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Abstract

In earlier work we introduced a restriction of the multiset path order, called polynomial path
order, that induces polynomial runtime complexity. In this note, we present an extension that ac-
counts for predicative recursion with parameter substitution. As confirmed by our implementation,
the analytical power of polynomial path orders is significantly increased.

1 Introduction

Bellantoni and Cook [6] characterise the polytime computable functions as the least class of functions
containing certain initial functions and which is closed under the schemes of predicative recursion and
composition. Unlike the classical recursion-theoretic characterisation given by Cobham [7], this alter-
native characterisation does not rely on any externally imposed resource bounds. Instead, to break the
strength of primitive recursion, the predicative schemes make use of a syntactic separation of arguments
into safe and normal ones. To highlight this separation, we write f (~x;~y) instead of f (~x,~y) for normal
arguments ~x and safe arguments ~y. For previously defined functions g,h1 and h2, a new function f is
defined by predicative recursion (on notation) via the equations

f (0,~x;~y) = g(~x;~y)
f (2z+ i,~x;~y) = hi(z,~x;~y, f (z,~x;~y)), i ∈ {1,2} .

(1)

For previously defined functions h,~r and~s, a function f is defined by predicative composition by

f (~x;~y) = h(~r(~x;);~s(~x;~y)) . (2)

Note that recursion is performed on a normal argument, whereas the recursively computed result f (z,~x;~y)
is substituted into a safe argument position of the stepping function hi. The composition scheme guar-
antees that safe arguments cannot influence normal ones. Effectively, recursion on recursively computed
results is prevented. The scheme of predicative recursion with parameter substitution generalises the
scheme of predicative recursion depicted in (1). Here, the safe arguments in the recursive call may
be altered additionally. Formally, a new function f is defined by predicative recursion with parameter
substitution via the equations

f (0,~x;~y) = g(~x;~y)
f (2z+ i,~x;~y) = hi(z,~x;~y, f (z,~x; p1(z,~x;~y), . . . , pm(z,~x;~y))), i ∈ {1,2} (3)

for previously defined functions g,h1,h2 and p1, . . . , pm. As Bellantoni has shown in his thesis [5], the
polytime-computable functions are closed under predicative recursion with parameter substitution.

Based on the schemes (1) and (2), we present in [2] a restriction of multiset path orders (MPOs),
called polynomial path orders (POP∗ for short), that induce polynomial innermost runtime complexities.
More precisely, for a TRS R define the innermost runtime complexity function rciR as the function that
relates the maximal length of an innermost R-derivation to the size of the initial term, whenever the
set of initial terms is restricted to basic terms. Here a term is called basic, if all subterms are values
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formed from constructors. Compatibility of a TRS R with some polynomial path order certifies that rciR
is bounded polynomially. Noteworthy, it can be shown that the polytime computable functions exactly
correspond to those functions expressed by (syntactically restricted, cf. Theorem 2) TRSs compatible
with polynomial path orders.

However, although the order is complete in the above sense, its application is limited to TRSs where
recursion follows the specific form of (1). In particular, functions defined by tail recursion are excluded.
Consider the TRS Rrev defining the reversal of lists in a tail recursive fashion:

rev(xs)→ revtl(xs, [ ]) revtl([ ],ys)→ ys revtl(x : xs,ys)→ revtl(xs,x : ys) .

Even MPOs fail on the above TRS due to the definition of revtl, thus any application of POP∗ is doomed
to fail as well. On the other hand, notice that the definition of revtl is strongly reminiscent of predicative
recursion with parameter substitution (3).

In this note we introduce an extension of POP∗ that goes beyond MPO and captures the schema (3).
On a conceptual level, this is related to an alternative characterisation of the primitive recursive functions
given in [12], where a related extension of MPO is employed. The resulting order, dubbed polynomial
path order with parameter substitution or POP∗PS for short, is introduced in the next section.

2 The Polynomial Path Order with Parameter Substitution

Throughout the following, we follow the notions of [2, 4]. We fix a finite but else arbitrary signature
F, partitioned into defined symbols D and constructors C. We use %= �]≈ to denote an admissible
quasi-precedence, i.e. a precedence where constructors are minimal. The separation of safe and normal
argument positions is taken into account by the notion of safe mapping. A safe mapping safe is a function
that associates with every n-ary function symbol f the set of safe argument positions. For constructors
f ∈ C we set all argument positions safe. The argument positions not included in safe( f ) are called
normal and denoted by nrm( f ). We use ≈s to denote term equivalence as induced by %. (Moreover, we
assume ≈s respects the separation of argument positions, cf. [4].)

The polynomial path order >pps∗ with parameter substitution is based on an auxiliary order >pps

inductively defined as follows: s = f (s1, . . . ,sn)>pps t if either

(i) si ∼>pps t for some i ∈ {1, . . . ,n}, and if f ∈ D then i ∈ nrm( f ), or

(ii) t = g(t1, . . . , tm) with f � g, f ∈ D and s >pps t j for all j ∈ {1, . . . ,m}.

Here ∼>pps :=>pps∪≈s. The split into two orders is necessary, as we must enforce the special shape of
predicative composition (2) in the definition of >pps∗ below. (Note that due to the restrictive definition
of case (i), one can show f (~x;~y)>pps ri(~x;), but one cannot show f (~x;~y)>pps si(~x;~y).)

Based on >pps, the polynomial path order >pps∗ with parameter substitution is defined as follows.
Here we write F≺ f for the restriction of F to symbols ranked below f in the precedence, i.e., F≺ f :=
{g | f � g∧ f ∈ F}. Further, we write {{a1, . . . ,an}} for the multiset with elements a1, . . . ,an. We set

∼>pps∗ :=>pps∗∪≈s and refer with >mul
pps∗ to the strict order contained in the multiset extension of ∼>pps∗.

We inductively define >pps∗ such that: s = f (s1, . . . ,sn)>pps∗ t if

(i) si ∼>pps∗ t for some i ∈ {1, . . . ,n}, or

(ii) t = g(t1, . . . , tm) with f � g, f ∈ D, and

(a) s >pps t j for all j ∈ nrm(g) and s >pps∗ t j for all j ∈ safe(g), and

(b) there exists j0 ∈ safe(g) such that t j ∈ T(F≺ f ,V) for all j 6= j0, or



(iii) t = g(t1, . . . , tm) with f ≈ g and

(a) {{si1 , . . . ,sip}}>mul
pps∗{{t j1 , . . . , t jq}} where nrm( f ) = {i1, . . . , ip} and nrm(g) = { j1, . . . , jq}, and

(b) both s >pps∗ t j and t j ∈ T(F≺ f ,V) for all j ∈ safe(g).

Case (ii) basically accounts for predicative composition. The condition (ii.b) is used to guarantee that at
most one recursively computed results is substituted into a safe argument position jo. Case (iii) reflects
the scheme of predicative recursion with parameter substitution (3). The additional condition (iii.b) is
essential, it prohibits for instance the orientation of f(s(;x) ; y)→ f(x ; f(x ; y)) that gives rise to exponen-
tially long (innermost) derivations.

Opposed to recursive path orders like MPO, >pps∗ is neither closed under contexts nor closed under
substitutions. Still, following the pattern of the proof given in [2], we derive our main theorem.

Theorem 1. Let R be a finite constructor TRS. If R is compatible with >pps∗, i.e., R ⊆ >pps∗, then the
innermost runtime complexity rciR induced is polynomially bounded.

Notice that >pps∗ is applicable to the TRS Rrev from above: define safe(rev) = ∅ and safe(revtl) =
{2}. Moreover, set rev � revtl � (:) � [ ] in the precedence. Compatibility Rrev ⊆ >pps∗ is now straight
forward to verify. By Theorem 1, we conclude that the innermost runtime complexity of Rrev is polyno-
mially bounded.

We stress that every TRS compatible with some instance of POP∗ is also compatible with some
instance of POP∗PS. As demonstrated by the TRS Rrev, the reverse direction does not hold. Consequently,
Theorem 1 is strictly more powerful than the main theorem given in [2].

In [2] we have shown that POP∗ gives rise to an alternative characterisation of the polytime com-
putable functions. The same observation carries over to POP∗PS. The next theorem establishes that
POP∗PS induces polytime computability of the function described through the analysed TRS. The proof
of the theorem follows exactly the proof of the corresponding theorem given in [3].

Theorem 2. Suppose R is a finite, orthogonal and sorted constructor TRS based on a simple signature.
If R is compatible with >pps∗ then the functions computed by R are polytime computable and vice verse,
each polytime computable function is computable by such a TRS that is compatible with >pps∗.

Here simple signature [11] essentially means that the size of any constructor term depends only
polynomially on its depth. The restriction is responsible for the introduction of sorts, compare [2, 11].
Simple signatures allow the definition of enumerated and inductive datatypes like lists and words, but
prohibit for instance the definition of tree structures.

3 Experimental Results

We have implemented the here described technique in the experimental version of the Tyrolean Complex-
ity Tool TCT, an open source complexity analyser1 All experiments were conducted on a machine that
is identical to the official competition server (8 AMD Opteron R© 885 dual-core processors with 2.8GHz,
8x8 GB memory). As timeout we use 5 seconds. Experiments were performed on a subset of the 1394 ex-
amples from the Termination Problem Database Version 5.0.2 that were used in the runtime-complexity
category of the termination competition 20082, where we filtered out all non-constructor TRSs. The
restricted testbed consists of 638 TRSs.

1The stable version is available at http://cl-informatik.uibk.ac.at/software/tct. A preliminary build and
sources of the experimental version can be found at http://cl-informatik.uibk.ac.at/~zini/wst09.

2See http://termcomp.uibk.ac.at.
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Table 1 compares the application of POP∗PS to the application of POP∗ from [2], where we highlight
the total on yes-, maybe- and timeout-instances. Furthermore, we annotate average times in seconds.3 To
check compatibility we encode the constraints on precedence and so forth in propositional logic (cf. [1]
for details), employing MiniSat [8] for finding satisfying assignments. Table 1 reflects that the here pro-
posed extension significantly increases the analytical power of polynomial path orders.

Table 1: Experimental Results

Yes Maybe Timeout

POP∗ 40 / 0.03 598 / 0.05 0 / 0.00

POP∗PS 51 / 0.05 585 / 0.14 2 / 5.02

4 Conclusion

In this paper we study the runtime complexity of rewrite systems. We extend polynomial path orders with
the scheme of predicative recursion with parameter substitution, resulting in a strictly more powerful
technique. For constructor TRSs compatible with some instance of POP∗PS, we conclude a polynomial
bound on the innermost runtime complexity of the studied term rewrite system. Moreover, we obtain an
alternative characterisation of the polytime computable functions. We have implemented the technique
and experimental evidence clearly indicates the power and in particular the efficiency of the new method.
Although not presented, following [4] we can lift the restriction that the TRS under consideration is
a constructor TRS. Also worthy of note, the here described technique allows an integration into the
dependency pair framework for complexity analysis as put forward in [9, 10], compare [4].

5 Appendix

Below we present the missing proofs of Theorem ?? and Theorem ?? respectively.
Following [?, Section 6.5], we briefly recall typed rewriting. Let S be a finite set representing the

set of types or sorts. An S-sorted set A is a family of sets {As | s ∈ S} such that all sets As are pairwise
disjoint. In the following, we suppose that V denotes an S-sorted set of variables. An S-sorted signature F
is like a signature, but the arity of f ∈ F is defined by ar( f ) = (s1, . . . ,sn) for s1, . . . ,sn ∈ S. Additionally,
each symbol f ∈ F is associated with a sort s ∈ S, called the type of f and denoted by st( f ). We adopt
the usual notion and write f : (s1, . . . ,sn)→ s when ar( f ) = (s1, . . . ,sn) and st( f ) = s. The S-sorted
set of terms T(F,V)S consists of the sets T(F,V)s for s ∈ S, where T(F,V)s is inductively defined by (i)
Vs ⊆ T(F,V)s, and (ii) f (t1, . . . , tn) ∈ T(F,V)s for all function symbols f ∈ F, f : (s1, . . . ,sn)→ s and
terms ti ∈ T(F,V)si for i ∈ {1, . . . ,n}. We say that a term t is well-typed if t ∈ T(F,V)s for some sort s.
An S-sorted term rewrite system R is a TRS such that for l→ r ∈ R, it holds that l,r ∈ T(F,V)s for some
sort s ∈ S. As a consequence, for s ∈ T(F,V)s and s−→R t, we have that t ∈ T(F,V)s.

Example 1. Let S = {Bool,List,Nat,Pair}. The S-sorted rewrite system RLst is given by the following
rules:

f(s(x))→ cons(pair(x,g(x)), f(x)) g(s(x))→ g(x)

f(0)→ nil g(0)→ tt

Here we assign arities and sorts as follows: for the constructors we set 0 : Nat, s : Nat→Nat, pair : (Nat,Bool)→
Pair, tt : Bool, nil : List, cons : (Pair,List)→ List; for the defined symbols we set f : Nat→ List and
g : Nat→ Bool.

3See http://cl-informatik.uibk.ac.at/~zini/wst09 for extended results.
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A simple signature [11] is a sorted signature such that each sort has a finite rank r in the following
sense: the sort s has rank r if for every constructor c : (s1, . . . ,sn)→ s, the rank of each sort si is less than
the rank of s, except for at most one sort which can be of rank r. Simple signatures allow the definition of
enumerated datatypes and inductive datatypes like words and lists but prohibit for instance the definition
of tree structures. Observe that the signature underlying RLst from Example 1 is simple. A crucial insight
is that sizes of values formed from a simple signature can be estimated polynomially in their depth. The
easy proof of the following proposition can be found in [11, Proposition 17].

Proposition 1. Let C be a set of constructors from a simple signature F. There exists a constant d ∈ N
such that for each term t ∈ T(C,V)S whose rank is r, |t|6 dr ·dp(t)r+1.

In order to give a polytime algorithm for the functions computed by a TRS, it is essential that sizes
of reducts do not exceed a polynomial bound with respect to the size of the start term. Recall that
approximations Ik tightly control the size growth of terms. For simple signatures, we can exploit this
property for a space-complexity analysis. Although predicative interpretations remove values, by the
above proposition sizes of those can be estimated based on the Buchholz-norm record in N. And so we
derive the following Lemma, essential for the proof of Theorem ??.

Lemma 1. Let F be a simple signature. There exists a (monotone) polynomial p depending only on F
such that for each well-typed term t ∈ T(F,V)s, |t|6 p(Gk(N

s(t))).

Proof. The Lemma follows as: (i) for all sequences s ∈ Seq, |s| 6 Gk(s)+ 1, and (ii) for all terms t ∈
T(F,V)s, |t|6 c · |Ns(t)|d for some uniform constants 0 < c,d ∈N. These properties are simple to verify:
property (i) follows from induction on s where we employ for the inductive step that f (s1, . . . ,sn) Ik
[s1 · · ·sn] and Gk([s1 · · ·sn]) = ∑

n
i=1Gk(si)+ n. For property (ii), set d = r + 2 where r is the maximal

rank of a symbol in C, and set c = er where e is as given from Proposition 1. First one shows by a
straight forward induction on t that |t| 6 c · (|S(t)| · ‖t‖r+1) (employing Proposition 1 and dp(t) 6 ‖t‖).
As |S(t)| < |N(t)| and ‖t‖ < |N(t)|, we derive |t| < c · |N(t)|d . By induction on the definition of Ns we
finally obtain property (ii).

Let R be a (not necessarily S-sorted) TRS that is innermost terminating. In the sequel, we keep R
fixed. In order to exploit Lemma 1 for an analysis by means of weak innermost dependency pairs, we
introduce the notion of type preserving weak innermost dependency pairs.

Definition 3. If l → r ∈ R and r = C〈u1, . . . ,un〉D then l] → c(u]1, . . . ,u
]
n) is called a type preserving

weak innermost dependency pair of R. Here, the compound symbol c is supposed to be fresh. We set
repr(c) := C and say that c represents the context C. The set of all type preserving weak innermost
dependency pairs is denoted by WIDP(R).

We collect all compound symbols appearing in TPWIDP(R) in the set Ccom.

Example 2 (Example 1 continued). Reconsider the rewrite system RLst given in Example 1. The set
TPWIDP(RLst) is given by

f](s(x))→ c1(g
](x), f](x)) g](s(x))→ c3(g

](x))

f](0)→ c2 g](0)→ c4

The constant c3 represents for instance the empty context, and the constant c1 represents the context
repr(c1) = cons(pair(x,2),2).

Lemma 2. Let R be an S-sorted TRS such that the underlying signature F is simple. Then TPWIDP(R)∪
U(WIDP(R)) is an S-sorted TRS, and the underlying signature F]∪Ccom a simple signature.



Proof. To conclude the claim, it suffices to type the marked and compound symbols appropriately. For
each rule f ](l1, . . . , ln)→ c(r]1, . . . ,r

]
n) ∈TPWIDP(R) we proceed as follows: we set ar( f ]) := ar( f ) and

st( f ]) := st( f ). Moreover, we set ar(c) := (st(r1), . . . ,st(rm)) and st(c) := st( f ). It is easy to see that
since R is S-sorted, TPWIDP(R)∪U(TPWIDP(R)) is S-sorted too.

Notice that the above lemma fails for weak innermost dependency pairs: consider the rule f(x)→
d(g(x)), where f and g are defined symbols and d is a constructor. Moreover, suppose f : s2 → s1,
g : s2→ s3 and d : s3→ s1. Then we cannot type the corresponding weak innermost dependency pair
f](x)→ g](x) as above because (return-)types of f] and g] differ.

As for practical all termination techniques, compatibility of weak innermost dependency pairs with
polynomial path orders also yield compatibility of type preserving weak innermost dependency pairs.
Moreover, from the definition we immediately see that dl(t], i−→TPWIDP(R)/U) = dl(t], i−→WIDP(R)/U) with
U = U(WIDP(R)) and basic term t. And so it is clear that in order to proof Theorem ?? and Theorem
??, WIDP(R) can safely be replaced by TPWIDP(R). We continue with the proof of Theorem ??.

5.1 A Proof of Theorem ??

As mentioned in Section ??, we now introduce an extended predicative interpretation whose purpose is
to interpret compound symbols as sequences, and their arguments via the interpretation N.

Definition 4. The extended predicative interpretation Ns from terms T(F,V) to sequences Seq(Fnπ ∪
{s},V) is defined as follows: if t = c(t1, . . . , tn) and c ∈ Ccom then Ns(t) := [Ns(t1) · · · Ns(tn)], and
otherwise Ns(t) := [N(t)].

Let ComCtx abbreviate the set of contexts T(Ccom ∪ {2},V) build from compound symbols. Set
P = TPWIDP(R) and U = U(WIDP(R)). In order to highlight the correspondence between i−→R and
i−→P/U, we extend the notion of representatives.

Definition 5. Let C ∈ ComCtx. We define reprs(C) as the least set of (ground) contexts such that (i) if
C = 2 then 2 ∈ reprs(C), and (ii) if C = c(C1, . . . ,Cn), C′i ∈ reprs(Ci) and σ is a substitution from all
variables in repr(c) to ground normal forms of R then (repr(c)σ)[C′1, . . . ,C

′
n] ∈ reprs(C).

Example 3 (Example 2 continued). Reconsider the TRS RLst from Example 1, together with TPWIDP(RLst)
as given in Example 2. Consider the step f(s(0)) −→RLst

cons(pair(0,g(0)), f(0)) and the correspond-
ing dependency pair step f](s(0)) −→TPWIDP(RLst)

c1(g
](0), f](0)). Let C = c1(2,2), remember that

repr(c1) = cons(pair(x,2),2), reprs(2) = 2 and observe that C′ = cons(pair(0,2),2) ∈ reprs(C) by
taking the substitution σ = {x 7→ 0}. And hence we can reformulate the above two steps as f(s(0))−→RLst

C′[g(0), f(0)] and likewise f](s(0))−→TPWIDP(RLst)
C[g](0), f](0)].

We manifest the above observation in the following lemma.

Lemma 3. Let s ∈ Tb be a ground and basic term. Suppose s i−→∗R t. Let P = TPWIDP(R) and let
U= U(WIDP(R)). Then there exists contexts C′ ∈ ComCtx, C ∈ reprs(C′) and terms t1, . . . , tn such that
t =C[t1, . . . , tn] and moreover, s] i−→∗P∪U C′[t]1, . . . , t

]
n].

Proof. We proof the lemma by induction on the length of the rewrite sequence s i−→n
R t. The base case

n = 0 is trivial, we set C = C′ = 2. So suppose s i−→n
R t i−→R u and the property holds for n. And thus

we can find contexts C′t ∈ ComCtx, Ct ∈ reprs(C′t) and terms t1, . . . , tn such that t = Ct [t1, . . . , tn] and
moreover, s] i−→∗P∪U C′t [t

]
1, . . . , t

]
n]. Without loss of generality we can assume u =Ct [t1, . . . ,ui, . . . , tn] with

ti i−→R ui, as the context Ct is solely build from constructors and normal forms of R.



First, suppose ti i−→ε

R ui, and hence ti = lσ for l→ r ∈ R and substitution σ : V→ NF(R)∩T(F).
Moreover l]→ c(r]1, . . . ,r

]
m) ∈ P such that ui = (repr(c)σ)[r1σ , . . . ,rmσ ]. We set C′ as the context ob-

tained from replacing the i-th hole of C′t by c(2, . . . ,2), likewise we set C as the context obtained
from replacing the i-th hole of Ct by repr(c)σ . Notice that C ∈ reprs(C′). We conclude s] i−→∗P∪U
C′[t]1, . . . ,r

]
1σ , . . . ,r]mσ , . . . , t]n] and u =C[t1, . . . ,r1σ , . . . ,rmσ , . . . , tn] which establishes the lemma for this

case.
Now suppose ti i−→R ui is a step below the root. Thus we have also t]i

i−→R u]i . As shown in [9, Lemma
16], the latter can be strengthened to t]i

P∪U−−−→U u]i . We conclude s] i−→∗P∪U C′t [t
]
1, . . . ,u

]
i , . . . , t

]
n], and the

lemma follows by setting C′ =C′t and C =Ct .

Suppose WIDP(R) contains non-nullary compound symbols. In order to establish an embedding in
the sense of Lemma ?? for that case, by the above lemma we see that it suffices to consider only terms
of shape s =C[s]1, . . . ,s

]
n] with C ∈ ComCtx. With this insight, we adjust Lemma ?? as below. Observe

that due to the definition of Ns, we cannot simply apply Lemma ?? together with closure under context
of Ik here.

Lemma 4. Let s =C[s]1, . . . ,s
]
n] for C ∈ ComCtx and s1, . . . ,sn ∈T(F,V). Let P=TPWIDP(R) and U=

U(WIDP(R)). There exists a uniform constant k ∈ N depending only on R such that if P⊆>π
pop∗ holds

then s v−→P t implies Ns(s)Ik N
s(t). Moreover, if U⊆ ∼>

π
pop∗ holds then s v−→U t implies Ns(s)I&k N

s(t).

Proof. We proof the lemma for k :=max{3 · ‖r‖ | l→ r ∈ P∪U}. Suppose s v−→P t or s v−→U t respectively,
and thus t = C[s]1, . . . , ti, . . . ,s

]
n] for some term ti. There exists a context C′ (over sequences) such that

Ns(s) =C′[Ns(s]i )] and Ns(t) =C′[Ns(t]i )]. First assume s]i
v−→P ti, and thus Ns(s]i ) = [N(l]σ)] and Ns(ti) =

[[N(r]1σ)], . . . , [N(r]mσ)]] for l→ c(r]1, . . . ,r
]
m) ∈ P. To verify Ns(s) Ik N

s(t), by Definition ??.?? and
Definition ??.?? it suffices to verify N(l]σ) Ik−1 N(r]jσ) for all j ∈ {1, . . . ,m}. The latter is an easy

consequence of Lemma ??, where we employ that (i) l] >π
pop∗ r]j follows from the assumption P⊆>π

pop∗,

and (ii) ‖π(r)‖> ‖π(r j)‖. Both properties are straight forward to verify since π is safe. For s]i
v−→U t we

have Ns(s]i ) = [N(s]i )] and Ns(t]i ) = [N(t]i )] for l→ r ∈ U. From Lemma ?? we obtain N(s]i ) I&k N(t]i )
which establishes the lemma.

The proof of Theorem ?? is now easily obtained by incorporating the above lemma into Theorem ??.

Theorem. Let R be a constructor TRS, and let P denote the set of weak innermost dependency pairs.
Assume P is non-duplicating, and suppose U(P)⊆>A for some SLI A. Let π be a safe argument filtering.
If P⊆>π

pop∗ and U(P)⊆ ∼>
π
pop∗ then rciR is polynomially bounded.

Proof. According to Proposition ?? we need to find a polynomial p such that dl(t], i−→WIDP(R)/U(WIDP(R))

) 6 p(|t]|). We set P = TPWIDP(R) and likewise U = U(WIDP(R)). Clearly, it suffices to show
dl(t], i−→TPWIDP(R)/U(WIDP(R)))6 p(|t]|) for that. Consider a sequence

t] = t0 i−→P/U t1 i−→P/U . . . i−→P/U t` ,

and pick a relative step ti i−→P/U ti+1. Define U′ = U∪V(P∪U) and φ(t) = φP∪U(t). Clearly Lemma ??
can be extended to account for steps of P below the root, and thus φ(ti) v−→P/U′ φ(ti+1) follows. Hence
for some terms u and v, φ(ti) v−→∗U′ u v−→P v v−→∗U′ φ(ti+1). As shown in Lemma 3, all involved terms in
the above sequence have the shape C[s]1, . . . ,s

]
n], C ∈ ComCtx. As WIDP(R) ⊆ >π

pop∗, and since π is
safe, it is easy to infer that P⊆>π

pop∗ holds (we just set every compound symbol from P minimal in the
precedence). And hence Lemma 4 translates the above relative step to Ns(φ(s)) I+

k Ns(φ(t)) for some



uniform constant k. As a consequence, dl(t, i−→WIDP(R)/U(WIDP(R))) 6 Gk(N
s(φ(t))) for all terms t. Fix

some reducible and basic term t ∈ Tb. Observe Ns(φ(t])) = [N(t])] and so from Lemma ?? we see that
Gk(N

s(φ(t]))) is bounded polynomially in the size of t. The polynomial depends only on k. We conclude
the theorem.

5.2 A Proof of Theorem ??

We now proceed with the proof Theorem ??, which is essentially an extension to Theorem ??.
We first precisely state what it means that a TRS computes some function. For this, let p·q : Σ∗→

T(C) denote an encoding function that represents words over the alphabet Σ as ground values. We call
an encoding p·q reasonable if it is bijective and there exists a constant c such that |u| 6 |puq| 6 c · |u|
for every u ∈ Σ∗. Let p·q denote a reasonable encoding function, and let R be a completely defined,
orthogonal and terminating TRS. We say that an n-ary function f : (Σ∗)n → Σ∗ is computable by R if
there exists a defined function symbol f such that for all w1, . . . ,wn,v∈ Σ∗ f(pw1q, . . . ,pwnq)→! pvq⇐⇒
f (w1, . . . ,wn) = v. On the other hand the TRS R computes f , if the function f : (Σ∗)n→ Σ∗ is defined by
the above equation.

Below we abbreviate Qπ as Q for predicative interpretation Q ∈ {S,N,Ns} and the particular argu-
ment filtering π that induces the identity function on terms. Consider the following lemma.

Lemma 5. Let R be an S-sorted and completely defined constructor TRS such that the underlying signa-
ture is simple. If TPWIDP(R)∪U(WIDP(R))⊆ ∼>pop∗ then there exists a polynomial p such that for all
ground and well-typed basic terms t ∈ Tb, t] i−→∗TPWIDP(R)∪U(WIDP(R)) s implies |s|6 p(|t|).

Proof. Let S = TPWIDP(R)∪U(WIDP(R)). Suppose t] i−→∗S s, or equivalently t] v−→∗S s since R is
completely defined. By Lemma 4 we derive Ns(t]) I&∗k Ns(s) for some uniform k ∈ N. And thus
Gk(N

s(s))6Gk(N
s(t])). As Gk(N

s(t])) =Gk([N(t])]) is bounded polynomially in the size of t according
to Lemma ??, we see that there exists a polynomial p such that Gk(N

s(s))6 Gk(N
s(t]))6 p(|t|). Since

R is and S-sorted TRS over a simple signature, the same holds for S due to Lemma 2. And thus since t]

is well-typed and t] i−→∗S s holds, also s is well-typed. Let q be the polynomial as given from Lemma 1
with |s|6 q(Gk(N

s(s))). Summing up, we derive |s|6 q(Gk(N
s(s)))6 q(p(|t|)) as desired.

The above lemma has established that sizes of reducts with respect to the relation i−→TPWIDP(R)∪U(WIDP(R))
are bounded polynomially in the size of the start term, provided we can orient dependency pairs and us-
able rules. It remains to verify that this is indeed sufficient to appropriately estimate sizes of reducts with
respect to i−→R. The fact is established in the final Theorem.

Theorem. Let R be an orthogonal S-sorted and completely defined constructor TRS such that the un-
derlying signature is simple. Let P denote the set of weak innermost dependency pairs. Assume P is
non-duplicating, and suppose U(P) ⊆ >A for some SLI A. If P ⊆ >π

pop∗ and U(P) ⊆ ∼>
π
pop∗ then the

functions computed by R are computable in polynomial-time.

Proof. We single out one of the defined symbols f ∈D and consider the corresponding function f : (Σ∗)n→
Σ∗ computed by R. Under the assumptions, R is terminating, but moreover rciR is polynomially bounded
according to Theorem ??. Additionally, from orthogonality (and hence confluence) of R, normal forms
are unique and so the function f is well-defined. Suppose f(pw1q, . . . ,pwnq)−→!

R pvq for words w1, . . . ,wn,v.
In particular, from confluence we see that

f(pw1q, . . . ,pwnq) i−→R t1 i−→R · · · i−→R t` = pvq .

It is folklore that there exists a polytime algorithm performing one rewrite step. Hence to conclude the
existence of a polytime algorithm for f it suffices to bound the size of terms ti for 1 6 i 6 ` polynomially



in ∑i|wi|. And as we suppose that the encoding p·q is reasonable, it thus suffice to bound the sizes of ti
for i ∈ {1, . . . , `} polynomially in the size of t0 = f(pw1q, . . . ,pwnq).

Consider a term ti. Without loss of generality, we can assume ti is ground. According to Lemma 3
there exists contexts C′i ∈ ComCtx, Ci ∈ reprs(C′i) and terms u1, . . . ,un such that ti = Ci[u1, . . . ,un] and
moreover, t]0

i−→∗P∪U C′i [u
]
1, . . . ,u

]
n] for all i ∈ {1, . . . , `}. From the assumption WIDP(R) ⊆ >pop∗ we see

TPWIDP(R)⊆>pop∗. Thus by Lemma 5 there exists a polynomial p such that |C′i [u
]
1, . . . ,u

]
n]|6 p(|t0|).

And so, clearly ∑
n
j=0|u j|6 p(|t0|). It remains to bound the sizes of contexts Ci polynomially in |t0|.

Recall Definition 5, and recall that Ci ∈ reprs(C′i). Thus Ci is a context build from constructors and
variables, where the latter are replaced by normal forms of R. Since R is completely defined, NF(R)
coincides with values. We conclude that Ci ∈ T(C ∪ {2s | s ∈ S}). Here 2s denotes the hole of sort
s. Moreover since R is S-sorted, and t0 i−→∗R Ci[u1, . . . ,un], we see that Ci is well-typed. We define
4R = max{dp(r) | l→ r ∈ R}. By a straight forward induction it follows that dp(ti)6 dp(t0)+4R · i 6
|t0|+4R · dl(t0, i−→R). As a consequence, dp(Ci) 6 |t0|+4R · dl(t0, i−→R), and thus by Proposition 1
there exists constants c,d ∈ N such that |Ci|6 c ·dp(Ci)

d 6 c · (|t0|+4R ·dl(t0, i−→R))
d . As we have that

dl(t0, i−→R) is polynomially bounded in the size of t0, it follows that |Ci|6 q(|t0|) for some polynomial q.
Summing up, we conclude that for all i ∈ {1, . . . , `}, |ti|6 p(|t0|)+q(|t0|) for the polynomials p and

q from above. This concludes the theorem.
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