative language pWhile in the spirit of Dijkstra’s Guarded Command Lan-
guage, endowed with a non-deterministic choice operator <> and where the assignment statement

is generalised to one that can sample from a distribution. A command consume(𝑒) signals the
consumption of 𝑒 ≥ 0 resource units.

We fix a finite set of integer-valued variables Var. Stores are denoted by 𝜎 ∈ Σ ≜ Var→ Z. With

𝜙 ∈ BExp ≜ Σ→ B, 𝑒 ∈ Exp ≜ Σ→ Z, and 𝑑 ∈ DExp ≜ Σ→ D(Z) we denote, Boolean, Integer,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:12 Martin Avanzini, Georg Moser, and Michael Schaper

𝜎 ⊲ 𝑥 B 𝑑 0−→ {{𝑝𝑖 : 𝜎 [𝑥/𝑖] | 𝑝𝑖 = 𝑑 (𝜎) (𝑖) > 0}}𝑖∈Z
[Assign]

𝜎 ⊲ skip 0−→ 𝜎
[Skip]

𝜎 ⊲ abort 0−→ ∅
[Abort]

𝜎 ⊲ consume(𝑒) ⟨𝑒 (𝜎) ⟩−−−−−−→ 𝜎
[Consume]

𝜎 ⊨ 𝜙

𝜎 ⊲ if (𝜙) {C} {D} 0−→ 𝜎 ⊲ C
[IfT]

𝜎 ⊭ 𝜙

𝜎 ⊲ if (𝜙) {C} {D} 0−→ 𝜎 ⊲ D
[IfF]

𝜎 ⊨ 𝜙

𝜎 ⊲ while (𝜙) {C} 0−→ 𝜎 ⊲ C; while (𝜙) {C}
[WhileT]

𝜎 ⊭ 𝜙

𝜎 ⊲ while (𝜙) {C} 0−→ 𝜎
[WhileF]

𝑖 ∈ {1, 2}
𝜎 ⊲ {C1} <> {C2} 0−→ 𝜎 ⊲ C𝑖

[Choice]

𝜎 ⊲ C 𝑟−→ {{𝑝𝑖 : 𝜎𝑖 ⊲ C𝑖 }}𝑖∈𝐼 ⊎
{{
𝑞 𝑗 : 𝜎 𝑗

}}
𝑗∈ 𝐽

𝜎 ⊲ C; D 𝑟−→ {{𝑝𝑖 : 𝜎𝑖 ⊲ C𝑖 ; D}}𝑖∈𝐼 ⊎
{{
𝑞 𝑗 : 𝜎 𝑗 ⊲ D

}}
𝑗∈ 𝐽

[Compose]

Fig. 2. Small-step operational semantics as a PARS.

and Integer-valued distribution expression over Var, respectively. The syntax of program commands
Cmd is given as follows.

C, D ::= 𝑥 B 𝑑 | skip | abort | consume(𝑒) | C; D | if (𝜙) {C} {D} | while (𝜙) {C} | {C} <> {D} .

Commands are fairly standard. The assignment statement 𝑥 B 𝑑 samples a value from 𝑑 , ie. an

expression that evaluates to a distribution over integers. This command generalises the usual

non-probabilistic assignment 𝑥 B 𝑒 . The command consume(𝑒) consumes 𝑒 resource units but acts

as a no-op otherwise. Here 𝑒 is a non-negative but otherwise arbitrary integer-valued expression.

Particularly, the incurred cost can depend on the programs state rather than being constant. The

non-deterministic choice operator {C} <> {D} executes either C or D. For brevity, we omit a

probabilistic choice command and probabilistic guards as by Kaminski et al. [2016], since they do

not add to the expressiveness of our language.

Semantics. We model reduction semantics of our language as a PARS over configurations Conf ≜
(Cmd × Σ) ∪ Σ. Elements (C, 𝜎) ∈ Conf are denoted by 𝜎 ⊲ C and signal that the command C is

to be executed under the current store 𝜎 , whereas 𝜎 ∈ Conf indicates that the computation has

halted with final store 𝜎 . The (infinite) PARS is depicted in Figure 2. Rules 𝜎 ⊲ C 𝑤−→ {{1 : 𝛾}} without
probabilistic effect are written as 𝜎 ⊲ C 𝑤−→ 𝛾 for brevity. For 𝜙 ∈ BExp and 𝜎 ∈ Σ we denote by

𝜎 ⊨ 𝜙 that 𝜙 evaluates on 𝜎 to true. Note that only in Rule (Consume) resources are consumed.

Here, ⟨𝑧⟩ ≜ max(0, 𝑧) denotes Macaulay’s bracket. As we had for PARSs, incurred costs are thus

always non-negative.

6 EXPECTED COST AND EXPECTED VALUE TRANSFORMERS
We now suite the ert-transformer of Kaminski et al. [2016] to an expected cost transformer. To this

end, for 𝜙 ∈ BExp, we lift Iverson brackets [·] to stores, resulting in the cost function [𝜙](𝜎) ≜ 1 if

𝜎 ⊨ 𝜙 , and [𝜙](𝜎) ≜ 0 otherwise. In particular, [𝜙] · 𝑓 + [¬𝜙] · 𝑔 evaluates to 𝑓 (𝜎) on stores 𝜎 ⊨ 𝜙 ,
and to 𝑔(𝜎) if 𝜎 ⊨ ¬𝜙 . We denote by 𝑓 [𝑥/𝑣] the cost function that applies 𝑓 on the modified store

where 𝑥 takes value 𝑣 .

Our expected cost transformer ect[·] (·) : Cmd → CΣ → CΣ operates on cost functions over

stores, that is, elements of CΣ. In the literature 𝑓 ∈ CΣ are also referred to as expectations [Kaminski

et al. 2016]. As already indicated in Section 2, the cost ect[C] (𝑓) should be seen as the cost of

evaluating C wrt. to a continuation of expected cost 𝑓 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:13

C ect[C] (𝑓) evalue[C] (𝑓)
consume(𝑒) ⟨𝑒⟩ + 𝑓 𝑓

skip 𝑓 𝑓

abort 0 0

𝑥 B 𝑑 𝜆𝜎.E𝑑 (𝜎) (𝜆𝑣 .𝑓 [𝑥/𝑣] (𝜎)) 𝜆𝜎.E𝑑 (𝜎) (𝜆𝑣 .𝑓 [𝑥/𝑣] (𝜎))
C; D ect[C] (ect[D] (𝑓)) evalue[C] (evalue[D] (𝑓))
if (𝜙) {C} {D} [𝜙] · ect[C] (𝑓) + [¬𝜙] · ect[D] (𝑓) [𝜙] · evalue[C] (𝑓) + [¬𝜙] · evalue[D] (𝑓)
while (𝜙) {C} lfp(𝜆𝐹 .[𝜙] · ect[C] (𝐹) + [¬𝜙] · 𝑓) lfp(𝜆𝐹 .[𝜙] · evalue[C] (𝐹) + [¬𝜙] · 𝑓)
{C} <> {D} max(ect[C] (𝑓), ect[D] (𝑓)) max(evalue[C] (𝑓), evalue[D] (𝑓))

Fig. 3. Definition of expected cost transformer ect[C] and expected value function evalue[C]. Notice that
their definition coincides up to the case C = consume(𝑒).

Definition 6.1 (Expected Cost Transformer). The expected cost transformer ect[·] (·) : Cmd →
CΣ → CΣ for commands C is defined through the rules given in the second column in Figure 3. For

C ∈ Cmd, we set ecost[C] ≜ ect[C] (0) and call ecost[C] the expected cost of C.

Remark. The earlier defined expected cost transformer ect[→] wrt. PARS→ (see Section 4) abstracts

the above definition of the expected cost transformer wrt. programs C. As we see in in the next

subsection, these are in correspondence. Hence, we take the liberty to employ the same notations.

With the above intuition in mind, most of the cases are straight forward to derive from the

operational semantics given in Figure 2. In the case of a statement consume(𝑒), a cost of 𝑒 is

incurred (provided 𝑒 (𝜎) ≥ 0) in addition to the cost of the continuation. While skip is a no-op,

consequently ect[skip] (𝑓) = 𝑓 , the command abort immediately aborts the computation and

thus ect[abort] (𝑓) = 0. Running an assignment 𝑥 B 𝑑 followed by a continuation amounts to

first sampling a value 𝑣 for 𝑥 according to 𝑑 , say with probability 𝑝𝑣 , updating 𝑥 in the given store

𝜎 to 𝑣 , and then running the continuation on the updated store. The overall expected resource

consumption is thus given by the sum of expected costs 𝑓 [𝑥/𝑣] of all such runs, weighted by their

probability 𝑝𝑣 . For instance, if Bernoulli(p) denotes the Bernoulli distribution with parameter 𝑝 ,

(yielding 1 with probability 𝑝 and 0 with probability 𝑝 − 1), then ect[𝑥 B Bernoulli(1/3)] (𝑓) =
1/3 · 𝑓 [𝑥/1] + 2/3 · 𝑓 [𝑥/0]. For sequential commands C; D, ect[C; D] is given by the composition

ect[C] ◦ ect[D], transforming the cost 𝑓 of a continuation to that of running C, then D followed

by the continuation. For conditionals if (𝜙) {C} {D}, the transformer perform a case analysis on

the guard. Considering loops while (𝜙) {C}, the expected cost transformer is defined as the least

fixed-point of the functional 𝜆𝐹 .[𝜙] · ect[C] (𝐹) + [¬𝜙] · 𝑓 . We will see below that this fixed-point

is always defined. The transformer ect[while (𝜙) {C}] thus in particular enjoys

ect[while (𝜙) {C}] (𝑓) = [𝜙] · ect[C] (ect[while (𝜙) {C}] (𝑓)) + [¬𝜙] · 𝑓
= [𝜙] · ect[C; while (𝜙) {C}] (𝑓) + [¬𝜙] · 𝑓 ,

that is, it evaluates to the cost of unfolding the loop when the loop’s guard 𝜙 is satisfied, and

otherwise returns the cost 𝑓 , in correspondence to the semantics. Finally, the transformer on

non-deterministic choices maximises over expected costs along the two branches.

6.1 Well-Definedness and Soundness
Before we prove soundness, let us mention that as for the expected cost transformer on PARSs,

ect[C] is continuous, and consequently also monotone, in the following sense:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:14 Martin Avanzini, Georg Moser, and Michael Schaper

Lemma 6.2 (Central Properties of ect[while (𝜙) {C}]).
(1) continuity: ect[C] (sup𝑛∈N 𝑓𝑛) = sup𝑛∈N ect[C] (𝑓𝑛) for all 𝜔-chains (𝑓𝑛)𝑛∈N;
(2) monotonicity: 𝑓 ≤ 𝑔 =⇒ ect[C] (𝑓) ≤ ect[C] (𝑔).

In particular, continuity ensures that in the case for loop C = while (𝜙) {D}, the least fixed
point underlying ect[C] is well-defined. Now that we have established that ect[C] (𝑓), and hence

ecost[C], is well-defined, the remaining objective of this section is to prove that ecost[C] (𝜎)
indeed gives the expected cost of running C on store 𝜎 . To this end, we show that ect[C] (𝑓) (𝜎)
coincides with ect[→](𝑓) (𝜎 ⊲ C) defined in terms of the underlying PARS in Section 4. Let us

denote by ect[→](𝑓) (• ⊲ C) the function 𝜆𝜎.ect[→](𝑓) (𝜎 ⊲ C). The correspondence thus becomes

ect[C] (𝑓) = ect[→](𝑓) (• ⊲ C).
Since the definition of ect[C] (𝑓) is guided by the semantics, for most commands C this equality

is immediate. The only non-trivial cases are that of composition and loops. The following lemma

links the corresponding cases.

Lemma 6.3 (Composition and Loop Lemma).

(1) ect[→](𝑓) (• ⊲ C; D) = ect[→](ect[→](𝑓) (• ⊲ D)) (• ⊲ C);
(2) ect[→](𝑓) (• ⊲ while (𝜙) {C}) = lfp(𝐹 .[𝜙] · ect[→](𝐹) (• ⊲ C) + [¬𝜙] · 𝑓).

Note that the right-hand side in (2) is well-defined by Lemma 4.4(1). Relying on this auxiliary

lemma, our central soundness result follows by a standard induction on C.

Theorem 6.4 (Soundness & Completeness). For every command C ∈ Cmd, we have

(1) ect[→](𝑓) (• ⊲ C) = ect[C] (𝑓); and consequently
(2) ecost[→](• ⊲ C) = ecost[C].

The theorem thus witnesses that the expected cost transformer of this section gives a sound and

complete method for reasoning about the expected cost of programs C.

6.2 Upper Invariants
To find closed-forms for the runtime of loops, Kaminski et al. [2016] propose to search for upper
invariants, ie. prefix points of the loops characteristic function. The following constitutes a straight

forward generalisation of Kaminski et al. [2016, Theorem 3]. For a Boolean expression 𝜙 ∈ BExp,
and two cost functions 𝑓 , 𝑔 ∈ CΣ, as before let us denote by 𝜙 ⊨ 𝑓 ≤ 𝑔 that 𝑓 (𝜎) ≤ 𝑔(𝜎) holds for
all stores 𝜎 with 𝜙 ⊨ 𝜎 .

Proposition 6.5 (Upper Invariant). For every 𝐼 ∈ CΣ,

𝜙 ⊨ ect[C] (𝐼) ≤ 𝐼 ∧ ¬𝜙 ⊨ 𝑓 ≤ 𝐼 ⇒ ect[while (𝜙) {C}] (𝑓) ≤ 𝐼 .

The two premises are equivalent to [𝜙] · ect[C] (𝐼) + [¬𝜙] · 𝑓 ≤ 𝐼 , that is, 𝐼 is a pre-fixed point of

the functional 𝜆𝐹 .[𝜙] ·ect[C] (𝐹)+[¬𝜙] · 𝑓 ; through which the expected cost transformer of the loop

while (𝜙) {C} is defined. The theorem is thus a reformulation of the fact that the least fixed-point

is the least among all its pre-fixed points. Via this proposition, the problem of computing ecost[C]
can be reduced to a set of inequalities whose solution gives an upper bound on the expected cost of

C, compare the discussion at the end of Section 2. Let us illustrate this also on a simple example.

Example 6.6. Reconsider the program Cgeo from Figure 1b. By Proposition 6.5, the expected

cost of the loop within Cgeo is bounded by 𝐼 subject to the upper invariant conditions: (i) 𝑏 = 1 ⊨
ect[D] (𝐼) ≤ 𝐼 ; and (ii) 𝑏 ≠ 1 ⊨ 0 ≤ 𝐼 , for D the loop’s body. Define 𝐼 ≜ [𝑏 = 1] · 2. Unfolding the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:15

definition of ect[D] (𝐼) yields

ect[D] (𝐼) = 1 + 1/2 · 𝐼 [𝑏/1, 𝑥/2 · 𝑥] + 1/2 · 𝐼 [𝑏/0, 𝑥/2 · 𝑥]
= 1 + 1/2 · [1 = 1] · 2 + 1/2 · [0 = 1] · 2 = 2 .

It is then not difficult to see that the upper invariant conditions hold. Since the variables 𝑏 and 𝑥

are initialized to one in Cgeo, by Theorem 6.4(2) we conclude ecost[Cgeo] = 𝐼 [𝑏/1, 𝑥/1] = 2.

Proposition 6.5 suggests the following two stage approach towards an automated cost analysis

of a program C via Theorem 6.4. (i) evaluate ecost[C] = ect[C] (0) symbolically and generating a

constraint corresponding to the the upper invariant condition; and (ii) synthesise concrete upper

invariants via the collection of generated constraints.

This is akin to the common approach, where cost functions are specified as linear combination

over an (arbitrary but fixed) finite vector of base functions (𝑏1, . . . , 𝑏𝑘), itself cost functions, ab-
stracting stores as non-negative numbers. Such cost expressions take the form 𝜿 (𝑏1, . . . , 𝑏𝑘), where
𝜅 (𝑟1, . . . , 𝑟𝑘) =

∑
𝑖 𝑞𝑖 · 𝑟𝑖 for rational (in particular real) numbers 𝑞𝑖 . Upper invariants then take the

form 𝜙 ⊨ ect[C] (𝜿 𝑰 (𝑏1, . . . , 𝑏𝑘)) ≤ 𝜿 𝑰 (𝑏1, . . . , 𝑏𝑘) and ¬𝜙 ⊨ 𝜿𝒇 (𝑏1, . . . , 𝑏𝑘) ≤ 𝜿 𝑰 (𝑏1, . . . , 𝑏𝑘).
By treating 𝜅𝐼 and 𝜅𝑓 as undetermined, these constraints can be reduced to inequalities over

expressions on coefficients in such a way that the resulting set of constraints is eg. amenable

to Linear Programming. A solution to these constraints, viz, particularly concrete values for the

coefficients 𝑞𝑖 occurring in 𝜅𝐼 , then yields a concrete upper invariant. Consequently, an upper

bound to the expected cost of while (𝜙) {C} in terms of the base functions
®𝑏 is inferred.

7 ALTERNATING EXPECTED COST AND VALUE ANALYSIS
While the calculus developed in the previous section is indeed compositional, the cost analysis

via Proposition 6.5, as described above, is not. This is most apparent in the case of nested loops,

abstractly represented as follows: while (𝜙) {while (𝜓) {C}}. The synthesis of upper invariants 𝐼
and 𝑂 for the inner and outer loops, respectively, wrt. a cost function 𝑓 , is driven by the following

inter-dependent constraints, compare the exposition of the trader example in Section 2.

𝜙 ⊨ 𝐼 ≤ 𝑂 ∧ ¬𝜙 ⊨ 𝑓 ≤ 𝑂 ∧ 𝜓 ⊨ ect[C] (𝐼) ≤ 𝐼 ∧ ¬𝜓 ⊨ 𝑂 ≤ 𝐼 .

These constraints cannot be considered in isolation. In particular, if we express 𝐼 and 𝑂 in terms

of linear combinations 𝜿 𝐼 (𝑏1, . . . , 𝑏𝑘) and 𝜿𝑂 (𝑏1, . . . , 𝑏𝑘) of base functions 𝑏𝑖 , the undetermined

combinators 𝜅𝐼 and 𝜅𝑂 cannot be synthesised separately. Thus, the analysis degenerates to a

whole-program analysis.
As emphasised in Section 3, in the non-probabilistic setting modularity of a cost analysis is

facilitated through combining cost analysis with an analysis on how stores evolve through the

execution of program parts. In the following, we suit this conceptual simple idea to an expected

cost analysis.

The result of a program C, run on an initial store 𝜎 , is conceivable as a subdistribution 𝜇 over

stores (many, in the case C is also non-deterministic). Then ect[C] (𝑓) (𝜎) yields the expected cost

of C plus the expected value E𝜇 (𝑓) of the cost function 𝑓 on the distribution of states 𝜇. When 𝑓

coincides with the cost of a continuation, we re-obtain the initial intuition that ect[C] (𝑓) yields
the cost of running C followed by the corresponding continuation. Otherwise, if the program C
is non-deterministic, then C may yield many subdistributions 𝜇. In this case, ect[C] (𝑓) accounts
for the supremum of the expectations of 𝑓 . We make this correspondence precise. First, we define

the expected value transformer evalue[C] of a command C in correspondence to ect[C], ignoring
costs.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:16 Martin Avanzini, Georg Moser, and Michael Schaper

Definition 7.1 (Expected Value Transformer). The expected value transformer evalue[C] : CΣ → CΣ
for commands C is defined through the rules given in the third column in Figure 3.

Concerning the program Cgeo from Figure 1b for instance, we obtain evalue[Cgeo] (𝑓) = 𝜆𝜎.
∑∞

𝑖=0
1/2𝑖 ·

𝑓 ({𝑏 ↦→ 1, 𝑥 ↦→ 2𝑖+1}). Note that evalue[C] (𝑓) = ect[costFree(C)] (𝑓) holds, where the cost-free
program costFree(C) is obtained from C by dropping all cost annotations consume(𝑒). Particularly,
Proposition 6.5 remains intact if we substitute evalue[·] for ect[·].
The next lemma establishes a separation of the expected cost and value computation, which

underlies the expected cost transformer ect[C].
Lemma 7.2 (Separating Expected Cost and Value).

ect[C] (𝑓) ≤ ecost[C] + evalue[C] (𝑓) .
A similar result, albeit restricted to purely probabilistic programs, has been observed by Kaminski

et al. [2018, Thm 8.1]. Notice that if C features non-determinism, the right-hand side may over-

approximate ect[C] (𝑓).
Example 7.3. Consider the non-deterministic program C = {consume(1)} <> {𝑥 B 𝑥 + 1}. Then
ect[C] (𝑓) = max(1 + 𝑓 , 𝑓 [𝑥/𝑥 + 1]) ≤ 1 +max(𝑓 , 𝑓 [𝑥/𝑥 + 1]) = ecost[C] + evalue[C] (𝑓) .

When 𝑓 depends on the value of 𝑥 , the two sides are thus in general not equal.

In this example, we exploit that one branch is costly in terms of consumed resources, while the

other one in terms of the expected value of 𝑓 . When C doesn’t contain non-deterministic choice,

the inequality in Lemma 7.2 can be replaced by an equality.

Consider now a while loop, while (𝜙) {C}. As above, we express the upper invariant 𝐼 as the
combination 𝜿 (𝑏1, . . . , 𝑏𝑘) of base functions 𝑏𝑖 . Reconsider the first premise of Proposition 6.5:

𝜙 ⊨ ect[C] (𝜿 (𝑏1, . . . , 𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘). By Lemma 7.2, this constraint is entailed by

𝜙 ⊨ ecost[C] + evalue[C] (𝜿 (𝑏1, . . . , 𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ., (5)

Moreover, when the upper invariant 𝜅 is linear in all its arguments, it distributes over expectations

and hence over the expected value transformer evalue[C]. Consequently (5) becomes

𝜙 ⊨ ecost[C] + 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) . (6)

First, this decomposes the analysis of the cost of the loop’s body C from the analysis of how

𝜿 (𝑏1, . . . , 𝑏𝑘) changes in expectation during one iteration. Second, none of the calls to evalue[C]
do reference the combinator 𝜅. These can be determined in independence of the analysis of

while (𝜙) {C}. We generalise this observation. As usual, we call 𝜅 concave if 𝑝 ·𝜅 (®𝑟)+ (1−𝑝) ·𝜅 (®𝑠) ≤
𝜅 (𝑝 · ®𝑟 + (1−𝑝) · ®𝑠) (where 0 ≤ 𝑝 ≤ 1) and (weakly)monotone if ®𝑟 ≤ ®𝑠 implies 𝜅 (®𝑟) ≤ 𝜅 (®𝑠). Together,
the two conditions yield the following sufficient criterion to distribute 𝜅 over expectations, which

can be proven by a standard induction on evalue[C] (𝑓) = evalue[C] (𝑓).
Lemma 7.4 (Distribute over Expected Values). Suppose 𝜅 : C𝑘 → C is monotone. Further-

more, suppose 𝜅 is concave if the command C is probabilistic. Then evalue[C] (𝜿 (𝑏1, . . . , 𝑏𝑘)) ≤

𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)).
Note that concavity is only needed to distribute 𝜅 over the expected value given by probabilistic

statements, that is, probabilistic assignments from non-dirac distributions. The above lemmas in

conjunction with Proposition 6.5 yields the main result of this section.

Theorem 7.5 (Modular Upper-Invariants). Let C and 𝜅 be as in Lemma 7.4. Then
1. 𝜙 ⊨ ecost[C] + 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘)

⇒ ecost[while (𝜙) {C}] ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘); and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:17

2. 𝜙 ⊨ 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ∧ ¬𝜙 ⊨ 𝑓 ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘)
⇒ evalue[while (𝜙) {C}] (𝑓) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘).

Concerning (2), we exploit evalue[while (𝜙) {C}] (𝑓) = ect[while (𝜙) {costFree(C)}] (𝑓) and
ecost[costFree(C)] = 0. The theorem gives a modular recursive procedure to infer upper bounds on

costs of loops, as follows, cf. Section 8.

(1) Estimate the cost of one iteration of the body C.
(2) Analyse how the expected value of the base functions 𝑏𝑖 is changed by one iteration of the

body changes, as formalises in the expected value transformer.

(3) Solve the recurrence, given by the implication, where 𝜿 is to be determined.

Crucially the loop’s body C becomes treatable in complete independence of the loop itself. Via

Lemma 7.2 and Lemma 7.4, sequential composition can be treated similarly to Theorem 7.5.

Theorem 7.6 (Modular Seqential Analysis). Let C and 𝜅 be as in Lemma 7.4. Then
1. ecost[D] (𝑓) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ⇒ ecost[C; D] ≤ ecost[C]+𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘));
2. evalue[D] (𝑓) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ⇒ evalue[C; D] (𝑓) ≤ 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)).

7.1 Analysis of Examples
We conclude the section, by discussing the analysis of the running examples of Section 2 using

our methodology. Further, we present an interesting example by Wang et al. [2019] modelling a

fork-join queues. Noteworthy, all displayed bounds are derived via our implementation eco-imp as

detailed in the following section.

Geo. Reconsider the program Cgeo (Figure 1b), where the cost is given by the number of loop

iterations. Since loop-iterations depend on the value of 𝑏, we choose the base function ⟨𝑏⟩. This is
sufficient to handle Cgeo via Theorem 7.5(1). The body D of the loop changes ⟨𝑏⟩ to 1/2·⟨0⟩+1/2·⟨1⟩ =
1/2 in expectation. Moreover, the cost of a single loop iteration ecost[D] is one, which follows by

unfolding the definition. By Theorem 7.5(1), 𝜿 (⟨𝑏⟩) is an upper bound to the cost of the loop if

𝑏 = 1 ⊨ ecost[D] + 𝜿 (evalue[D] (⟨𝑏⟩)) ≤ 𝜿 (⟨𝑏⟩) ⇔ 𝑏 = 1 ⊨ 1 + 𝜿 (1/2) ≤ 𝜿 (⟨𝑏⟩) .
A case analysis on 𝑏 = 1 shows that the constraint is satisfied with 𝜅 (𝑥) ≜ 2 · 𝑥 . Finally, since 𝑏 B 1
before entering the loop we derive the optimal bound 𝜅 (⟨1⟩) = 2 for Cgeo.

Trader. Recall program Ctrader from Figure 1a. As we have seen in Section 3, the cost of the inner

loop is given by ⟨𝑛⟩ · ⟨𝑝⟩. This then yields

ecost[D] = 1/44 ·
∑10

𝑛=0 𝑛 · ⟨𝑝 + 1⟩ + 3/44 ·
∑10

𝑛=0 𝑛 · ⟨𝑝 − 1⟩ ,
as bound the cost of the body D of the outer loop. Wrt. the outer loop itself, consider the base

functions 𝑏1 ≜ ⟨𝑚𝑖𝑛 + 1⟩ · ⟨𝑝 −𝑚𝑖𝑛⟩ and 𝑏2 ≜ ⟨𝑝 −𝑚𝑖𝑛⟩2. Applying Theorem 7.5(1), the cost of

Ctrader is given by 𝜿 (𝑏1, 𝑏2) subject to the constraint

0 ≤𝑚𝑖𝑛 ≤ 𝑝 − 1 ⊨ ecost[D] + 𝜿 (evalue[D] (𝑏1), evalue[D] (𝑏2)) ≤ 𝜿 (𝑏1, 𝑏2) .
Note that the loop body D increments and decrements the price with probabilities

1/4 and 3/4,
respectively, whereas𝑚𝑖𝑛 remains unchanged. Formally,

evalue[D] (𝑏1) = 1/4 · ⟨𝑚𝑖𝑛 + 1⟩ · ⟨𝑝 + 1 −𝑚𝑖𝑛⟩ + 3/4 · ⟨𝑚𝑖𝑛 + 1⟩ · ⟨𝑝 − 1 −𝑚𝑖𝑛⟩ ,
evalue[D] (𝑏2) = 1/4 · ⟨𝑝 + 1 −𝑚𝑖𝑛⟩2 + 3/4 · ⟨𝑝 − 1 −𝑚𝑖𝑛⟩2 ,

which can be derived by unfolding evalue[D] and applying Theorem 7.5(2). In turn, the above

constraint holds with 𝜅 (𝑥,𝑦) ≜ 10 · 𝑥 + 5 · 𝑦, yielding an upper bound

𝜿 (𝑏1, 𝑏2) = 10 · ⟨𝑚𝑖𝑛 + 1⟩ · ⟨𝑝 −𝑚𝑖𝑛⟩ + 5 · ⟨𝑝 −𝑚𝑖𝑛⟩2 ,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:18 Martin Avanzini, Georg Moser, and Michael Schaper

l1 B 0; l2 B 0; i B 1;
while (i ≤ n) {
n B n - 1;
if (l1 ≥ 1) { l1 B l1 - 1 };
if (l2 ≥ 1) { l2 B l2 - 1 };
if (Bernoulli(1/50)) {
if (Bernoulli(1/5))

{ l1 B l1 + 3 }
{ if (Bernoulli(1/2))

{ l2 B l2 + 2 }
{ l1 B l1 + 2; l2 B l2 + 1 }}};

if (l1 ≥ l2) { consume(l1) } { consume(l2) } }

(a) Fork-joinQueue Cfj-queue.

while (n > 0) {
k B 1;
while (k > 0) {

x B Bernoulli(1/2);
y B Bernoulli(1/2);
if (x == y) { k B 1 } { k B 0 };
consume(1)

};
n B n - 1;

}

(b) Rejection sampling Crejection−sampling .

Fig. 4. Further examples from the literature.

on the cost of Ctrader. Note that this upper bound can be derived with our implementation in 25ms.

Coupon Collector. Recall program Ccoupons of Figure 1c, and let D denote the main loop’s body.

While ecost[D] = 1 is straight forward to derive, the challenge of this example lies in calculating the

expected value of base functions, due to the sampling instruction. Particularly, for a base function

𝑏, evalue[D] (𝑏) is given by

[1 ≤ 𝑛] ·
∑︁𝑛

𝑑𝑟𝑎𝑤=1

(
[𝑐𝑜𝑢𝑝𝑜𝑛𝑠 < 𝑑𝑟𝑎𝑤] · 𝑏 [𝑐𝑜𝑢𝑝𝑜𝑛𝑠/𝑐𝑜𝑢𝑝𝑜𝑛𝑠 + 1] + [𝑑𝑟𝑎𝑤 ≤ 𝑐𝑜𝑢𝑝𝑜𝑛𝑠] · 𝑏

)
/𝑛 .

Our implementation selects, among others, the base functions 𝑏1 ≜ ⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩2 and 𝑏2 ≜
⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩ · ⟨𝑐𝑜𝑢𝑝𝑜𝑛𝑠 + 1⟩ from the loop guard, for which it derives bounds

𝑏′1 ≜ ⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩ · (⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠 − 1⟩2 + ⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩ · ⟨𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩)/⟨𝑛⟩
𝑏′2 ≜ ⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩ · (⟨𝑛 − 𝑐𝑜𝑢𝑝𝑜𝑛𝑠 − 1⟩ · ⟨𝑐𝑜𝑢𝑝𝑜𝑛𝑠 + 2⟩ + ⟨𝑐𝑜𝑢𝑝𝑜𝑛𝑠 + 1⟩ · ⟨𝑐𝑜𝑢𝑝𝑜𝑛𝑠⟩)/⟨𝑛⟩ ,

for ect[D] (𝑏𝑖). The constraint 0 ≤ 𝑖 ≤ 𝑛 − 1 ⊨ 1 + 𝜿 (𝑏′1, 𝑏′2) ≤ 𝜿 (𝑏1, 𝑏2), describing the cost of the
loop, is then shown satisfiable by taking 𝜅 (𝑥,𝑦) ≜ 𝑥 + 1/2 · 𝑦. Substituting 0 for 𝑐𝑜𝑢𝑝𝑜𝑛𝑠 in the

bound 𝜿 (𝑏1, 𝑏2) due to the initial assignments yields the overall estimate ⟨𝑛⟩ + 1/2 · ⟨𝑛⟩2 for the
expected cost of Ccoupons. This analysis was performed in 195ms with our tool.

Queuing Network. Fork-join queues (see Kim and Agrawala [1989]) have been used to model

various systems [Dean and Ghemawat 2008; Hill and Marty 2008; Menascé 2004]. They consist of

𝑛 processors, each of which is equipped with a dedicated queue. On arrival at the fork point, a job is

probabilistically split into 𝑛 sub-jobs, which are then served by each of the 𝑛 servers commanding

the respective queues. After completion, the sub-jobs wait until all other sub-jobs have also been

processed. The sub-jobs are then rejoined and the job is completed.

Following Wang et al. [2019], we represent fork-join queues for 2 servers as a probabilistic

program with a unitary cost model, that measures progress of the sub-jobs in the respective queues,

cf. Figure 4a on page 18. A fixed probability (
1/50) is employed to model the arrival of new jobs, while

𝑛 jobs are processes by the two servers. With probability
1/5 the job is handled by the first server.

Otherwise, with equal probability the job is handled either by the second server, or, passed to both

servers. Server 1 takes 3 time units for completion, while Server 2 takes 2 units. If the job is split
on the servers, the Server 1 and 2 require 2 and 1 units, respectively. This is modelled by enlarging

the queues respectively. Each server can handle one queue entry per time unit. The cost for the

fork-join queue is given by the expected time of completion of each job, equally representable

as the length of the longest queue. Our prototype computes the (asymptotically) optimal bound

113/741⟨𝑛 + 1⟩ + 125/243 + 125/244 in 2.215s.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:19

function ecost[C]
switch C do

case D; E where D contains a loop:

𝜿 (®𝑏) ← ecost[E]
®𝑏′ ← foreach 𝑏 ∈ ®𝑏: evalue[D] (𝑏)
return ecost[D] + 𝜿 (®𝑏′)

case while (𝜙) {D}:
𝑔← ecost[D]
®𝑏 ← SelectBases(𝜙,𝑔)
®𝑏′ ← foreach 𝑏 ∈ ®𝑏: evalue[D] (𝑏)
𝜅 ← LinearTemplate(length(®𝑏))
𝜃 ← Solve(𝜙 ⊨ 𝑔 + 𝜿 (®𝑏′) ≤ 𝜿 (®𝑏))
return 𝜃 (𝜿) (®𝑏)

default: return SymbolicCost(C)

function evalue[C](𝑓)
switch C do

case D; E where D contains a loop:

𝜿 (®𝑏) ← evalue[E]
®𝑏′ ← foreach 𝑏 ∈ ®𝑏: evalue[D] (𝑏)
return 𝜿 (®𝑏′)

case while (𝜙) {D}:
®𝑏 ← SelectBases(𝜙, 𝑓)
®𝑏′ ← foreach 𝑏 ∈ ®𝑏: evalue[D] (𝑏)
𝜅 ← LinearTemplate(length(®𝑏))
𝜃 ← Solve(𝜙 ⊨ 𝜿 (®𝑏′) ≤ 𝜿 (®𝑏) ∧ ¬𝜙 ⊨ 𝑓 ≤ 𝜿 (®𝑏))
return 𝜃 (𝜿) (®𝑏)

case 𝑥 B 𝑑 : return Expectation(𝑑, 𝜆𝑣 .𝑓 [𝑥/𝑣])
default: return SymbolicValue(C, 𝑓)

Fig. 5. Pseudocode detailing cost-inference.

8 IMPLEMENTATION
In this section, we give an overview of the implementation of our methodology within our

tool eco-imp. The core of our tool is given by the algorithms ecost[C] and evalue[C] outlined in

Figure 5, computing for a given program C and cost function 𝑓 , an upper bound to ecost[C] and
evalue[C] (𝑓), respectively. As for the transformers, the two algorithms are structurally similar.

In the majority of cases, the default branch of the algorithm is executed and the implementation

symbolically executes the corresponding transformer from Figure 3. Conclusively, a precise bounds

is computed in these cases. Exceptions to this are the cases of loops and assignments, detailed

below. Here, possibly imprecise upper bounds are derived. Due to monotonicity (Lemma 4.4(2))

soundness of the overall algorithm remains intact.

Sequential composition. For a command C = D; E, our implementation relies on Theorem 7.5,

except when D does not contain a loop. In this case, the algorithms proceed by unfolding according

to the rules in Figure 5 and (recursion on D). Here, modularity is not necessary; the straight-line

program D can be analysed directly.

While loops. The main novel aspect from which our implementation derives its strength lies in

the treatments of loops, providing an almost literal implementation of Theorem 7.5, following to

recipe given on page 17. The subprocedure SelectBases, outlined below, selects a vector of base

functions
®𝑏 from the loops guard 𝜙 , and the recursively computed cost 𝑔 of the loop’s body or the

cost function 𝑓 . For each such base function 𝑏, an upper bound 𝑏′ to its expectation evalue[C] (𝑏)
is computed and a linear template 𝜅 (®𝑥) = ∑

𝑖 𝑞𝑖 · 𝑥𝑖 with undetermined coefficients 𝑞𝑖 ∈ R≥0 is

prepared. Based on these ingredients, the subprocedure Solve is applied to the constraint dictated

by Theorem 7.5. Should this procedure establish a solution 𝜃 , ie. an assignment to the undetermined

coefficients 𝑞𝑖 underlying 𝜅 that validates the supplied constraint, the instantiated cost function

𝜃 (𝜿) (®𝑏) = ∑
𝑖 𝜃 (𝑞𝑖) · ®𝑏𝑖 is returned. The dedicated constraint solver underlying the procedure Solve

is detailed below in Section 8.1.

Selection of base functions. Our implementation selects a set of candidate base functions
®𝑏 as a

linear or non-linear combination of base functions
®𝑏𝜙 , ®𝑏𝑔 and ®𝑏 𝑓 extracted from the loop guard

𝜙 , the expected cost of the loop body 𝑔 and the continuation 𝑓 , loosely following the heuristics

of Sinn et al. [2016]. Specifically, for a loop guard containing 𝑒1 ≤ 𝑒2 we take ⟨𝑒2 − 𝑒1 + 1⟩ ∈ ®𝑏𝜙 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:20 Martin Avanzini, Georg Moser, and Michael Schaper

Further,
®𝑏𝑔 and ®𝑏 𝑓 contain all maximal non-max subexpressions of 𝑔 and 𝑓 , respectively. Given ®𝑏𝜙 ,

®𝑏𝑔 and ®𝑏 𝑓 we then construct different linear and non-linear combinations, such as
®𝑏 = ®𝑏𝜙 + ®𝑏𝑔 + ®𝑏 𝑓

and
®𝑏 = ®𝑏𝜙 × ®𝑏𝑔 + ®𝑏 𝑓 where × and + extend multiplication and addition to sets of base functions

element-wise. Since base functions can be extracted from a given context rather than the whole

program, the number of base functions is usually low. This is one crucial aspect to the efficiency of

our algorithm. The prototype implements caching and backtracking to test different base functions.

In particular, non-linear base functions are employed only if the linear ones fail. This is another

crucial aspect to efficiency, in contrast to a monolithic procedure. Constraint solving over linear

arithmetical expressions is significantly more efficient; non-linear expressions are employed only

in the analysis of those program fragments where necessary.

Assignments. Our implementation supports, on the one hand, assignments with sampling from

finite, discrete distributions, of the form 𝑑 (𝜎) = {{𝑝𝑖 (𝜎) : 𝑒𝑖 (𝜎)}}0≤𝑖≤𝑘 for a fixed constant 𝑘 and

𝑝𝑖 = 𝑒𝑖/𝑓𝑖 , such as {{𝑖 + 1/10 : 𝑥 + 2𝑖}}0≤𝑖≤9. Noteworthy, probabilities of probabilistic branches are
not necessarily constant. In this case, the expected cost of a probabilistic assignment 𝑥 B 𝑑 is given

by

ect[𝑥 B 𝑑] (𝑓) (𝜎) = ∑
1≤𝑖≤𝑘 𝑝𝑖 (𝜎) · 𝑓 [𝑥/𝑒𝑖 (𝜎)] .

Thus our system encompasses a variety of standard distributions where probabilistic branching is

static, in the sense that the degree does not depend on program variables. Thus our implementation

supports a variety of standard distributions, noteworthy sampling from uniform distributions with
bounded support, Bernoulli, binomial and hypergeometric distributions.
On the other hand, we are able to natively support dynamic probabilistic branching, facilitated

by our constraint solver for Upper Invariants. In particular, we have added support for sampling

uniform distributions Uniform(𝑒1, 𝑒2) for 𝑒1 ≤ 𝑒2. This, for example, is crucial to represent the

Coupon Collector’s problem properly. Note, that in this case

ect[𝑥 B 𝑑] (𝑓) = [𝑒1 ≤ 𝑒2] ·
(∑︁𝑒2

𝑖=𝑒1
𝑓 [𝑥/𝑖]

)
/(𝑒2 − 𝑒1 + 1) .

To find a closed form for the bounded sum

∑𝑒2
𝑖=𝑒1

𝑓 [𝑥/𝑖], our implementation seeks for an upper

bound 𝜿 (®𝑏) subject to the constraint 𝑒1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑒2 ⊨ 𝑓 [𝑥/𝑖] + 𝜿 (®𝑏 [𝑖/𝑖 + 1]) ≤ 𝜿 (®𝑏).

8.1 Constraint Solving Mechanism
In this section, we highlight the constraint solving mechanism as implemented in our proto-

type eco-imp, consisting of two stages: the first translates constraints over costs (with undeter-

mined coefficients) to tests of non-negativity over polynomials; the second stage then treats this

syntactically simpler form of constraints.

First, we fix two syntactic categories of (non-linear) integer expressions Exp and cost expressions
CExp as follows.

Exp ∋ 𝑒, 𝑓 ::= 𝒊 | 𝑥 | 𝑒 + 𝑓 | 𝑒 − 𝑓 | 𝑒 · 𝑓 CExp ∋ 𝑐, 𝑑 ::= 𝑒/𝑓 | [𝜙] · 𝑐 | 𝑐 + 𝑑 | max(𝑐, 𝑑) .

In Exp, we use integer variables 𝑥 ∈ Var to denote cost functions 𝜆𝜎.𝜎 (𝑥). Cost expressions
denote fractions over integer expressions, closed under guards, sum and maximum. Furthermore,

we restrict BExp to Boolean formulas over atoms 𝑒 ≤ 𝑓 , in disjunctive normal form. This still

permits the usual comparison operators over integer expressions, eg., 𝑒 < 𝑓 can be represented

as 𝑒 + 1 ≤ 𝑓 or 𝑒 = 𝑓 as 𝑒 ≤ 𝑓 ∧ 𝑓 ≤ 𝑒 . We tacitly employ such equalities below. When denoting

cost expressions, we usually write 𝑒 instead of 𝑒/1. Base functions are given as a combination of

expressions ⟨𝑒⟩ ≜ [0 ≤ 𝑒] · 𝑒 . Not every cost expression is an expectation in CΣ though, as cost

expression need not be well-formed.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:21

Simplification Rules
𝜙 ∧𝜓 ⊨ 𝑐1 + 𝑐2 ≤ 𝑑 𝜙 ∧ ¬𝜓 ⊨ 𝑐2 ≤ 𝑑

𝜙 ⊨ [𝜓] · 𝑐1 + 𝑐2 ≤ 𝑑
[condL]

𝜙 ∧𝜓 ⊨ 𝑐 ≤ 𝑑1 + 𝑑2 𝜙 ∧ ¬𝜓 ⊨ 𝑐 ≤ 𝑑2

𝜙 ⊨ 𝑐 ≤ [𝜓] · 𝑑1 + 𝑑2
[condR]

𝜙 ⊨ 𝑒 + 𝑐 ★ 𝑓 ≤ 𝑑 ★ 𝑓

𝜙 ⊨ 𝑒/𝑓 + 𝑐 ≤ 𝑑
[divL]

𝜙 ⊨ 𝑐 ★ 𝑓 ≤ 𝑒 + 𝑑 ★ 𝑓

𝜙 ⊨ 𝑐 ≤ 𝑒/𝑓 + 𝑑
[divR]

𝜙 ⊨ 𝑐1 + 𝑐3 ≤ 𝑑 𝜙 ⊨ 𝑐2 + 𝑐3 ≤ 𝑑

𝜙 ⊨ max(𝑐1, 𝑐2) + 𝑐3 ≤ 𝑑
[maxL]

Logical Rules

𝜙 ⊨ 0 ≤ 𝑑
[triv]

𝜙 ⊨ ⊥
𝜙 ⊨ 𝑐 ≤ 𝑑

[contr]

∀𝑖 .(𝜙𝑖 ⊨ 𝑐 ≤ 𝑑)
(∨𝑖 𝜙𝑖) ⊨ 𝑐 ≤ 𝑑

[conj]

Fig. 6. Constraint simplification rules.

We say 𝑐 ∈ CExp is well-formed wrt. store 𝜎 ∈ Σ if (i) 𝑐 = 𝑒/𝑓 such that 𝑒 (𝜎) ≥ 0 and 𝑓 (𝜎) > 0;
(ii) 𝑐 = [𝜙] · 𝑑 such that 𝜎 ⊨ 𝜙 and 𝑑 is well-formed wrt. 𝜎 ; (iii) 𝑐 = 𝑐1 + 𝑐2 or 𝑐 = max(𝑐1, 𝑐2) such
that both 𝑐1 and 𝑐2 are well-formed wrt. 𝜎 . Well-formedness of 𝑐 under 𝜎 guarantees that 𝑐 (𝜎) is
defined and non-negative. We call 𝑐 well-formed wrt. a Boolean expression 𝜙 , if 𝑐 is well-formed

for all stores 𝜎 such that 𝜎 ⊨ 𝜙 . Apart from the lack of fixed points, the syntax of cost expression is

rich enough to express our expectation transformers. Division is included to express the built-in

distributions outlined above. Cost expressions form a commutative semigroup under +, with 0
the unit element. Thus, it is justified to consider cost expressions equal up to associativity and

commutativity of +, as well as the unit law 0 + 𝑐 = 𝑐 + 0 = 𝑐 .

For 𝑐 ∈ CExp and 𝑒 ∈ CExp, we define multiplication 𝑐 ★ (𝑒1/𝑒2) with a fraction 𝑞 = 𝑒1/𝑒2 by

recursion on 𝑐 in the natural way as follows:

(𝑓1/𝑓2) ★ (𝑒1/𝑒2) ≜ (𝑓1 · 𝑒1)/(𝑓2 · 𝑒2) ([𝜙] · 𝑐) ★𝑞 ≜ [𝜙] · (𝑐 ★𝑞)
(𝑐1 + 𝑐2) ★𝑞 ≜ 𝑐1 ★𝑞 + 𝑐2 ★𝑞 max(𝑐1, 𝑐2) ★𝑞 ≜ max(𝑐1 ★𝑞, 𝑐2 ★𝑞) .

Note that this operation preserves well-formedness. Due to the last clause, 𝑐 ★ (𝑒1/𝑒2) does in
general not equal 𝑐 · (𝑒1/𝑒2), namely, on stores 𝜎 where the fraction is negative. However, for

well-formed cost expression 𝑒1/𝑒2, the equality holds.

Constraint simplification. In Figure 6, we present an inference system over constraints 𝜙 ⊨ 𝑐 ≤ 𝑑 ,

where 𝑐, 𝑓 ∈ CExp and 𝜙,𝜓 ∈ BExp. This system eliminates max, guards and disjunctions by case

analysis. We elide a rule for max occurring in right-hand sides, as this can be easily prevented in

the constraint solving setup. We say a constraint 𝜙 ⊨ 𝑐 ≤ 𝑑 is well-formed, if 𝑐, 𝑑 are well-formed

under 𝜙 . It is valid if for all stores 𝜎 ∈ Σ with 𝜎 ⊨ 𝜙 , we have 𝑐 (𝜎) ≤ 𝑑 (𝜎). It is easy to see that the

rules preserve well-formedness. The system is sound and complete in the following sense.

Theorem 8.1. Let Δ be a derivation of a well-formed constraint 𝜙 ⊨ 𝑐 ≤ 𝑑 . Then this constraint is
valid if and only if all premises in Δ are.

This statement is proven by induction on the derivation Δ. The rules concerning division,

rule (divL) and (divR), are sound because the divisor 𝑓 is positive on all stores 𝜎 satisfying 𝜙 , due

to the well-formedness assumption.

Example 8.2. Recall that the analysis of program Cgeo in Section 7.1 required solving the constraint

𝑏 = 1 ⊨ 1+𝜿 (1/2) ≤ 𝜿 (⟨𝑏⟩). Fix𝜅 (𝑥) ≜ 𝑞·𝑥 for undetermined𝑞 ∈ R≥0 and note that ⟨𝑏⟩ = [0 ≤ 𝑏]·𝑏

by definition. By unfolding 𝜅, the cost of the loop in Cgeo is given by 𝜿 (⟨𝑏⟩) if 𝑏 = 1 ⊨ 1 + 𝒒/2 ≤

[0 ≤ 𝑏] · 𝒒 · 𝑏, is valid for some 𝑞 ∈ R≥0. Eliminating guards yield several constraints, but only the

constraint 𝑏 = 1 ∧ 0 ≤ 𝑏 ⊨ 1 + 𝒒/2 ≤ 𝒒 · 𝑏, is not subject to rule (triv) or rule (contr). Rule (divL)

then yields

𝑏 = 1 ∧ 0 ≤ 𝑏 ⊨ 2 + 𝒒 ≤ 2 · 𝒒 · 𝑏 . (7)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:22 Martin Avanzini, Georg Moser, and Michael Schaper

By Theorem 8.1, this constraint is equi-satisfiable with the initial one above, in the sense that any

value for 𝑞 for the latter makes also the former valid.

Constraint solving. Given a constraint 𝜙 ⊨ 𝑐 ≤ 𝑑 , the simplification rules of Figure 6 can be

seen as a way to eliminate max, guards, division and disjunctions. Thus, they translate constraints

over cost-expressions to a set of equivalent constraints over integer-valued expressions. Wlog.,

these constraints are of the form

∧
𝑖 0 ≤ 𝑒𝑖 ⊨ 0 ≤ 𝑒 , by employing additionally the identity

𝑒 ≤ 𝑓 ⇔ 0 ≤ 𝑓 − 𝑒 . Any expression 𝑒 can be understood as a polynomial 𝑝 (®𝑥) in the program

variables ®𝑥 . Validity of constraints of the above form becomes representable as a test of non-

negativity. To this end, we make use of known approximations for certifying non-negativity of

polynomial expressions, cf. [Chatterjee et al. 2016; Fuhs et al. 2007; Wang et al. 2019]. Let 𝑝 and

𝑝1⩽𝑖⩽𝑚 , respectively, denote real-valued polynomials over the integers. The following proposition

expresses a (gross) simplification of Handelman’s theorem [Handelman 1988], which turns out to

be quite effective in our context.

Proposition 8.3. Let 𝑝 (®𝑥) be a real-valued polynomial over the integers. Suppose there exists
multi-indices (𝑖1, . . . , 𝑖𝑚) ∈ N𝑚 , polynomials 𝑝1⩽𝑖⩽𝑚 : : Z𝑛 → R and 𝑐 (𝑖1,...,𝑖𝑚) ∈ R≥0 so that
𝑝 (®𝑥) = ∑

(𝑖1,...,𝑖𝑚) ∈ N𝑚 𝑐 (𝑖1,...,𝑖𝑚) · 𝑝
𝑖1
1 (®𝑥) · · · 𝑝

𝑖𝑚
𝑚 (®𝑥). Then

∧𝑚
𝑖=1 0 ≤ 𝑝𝑖 (®𝑥) implies 0 ≤ 𝑝 (®𝑥).

Recall that overall, we are concerned with synthesising concrete values for the undetermined

𝑞𝑖 ∈ R≥0 stemming from templates 𝜅 (®𝑏) ≜ ∑
𝑞𝑖 · 𝑏𝑖 , so that all the generated constraints become

valid. By reducing inequalities over polynomials to inequalities of the constituting coefficients and

fixing indices 𝐼 , via Proposition 8.3 this synthesis can be formulated as a satisfiability problem

over arithmetical expressions over variables 𝑞𝑖 ≥ 0. In turn, this problem can be solved with an

off-the-shelf SMT solver supporting QF_NRA. We illustrate this with our running example.

Example 8.4 (Example 8.2 continued). Unfolding the first premise 𝑏 = 1 to 0 ≤ 𝑏 − 1 ∧ 0 ≤ 1 − 𝑏

as discussed above, the final remaining constraint (7) from the running example simplifies to

0 ≤ 𝑏 − 1 ∧ 0 ≤ 1 − 𝑏 ∧ 0 ≤ 𝑏 =⇒ 0 ≤ 2 · 𝑞 · 𝑏 − 𝑞 − 2 .

We restrict to themulti-indices (1, 0, 0), (0, 1, 0) and (0, 0, 1), that is, we intend to express 2·𝑞 ·𝑏−𝑞−2
as a linear combination of the three functions 𝑏−1, 1−𝑏 and 𝑏, respectively, represent the conjuncts

in the assumption. Proposition 8.3 yields the following obligation

2 · 𝑞 · 𝑏 − 𝑞 − 2 = 𝑐 (1,0,0) · (𝑏 − 1) + 𝑐 (0,1,0) · (1 − 𝑏) + 𝑐 (0,0,1) · 𝑏 ,

which, subject to the side-condition 0 ≤ 𝑞, holds with 𝑞 = 2, 𝑐 (1,0,0) = 4 and 𝑐 (0,1,0) = 𝑐 (0,0,1) = 0.
Theorem 8.1 now translates this solution to a solution 𝜅 (𝑥) ≜ 2 · 𝑥 for the initial constraint in

Example 8.2. The constraint solving mechanism established this way thus derives the (optimal)

bound given by hand in Section 7.1.

8.2 Experimental Evaluation
To assess our implementation, we have conducted an experimental evaluation of eco-imp on the

benchmarks of [Ngo et al. 2018; Wang et al. 2019]. We have elided example recursive from [Ngo

et al. 2018] as we have not yet incorporated support for recursive definitions into eco-imp. This is
planned for a future release of the prototype. The prototype of Wang et al. [2019] can also deal with

some programs featuring negative costs, corresponding examples have been also removed from

our testbed. We have extended the resulting testbed with the various examples from this work: In

Table 2 (d) we list the program from Figure 1c as coupons-n and also instantiate 𝑛 to constants 10,

50 and 100. Similar, the example from Figure 1a has been parameterised in the number of shares,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:23

Fig. 7. Comparison of inferred expected cost and measured expected cost using a sample size of 10000, for
(from left to right) examples (a) trader 2, (b) coupons and (c) rejection_sampling. The box plot depicts
the minimum, lower- and upper quartile, and maximum cost measured. For trader we fix𝑚𝑖𝑛 to 100.

denoted as trader-n, respectively. Examples nest-i perform 𝑖 nested random walks. The example

bridge performs an unbiased random walk within an interval [𝑎, 𝑏].
In Tables 1 and 2, we compare our implementation (column A) to the prototypes Absynth of

Ngo et al. [2018] (column B) and Wang et al. [2019] (column C). On some of the examples, the

tool Absynth does not provide an upper bound in a reasonable amount of time; as timeout we

use 5 minutes; corresponding examples have been marked with —. Wrt. the tool by Wang et al.

[2019], we reproduce the experimental evaluation reported in Wang et al. [2019] and slightly

extend them by results on the example bridge. Further, we provide timing information on the

accessible part of the benchmark in [Ngo et al. 2018]. However, the tool requires extensive manual

invariant annotations and various examples were not amendable to an experimental evaluation.

Corresponding rows are marked with —. Execution times are obtained on an Intel i7-7600U CPU

with 2.8GHz and 16GB RAM.

Precision. The bounds reported in Table 1 and 2 are to a great extent overlapping with those

inferred by the Absynth tool from Ngo et al. [2018] and, where available, by the prototype of Wang

et al. [2019]. In particular, the bounds for all but three example are on the same order of magnitude.

In example prnes, eco-imp infers a quadratic rather than a linear bound. This example uses non-

determinism in a way non-beneficial to a separated cost and value analysis, similar to Example 7.3.

Concerning example C4B_t30 our tool infers an asymptotic optimal linear bound, while Absynth
yields a quadratic one. Whereas Absynth uses a combination of linear and non-linear base functions,

our backtracking-based algorithm for selecting base functions succeeds on this example using

purely linear base functions. A similar observation carries over to example queueing-network
(depicted in Figure 4a). While the bound derived by eco-imp equals the one from [Wang et al. 2019]

upto a constant, it is significantly more precise than the bound obtained by the Absynth tool.
2

These results are remarkable, as the precision of Absynth is outstanding. It is well-understood

that a modular analysis, like ours, often comes with the drawback of less precision. Noteworthy is

our analysis of rejection_sampling depicted in Figure 4b, due to Kaminski et al. [2016], where

eco-imp’s precision equals the measured expected cost, cf. Figure 7.

Speed. Across the benchmark, where we have annotated the speedup in parenthesis besides

execution times, eco-imp outperforms the other tools. While our tool achieves already significant

speedups in the linear benchmark from [Ngo et al. 2018], the gains are most pronounced in examples

with nested loops and non-linear bounds (Table 2 (b)—(c)). The only exception to this assessment are

2
Note that the bound reported in [Wang et al. 2019] and also produced by their tool contains terms depending on constant

values 𝑙1, 𝑙2, and 𝑖 , representing the length of the queues and the loop counter, respectively. In our presentation, however,

we have set these values to their initial values to ease comparability.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:24 Martin Avanzini, Georg Moser, and Michael Schaper

1 2 3 4

0s

2s

4s

6s

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

Number of nested loops

E
x
e
c
u
t
i
o
n
t
i
m
e
s

101 102 103 104 105
0s

5s

10s

15s

20s

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

N
O
B
O
U
N
D
D
E
R
I
V
E
D

Number of shares

eco-imp
Ngo et al. [2018]

Wang et al. [2019]

Fig. 8. Execution times of the three analysers on parametric examples (a) nest-i consisting of 𝑖 nested loops,
each performing a biased random walk and (b) trader-n from Figure 1a with number of shares fixed to 𝑛.

the examples queueing-network and prnes, both single-loop programs. Concerning the former,

our tool performs several backtracking steps to derived the asymptotic optimal bound mentioned

above. Also the use of large constants within the SMT-solving stage explains the longer execution
time. Concerning prnes, while our tool performs significantly faster than the implementation

of Wang et al., it is slightly less performant than Absynth. Due to non-determinism underlying the

example, as outlined above, eco-imp has to resort to non-linear bounding functions, making the

constraint solving stage more involved.

This assessment remains intact when comparing to the implementation of Wang et al. on the

subset of examples treated by Wang et al. [2019]. Note however that differences in execution times

are even stronger pronounced.

Scalability. In Figure 8, we show the results of eco-imp on parametric examples in comparison

to the prototypes of Ngo et al. [2018] and Wang et al. [2019]. The left figure plots execution times

in relation to the number of nested loops. Similarly, the figure on the right depicts the effects on

extending the number of shares in Ctrader. See also Table 1 (d). Our results are competitive and

highlight sharply the prime benefit of our implementation, viz, its modularity. As clear indication

of the scalability of our tool, the execution times of eco-imp are barely visible in the charts in

contrast to runtime of existing tools, if the tools can handle the examples at all.

Deterministic Programs. Finally, we also point out that eco-imp is competitive with regards

to automated complexity analysis tools on deterministic programs. For illustration, we comple-

mented the experimental evaluation from Carbonneaux et al. [2015], comparing their tools 𝐶4𝐵,

KoAT [Brockschmidt et al. 2014], Rank [Alias et al. 2010] and Speed [Gulwani et al. 2009], on the 34
deterministic integer programs from their benchmark.

3
Here,𝐶4𝐵 outperforms the mentioned tools

by a great margin, as 𝐶4𝐵 can solve at least 10 more examples in each comparison. In comparison

eco-imp can derive bounds for all examples but t62. However, since 𝐶4𝐵 is constrained to linear

bounds and consequently the testbed features only examples with linear cost, eco-imp cannot

benefit from its modularity on this benchmark.

9 RELATEDWORKS
We restrict our focus on related work concerned with the analysis of bounded expected resource
usage of (non-deterministic) probabilistic imperative programs.

Very briefly, we refer to the extensive literature of analysis methods for (bounded) or almost-sure
termination for (non-deterministic) probabilistic programs that have been introduced in the last

3
Full experimental evidence is available from the homepage of eco-imp.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:25

years. These have been provided in the form of abstract interpretations [Chakarov and Sankara-

narayanan 2014; Monniaux 2001]; martingales, eg., ranking super-martingales [Agrawal et al.

2018; Brázdil et al. 2015; Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016, 2017a,b;

Esparza et al. 2005; Takisaka et al. 2018; Wang et al. 2019]; or equivalently Lyapunov ranking
functions [Bournez and Garnier 2005]; model checking [Katoen 2016]; program logics [Kaminski

et al. 2018; McIver et al. 2018; Ngo et al. 2018; Wang et al. 2018]; proof assistants [Barthe et al. 2009];
recurrence relations [Sedgewick and Flajolet 1996]; methods based on program analysis [Celiku and

McIver 2005; Katoen et al. 2010; Kozen 1985]; or symbolic inference [Gehr et al. 2016]; and finally

type systems [Avanzini et al. 2019; Breuvart and Dal Lago 2018].

Probabilistic resource analysis. Kaminski et al. generalises Dijkstra’s wp-calculus to an expected

runtime transformer ert. The obtained resource analysis expresses is smoothly applicable in a variety

of case studies, in particular to the program Ccoupons. Our expected cost transformer constitutes

a generalisation of the ert-calculus. In particular, note that evalue[C] coincides with the weakest

precondition transformer wp[C] by Kaminski et al. [2018] on fully probabilistic programs, ie. those
without non-deterministic choice. In the presence of mixed-sign, unbounded updates, the ert-
calculus has been extended by exploiting an absolute convergence criterion, cf. Kaminski and

Katoen [2017]. A bulk of research in the literature concentrates on specific forms of martingales or

Lyapunov ranking functions. Central to our work is the observation, that these approaches can be

suited to a variety of quantitative program properties, see Takisaka et al. [2018] for an overview. We

also mention Chatterjee et al. [2017a] where inference procedures to solve recurrences stemming

from probabilistic programs are proposed.

Automation. Notably, the Absynth prototype by Ngo et al. [2018], implements a weakest precondi-

tion calculus for reasoning about expected costs. Our tool eco-imp generalises this implementation

and provides a modular and thus a more efficient and scalable alternative. Also martingale based

techniques have been implemented, eg., by Chatterjee et al. [2016] and more recently by Wang et al.

[2019]. A novelty of Wang et al. [2019] is the established polynomial-time analysis and incorpora-

tion of a cost model which allows for unbounded negative and positive costs, as long as the variable
updated are bounded, while demands (almost-sure) termination as prerequisite. Exploiting the

approach by Kaminski and Katoen [2017], we expect the extensibility of our approach to negative

costs as well. Our work overcomes the whole-program analysis established by these tools and

provides a modular and scalable framework. Further, dynamic distributions are supported. As

vindicated by the above provided experimental assessment, modularity significantly speeds up the

analysis (see Section 8).

10 CONCLUSION
We established an automated expected resource analysis of non-deterministic, probabilistic impera-

tive programs. As indicated by the formal hardness of this problem by Kaminski and Katoen [2015],

this is challenging. While previous approaches only feature a whole-program analysis to synthesis

precise cost functions, we present a novel modular framework for the automated analysis. Our

prototype eco-imp is more efficient and scales better than existing tools. Its algorithmic superiority

is eg. attested by the fact that the motivating example by Ngo et al. [2018] can be handled three
orders of magnitudes faster.
To establish these highlights, (i) we exploit a novel operational semantics in terms of weighted

probabilistic abstract reduction systems Avanzini et al. [2020]; Avanzini and Yamada [2020]; (ii) we

establish modularity by generalising a weakest precondition calculus pioneered by Kaminski et al.

[2018] to an alternating expected cost and value analysis; and (iii) painstaking attention to detail in

the implementation with a focus on efficiency.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:26 Martin Avanzini, Georg Moser, and Michael Schaper

Future theoretical advances are needed to incorporate the treatment of presence of mixed-sign,

unbounded updates, in order to properly deal with negative costs. Practical goals are the extension

of the synthesis capabilities of our prototype towards lower bounds (following Ngo et al. [2017])

and further, real-world examples.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:27

Ta
bl
e
1.

A
ut
om

at
ic
al
ly

de
ri
ve
d
bo

un
ds

on
th
e
ex
pe
ct
ed

co
st
an

d
ex
ec
ut
io
n
ti
m
es

vi
a
ec

o-
im

p
(A

),
[N

go
et

al
.2
01
8]

(B
),
an

d
[W

an
g
et

al
.2
01
9]

(C
).

In
fe
rr
ed

B
ou

nd
R
un

ti
m
e
in

se
cs
.(
sp

ee
du

p)
Pr

og
ra
m

A
B

C
A

B
C

(a
)l
in
ea
r
be

nc
hm

ar
k
fr
om

[N
go

et
al
.2

01
8]

2d
rw

al
k

2
⟨𝑛
−
𝑑
+
1
⟩

2
⟨𝑛
−
𝑑
+
1
⟩

—
0
.0
2
6

0
.2
8
6
(
1
1
)

—

ba
ye

si
an

_n
et

wo
rk

5
⟨𝑛
⟩

5
⟨𝑛
⟩

—
0
.0
0
2

0
.1
2
7
(
6
3
)

—

be
r

2
⟨𝑛
−
𝑥
⟩

2
⟨𝑛
−
𝑥
⟩

2
(𝑛
−
𝑥
)

0
.0
0
1

0
.0
1
4
(
1
4
)

6
.6
8
4
(
6
6
8
4
)

bi
n

1
.0
2
4
/1

.0
2
3
⟨𝑛
−
𝑥
⟩

0
.2
⟨9
+
𝑛
⟩

0
.9
1
(𝑛
−
𝑥
)−

0
.9
1

0
.0
0
6

0
.1
5
2
(
2
5
)

6
.3
0
3
(
1
0
5
0
)

C4
B_

t0
9

4
1
⟨𝑥
⟩

8
.2
7
⟨𝑥
⟩

—
0
.0
0
6

0
.0
7
9
(
1
3
)

—

C4
B_

t1
3

5
/4
⟨𝑥
⟩+
⟨𝑦
⟩

1
.2
5
⟨𝑥
⟩+
⟨𝑦
⟩

1
.2
5
𝑥
+
𝑦
−
1
.2
5

0
.0
0
5

0
.0
2
5
(
5
)

8
.5
2
7
(
1
7
0
5
)

C4
B_

t1
5

2
⟨𝑥
+
1
⟩

⟨𝑥
−
1
⟩+
⟨𝑥
⟩

—
0
.0
0
6

0
.0
2
6
(
4
)

—

C4
B_

t1
9

2
⟨𝑖
−
1
0
0
⟩+
⟨𝑖
+
𝑘
+
5
1
⟩

2
⟨𝑖
⟩+
⟨𝑖
+
𝑘
+
5
1
⟩

—
0
.0
0
5

0
.0
2
2
(
4
)

—

C4
B_

t3
0

⟨𝑦
+
2
⟩+
⟨𝑥
⟩

0
.3
3
⟨𝑥
+
2
⟩+

0
.1
6
7
⟨2
+
𝑥
⟩⟨
2
+
𝑦
⟩

—
0
.0
0
3

0
.2
4
0
(
8
0
)

—

C4
B_

t6
1

7
+

1
6
0
/1

9
⟨𝑙
−
7
⟩

0
.0
6
⟨𝑙
−
1
⟩+
⟨𝑙
⟩

—
0
.0
0
5

0
.0
3
6
(
7
)

—

co
nd

an
d

2
⟨𝑚
⟩

2
⟨𝑚
⟩

𝑚
+
𝑛
−
1

0
.0
0
2

0
.0
1
9
(
9
)

8
.0
3
7
(
4
0
1
8
)

co
ol

in
g

2
1
/1

0
⟨1
+
𝑡
⟩+
⟨𝑚

𝑡
−
𝑠
𝑡
⟩

0
.4
2
⟨5
+
𝑡
⟩+
⟨𝑚

𝑡
−
𝑠
𝑡
⟩

—
0
.0
1
5

0
.0
8
3
(
6
)

—

co
up

on
2
5

1
5

—
0
.0
0
3

0
.0
4
5
(
1
5
)

—

co
wb

oy
_d

ue
l

6
/5

1
.2

—
0
.0
0
1

0
.0
3
3
(
3
3
)

—

co
wb

oy
_d

ue
l_

3w
ay

8
3
/2

4
2
.0
8
3

—
0
.0
0
4

0
.1
4
9
(
3
7
)

—

fc
al

l
2
⟨𝑛
−
𝑥
⟩

2
⟨𝑛
−
𝑥
⟩

—
0
.0
0
1

0
.0
2
1
(
2
1
)

—

fi
ll

in
g_

vo
l

3
/5
⟨1
+
𝑣𝑇

𝐹
⟩+

3
/5
⟨𝑣
𝑇
𝐹
⟩

0
.3
3
⟨1
0
+
𝑣𝑇

𝐹
⟩+

0
.3
3
⟨𝑣
𝑇
𝐹
⟩

—
0
.0
0
6

0
.2
3
0
(
3
8
)

—

ge
o

1
5

—
0
.0
0
1

0
.0
1
8
(
1
8
)

—

hy
pe

r
1
4
5
/2

8
⟨𝑛
−
𝑥
−
1
⟩

5
⟨𝑛
−
𝑥
⟩

—
0
.0
0
2

0
.0
3
4
(
1
7
)

—

li
ne

ar
01

⟨𝑥
−
1
⟩

0
.6
⟨𝑥
⟩

0
.6
𝑥

0
.0
0
1

0
.0
1
1
(
1
1
)

6
.3
9
2
(
6
3
9
2
)

no
_l

oo
p

5
5

—
0
.0
0
1

0
.0
1
0
(
1
0
)

—

pr
dw

al
k

8
/3
⟨𝑛
−
𝑥
⟩

1
.1
4
⟨4
+
𝑛
−
𝑥
⟩

1
.1
6
(𝑛
−
𝑥
)−

1
.1
6

0
.0
0
2

0
.0
2
7
(
1
3
)

6
.6
5
0
(
3
3
2
5
)

pr
ne

s
5
0
/9
⟨𝑦
−
9
9
⟩⟨
−𝑛
⟩+

2
5
0
.0
0
0
/8

1
⟨−

𝑛
⟩2

6
8
.4
8
⟨−

𝑛
⟩+

0
.0
5
⟨𝑦
⟩

0
.0
5
𝑦
−
6
8
.4
8𝑛

0
.1
2
6

0
.0
3
4
(
0
)

7
.7
8
9
(
6
2
)

pr
se

q
6
⟨𝑥
−
𝑦
−
2
⟩+

3
⟨𝑦
−
9
⟩

1
.6
5
⟨𝑥
−
𝑦
⟩+

0
.1
5
⟨𝑦
⟩

—
0
.0
1
0

0
.0
3
0
(
3
)

—

pr
se

q_
bi

n
3
2
/5
⟨𝑥
−
𝑦
−
2
⟩+

3
⟨𝑦
−
9
⟩

1
.6
5
⟨1
+
𝑥
−
𝑦
⟩+

0
.1
5
⟨𝑦
⟩

—
0
.0
1
6

0
.0
3
8
(
2
)

—

pr
sp

ee
d

4
/3
⟨𝑛
−
𝑥
−
2
⟩+

2
⟨𝑚
−
𝑦
⟩

0
.0
6
7
⟨𝑛
−
𝑥
⟩+

2
⟨𝑚
−
𝑦
⟩

—
0
.0
1
3

0
.0
3
3
(
3
)

—

ra
ce

1
1
/6
⟨𝑡
−
ℎ
+
3
⟩

0
.6
7
⟨𝑡
−
ℎ
+
9
⟩

0
.5
7
1
(𝑡
−
ℎ
)

0
.0
1
0

0
.0
4
8
(
5
)

6
.9
3
6
(
6
9
4
)

rd
se

ql
9
/4
⟨𝑥
⟩+
⟨𝑦
⟩

2
.2
5
⟨𝑥
⟩+
⟨𝑦
⟩

2
.2
5
𝑥
+
𝑦

0
.0
0
7

0
.0
3
2
(
5
)

7
.3
9
6
(
1
0
5
7
)

rd
sp

ee
d

4
/3
⟨𝑛
−
𝑥
−
2
⟩+

2
⟨𝑚
−
𝑦
⟩

0
.6
7
⟨𝑛
−
𝑥
⟩+

2
⟨𝑚
−
𝑦
⟩

—
0
.0
1
2

0
.0
9
6
(
8
)

—

rd
wa

lk
2
⟨𝑛
−
𝑥
+
1
⟩

2
⟨𝑛
−
𝑥
+
1
⟩

2
(𝑛
−
𝑥
)−

2
0
.0
0
3

0
.0
5
8
(
1
9
)

6
.4
9
7
(
2
1
6
6
)

re
je

ct
io

n_
sa

mp
li

ng
2
⟨𝑛
⟩

2
⟨𝑛
⟩

—
0
.0
0
2

1
.2
2
1
(
6
1
0
)

—

rf
in

d_
lv

2
2

—
0
.0
0
1

0
.0
1
5
(
1
5
)

—

rf
in

d_
mc

⟨𝑘
⟩

⟨𝑘
⟩

—
0
.0
0
2

0
.0
1
9
(
9
)

—

ro
bo

t
5
/4
⟨𝑛
⟩

0
.3
8
⟨6
+
𝑛
⟩

—
0
.0
0
6

1
.5
4
6
(
2
5
8
)

—

ro
ul

et
te

7
4
/1

5
⟨1
0
.0
1
1
−
𝑛
⟩

4
.9
3
3
⟨1
0
.0
1
0
−
𝑛
⟩

—
0
.0
4
9

0
.1
3
9
(
3
)

—

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:28 Martin Avanzini, Georg Moser, and Michael Schaper

Ta
bl
e
2.

A
ut
om

at
ic
al
ly

de
ri
ve
d
bo

un
ds

on
th
e
ex
pe
ct
ed

co
st
an

d
ex
ec
ut
io
n
ti
m
es

vi
a
ec

o-
im

p
(A

),
[N

go
et

al
.2
01
8]

(B
),
an

d
[W

an
g
et

al
.2
01
9]

(C
).

In
fe
rr
ed

B
ou

nd
R
un

ti
m
e
in

se
cs
.(
sp

ee
du

p)
Pr

og
ra
m

A
B

C
A

B
C

(a
)l
in
ea
r
be

nc
hm

ar
k
fr
om

[N
go

et
al
.2

01
8]

(c
on

ti
nu

ed
)

si
mp

le
_g

am
e

2
⟨𝑥
+
1
⟩

2
⟨𝑥
+
1
⟩

—
0
.0
0
6

0
.0
4
5
(
7
)

—

sp
rd

wa
lk

2
⟨𝑛
−
𝑥
⟩

2
⟨𝑛
−
𝑥
⟩

2
(𝑛
−
𝑥
)

0
.0
0
1

0
.0
1
9
(
1
9
)

6
.1
5
5
(
6
1
5
5
)

tr
ap

pe
d_

mi
ne

r
1
5
/2
⟨𝑛
⟩

7
.5
⟨𝑛
⟩

—
0
.0
0
2

0
.0
5
2
(
2
6
)

—

(b
)N

on
-l
in
ea
r
be

nc
hm

ar
k
fr
om

[N
go

et
al
.2

01
8]

co
mp

le
x

⟨𝑤
⟩+

1
8
⟨𝑀
·𝑁
+
𝑁
⟩⟨
𝑁
⟩+

3
⟨𝑦
⟩

⟨𝑤
⟩+

1
8
⟨𝑀
⟩⟨
𝑁
⟩+

9
⟨𝑁
⟩+

3
⟨𝑦
⟩

—
0
.0
2
9

0
.8
0
9
(
2
8
)

—

mu
lt

ir
ac

e
⟨𝑚
+
1
⟩⟨
𝑛
⟩

2
⟨𝑚
⟩⟨
𝑛
⟩+

4
⟨𝑛
⟩

—
0
.0
1
3

2
.1
9
0
(
1
6
8
)

—

po
l0

4
1
5
/2
⟨𝑥
⟩+

9
/2
⟨𝑥
⟩2

7
.5
⟨𝑥
⟩+

4
.5
⟨𝑥
⟩2

3
.1
2
5
𝑥
2
+
5
.3
1
𝑥

0
.0
0
7

0
.2
6
1
(
3
7
)

8
.6
2
6
(
1
2
3
2
)

po
l0

5
3
/4
⟨𝑥
⟩+

3
/2
⟨𝑥
⟩2

⟨𝑥
⟩+
⟨𝑥
⟩2

0
.5
𝑥
2
+
2
.5
𝑥

0
.0
0
7

0
.1
5
0
(
2
1
)

8
.4
8
0
(
1
2
1
1
)

po
l0

6
⟨1
+
𝑚
⟩⟨
1
+
𝑝
⟩+
⟨𝑝
−
𝑚
⟩⟨
1
+
𝑝
⟩

0
.5
⟨𝑝
−
𝑚
⟩+
⟨𝑝
−
𝑚
⟩⟨
𝑝
⟩+
⟨𝑝
−
𝑚
⟩2

—
0
.0
4
0

1
.5
6
7
(
3
9
)

—

po
l0

7
3
/2
⟨𝑛
−
1
⟩2

1
.5
⟨𝑛
−
1
⟩⟨
𝑛
−
2
⟩

—
0
.0
1
5

0
.5
6
1
(
3
7
)

—

rd
bu

b
3
⟨𝑛
⟩2

3
⟨𝑛
⟩2

𝑛
2
+
𝑛

0
.0
0
6

0
.0
9
2
(
1
5
)

9
.3
7
4
(
1
5
6
2
)

tr
ad

er
(-

20
)

2
0
⟨1
+
𝑚
⟩⟨
𝑝
−
𝑚
⟩+

1
0
⟨𝑝
−
𝑚
⟩2

2
0
⟨𝑚
⟩⟨
𝑝
−
𝑚
⟩+

1
0
⟨𝑝
−
𝑚
⟩

+
1
0
⟨𝑝
−
𝑚
⟩2

1
0
(𝑝

2
−
𝑚

2
−
2
𝑝
+
4𝑚
+
1
)

0
.0
3
0

1
1
9
.4
6
4
(
3
9
8
2
)
1
0
.4
2
0
(
3
4
7
)

(c
)a

dd
it
io
na

le
xa

m
pl
es

fr
om

[W
an

g
et

al
.2

01
9]

2d
ro

bo
t

1
/2
⟨1
+
𝑎
−
𝑏
⟩⟨
𝑎
−
𝑏
⟩

+
2
⟨1
+
𝑎
−
𝑏
⟩2
+

1
2
6
7
/1

8
⟨6
+
𝑎
−
𝑏
⟩

—
1
.7
3𝑎

2
−
3
.4
6𝑎

𝑏
+
3
1
.4
5𝑎

+
1
.7
3𝑏

2
−
3
1
.4
5𝑎
+
1
2
6
.5
2

1
.7
6
0

—
1
1
.6
2
1
(
7
)

qu
eu

ei
ng

-n
et

wo
rk

1
.1
3
2
.9
8
1

7
.4
1
1
.5
0
0
⟨𝑛
+
1
⟩+

1
2
5
/2

4
3
+

1
2
5
/2

4
4

0
.0
5
⟨𝑛
+
1
⟩+

0
.0
1
4
⟨𝑛
+
1
⟩2

0
.0
4
9𝑛

2
.2
1
5

1
.2
8
6
(
1
)

7
8
.1
9
1
(
3
5
)

(d
)e

xa
m
pl
es

fr
om

th
is
w
or
k

br
id

ge
⟨𝑥
−
𝑎
⟩⟨
𝑏
−
𝑥
⟩

—
𝑎
𝑥
+
𝑏
𝑥
+
𝑎
−
𝑥
2
−
𝑏
−
𝑎
𝑏
+
1

0
.0
0
5

—
8
.1
7
3
(
1
6
3
5
)

ne
st

-1
4
⟨𝑛
⟩

2
⟨𝑛
+
1
⟩

—
0
.0
1
1

0
.0
7
0
(
6
)

—

ne
st

-2
4
⟨𝑛
⟩+

1
6
⟨𝑛
⟩2

2
⟨1
+
𝑛
⟩+

4
⟨1
+
𝑛
⟩2

—
0
.0
1
9

0
.0
9
7
(
5
)

—

ne
st

-3
2
⟨2
+
𝑛
⟩+

1
6
⟨𝑛
⟩2
+
6
4
⟨𝑛
⟩3

2
⟨1
+
𝑛
⟩+

4
⟨1
+
𝑛
⟩2
+
8
⟨1
+
𝑛
⟩3

—
0
.0
6
8

5
.1
3
0
(
7
5
)

—

ne
st

-4
1
4
4
⟨2
+
𝑛
⟩⟨
𝑛
⟩+

1
0
⟨2
+
𝑛
⟩+

2
5
4𝑛

4
—

—
0
.5
5
4

—
—

tr
ad

er
-1

0
1
0
⟨1
+
𝑚
⟩⟨
𝑝
−
𝑚
⟩+

5
⟨𝑝
−
𝑚
⟩2

1
0
(⟨
𝑚
⟩⟨
𝑝
−𝑚
⟩+
⟨𝑝
−𝑚
⟩2
)+

5
⟨𝑝
−𝑚
⟩

5
(𝑝

2
−
𝑚

2
+
𝑝
+
𝑚
−
2
)

0
.0
2
5

3
.6
3
8
(
1
4
6
)

1
0
.4
6
0
(
4
1
8
)

tr
ad

er
-1

00
1
0
0
⟨1
+
𝑚
⟩⟨
𝑝
−
𝑚
⟩+

5
0
⟨𝑝
−
𝑚
⟩2

—
5
0
(𝑝

2
−
𝑚

2
+
4𝑚
−
2
𝑝
+
1
)

0
.0
2
7

—
1
0
.3
1
2
(
3
8
2
)

tr
ad

er
-1

00
0

1
.0
0
0
⟨1
+
𝑚
⟩⟨
𝑝
−
𝑚
⟩+

5
0
0
⟨𝑝
−
𝑚
⟩2

—
5
0
0
(𝑝

2
−
𝑚

2
+
4𝑚
−
2
𝑝
+
1
))

0
.0
3
9

—
1
0
.6
2
4
(
2
7
2
)

tr
ad

er
-1

00
00

1
0
.0
0
0
⟨1
+𝑚
⟩⟨
𝑝
−
𝑚
⟩+

5
.0
0
0
⟨𝑝
−
𝑚
⟩2

—
5
.0
0
0
(𝑝

2
−
𝑚

2
+
4𝑚
−
2
𝑝
+
1
)

0
.1
6
3

—
1
1
.4
8
9
(
7
0
)

tr
ad

er
-1

00
00

0
1
0
0
.0
0
0
⟨1
+𝑚
⟩⟨
𝑝
−𝑚
⟩+

5
0
.0
0
0
⟨𝑝
−𝑚
⟩2

—
5
0
.0
0
0
(𝑝

2
−
𝑚

2
+
4𝑚
−
2
𝑝
+
1
)

2
.1
1
3

—
2
0
.3
3
2
(
1
0
)

co
up

on
s-

10
1
1
0

1
5
5
0

—
0
.0
1
5

2
7
.0
1
1
(
1
8
0
1
)

—

co
up

on
s-

50
2
2
5
0

—
—

0
.3
0
4

—
—

co
up

on
s-

10
0

1
0
1
0
0

—
—

1
.1
4
1

—
—

co
up

on
s-

n
⟨𝑛
⟩+

1
/2
⟨𝑛
⟩2

no
t
su
pp

or
te
d

no
t
su
pp

or
te
d

0
.1
9
5

—
—

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:29

REFERENCES
S. Agrawal, K. Chatterjee, and P. Novotný. 2018. Lexicographic Ranking Supermartingales: An Efficient Approach to

Termination of Probabilistic Programs. PACMPL 2, POPL (2018), 34:1–34:32. https://doi.org/10.1145/3385412.3386002

E. Albert, P. Gordillo, A. Rubio, and I. Sergey. 2019. Running on Fumes - Preventing Out-of-Gas Vulnerabilities in Ethereum

Smart Contracts Using Static Resource Analysis. In Proc. of 13th VECoS (LNCS, Vol. 11847). Springer, 63–78. https:

//doi.org/10.1007/978-3-030-35092-5_5

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. 2010. Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs. In Proc. of 17th SAS (LNCS, Vol. 6337). Springer, 117–133. https://doi.org/10.1007/978-3-

642-15769-1_8

M. Avanzini, U. Dal Lago, and A. Ghyselen. 2019. Type-Based Complexity Analysis of Probabilistic Functional Programs. In

Proc. of 34th LICS. IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785725

M. Avanzini, U. Dal Lago, and A. Yamada. 2020. On Probabilistic Term Rewriting. SCP 185 (2020), 102338. https:

//doi.org/10.1016/j.scico.2019.102338

M. Avanzini, G. Moser, and M. Schaper. 2016. TcT: Tyrolean Complexity Tool. In Proc. of 2nd TACAS (LNCS). Springer,
407–423. https://doi.org/10.1007/978-3-662-49674-9_24

M. Avanzini and A. Yamada. 2020. Weighted Rewriting. Technical Report. NII and INRIA.

G. Barthe, B. Grégoire, and S. Z. Béguelin. 2009. Formal Certification of Code-based Cryptographic Proofs. In Proc. of 36th

POPL. ACM, 90–101. https://doi.org/10.1145/1480881.1480894

A. Ben-Amram. 2011. Monotonicity Constraints for Termination in the Integer Domain. LMCS 7, 3 (2011), 1–43. https:

//doi.org/10.2168/LMCS-7(3:4)2011

A. Ben-Amram. 2015. Mortality of Iterated Piecewise Affine Functions over the Integers: Decidability and Complexity.

Computability 4, 1 (2015), 19–56. https://doi.org/10.3233/COM-150032

A. Ben-Amram and G. Hamilton. 2019. Tight Worst-Case Bounds for Polynomial Loop Programs. In Proc. of 22th FOSSACS
(LNCS, Vol. 11425). Springer, 80–97. https://doi.org/10.1007/978-3-030-17127-8_5

A. M. Ben-Amram and L. Kristiansen. 2012. On the Edge of Decidability in Complexity Analysis of Loop Programs. JFCS 23,
7 (2012), 1451–1464. https://doi.org/10.1142/S0129054112400588

O. Bournez and F. Garnier. 2005. Proving Positive Almost-Sure Termination. In Proc. of 16th RTA (LNCS, Vol. 3467). Springer,
323–337. https://doi.org/10.1142/S0129054112400588

T. Brázdil, S. Kiefer, A. Kucera, and I.H. Vareková. 2015. Runtime Analysis of Probabilistic Programs with Unbounded

Recursion. JCSS 81, 1 (2015), 288–310. https://doi.org/10.1016/j.jcss.2014.06.005

F. Breuvart and U. Dal Lago. 2018. On Intersection Types and Probabilistic Lambda Calculi. In Proc. of 20th PPDP. ACM,

8:1–8:13. https://doi.org/10.1145/3236950.3236968

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. 2014. Alternating Runtime and Size Complexity Analysis of Integer

Programs. In Proc. of 20th TACAS (LNCS, Vol. 8413). Springer, 140–155. https://doi.org/10.1007/978-3-642-54862-8_10

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. 2016. Analyzing Runtime and Size Complexity of Integer

Programs. TOPLAS 38, 4 (2016), 13:1–13:50. https://doi.org/10.1145/2866575

Q. Carbonneaux, J. Hoffmann, and Z. Shao. 2015. Compositional Certified Resource Bounds. In Proc. of 36th PLDI. ACM,

467–478. https://doi.org/10.1145/2813885.2737955

O. Celiku and A. McIver. 2005. Compositional Specification and Analysis of Cost-Based Properties in Probabilistic Programs.

In Proc. of FM 2005 (LNCS, Vol. 3582). Springer, 107–122. https://doi.org/10.1007/11526841_9

A. Chakarov and S. Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Proc. of 25th CAV (LNCS,
Vol. 8044). Springer, 511–526. https://doi.org/10.1007/978-3-642-39799-8_34

A. Chakarov and S. Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed Points. In

Proc. of 21th SAS (LNCS). Springer, 85–100. https://doi.org/10.1007/978-3-319-10936-7_6

K. Chatterjee, H. Fu, and A. K. Goharshady. 2016. Termination Analysis of Probabilistic Programs Through Positivstellensatz’s.

In Proc. of 28th CAV (LNCS, Vol. 9779). Springer, 3–22. https://doi.org/10.1007/978-3-319-41528-4_1

K. Chatterjee, H. Fu, and A. Murhekar. 2017a. Automated Recurrence Analysis for Almost-Linear Expected-Runtime Bounds.

In Proc. of 29th CAV (LNCS, Vol. 10426). Springer, 118–139. https://doi.org/10.1007/978-3-319-63387-9_6

K. Chatterjee, P. Novotný, and D. Zikelic. 2017b. Stochastic Invariants for Probabilistic Termination. In Proc. of 44th POPL.
ACM, 145–160. https://doi.org/10.1145/3093333.3009873

J. Cohen and C. Zuckerman. 1974. Two Languages for Estimating Program Efficiency. Comm. ACM 17, 6 (1974), 301–308.

https://doi.org/10.1145/355616.361015

E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. 2005. Mechanically Proving Termination Using Polynomial Interpreta-

tions. JAR 34, 4 (2005), 325–363. https://doi.org/10.1007/s10817-005-9022-x

P. Cousot and R. Cousot. 2002. Modular Static Program Analysis. In Proc. of 11th CC (LNCS, Vol. 2304). Springer, 159–178.
https://doi.org/10.1007/3-540-45937-5_13

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

https://doi.org/10.1145/3385412.3386002
https://doi.org/10.1007/978-3-030-35092-5_5
https://doi.org/10.1007/978-3-030-35092-5_5
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1109/LICS.2019.8785725
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.2168/LMCS-7(3:4)2011
https://doi.org/10.2168/LMCS-7(3:4)2011
https://doi.org/10.3233/COM-150032
https://doi.org/10.1007/978-3-030-17127-8_5
https://doi.org/10.1142/S0129054112400588
https://doi.org/10.1142/S0129054112400588
https://doi.org/10.1016/j.jcss.2014.06.005
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1007/978-3-642-54862-8_10
https://doi.org/10.1145/2866575
https://doi.org/10.1145/2813885.2737955
https://doi.org/10.1007/11526841_9
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1145/3093333.3009873
https://doi.org/10.1145/355616.361015
https://doi.org/10.1007/s10817-005-9022-x
https://doi.org/10.1007/3-540-45937-5_13

172:30 Martin Avanzini, Georg Moser, and Michael Schaper

J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1 (2008),

107–113. https://doi.org/10.1145/1327452.1327492

T. Dillig. 2011. A Modular and Symbolic Approach to Static Program Analysis. Ph.D. Dissertation. Stanford University.

J. Esparza, A. Kucera, and R. Mayr. 2005. Quantitative Analysis of Probabilistic Pushdown Automata: Expectations and

Variances. In Proc. of 20th LICS. IEEE, 117–126. https://doi.org/10.1109/LICS.2005.39

T. Fiedor, L. Holík, A. Rogalewicz, M. Sinn, T. Vojnar, and F. Zuleger. 2018. From Shapes to Amortized Complexity. In Proc.
of 19th VMCAI (LNCS, Vol. 10747). Springer, 205–225. https://doi.org/10.1007/978-3-319-73721-8_10

F. Frohn and J. Giesl. 2017. Complexity Analysis for Java with AProVE. In Proc. of the 13th IFM (LNCS, Vol. 10510). Springer,
85–101. https://doi.org/10.1007/978-3-319-66845-1_6

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. 2007. SAT Solving for Termination Analysis

with Polynomial Interpretations. In Proc. of 10th SAT (LNCS, Vol. 4501). Springer, 340–354. https://doi.org/10.1007/978-3-

540-72788-0_33

T. Gehr, S. Misailovic, and M. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In Proc. of 28th CAV
(LNCS, Vol. 9779). Springer, 62–83. https://doi.org/10.1007/978-3-319-41528-4_4

S. Gulwani, K.K. Mehra, and T.M. Chilimbi. 2009. SPEED: Precise and Efficient Static Estimation of Program Computational

Complexity. In Proc. of 36th POPL. ACM, 127–139. https://doi.org/10.1145/1594834.1480898

S. Gulwani and A. Tiwari. 2006. Combining Abstract Interpreters. In Proc. of PLDI’06. ACM, 376–386. https://doi.org/10.

1145/1133981.1134026

S. Gulwani and F. Zuleger. 2010. The Reachability-Bound Problem. In Proc. of PLDI’10. ACM, 292–304. https://doi.org/10.

1145/1809028.1806630

D. Handelman. 1988. Representing Polynomials by Positive Linear Functions on Compact Convex Polyhedra. PJM 132, 1

(1988), 35–62. https://doi.org/10.2140/pjm.1988.132.35

M. D. Hill and M.R. Marty. 2008. Amdahl’s Law in the Multicore Era. Computer 41, 7 (2008), 33–38. https://doi.org/10.1109/

MC.2008.209

N. Hirokawa and G. Moser. 2008. Automated Complexity Analysis Based on the Dependency Pair Method. In Proc. of 4th

IJCAR (LNAI, Vol. 5195). Springer, 364–380. https://doi.org/10.1007/978-3-540-71070-7_32

J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In Proc. of 44th POPL.
ACM, 359–373. https://doi.org/10.1145/3009837.3009842

N. D. Jones and L. Kristiansen. 2009. A Flow Calculus ofmwp-Bounds for Complexity Analysis. TOCL 10, 4 (2009), 28:1–28:41.
https://doi.org/10.1145/1555746.1555752

B. L. Kaminski and J.-P. Katoen. 2017. A Weakest Pre-expectation Semantics for Mixed-sign Expectations. In Proc. of 32nd

LICS. IEEE, 1–12. https://doi.org/10.1109/LICS.2017.8005153

B. Lucien Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. 2016. Weakest Precondition Reasoning for Expected Run-Times

of Probabilistic Programs. In Proc. of 25th ESOP (LNCS, Vol. 9632). Springer, 364–389. https://doi.org/10.1007/978-3-662-

49498-1_15

B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. 2018. Weakest Precondition Reasoning for Expected Runtimes of

Randomized Algorithms. JACM 65, 5 (2018), 30:1–30:68. https://doi.org/10.1145/3208102

B. L. Kaminski and J.-P. Katoen. 2015. On the Hardness of Almost-Sure Termination. In MFCS 2015, Part I (LNCS). Springer,
307–318. https://doi.org/10.1007/978-3-662-48057-1_24

J.-P. Katoen. 2016. The Probabilistic Model Checking Landscape. In Proc. of 31nd LICS. ACM, 31–45. https://doi.org/10.1145/

2933575.2934574

J.-P. Katoen, A. McIver, L. Meinicke, and C.C. Morgan. 2010. Linear-Invariant Generation for Probabilistic Programs: -

Automated Support for Proof-Based Methods. In Proc. of 17th SAS (LNCS, Vol. 6337). Springer, 390–406. https://doi.org/

10.1007/978-3-642-15769-1_24

C. Kim and A. K. Agrawala. 1989. Analysis of the Fork-join Queue. IEEE TC 38, 2 (1989), 250–255. https://doi.org/10.1109/

12.16501

D. Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350.
D. Kozen. 1985. A Probabilistic PDL. JCSC 30, 2 (1985), 162 – 178. https://doi.org/10.1016/0022-0000(85)90012-1

A. Levitin. 2007. The Design and Analysis of Algorithms. Pearson.
A. McIver, C. Morgan, B. L. Kaminski, and J-P Katoen. 2018. A New Proof Rule for Almost-sure Termination. PACMPL 2,

POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

D. A. Menascé. 2004. Response-Time Analysis of Composite Web Services. IEEE IC 8, 1 (2004), 90–92. https://doi.org/10.

1109/MIC.2004.1260710

M. Mitzenmacher and E. Upfal. 2005. Probability and Computing: Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press.

D. Monniaux. 2001. An Abstract Analysis of the Probabilistic Termination of Programs. In Proc. of 8th SAS (LNCS, Vol. 2126).
Springer, 111–126. https://doi.org/10.1007/3-540-47764-0_7

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/LICS.2005.39
https://doi.org/10.1007/978-3-319-73721-8_10
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-540-72788-0_33
https://doi.org/10.1007/978-3-540-72788-0_33
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/1594834.1480898
https://doi.org/10.1145/1133981.1134026
https://doi.org/10.1145/1133981.1134026
https://doi.org/10.1145/1809028.1806630
https://doi.org/10.1145/1809028.1806630
https://doi.org/10.2140/pjm.1988.132.35
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1109/LICS.2017.8005153
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1109/12.16501
https://doi.org/10.1109/12.16501
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1145/3158121
https://doi.org/10.1109/MIC.2004.1260710
https://doi.org/10.1109/MIC.2004.1260710
https://doi.org/10.1007/3-540-47764-0_7

A Modular Cost Analysis for Probabilistic Programs 172:31

G. Moser and M. Schaper. 2018. From Jinja Bytecode to Term Rewriting: A Complexity Reflecting Transformation. IC 261,

Part (2018), 116–143. https://doi.org/10.1016/j.ic.2018.05.007

N. C. Ngo, Q. Carbonneaux, and J. Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic Programs. In

Proc. of 39th PLDI. ACM, 496–512. https://doi.org/10.1145/3296979.3192394

V. Chan Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. 2017. Verifying and Synthesizing Constant-Resource

Implementations with Types. In Proc. of 38th S&P. 710–728.
F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. 2016. Reasoning about Recursive Probabilistic Programs. In Proc. of

31nd LICS. ACM, 672–681. https://doi.org/10.1145/2933575.2935317

A. Podelski and A. Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking Functions. In Proc. of 5th

VMCAI (LNCS, Vol. 2937). Springer, 239–251. https://doi.org/10.1007/978-3-540-24622-0_20

E. Schlechter. 1996. Handbook of Analysis and Its Foundations. Elsevier.
R. Sedgewick and P. Flajolet. 1996. An Introduction to the Analysis of Algorithms. Addison-Wesley-Longman. https:

//doi.org/10.1142/10875

M. Sinn, F. Zuleger, and H. Veith. 2016. A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity

Analysis. In Proc. of 26th CAV (LNCS, Vol. 8559). Springer, 745–761. https://doi.org/10.1007/978-3-319-08867-9_50

M. Sinn, F. Zuleger, and H. Veith. 2017. Complexity and Resource Bound Analysis of Imperative Programs Using Difference

Constraints. JAR 59, 1 (2017), 3–45. https://doi.org/10.1007/s10817-016-9402-4

T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. 2018. Ranking and Repulsing Supermartingales for Reachability in Probabilistic

Programs. In Proc. of 16th ATVA (LNCS, Vol. 11138). Springer, 476–493. https://doi.org/10.1007/978-3-030-01090-4_28

D. Wang, J. Hoffmann, and T. W. Reps. 2018. PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs.

In Proc. of 39th PLDI. ACM, 513–528. https://doi.org/10.1145/3192366.3192408

P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi. 2019. Cost Analysis of Nondeterministic Probabilistic

Programs. In Proc. of 40th PLDI. ACM, 204–220. https://doi.org/10.1145/3314221.3314581

B. Wegbreit. 1975. Mechanical Program Analysis. Comm. ACM 18, 9 (1975), 528–539. https://doi.org/10.1145/361002.361016

B. Wegbreit. 1976. Verifying Program Performance. JACM 23, 4 (1976), 691–699. https://doi.org/10.1145/321978.321987

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F.

Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom. 2008. The Worst Case Execution Time Problem - Overview

of Methods and Survey of Tools. TECS 7, 3 (2008), 1–53. https://doi.org/10.1145/1347375.1347389

R. Wilhelm and D. Grund. 2014. Computation Takes Time, But How Much? Comm. ACM 57, 2 (2014), 94–103. https:

//doi.org/10.1145/2500886

G. Winskel. 1993. The Formal Semantics of Programming Languages. MIT Press. https://doi.org/10.7551/mitpress/3054.003.

0004

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1145/3296979.3192394
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1142/10875
https://doi.org/10.1142/10875
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1145/3192366.3192408
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/361002.361016
https://doi.org/10.1145/321978.321987
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/2500886
https://doi.org/10.1145/2500886
https://doi.org/10.7551/mitpress/3054.003.0004
https://doi.org/10.7551/mitpress/3054.003.0004

172:32 Martin Avanzini, Georg Moser, and Michael Schaper

A MATHEMATICAL BACKGROUND
Proposition A.1 (Function Lifting of 𝜔-CPOs [Winskel 1993, Section 8.3.3]). Let (𝐷, ⊑) be

an 𝜔-CPO. Then (𝐴→ 𝐷,⊑) where ⊑ extends ⊑ point-wise forms an 𝜔-CPO, with the supremum on
𝐴 → 𝐷 given point-wise. If ⊑ has least and greatest elements ⊥ and ⊤, then ⊥ and ⊤ are the least
and greatest elements of ⊑, respectively.

Theorem A.2 (Kleene’s Fixed-Point Theorem for 𝜔-CPOs, [Winskel 1993, Theorem 5.11]).

Let (𝐷, ⊑) be a 𝜔-CPO with least element ⊥. Let 𝜒 : 𝐷 → 𝐷 be continuous (thus monotone). Then 𝜒

has a least fixed-point given by

lfp(𝜒) = sup
𝑛∈N

𝜒𝑛 (⊥) .

Lemma A.3 (Continuity of Expectation). E𝜇 (sup𝑛∈N 𝑓𝑛) = sup𝑛∈N E𝜇 (𝑓𝑛) for all 𝜔-chains
(𝑓𝑛)𝑛∈N.

Proof. This is the discrete version of Lebesgue’s Monotone Convergence Theorem [Schlechter

1996, Theorem 21.38]. □

B MISSING PROOFS
Proofs of Section 4

Proposition 4.2 (Cost functions form an 𝜔-CPO). For any 𝐴, (C𝐴,≤) is an 𝜔-CPO, with least
and greatest element 0 and∞, respectively. The supremum of 𝜔-chains (𝑓𝑛)𝑛∈N is given point-wise:
sup𝑛∈N 𝑓𝑛 ≜ 𝜆𝑎. sup𝑛∈N 𝑓𝑛 (𝑎).

Proof. Since (C, ≤) form an𝜔-CPOwith least element 0 and greatest element∞, the proposition
follows by Proposition A.1. □

In the remainder of this section, we prove Lemma 4.4 and Theorem 4.5. Recall that

𝜒𝑓 (𝑔) = 𝜆𝑎.

{
𝑓 (𝑎) if 𝑎↓,
sup{𝑤 + E𝜇 (𝑔) | 𝑎 𝑤−→ 𝜇} else.

Lemma B.1 (Well-definedness of ect[→]). The stepping function 𝜒𝑓 (𝑔) is continues in 𝑓 and 𝑔,
that is,

(1) 𝜒sup𝑛∈N 𝑓𝑛 (𝑔) = sup𝑛∈N 𝜒𝑓𝑛 (𝑔) for all 𝜔-chains (𝑓𝑛)𝑛∈N; and
(2) 𝜒𝑓 (sup𝑛∈N 𝑔) = sup𝑛∈N 𝜒𝑓 (𝑔𝑛) for all 𝜔-chains (𝑔𝑛)𝑛∈N.

Proof. Point 1 follows by a simple case analysis on arguments 𝑎.

Concerning Point 2 we have to prove that

𝜒𝑓 (sup
𝑛∈N

𝑔𝑛) (𝑎) = sup
𝑛∈N

𝜒𝑓 (𝑔𝑛) (𝑎) ,

for every chain 𝑔1 ≤ 𝑔2 ≤ · · · and all 𝑎 ∈ 𝐴. If 𝑎↓ the claim is trivial. As a consequence of

Lemma A.3, the cost transformer

ℎ𝜇,𝑤 ≜ 𝜆𝑓 .𝑤 + E𝜇 (𝑓) ,

is continuous. Now observe that for any doubly indexed sequence (𝑟𝑖, 𝑗)𝑖∈𝐼 , 𝑗∈ 𝐽 of extended reals,

sup
𝑖∈𝐼

sup
𝑗∈ 𝐽

𝑟𝑖, 𝑗 = sup
𝑗∈ 𝐽

sup
𝑖∈𝐼

𝑟𝑖, 𝑗 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:33

We thus obtain

𝜒𝑓 (sup
𝑛∈N

𝑔𝑛) (𝑎) = sup
𝑎
𝑤−→𝜇

ℎ𝜇,𝑤 (sup
𝑛∈N

𝑔𝑛) (by definition)

= sup
𝑎
𝑤−→𝜇

sup
𝑛∈N

ℎ𝜇,𝑤 (𝑔𝑛) (continuity of ℎ𝜇,𝑤)

= sup
𝑛∈N

sup
𝑎
𝑤−→𝜇

ℎ𝜇,𝑤 (𝑔𝑛) (observation)

= sup
𝑛∈N

𝜒𝑔𝑛 (𝑎) (by definition) .

□

Lemma B.2 (Continuity of ect[→]). The expected cost transformer ect[→] is continuous, ie.
ect[→](sup

𝑛∈N
𝑓𝑛) = sup

𝑛∈N
ect[→](𝑓𝑛) ,

for all 𝜔-chains (𝑓𝑛)𝑛∈N.

Proof. It is well known that the least fixed point operator is continuous on continues func-

tions [Winskel 1993, Chapter 8], particularly, by Lemma B.1(2) this implies

lfp(sup
𝑛∈N

𝜒𝑓𝑛) = sup
𝑛∈N

lfp(𝜒𝑓𝑛) .

Thus

ect[→](sup
𝑛∈N
(𝑓𝑛)) = lfp(𝜒sup𝑛∈N 𝑓𝑛) (by definition)

= lfp(sup
𝑛∈N

𝜒𝑓𝑛) (Lemma B.1(1))

= sup
𝑛∈N

lfp(𝜒𝑓𝑛) (above observation)

= sup
𝑛∈N

ect[→](𝑓𝑛) .

□

Theorem 4.5 (Expected Cost via Cost Transformer).

ecost[→] = ect[→](0) .

Proof. A standard induction reveals that 𝜒𝑛
𝑓
(0) = sup{𝑤 | 𝑎 𝑤−→→𝑛

𝜇}. Consequently, by Kleene’s
Fixed-Point Theorem

ect[→](𝑓) = sup
𝑛∈N

𝜒𝑛
𝑓
(0)

(above observation)

= sup
𝑛∈N

sup{𝑤 | 𝑎 𝑤−→→𝑛
𝜇}

({𝑤 | 𝑎 𝑤−→→∗ 𝜇} =
⋃
𝑛∈N
{𝑤 | 𝑎 𝑤−→→𝑛

𝜇})

= sup{𝑤 | 𝑎 𝑤−→→∗ 𝜇}
(by definition)

= ect[→](0)
□

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:34 Martin Avanzini, Georg Moser, and Michael Schaper

Proofs of Section 6
Lemma B.3 (Continuity of Expectation Transformers). For every 𝜔-chain (𝑓𝑛)𝑛∈N,

ect[C] (sup
𝑛∈N

𝑓𝑛) = sup
𝑛∈N

ect[C] (𝑓𝑛) .

Proof. The proof is by induction on the command C.
- Case consume(𝑒). We have

ect[consume(𝑒)] (sup
𝑛∈N

𝑓𝑛)

= ⟨𝑒⟩ + sup
𝑛∈N

𝑓𝑛 (by definition)

= sup
𝑛∈N
(⟨𝑒⟩ + 𝑓𝑛) (⟨𝑒⟩ is constant wrt. 𝑛 ∈ N)

= sup
𝑛∈N

ect[consume(𝑒)] (𝑓𝑛) (by definition) .

- Case skip. As above, we have

ect[skip] (sup
𝑛∈N

𝑓𝑛) = sup
𝑛∈N

𝑓𝑛 = sup
𝑛∈N

ect[skip] (𝑓𝑛) .

- Case abort. By definition,

ect[abort] (sup
𝑛∈N

𝑓𝑛) = 0 = sup
𝑛∈N

ect[abort] (𝑓𝑛) .

- Case 𝑥 B 𝑑 . As a consequence of Lemma A.3, we have

E𝛿 (sup
𝑛∈N

𝑔𝑛) = sup
𝑛∈N
E𝛿 (𝑔𝑛) ,

for all distribution 𝛿 ∈ D(Z) and 𝑔𝑖 : Z→ R∞≥0, where sup𝑛∈N 𝑔𝑛 ≜ 𝜆𝑖. sup𝑛∈N 𝑔𝑛 (𝑖). Thus we
have

ect[𝑥 B 𝑑] (sup
𝑛∈N

𝑓𝑛)

= 𝜆𝜎.E𝑑 (𝜎) (𝜆𝑖.(sup
𝑛∈N

𝑓𝑛) (𝜎 [𝑥/𝑖])) (definition)

= 𝜆𝜎.E𝑑 (𝜎) (sup
𝑛∈N

𝜆𝑖.𝑓𝑛 (𝜎 [𝑥/𝑖])) (def. sup)

= 𝜆𝜎. sup
𝑛∈N
E𝑑 (𝜎) (𝜆𝑖.𝑓𝑛 (𝜎 [𝑥/𝑖])) (MCT)

= sup
𝑛∈N

𝜆𝜎.E𝑑 (𝜎) (𝜆𝑖.𝑓𝑛 (𝜎 [𝑥/𝑖])) (def. sup)

= sup
𝑛∈N

ect[𝑥 B 𝑑] (𝑓𝑛) (definition) .

- Case C; D. We have

ect[C; D] (sup
𝑛∈N

𝑓𝑛)

= ect[C] (ect[D] (sup
𝑛∈N

𝑓𝑛)) (definition)

= ect[C] (sup
𝑛∈N

ect[D] (𝑓𝑛)) (IH on D)

= sup
𝑛∈N

ect[C] (ect[D] (𝑓𝑛)) (IH on C)

= sup
𝑛∈N

ect[C; D] (𝑓𝑛) (definition) .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:35

- Case if (𝜙) {C} {D}. We have

ect[if (𝜙) {C} {D}] (sup
𝑛∈N

𝑓𝑛)

(definition)

= [𝜙] · ect[C] (sup
𝑛∈N

𝑓𝑛) + [¬𝜙] · ect[D] (sup
𝑛∈N

𝑓𝑛)

(IH on C and D)

= [𝜙] · (sup
𝑛∈N

ect[C] (𝑓𝑛)) + [¬𝜙] · (sup
𝑛∈N

ect[D] (𝑓𝑛))

([𝜙] constant wrt. 𝑛 ∈ N)
= (sup

𝑛∈N
[𝜙] · ect[C] (𝑓𝑛)) + (sup

𝑛∈N
[¬𝜙] · ect[D] (𝑓𝑛))

= sup
𝑛∈N

[𝜙] · ect[C] (𝑓𝑛) + [¬𝜙] · ect[D] (𝑓𝑛)

(definition)

= sup
𝑛∈N

ect[if (𝜙) {C} {D}] (𝑓𝑛) .

- Case while (𝜙) {C}. Reconsider the characteristic function of while (𝜙) {C} wrt. expectation
𝑓 :

𝜒
⟨𝜙,C ⟩
𝑓

= 𝜆𝐹 .[𝜙] · ect[C] (𝐹) + [¬𝜙] · 𝑓 .

Observe that (i) 𝜒
⟨𝜙,C ⟩
sup𝑛∈N 𝑓𝑛

= sup𝑛∈N 𝜒
⟨𝜙,C ⟩
𝑓𝑛

, and moreover, from induction hypothesis it follows

that all 𝜒
⟨𝜙,C ⟩
𝑓𝑛

are continuous. The least fixed-point operator is continues on continuous functions,

particularly (ii) lfp(sup𝑛∈N 𝜒
⟨𝜙,C ⟩
𝑓𝑛
) = sup𝑛∈N lfp(𝜒 ⟨𝜙,C ⟩

𝑓𝑛
). Thus we get

ect[while (𝜙) {C}] (sup
𝑛∈N

𝑓𝑛)

= lfp(𝜒 ⟨𝜙,C ⟩
sup𝑛∈N 𝑓𝑛

) (definition)

= lfp(sup
𝑛∈N

𝜒
⟨𝜙,C ⟩
𝑓𝑛
) (observation (i))

= sup
𝑛∈N

lfp(𝜒 ⟨𝜙,C ⟩
𝑓𝑛
) (observation (ii))

= sup
𝑛∈N

ect[while (𝜙) {C}] (𝑓𝑛) (definition) .

- Case {C} <> {D}. For the case of non-deterministic choice, observe that for expectations 𝑔𝑛 and

ℎ𝑛 (𝑛 ∈ N) we have
max(sup

𝑛∈N
𝑔𝑛, sup

𝑛∈N
ℎ𝑛) = sup

𝑛∈N
max(𝑔𝑛, ℎ𝑛) .

Consequently,

ect[{C} <> {D}] (sup
𝑛∈N

𝑓𝑛)

= max(ect[C] (sup
𝑛∈N

𝑓𝑛), ect[D] (sup
𝑛∈N

𝑓𝑛)) (definition)

= max(sup
𝑛∈N

ect[C] (𝑓𝑛), sup
𝑛∈N

ect[D] (𝑓𝑛)) (IH on C and D)

= sup
𝑛∈N

max(ect[C] (𝑓𝑛), ect[D] (𝑓𝑛)) (observation)

= sup
𝑛∈N

ect[{C} <> {D}] (𝑓𝑛) (definition) .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:36 Martin Avanzini, Georg Moser, and Michael Schaper

□

Lemma B.4 (Monotonicity of Transformers).

𝑓 ≤ 𝑔 =⇒ ect[C] (𝑓) ≤ ect[C] (𝑔) .

Proof. This is an immediate consequence of Lemma B.3. □

Lemma 6.2 (Central Properties of ect[while (𝜙) {C}]).
(1) continuity: ect[C] (sup𝑛∈N 𝑓𝑛) = sup𝑛∈N ect[C] (𝑓𝑛) for all 𝜔-chains (𝑓𝑛)𝑛∈N;
(2) monotonicity: 𝑓 ≤ 𝑔 =⇒ ect[C] (𝑓) ≤ ect[C] (𝑔).

Proof. By Lemma B.3 and Lemma B.4. □

Proofs of Section 6.2
To ease readability of the proofs that follow, let us define recursively

ect[→] (0) (𝑓) (𝛾) ≜ 0

ect[→] (𝑛+1) (𝑓) (𝜎) ≜ 𝑓 (𝜎)
ect[→] (𝑛+1) (𝑓) (𝜎 ⊲ C) ≜

sup{𝑤 + E𝜇 (ect[→] (𝑛) (𝑓)) | 𝜎 ⊲ C 𝑤−→ 𝜇} .

Then ect[→] (𝑛) give us finite approximations of ect[→](𝑓) in the following sense.

Lemma B.5.

ect[→](𝑓) = sup
𝑛∈N

ect[→] (𝑛) (𝑓) .

Proof. Recall that ect[→](𝑓) = lfp(𝜒𝑓) = 𝜒𝑛
𝑓
(0), since terminal objects are precisely the stores

𝜎 we get

𝜒𝑓 (𝑔) = 𝜆𝛾 .

{
𝑓 (𝜎) if 𝛾 = 𝜎 ∈ Σ,
sup{𝑤 + E𝜇 (𝑔) | 𝛾 𝑤−→ 𝜇} else.

It is thus sufficient to show that ect[→] (𝑛) (𝑓) = 𝜒𝑛
𝑓
(0). This follows by a standard induction on

𝑛. □

Observe that ect[→] (𝑛) (𝑓) is monotone in 𝑓 and𝑚, ie. ect[→] (𝑛) (𝑓) ≤ ect[→] (𝑚) (𝑔) if 𝑓 ≤ 𝑔

and 𝑛 ≤ 𝑚.

Lemma B.6.

ect[→] (𝑛) (𝑓) (• ⊲ C; D) ≤ ect[→] (𝑛) (ect[→] (𝑛) (𝑓) (• ⊲ D)) (• ⊲ C) .

Proof. The proof is by induction on 𝑛. It is sufficient to consider the inductive step. Fix 𝜎 ∈ Σ,
and suppose 𝜎 ⊲ C; D 𝑤−→ 𝜇, hence 𝜎 ⊲ C 𝑤−→ 𝜈 where

𝜇 = {{𝑝𝑖 : 𝜎𝑖 ⊲ D}}𝑖∈𝐼 ⊎
{{
𝑞 𝑗 : 𝜏 𝑗 ⊲ C 𝑗 ; D

}}
𝑗∈ 𝐽 for,

𝜈 = {{𝑝𝑖 : 𝜎𝑖 }}𝑖∈𝐼 ⊎
{{
𝑞 𝑗 : 𝜏 𝑗 ⊲ C 𝑗

}}
𝑗∈ 𝐽 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:37

Abbreviate 𝑔 = ect[→] (𝑛) (𝑓) (• ⊲ D) and observe that

E𝜇 (ect[→] (𝑛) (𝑓))

=
∑︁
𝑖∈𝐼

𝑝𝑖 · ect[→] (𝑛) (𝑓) (𝜎𝑖 ⊲ D)

+
∑︁
𝑗∈ 𝐽

𝑞 𝑗 · ect[→] (𝑛) (𝑓) (𝜏 𝑗 ⊲ C 𝑗 ; D)

(induction hypothesis)

≤
∑︁
𝑖∈𝐼

𝑝𝑖 · ect[→] (𝑛) (𝑓) (𝜎𝑖 ⊲ D)

+
∑︁
𝑗∈ 𝐽

𝑞 𝑗 · ect[→] (𝑛) (𝑔) (𝜏 𝑗 ⊲ C 𝑗)

(since ect[→] (𝑛) (𝑓) (𝜎𝑖 ⊲ D) = ect[→] (𝑛) (𝑔) (𝜎𝑖))
= E𝜈 (ect[→] (𝑛) (𝑔))

In conclusion

ect[→] (𝑛+1) (𝑓) (𝜎 ⊲ C; D)
(definition of ect[→] (𝑛+1) (𝑓))

= sup{𝑤 + E𝜇 (ect[→] (𝑛) (𝑓)) | 𝜎 ⊲ C; D 𝑤−→ 𝜇}
(above observation)

≤ sup{𝑤 + E𝜈 (ect[→] (𝑛) (𝑔) (𝜎 ⊲ C)) | 𝜎 ⊲ C 𝑤−→ 𝜈}
(definition of ect[→] (𝑛) (𝑔))

= ect[→] (𝑛+1) (𝑔) (𝜎 ⊲ C)
(𝑔 ≤ ect[→] (𝑛+1) (𝑓) (• ⊲ D) and monoton. of ect[→] (𝑛+1))
≤ ect[→] (𝑛+1) (ect[→] (𝑛+1) (𝑓) (• ⊲ D)) (𝜎 ⊲ C) . □

Lemma B.7 (Composition).

ect[→](𝑓) (• ⊲ C; D) = ect[→](ect[→](𝑓) (• ⊲ D)) (• ⊲ C) .

Proof. Note that 𝑙ℎ𝑠 ≤ 𝑟ℎ𝑠 is an immediate consequence of Lemma B.5 and Lemma B.6. For the

inverse direction, let us abbreviate 𝑔 = ect[→](𝑓) (• ⊲ D). By Lemma B.5, it is sufficient to show

ect[→] (𝑛) (𝑔) (• ⊲ C) ≤ ect[→](𝑓) (• ⊲ C; D)

for all 𝑛 ∈ N. The proof is by induction on 𝑛, we consider the inductive step. Suppose 𝜎 ⊲ C 𝑤−→ 𝜇,

hence 𝜎 ⊲ C; D 𝑤−→ 𝜈 where

𝜇 = {{𝑝𝑖 : 𝜎𝑖 }}𝑖∈𝐼 ⊎
{{
𝑞 𝑗 : 𝜏 𝑗 ⊲ C 𝑗

}}
𝑗∈ 𝐽 , and

𝜈 = {{𝑝𝑖 : 𝜎𝑖 ⊲ D}}𝑖∈𝐼 ⊎
{{
𝑞 𝑗 : 𝜏 𝑗 ⊲ C 𝑗 ; D

}}
𝑗∈ 𝐽 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:38 Martin Avanzini, Georg Moser, and Michael Schaper

Observe

E𝜇 (ect[→] (𝑛) (𝑔))
(definition of ect[→] (𝑛) (𝑔))

=
∑︁
𝑖∈𝐼

𝑝𝑖 · 𝑔(𝜎𝑖) +
∑︁
𝑗∈ 𝐽

𝑞 𝑗 · ect[→] (𝑛) (𝑔) (𝜏 𝑗 ⊲ C 𝑗)

(induction hypothesis)

≤
∑︁
𝑖∈𝐼

𝑝𝑖 · 𝑔(𝜎𝑖) +
∑︁
𝑗∈ 𝐽

𝑞 𝑗 · ect[→](𝑓) (𝜏 𝑗 ⊲ C 𝑗 ; D)

(since 𝑔(𝜎𝑖) = ect[→](𝑓) (𝜎𝑖 ⊲ D))
= E𝜈 (ect[→](𝑓)) .

Conclusively,

ect[→] (𝑛+1) (𝑔) (𝜎 ⊲ C)
(definition of ect[→] (𝑛+1) (𝑔))

= sup{𝑤 + E𝜇 (ect[→] (𝑛) (𝑔)) | 𝜎 ⊲ C 𝑤−→ 𝜇}
(above observation)

≤ sup{𝑤 + E𝜈 (ect[→](𝑓)) | 𝜎 ⊲ C; D 𝑤−→ 𝜈}
= ect[→](𝑓) (𝜎 ⊲ C; D) . □

Lemma B.8 (Loops).

ect[→](𝑓) (• ⊲ while (𝜙) {C}) = lfp(𝑔.[𝜙] · ect[→](𝑔) (• ⊲ C) + [¬𝜙] · 𝑓) .
Proof. Define

Γ (0)
𝑓
≜ 0 Γ (𝑛+1)

𝑓
≜ [𝜙] · ect[→](Γ (𝑛)

𝑓
) (• ⊲ C) + [¬𝜙] · 𝑓 .

Consequently, the right-hand side 𝑟ℎ𝑠 is equal to sup𝑛∈N Γ
(𝑛)
𝑓

. To prove 𝑙ℎ𝑠 ≤ 𝑟ℎ𝑠 , we show

ect[→] (𝑛) (𝑓) (• ⊲ while (𝜙) {C}) ≤ Γ (𝑛)
𝑓

,

by induction on 𝑛. It is sufficient to consider the inductive step, where we have

ect[→] (𝑛+1) (𝑓) (• ⊲ while (𝜙) {C})
(definition of ect[→] (𝑛+1) (𝑓); case analysis on 𝜎 ⊨ 𝜙)

= [𝜙] · ect[→] (𝑛) (𝑓) (• ⊲ C; while (𝜙) {C}) + [¬𝜙] · 𝑓
(Lemma B.6)

≤ [𝜙] · ect[→] (𝑛) (ect[→] (𝑛) (• ⊲ while (𝜙) {C}))(• ⊲ C)
+ [¬𝜙] · 𝑓
(IH & monotonicity of ect[→] (𝑛) (·) (• ⊲ C))

≤ [𝜙] · ect[→] (𝑛) (Γ (𝑛)
𝑓
) (• ⊲ C) + [¬𝜙] · 𝑓

(definition of Γ (𝑛+1)
𝑓

)

= Γ (𝑛)
𝑓

.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:39

Hence, by Lemma B.5,

𝑙ℎ𝑠 = sup
𝑛∈N

ect[→] (𝑛) (𝑓) (• ⊲ while (𝜙) {C})

≤ sup
𝑛∈N

Γ (𝑛)
𝑓

= 𝑟ℎ𝑠 .

Finally, to prove 𝑟ℎ𝑠 ≤ 𝑙ℎ𝑠 , we show

Γ (𝑛)
𝑓

≤ ect[→](𝑓) (• ⊲ while (𝜙) {C}) ,

by induction on 𝑛. Then

Γ (𝑛+1)
𝑓

(definition of Γ (𝑛+1)
𝑓

)

= [𝜙] · ect[→](Γ (𝑛)
𝑓
) (• ⊲ C) + [¬𝜙] · 𝑓

(induction hypothesis)

= [𝜙] · ect[→](ect[→](𝑓) (• ⊲ while (𝜙) {C}))(• ⊲ C)
+ [¬𝜙] · 𝑓
(Lemma B.6)

= [𝜙] · ect[→](𝑓) (• ⊲ C; while (𝜙) {C}) + [¬𝜙] · 𝑓
(definition of ect[→](𝑓); case analysis on 𝜎 ⊨ 𝜙)

= ect[→](𝑓) (• ⊲ while (𝜙) {C}) . □

Lemma 6.3 (Composition and Loop Lemma).

(1) ect[→](𝑓) (• ⊲ C; D) = ect[→](ect[→](𝑓) (• ⊲ D)) (• ⊲ C);
(2) ect[→](𝑓) (• ⊲ while (𝜙) {C}) = lfp(𝐹 .[𝜙] · ect[→](𝐹) (• ⊲ C) + [¬𝜙] · 𝑓).

Proof. The two properties have been proven in Lemma B.7 and Lemma B.8, respectively. □

Theorem 6.4 (Soundness & Completeness). For every command C ∈ Cmd, we have

(1) ect[→](𝑓) (• ⊲ C) = ect[C] (𝑓); and consequently
(2) ecost[→](• ⊲ C) = ecost[C].

Proof. The proof of this statement is by induction on the C. The only interesting cases are those

of composition and loops, which follow by Lemma B.7 and Lemma B.8, respectively. □

PROOFS OF SECTION 7
Lemma 7.2 (Separating Expected Cost and Value).

ect[C] (𝑓) ≤ ecost[C] + evalue[C] (𝑓) .

Proof. One proofs the stronger property

ect[C] (𝑓 + 𝑔) ≤ ect[C] (𝑔) + evalue[C] (𝑓)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:40 Martin Avanzini, Georg Moser, and Michael Schaper

by a standard induction on C.

ect[consume(𝑒)] (𝑓 + 𝑔)
= ⟨𝑒⟩ + (𝑔 + 𝑓)
= (⟨𝑒⟩ + 𝑔) + 𝑓

= ect[consume(𝑒)] (𝑔) + evalue[consume(𝑒)] (𝑓)
ect[skip] (𝑓 + 𝑔)

= 𝑓 + 𝑔

= ect[skip] (𝑔) + evalue[skip] (𝑓)
ect[abort] (𝑓 + 𝑔)

= 0

= ect[abort] (𝑔) + evalue[abort] (𝑓)
ect[C; D] (𝑓 + 𝑔)

= ect[C] (ect[D] (𝑓 + 𝑔))
≤ ect[C] (ect[D] (𝑔) + evalue[D] (𝑓))
≤ ect[C] (ect[D] (𝑔)) + evalue[C] (evalue[D] (𝑓))
= ect[C; D] (𝑔) + evalue[C; D] (𝑓)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

A Modular Cost Analysis for Probabilistic Programs 172:41

ect[𝑥 B 𝑑] (𝑓 + 𝑔)
= 𝜆𝜎.E𝑑 (𝜎) (𝜆𝑣.(𝑓 + 𝑔) [𝑥/𝑣] (𝜎))
= 𝜆𝜎.E𝑑 (𝜎) (𝜆𝑣.𝑔[𝑥/𝑣] (𝜎)) + 𝜆𝜎.E𝑑 (𝜎) (𝜆𝑣.𝑓 [𝑥/𝑣] (𝜎))
= ect[𝑥 B 𝑑] (𝑔) + evalue[𝑥 B 𝑑] (𝑓)

ect[if (𝜙) {C} {D}] (𝑓 + 𝑔)
= [𝜙] · ect[C] (𝑓 + 𝑔) + [¬𝜙] · ect[D] (𝑓 + 𝑔)
≤ [𝜙] · (ect[C] (𝑔) + evalue[C] (𝑓)) + [¬𝜙] · (ect[D] (𝑔) + evalue[D] (𝑓))
= [𝜙] · ect[C] (𝑔) + [¬𝜙] · ect[D] (𝑔)
+ [𝜙] · evalue[C] (𝑓) + [¬𝜙] · evalue[D] (𝑓)
= ect[if (𝜙) {C} {D}] (𝑔) + evalue[if (𝜙) {C} {D}] (𝑓)

ect[while (𝜙) {C}] (𝑓 + 𝑔)

= 𝜒
⟨𝜙,C ⟩
𝑓 +𝑔
(ℎ)

= [𝜙] · ect[C] (ℎ) + [¬𝜙] · (𝑓 + 𝑔)
≤ [𝜙] · ect[C] (ℎ + ℎ) + [¬𝜙] · (𝑓 + 𝑔)
≤ [𝜙] · (ect[C] (ℎ) + evalue[C] (ℎ)) + [¬𝜙] · (𝑓 + 𝑔)
= ([𝜙] · ect[C] (ℎ) + [¬𝜙] · 𝑔) + ([𝜙] · evalue[C] (ℎ) + [¬𝜙] · 𝑓)
= ect[while (𝜙) {C}] (𝑔) + evalue[while (𝜙) {C}] (𝑓)

ect[{C} <> {D}] (𝑓 + 𝑔)
= max(ect[C] (𝑓 + 𝑔), ect[D] (𝑓 + 𝑔))
≤ max(ect[C] (𝑔) + evalue[C] 𝑓 , ect[D] (𝑔) + evalue[D] (𝑓)
≤ max(ect[C] (𝑔), ect[D] (𝑔)) +max(evalue[C] (𝑓), evalue[D] (𝑓))
= ect[{C} <> {D}] (𝑓) + evalue[{C} <> {D}] (𝑓) . □

Theorem 7.5 (Modular Upper-Invariants). Let C and 𝜅 be as in Lemma 7.4. Then
1. 𝜙 ⊨ ecost[C] + 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘)

⇒ ecost[while (𝜙) {C}] ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘); and
2. 𝜙 ⊨ 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ∧ ¬𝜙 ⊨ 𝑓 ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘)

⇒ evalue[while (𝜙) {C}] (𝑓) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘).

Proof. Concerning the first inequality, Lemma 7.2 and Lemma 7.4 yield 𝜒
⟨𝜙,C ⟩
𝑓
(𝜿 (®𝑏)) ≤ 𝜒

⟨𝜙,C ⟩
𝑓
(𝜿 (®𝑏)),

and consequently, the inequality witnesses that 𝜿 (®𝑏) is an upper invariant (Proposition 6.5) for

while (𝜙) {C} wrt. 𝑓 . Relying only on Lemma 7.4, the second inequality witnesses that 𝜿 (®𝑏) is an
upper invariant for the expected cost of

ect[while (𝜙) {costFree(C)}] (𝑓)
= ect[costFree(while (𝜙) {C})] (𝑓)
= evalue[while (𝜙) {C}] . □

Theorem 7.6 (Modular Seqential Analysis). Let C and 𝜅 be as in Lemma 7.4. Then
1. ecost[D] (𝑓) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ⇒ ecost[C; D] ≤ ecost[C]+𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘));
2. evalue[D] (𝑓) ≤ 𝜿 (𝑏1, . . . , 𝑏𝑘) ⇒ evalue[C; D] (𝑓) ≤ 𝜿 (evalue[C] (𝑏1), . . . , evalue[C] (𝑏𝑘)).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

172:42 Martin Avanzini, Georg Moser, and Michael Schaper

Proof. The statement follows from the definition of ect[C], Lemma 7.2 and 𝜅 being concave.

ect[C; D] (𝑓)
= ect[C] (ect[D] (𝑓))

≤ ect[C] (𝜿 (®𝑏))

= ecost[C] + evalue[C] (𝜿 (®𝑏))

= ecost[C] + 𝜿 (evalue[C] (®𝑏)) . □

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 172. Publication date: November 2020.

	Abstract
	1 Introduction
	2 Automated Expected Cost Analysis
	3 A Modular Expected Cost Analysis
	4 Probabilistic Reduction Systems
	4.1 Expected Cost Transformers for PARSs

	5 A Probabilistic Language
	6 Expected Cost and Expected Value Transformers
	6.1 Well-Definedness and Soundness
	6.2 Upper Invariants

	7 Alternating Expected Cost and Value Analysis
	7.1 Analysis of Examples

	8 Implementation
	8.1 Constraint Solving Mechanism
	8.2 Experimental Evaluation

	9 Related Works
	10 Conclusion
	References
	A Mathematical Background
	B Missing Proofs

