
Automated Implicit Computational Complexity
Analysis?

Martin Avanzini1 and Georg Moser2 and Andreas Schnabl2

1 Master Program in Computer Science, University of Innsbruck, Austria,
martin.avanzini@student.uibk.ac.at

2 Institute of Computer Science, University of Innsbruck, Austria
{georg.moser,andreas.schnabl}@uibk.ac.at

Abstract. Recent studies have provided many characterisations of the
class of polynomial time computable functions through term rewriting
techniques. In this paper we describe a (command-line based) system
that implements the majority of these techniques and present experi-
mental findings to simplify comparisons.

Introduction Recent studies have provided many characterisations of the class
of polynomial time computable functions through term rewriting techniques. In
this paper we are concerned with studies that employ term rewriting as ab-
stract model of computation and consequently existing techniques from term
rewriting are exploited to characterise several computational complexity classes,
cf. [1,2,3,4,5,6]. The use of rewriting techniques opens the way for automatisation
and below we describe a system that implements (almost all) known techniques
in this area and compares their relative strength. The development of the system
described was motivated by [7], where (for the first time) an implementation of
complexity characterisation is discussed. For brevity and greater applicability,
we restrict our description to those techniques that employs rewrite systems as
(abstract) computational model and thus conceives the number of rewrite steps
(perhaps allowing for a specific rewrite strategy) as suitable complexity measure,
i.e. we will fore-mostly consider so-called additive polynomial interpretations and
polynomial path orders as methods, cf. [2,6]. I.e., contrary to techniques like the
light multiset path order [3] (LMPO for short) we prohibit ourselves to use (non-
trivial) evaluation methods to show that the given TRS essentially describes a
polytime computable function. We clarify the subtlety of this restriction through
a simple example.

Example 1. Consider the following rewrite system Rbin. This is Example 2.21
in the Steinbach and Kühler’s example collection [8]; It gives the first half of
Pascal’s rule for binomial coefficients.

bin(x, 0)→ s(0) bin(s(x), s(y))→ +(bin(x, s(y)), bin(x, y))

bin(0, s(y))→ 0

? This research is supported by FWF (Austrian Science Fund) project P20133.

It is easy that the (innermost) derivation height of bin(sn(0), sm(0)) is exponen-
tial in n. Hence the first approach cannot handle this example. On the other hand
as the specification of addition + is missing, we can simply interpret this sym-
bol as the constant zero function and the function thus “computed” is trivially
polytime computable.

In the here presented system all methods introduced in [1,2,3,9,6], thus (al-
most) all methods proposed in this particular approach to implicit computa-
tional complexity theory are implemented. We have not (yet) considered (quasi-
friendly) sup-interpretations, cf. [4,5]. Our implementation is (partly) based on
the termination prover TTT2

3 In particular our (command-line) interface is com-
patible with TTT2 and the modular design of our implementation allows for an
immediated integration of the presented system as a plug-in to TTT2. In order
to compare the different methods proposed in the literature tested their appli-
cability on (subsets of) the Termination Problem Data Base (TPDB for short)
that is used in the annual termination competition.4Arguably this is an imper-
fect choice as the TPDB has been designed to test the strength of termination
provers in rewriting, not as a testbed to analyse the implicit complexity of TRSs.
On the other hand it is the only (relatively large) collection of TRSs that is pub-
licly available and we have taken some effort in selecting an interesting and
meaningful subsets of this collection as test-suites.

The above example may suggest that techniques like additive polynomial in-
terpretations and polynomial path orders need to perform worse in comparison
to less restrictive techniques like the LMPO or quasi-interpretations [1]. Inter-
estingly our practical findings cannot confirm this: On the studied testbeds the
(straightforward) technique of using restricted polynomial interpretations [2] to
characterise polytime computable programs outperforms all other techniques in
power, see below. One the other hand our experiments also indicate that a not-
icable part of the TPDB can be handled with the union of the implemented
methods.

section: “System Description” fehlt

The remainder of this paper is organised as follows. In the next section we
will restate the definitions of the central techniques considered and describe the
respective implementation in some detail. The following sections deals with the
description of the system and present the experimental findings. To keep the
presentation short, we assume familiarity with term rewriting [10].

Methods that Directly Classify Polytime In this section, we describe additive
polynomial interpretations and polynomial path orders in more detail. Our first
task is to fix what is meant by the function computed by a TRS. Let p·q be
an encoding function and let R denote a completely defined, orthogonal TRS.
An n-ary function f : (Σ∗)n → Σ∗ is computable by R if there exists a defined
3 http://colo6-c703.uibk.ac.at/ttt2/.
4 We used version 4.0 of the TPDB, available online at http://www.lri.fr/~marche/
tpdb/.

2

function symbol f such that for all w1, . . . , wn, v ∈ Σ∗: f(pw1q, . . . , pwnq)→! pvq
if and only if f(w1, . . . , wn) = v. On the other hand we say that R computes f ,
if the function f : (Σ∗)n → Σ∗ is defined by the above equation. The runtime
complexity (with respect to R) is defined as follows: rcR(m) = max{dl(R, i−→)(t) |
t = f(t1, . . . , tn) ∈ Tb and

∑n
i size(ti) 6 m}, where Tb collects all constructor-

based terms.
A suitable starting point into the classification of polytime computable func-

tions are polynomial interpretations. Interestingly polynomial interpretations
without further restrictions are too strong (cf. [11]). Hence restricted polyno-
mial interpretations are studied in the literature. A polynomial P (x1, . . . , xn)
(over the natural numbers) is called additive if P (x1, . . . , xn) = x1+ · · ·+xn+ c
where c ∈ N, c > 1. In [12] polynomials are further classified into linear, sim-
ple, and simple-mixed. We exploit this classification in the next definition. A
polynomial interpretation A is called simple-mixed, constructor-restricted (SMC
for short) if all interpretation functions cA are additive polynomials, whenever
c ∈ C. The following theorem is an easy consequence of [2, Lemma 3].

Theorem 2. Let R be a finite, constructor TRS compatible with an SMC-
interpretations. Then the runtime complexity with respect to R is polynomial

As a direct consequence of Theorem 2 we obtain that SMC-interpretations in-
duced polytime computable functions, cf. [2, Theorem 4].

Theorem 3. The functions computable by a constructor and orthogonal TRS
that is compatible with a SMC-interpretations is polytime computable.

In the implementation of this technique we follow well-established methods
stemming from termination analysis. In [12] Contejean et al. describe how-to
mechanise the search for polynomial interpretation through constraint propaga-
tion. A central idea is the use of abstract polynomial interpretations. For SMC,
that is: fA(x1, . . . , xn) =

∑
ij
af,i1,...,inx

i1
1 · . . . · xinn +

∑n
i=1 bix

2
i if f ∈ D and

fA(x1, . . . , xn) =
∑n
i=1 xi + c + 1, otherwise. Here the degree of the monomial

xi11 · . . . · xinn is at most 1. The variables af,i1,...,in (ij ∈ {0, 1}) and c are called
coefficient variables.

Given such abstract interpretations we transform the compatibility and mono-
tonicity tests into Diophantine (in)equalities in the coefficient variables. It is
well-known that solving Diophantine (in)equalities in undecidable in general,
but as an easy remedy, we put an upper bound on the coefficient variables. This
makes the problem finite, allowing it to be transformed into a satisfiable prob-
lem of proposition logic. The encoding as SAT problem essentially follows[13]
and we employ the following (straightforward) optimisation steps: (i) if possi-
ble Boolean expressions are simplified by applying simplifications of partially
evaluated connectives and (ii) in the encoding of natural numbers sequences of
propositional formulas are employed. The maximum value that can be possibly
reached in such a sequence is recorded, which to minimise the number of bits
needed in the encoding. To actually solve the satisfiability problem, MiniSAT5

5 http://minisat.se.

3

is invoked. The finally obtained satisfying assignment is used to instantiate the
values of coefficient variables suitably.

Recently in [6] a restriction of the multiset path order, called polynomial
path order (POP∗ for short) has been introduced. In [6] POP∗ is defined for a
strict precedence. Below we extend this definition to quasi-precedences %, whose
equivalence part is denoted as ∼. If f ∼ g then the arity of symbol f equals the
arity of g. POP∗ relies on the separation of safe and normal inputs. For this, the
notion of safe mappings is introduced. A safe mapping safe associates with every
n-ary function symbol f the set of safe argument positions. If f ∈ D(R) then
safe(f) ⊆ {1, . . . , n}, for f ∈ C(R) we fix safe(f) = {1, . . . , n}. The argument
positions not included in safe(f) are called normal and denoted by nrm(f).

Let % be a quasi-precedence and safe a safe mapping respecting %. The poly-
nomial path order %pop∗ is an extension of the auxiliary order %pop. In order
to define %pop∗ we give the definition of its strict part �pop∗ and its equiv-
alence part ∼pop∗ separately. I.e., we define f(s1, . . . , sn) ∼pop∗ g(t1, . . . , tn)
(f(s1, . . . , sn) ∼pop g(t1, . . . , tn)) if and only if f ∼ g, the the safe and nor-
mal part of the multisets [s1, . . . , sn] and [t1, . . . , tn] are equal (over ∼pop∗),
and safe(f) = safe(g). We define the order �pop inductively as follows: s =
f(s1, . . . , sn) �pop t if one of the following alternatives hold:

1. f ∈ C(R) and si %pop t, for some i ∈ {1, . . . , n}, or
2. si %pop t for some i ∈ nrm(f), or
3. t = g(t1, . . . , tm) with f ∈ D(R) and f � g and s �pop ti for all 1 6 i 6 m.

Based on �pop we define the polynomial path order �pop∗ inductively as follows:
s = f(s1, . . . , sn) �pop∗ t if either

1. s �pop t, or
2. si %pop∗ t for some i ∈ {1, . . . , n}, or
3. t = g(t1, . . . , tm), with f ∈ D(R), f � g, and the following properties hold:

– s �pop∗ ti0 for some i0 ∈ safe(g) and
– either s �pop ti or s� ti and i ∈ safe(g) for all i 6= i0, or

4. t = g(t1, . . . , tn), f ∼ g and for nrm(f) = {i1, . . . , ip}, safe(f) = {j1, . . . , jq}
both [si1 , . . . , sip] (�pop∗)mul [ti1 , . . . , tip] and [sj1 , . . . , sjq] (%pop∗)mul [tj1 , . . . , tjq]
holds.

Here (�pop∗)mul denotes the multiset extension of �pop∗. We arrive at the follow-
ing theorem, whose proof is an easy consequence of the main result established
in [6].

Theorem 4. Let R be a finite, constructor TRS compatible with �pop∗, i.e.,
R ⊆ �pop∗. Then the induced runtime complexity is polynomial.

In order to increase the applicability of POP∗ we employ finite semantic la-
belling [14]. More precisely we employ Boolean models in the labelling. It is
well-known that semantic labelling is non-termination preserving and it is easy
to show that semantic labelling (using arbitrary models) doesn’t affect the max-
imal length of derivations. However, in order apply Theorem 4 it is mandatory

4

to restrict to finite models. For the next theorem, we need to restrict to a sim-
ple signature, see [3,6] for a definition. A sufficient, but not necessary condition
for a signature to be simple, is that all constructors are unary. For a proof of
Theorem 5, the reader is referred to [15].

Theorem 5. Each finite, orthogonal and constructor TRS based on a simple
signature that is compatible with POP∗ is computable in polynomial time and
vice versa each polynomial computable function is computable by a finite, left-
linear, orthogonal and constructor TRS compatible with POP∗ that is based on
a simple signature.

To prove compatibility of a given TRS R with recursive path orders we have
to find a quasi-precedence % such that the induced order is compatible with R.
When we want to orient R by a polynomial path order �pop∗ we additionally
require a suitable safe mapping. The latter requirement turned out to be a chal-
lenging task. We encode the constraint s �pop∗ t into a propositional formula
and employ recent advances in the use of logic-based techniques in termination
analysis, see for example [16,17]. A careful analysis revealed that in order to
encode safe mappings the notion of multiset covers [16], originally invented to
deal with multiset comparison can be adapted, cf. [6].

As the principal idea of the encoding is already described in [6], for brevity
we focus on the encoding of semantic labelling with Boolean models together
with POP∗ for strict precedence. To encode a Boolean function b : Bn → B,
we make use of propositional atoms bw for every sequence of arguments w =
w1, . . . , wn ∈ Bn. For every assignment α and term t appearing in R we in-
troduce the atoms intα,t and labα,t for t 6∈ V. The formula intα,t encodes
[α]B(t), where [α]B denotes the evaluation function of the Boolean model B,
while labα,t expressed the label of the root symbol of t under with respect
to the assignment α. We define INTα(t) = intα,t ↔ pfBq(intα,t1 , . . . , intα,tn)
and LABα(t) = labα,t ↔ p`fq(intα,t1 , . . . , intα,tn). Further for t ∈ V we define
INTα(t) = α(t). These constraints have to be enforced for every term appearing
in R. We write R � t to denote that t is a subterm of a left- or right-hand side
of a rule in R. To formalise the the model condition, we employ:

LAB(R) =
∧
α

(∧
R�t

(INTα(t) ∧ LABα(t)) ∧
∧

l→r∈R

(intα,l ↔ intα,r)
)

Assume ν is a satisfying assignment for LAB(R) and Rlab denotes the system
obtained by labelling R according to the encoded labelling and model. In order
to show compatibility of Rlab with POP∗, we need to find a precedence > and
safe mapping safe such that Rlab ⊆ >pop∗ holds for the induced order >pop∗.
To compare the labelled versions of two concrete terms s, t ∈ T (F ,V) under an
assignment α, we define

ps �pop∗ tqα = ps >(1)
pop∗ tqα ∨ ps >(2)

pop∗ tqα ∨ ps >(3)
pop∗ tqα ∨ ps >(4)

pop∗ tqα .

Here ps >(i)
pop∗ tq refers to the encodings of the case 〈i〉 from the definition of

�pop∗. We discuss the cases 〈2〉 – 〈4〉, as case 〈1〉 is obtained similar.

5

Set pf(s1, . . . , sn) >
(2)
pop∗ tqα = > if si = t holds for some si Otherwise,

pf(s1, . . . , sn) >
(2)
pop∗ tqα =

∨n
i=1psi �pop∗ tqα. For any f ∈ Flab and argument

position i of f we encode i ∈ safe(f) by a atom safef,i. For f ∈ F and formula
a, the formula SF(fa, i) assesses that depending on the valuation of a, either the
i-th position of ftrue or ffalse is safe. Similarly we define NRM(fa, i) to assert
that the i-th argument position of the labelled symbol is normal. For formulas
a and b, f, g ∈ F , and ν an assignment, the formula pfa > gbq represents the
comparison fν(a) > gν(b). Assume f ∈ D, We translate case 〈3〉 for f 6= g to

pf(s1, . . . , sn) >
(3)
pop∗ g(t1, . . . , tm)qα = pflabα,s > glabα,tq∧

∧
∨
i0

(
ps �pop∗ ti0qα∧SF(glabα,t , i0)∧

∨
i 6=i0

(ps >(1)
pop∗ tiqα∨(SF(glabα,t , i)∧ps� tiq))

)
.

In order to guarantee that fa is defined we add a rule fa(x1, . . . , xn)→ c to the
labelled TRS, where c is a fresh constant. In practical test this has shown to
be more effective than allowing that fa becomes undefined. To encode multiset
comparisons, we make use ofmultiset covers, c.f. [16]. A multiset cover is a pair of
total mappings γ : {1, . . . ,m} → {1, . . . , n} and ε : {1, . . . , n} → B, encoded us-
ing fresh atoms γi,j and εi. To assert a correct encoding of (γ, ε), we introduce the
formula p(γ, ε)q. Based upon this, we define pf(s1, . . . , sn) >

(4)
pop∗ f(t1, . . . , tn)qα

by

(labα,s ↔ labα,t)∧
n∨
i=1

(NRM(flabα,s , i)∧¬εi)∧
n∧
i=1

n∧
j=1

(
γi,j → (εi → psi = tjq)∧

∧ (¬εi → psi �pop∗ tjqα) ∧ (SF(flabα,s , i)↔ SF(flabα,t , j))
)
∧ p(γ, ε)q .

Finally satisfiability of

POP∗SL(R) =
∧
α

∧
l→r∈R

pl �pop∗ rqα ∧ SM(R) ∧ STRICT(R) ∧ LAB(R) ,

asserts the existence of a model B and labelling ` such that the labelled (and
extended) TRS R′lab is compatible with �pop∗. Here STRICT(R) formalises the
strictness and other minor properties of the precedence > while SMSL(R) guar-
antees that safe is indeed a safe mapping.

Experiments

clean up and shorten

test suites beschreiben/motivieren

Besides the two methods described above in Sect. ??, we have also imple-
mented the light multiset path order (LMPO) [3] and Quasi-Interpretations [9].
LMPOis, like POP∗, a tamed version of the multiset path order. It is slightly

6

less restrictive than POP∗, but additionally requires the evaluation strategy to
cache the results of all intermediate computations in order to induce a polyno-
mial upper bound on the required time (see Example ??). Our implementation
of LMPOis rather similar to the implementation of POP∗: like in the latter case,
we encode the requirements of the two orders into propositional logic. The im-
portant differences between LMPOand POP∗lie in the last two cases in Def. ??.
Furthermore, the relation ∼ has to be changed: instead of the multiset com-
parison in POP∗, only a one-to-one comparison of the arguments is allowed for
LMPO. Furthermore, for constructors, the subterms may not be permuted for
this comparison.

For Quasi-Interpretations, we have implemented additiveRPOQIPro. This method
succeeds if the given rewrite system is compatible with both an additive quasi-
interpretation and an RPO where each function symbol has a product status
(which compares tuples of terms by s1, . . . , sn �p t1, . . . , tn iff si � ti for all i
and si � ti for at least on i). Additive quasi-interpretations use the following
interpretation functions:

fA(x1, . . . , xn) =
∑

ij∈{0,1}

af,i1,...,inx
i1
1 · . . . · xinn +

n∑
i=1

bix
2
i if f ∈ D

fA(x1, . . . , xn) =

n∑
i=1

xi + c+ 1 if f ∈ C, ar f > 0

fA(x1, . . . , xn) = 0 if f ∈ C, ar f = 0

Unlike other polynomial interpretations, this only has to orient all rewrite
rules weakly. We search for a suitable interpretation by constructing constraints
in propositional logic in the same way as for SMC: first, we build a suitable set
of Diophantine constraints according to the algorithm given in [12]. These are
then encoded into SAT, following the ideas presented in [13]. RPO with product
status is implemented in a similar way as POP∗and SMC. Note that, due to
our approach of building Diophantine constraints, we can only handle quasi-
interpretations which use standard polynomials, but not the max function.

We have tested the approaches on two testbeds: first, we have used all con-
structor based systems from the current version of the termination problems
database 6 (we denote this testbed by C). Second, we have specifically tested
all constructor systems from the folders AG01, D33, and SK90 of the TPDB (we
denote this testbed by F). The tests were run single-threaded on a 2.1 GHz Intel
Core 2 Duo with 1 GB of memory. The results of the tests are shown in Table
17.

As we can see, the most powerful methods for showing computability of
functions in polynomial time are POP∗SLand SMC. However, since POP∗SLis a

6 http://www.lri.fr/~marche/tpdb/.
7 Full experimental evidence can be found at http://homepage.uibk.ac.at/
~csae2496/ijcar/index.html.

7

Table 1. Experimental results

POP∗ POP∗
∼ POP∗

SL LMPO LMPO∗ RPOQI
Pro SMC MPO∼

F Yes 7 8 14 13 13 13 15 17
Maybe 64 63 57 58 58 58 49 54
Timeout 0 0 0 0 0 0 7 0

Avg. Time (ms) 32 34 122 32 32 191 773 37

C Yes 41 43 74 54 55 51 69 69
Maybe 551 549 511 549 537 541 415 523
Timeout 0 0 7 0 0 0 108 0

Avg. Time (ms) 31 36 105 37 32 204 350 40

primarily syntactic termination criterion which only uses semantic labelling as
a semantic component, while SMC is a fully semantic method. This is reflected
by the huge difference between these two methods in the used time and the
number of timeouts. MPO∼in this table denotes the standard multiset path order
with quasi-precedence, as implemented in TTT2. We can also see that POP∗and
LMPOare a notable restriction of MPO∼, but can still solve a good portion of
the examples solved by MPO∼. Furthermore, a comparison between MPO∼and
RPOQIProshows that the quasi interpretations can also solve a lot of the examples
that are shown terminating by MPO∼. Considering that RPO with product
status is a further restriction of MPO∼, this shows that the quasi-interpretations
are currently certainly not a bottleneck in our implementation of RPOQIPro, even
though our implementation is currently not using the max function yet.

References

1. Marion, J.Y., Moyen, J.Y.: Efficient first order functional program interpreter with
time bound certifications. In: Proc. 7th LPAR. Volume 1955. (2000) 25–42

2. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1) (2001) 33–53

3. Marion, J.: Analysing the implicit complexity of programs. IC 183 (2003) 2–18
4. Marion, J.Y., , Péchoux, R.: Resource analysis by sup-interpretation. In: FLOPS.

Volume 3945. (2006) 163–176
5. Marion, J.Y., , Péchoux, R.: Quasi-friendly sup-interpretations. CoRR

abs/cs/0608020 (2006)
6. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Proc. 9th FLOPS.

(2008) To appear. Available at http://cl-informatik.uibk.ac.at/~georg/list.
publications.html.

7. Bonfante, G., Marion, J.Y., Péchoux, R.: Quasi-interpretation synthesis by decom-
position. In: Proc. 4th ICTAC. Volume 4711 of LNCS. (2007) 410–424

8. Steinbach, J., Kühler, U.: Check your ordering - termination proofs and open
problems. Technical Report SEKI-Report SR-90-25, University of Kaiserslautern
(1990)

8

9. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space
bounds. In: Proc. 16th RTA. Number 3467 in LNCS (2005) 150–164

10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

11. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Proc. 3rd RTA. Number 355 in LNCS (1989) 167–177

12. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-
nation using polynomial interpretations. JAR 34(4) (2005) 325–363

13. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Proc.
10th SAT. Volume 4501 of LNCS. (2007) 340–354

14. Zantema, H.: Termination of term rewriting by semantic labelling. FI 24 (1995)
89–105

15. Avanzini, M., Moser, G.: Complexity analysis by rewriting. Draft. Availabe at
http://cl-informatik.uibk.ac.at/~georg/list.publications.html (2007)

16. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving
termination using recursive path orders and SAT solving. In: Proc. 6th FroCos.
Number 4720 in LNCS (2007) 267–282

17. Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Proc. of 18th RTA.
Number 4533 in LNCS (2007) 389–403

9

