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Abstract
The Tyrolean Complexity Tool, TCT for short, is an open source complexity analyser for term
rewrite systems. Our tool TCT features a majority of the known techniques for the automated
characterisation of polynomial complexity of rewrite systems and can investigate derivational and
runtime complexity, for full and innermost rewriting. This system description outlines features
and provides a short introduction to the usage of TCT.
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1 Introduction

In order to measure the complexity of a term rewrite system (TRS for short) it is natural to
look at the maximal length of derivation sequences—the derivation length—as suggested by
Hofbauer and Lautemann in [13]. The resulting notion of complexity is called derivational
complexity. Hirokawa and the second author introduced in [11] a variation, called runtime
complexity, that only takes basic or constructor-based terms as start terms into account.
The restriction to basic terms allows one to accurately express the complexity of a program
through the runtime complexity of a TRS. An investigation into these notions is of particular
interest, as both constitute an invariant cost model for rewrite systems [7, 3], in the sense
that the actual cost of a reduction on a standard model of computation, viz Turing machines,
is bounded by a polynomial in the size of the start term and the length of the reduction. In
particular, if the consider TRS defines a function and this TRS admits a polynomial bound
on its runtime complexity, then the function is polytime computable.

As first observed in [13], it is by now folklore that termination techniques induce a certain
bound on the time complexity of rewrite systems. The seminal paper by Bonfante et. al., [6]
gives an early account on taming a termination technique to infer feasible, viz polynomial,
bounds. Since then, a wealth of techniques have been introduced specifically to establish
polynomial complexity bounds [2, 11, 17, 18, 20, 21, 19, 15, 1, 12], see [16] for an overview.
Motivated not only by these theoretical advances, but also by the annual international
termination competition1, which features four dedicated complexity categories since 2008, a
vast part of this theoretical body has been implemented in dedicated complexity analysers
for rewrite systems. For instance, the termination prover APoVE2 features powerful support
for analysing the innermost runtime complexity of TRSs. CaT3, a variation of the very fast

∗ This work was partially supported by FWF (Austrian Science Fund) project I-603-N18.
1 http://www.termination-portal.org/wiki/Termination_Competition/.
2 http://aprove.informatik.rwth-aachen.de/.
3 Available from http://cl-informatik.uibk.ac.at/software/cat/.
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and powerful termination prover TTT24, has excellent support to investigate derivational
complexity, and also partial support for runtime complexity analysis. The automated
complexity analyser Matchbox/Poly5 verifies polynomially bounded derivational complexity.

Our tool TCT, the Tyrolean Complexity Tool, is an automated complexity analyser for
TRSs in the line of the aforementioned tools. Its distinct feature is that it is currently
the only tool that is competitive, and provides dedicated techniques, for both runtime and
derivational complexity analysis. TCT is open-source, released under the GNU Lesser General
Public License (LGPL) Version 3, and available from

http://cl-informatik.uibk.ac.at/software/tct/ .

The theoretical framework underlying TCT, which allows for this generality and modularity,
is documented in separate work [5]. Here we want to outline the practical aspects of TCT,
version 2.0 to be precise. In Section 2 we provide a brief description of the implementation
including accompanying libraries. Section 3, where we discuss features and usage of our tool,
constitutes the main part of this work. In Section 4 we indicate future work and conclude.

2 Implementation

Our tool is implemented in the strongly typed, lazy functional programming language
Haskell6 and compiles on the Glasgow Haskell Compiler on GNU Linux. The sources consist
of about 13,000 lines of code, and additionally 4,000 lines of documentation. Out of the 73
modules, 43 modules are dedicated to the implementation of the various techniques (roughly
56 % of the code), the remaining modules provide the core of TCT and utilities. Our tool
makes also use of following Haskell libraries, separately available from the TCT homepage7,
that have been specifically developed for TCT.

qlogic provides facilities for dealing with propositional logic, and consists of approxim-
ately 3100 lines of code. Notably it defines an interface to SAT-solvers, including routines
to efficiently translate Boolean formulas to conjunctive normal form. Also it features
support for theories over natural numbers and integers, implemented by bit-blasting.
termlib provides term rewriting functionality, and consists of around 2100 lines of code.
parfold is a small library that provides folding capabilities over lists of concurrently
evaluated monad actions, a simple but convenient abstraction to concurrent programming.

3 Features and Usage

The Tyrolean Complexity Tool currently features 23 techniques which are available for runtime
and, where applicable, for derivational complexity analysis. Our implementation follows
closely the framework provided in [5] which ensures that the techniques are implemented in
a modular way. We indicate some characteristic methods implemented in TCT:

Matrix Interpretations: Our tool features an implementation of matrix interpretations over
the naturals [8], as well as arctic interpretations [14]. To weaken monotonicity requirements
we have integrated the usable arguments criterion [12] and usable rules w.r.t. argument

4 Available from http://cl-informatik.uibk.ac.at/software/ttt2/.
5 Available from http://dfa.imn.htwk-leipzig.de/matchbox/poly/.
6 An open-source product of more than twenty years of cutting-edge research, c.f. http://haskell.org/.
7 http://cl-informatik.uibk.ac.at/projects/.
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filterings [10]. In order to give polynomial bounds on the induced complexity, TCT can
employ triangular matrices [18], or use the criterions defined in [15, 20]. Moreover, our
implementation also integrates the weight gap principle [12].

Polynomial Path Orders: Up to our knowledge, TCT is the only tool that features an im-
plementation of polynomial path orders [2, 4] as well as the recently introduced small
polynomial path orders [1]. Both orders constitute a miniaturisation of recursive path
orders that induce polynomially bounded innermost runtime complexity. Whereas the
former order can only deduce if the innermost runtime complexity is in principle polyno-
mial, its small brother allows a precise control on the complexity certificate obtained.

Match-Bounds: Match-Bounds for term rewrite systems [9] is a powerful termination method
that induces linear complexity. Our tool supports match-, top- and roof-bounds both for
derivational, and its refinement to runtime complexity analysis.

Weak Dependency Pairs and Dependency Tuples: The introduction of weak dependency
pairs greatly simplifies the task of estimating the runtime complexity of TRSs. Our tool
supports this method as well as its refinement to innermost rewriting, called dependency
tuples in [19]. This technique gives rise to advanced techniques specifically designed for
the dependency pair setting, notably various simplifications, usable rules, path analysis,
(safe) reduction pairs as well as dependency graph decomposition, compare [12, 19, 5].

In the following, we discuss usage of TCT.

3.1 Web Interface

Figure 1 Web Interface of TCT.

Our web interface, accessible from the TCT homepage, provides a convenient way to
use TCT without the necessity to install the software. The interface is aimed for simplicity,
compare Figure 1. For the curious user that wants to play around with TCT, we also provide
a wealth of interesting examples. The web interface is configured so that by default an upper
bound on the runtime complexity of the given rewrite system is estimated. This behaviour
can be modified under category, where the user can pick from the four different complexity
measures TCT currently supports. On success this certificate is presented to the user, together
with a proof script that explains in considerable detail how the certificate was obtained.
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To find a proof in a reasonable amount of time, the different techniques implemented in
TCT need to be combined wisely. This combination depends on the one hand on the input
problem, but on the other hand also on the available hardware. In TCT, proof search is not
hard-wired, instead it is guided by a (proof) search strategy. The interface allows to specify
such a search strategy from a set of pre-defined proof search strategies. Besides the search
strategies employed in recent competitions, the web-interface currently offers the search
strategy RaML, specifically designed for functional programs given as rewrite systems, and a
customisable search strategy that allows the explicit inclusion/exclusion of methods.

3.2 Command-Line Interface
The full power of TCT is available through its command-line interface. For installation
instructions we refer the reader to the homepage. Here we want to briefly outline usage and
customisation, comprehensive documentation can be found online. TCT is run by

$ tct [options] [-s <strategy>] <file> ,

from the command-line, where [options] specify an optional list of command-line options,
<strategy> specifies optionally a proof search strategy, and <file> the input file. The input
file must adhere either the old TPDB format8 or the new XTC Format9.

A list of options can be obtained by typing tct --help. In the command-line interface,
the proof search strategy is given as an S-expression of the form

(<name> [:<argname> <arg>]* [<arg>]*) ,

where outermost parentheses can be dropped. Here <name> refers to the name of a proof
technique, also called processor, the list [:<argname> <arg>]* can be used to specify named
optional arguments, and the list [<arg>]* gives a possibly empty sequence of positional
arguments. As an example,

fastest (timeout 3 (bounds :enrichment match)) (matrix :degree 2) ,

provides a valid proof search strategy in TCT. Here fastest is used to combine one or more
processors in parallel, in this case the bound and matrix processors, solving the input problem
with whichever processor succeeds first. The defined search strategy advises TCT to check for
three seconds for match-boundedness of the input problem, respectively compatibility with a
matrix interpretation that induces a quadratic upper bound. All implemented techniques,
including a wealth of processor combinators like fastest and timeout, can be applied directly
from the command-line with the option -s <strategy>. A complete list of available search
strategies, including synopsis and documentation, can be obtained by typing tct --list.

Besides basic options given on the command-line, TCT can be configured by modifying
the configuration file, which resides in ~/.tct/tct.hs by default. This Haskell source-file
defines the actual binary that is run each time TCT is called. Thus the full expressiveness
of Haskell is available; as a downside, it requires also a working Haskell environment.
A minimal configuration is generated automatically on the first run of TCT. This initial
configuration consists of a set of convenient imports and the IO action main together with a
configuration record config. The configuration record passed in main allows one to overwrite
various flags of TCT. Most importantly, through the field strategies it also allows the
modification of the list of proof search strategies that can be employed.

8 http://www.lri.fr/~marche/tpdb/format.html.
9 http://www.termination-portal.org/wiki/XTC_Format_Specification.
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import Tct (tct)
import Tct.Instances

$.....................................................................................................................

main :: IO ()
main = tct config

config :: Config
config = defaultConfig { strategies = strategies } where

strategies = [ matrices ::: strategy "matrices" ( optional naturalArg "start" (Nat 1) :+: naturalArg )
, withDP ::: strategy "withDP" ]

matrices (Nat s :+: Nat n) =
fastest [ matrix ‘withDimension‘ d ‘withBits‘ bitsForDimension d | d <- [s..s+n] ] where

bitsForDimension d = if d < 3 then 2 else 1

withDP =
(timeout 5 dps <> dts)
>>> try (exhaustively partitionIndependent)
>>> try cleanTail
>>> try usableRules where

dps = dependencyPairs >>> try usableRules >>> wgOnUsable
dts = dependencyTuples
wgOnUsable = weightgap ‘withDimension‘ 1 ‘wgOn‘ WgOnTrs

Figure 2 Configuration defining two new search strategies, called matrices and withDP.

In Figure 2 we depict a modified configuration that defines two new search strategies,
called matrices and withDP. Strategies are added by overwriting the field strategies with
a list of declarations of the form

<code> ::: strategy "<name>" [<parameters-declaration>] .

Here <code> refers to a definition that evaluates to a processor, and "<name> " as well as the
optional parameters-declaration specify how this code is accessible from the command-line.
For instance, the first declaration in Figure 2 defines a new search strategy named matrices,
which is available by supplying the option -s "matrices [:start <nat>] <nat>" to the
TCT executable. Here the parameters to matrices are declared by

optional naturalArg "start" (Nat 1) :+: naturalArg ,

where the infix operator :+: is used to specify sequences of parameters. As indicated by
the constructor naturalArg, the search strategy matrices expect two natural numbers as
arguments. In contrast to the second parameter, the first is optional and defaults to the
natural number 1.

In Figure 2, these parameters are provided to the code of matrices. Using parameters s

and n as supplied on the command-line, the code evaluates to a processor that searches for
n compatible matrix interpretations of increasing dimension, in parallel. Both matrix and
fastest, along with other processors, combinators and modifiers like withDimension and
withBits, are exported by the module Tct.Instances.

The second proof search strategy declared in Figure 2 defines a transformation called
withDP. Transformations are a specific class of processors, that generate from the given
input problem a possibly empty set of sub-problems, in a complexity-preserving manner.10
For every transformation t and processor p, one can use the processor t >>| p which first
applies transformation t and then solves the resulting sub-problems using p. Search strategy
declarations perform such a lifting of transformation implicitly, the declaration of withDP
for instance results in a search strategy available as withDP <processor>. Besides the

10Transformations were introduced in Version 1.7 of TCT. Although any processor like matrix could also
be defined as a transformation, the distinction in TCT is present mainly for historical reasons.
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combinator >>| and its variation >>||, where the given processor p is applied in parallel on all
sub-problems, the module Tct.Instances provides a wealth of transformation combinators.
We briefly discuss here the most important ones. The transformation t1 <> t2 employed in
withDP first applies transformation t1, only if this is unsuccessful it applies transformation t2
on the input problem instead. A variation of the combinator is given by t1 <||> t2 that applies
transformations t1 and t2 in parallel, resulting in the sub-problems of whichever transformation
succeeds first. The combinator <||> thus implements a form of non-deterministic choice. The
combinator >>> defines composition of transformations, in the sense that the transformation
t1 >>> t2 first applies transformation t1 and then transformation t2 on all resulting sub-
problems. We remark that any transformation aborts if it is inapplicable. The combinator
try overrides this behaviour, in the sense that try t behaves exactly like t should t succeed,
otherwise it behaves as an identity. Finally, the combinator exhaustively, defined by
exhaustively t = t >>> try (exhaustively t), applies t in an iterated fashion.

In total, the defined search strategy withDP depicted in Figure 2 applies weak dependency
pairs (as realised in the definition of dps), or dependency tuples (as realised by dts) should
the former fail. This transformation is followed by a sequence of syntactic simplifications, if
applicable. We remark the thoughtful use of try. The transformation dps fails if the weight
gap principle cannot be established on all TRS rules, i.e., rules that are not dependency
pairs. The latter is implemented by the transformation wgOnUsable, and constitutes an
implementation of [12, Theorem 6.5]. We finally point out that an extended version of the
transformation withDP is available in TCT as toDP.

3.3 Interactive Interface
TCT features also an interactive interface, TCT-i for short. In this section we guide the reader
through a small interactive session that outlines the main features, elaborate documentation
of this mode is again provided online.

This semi-automatic mode is in particular useful when investigating into tight(er) com-
plexity bounds, and to crack hard-to-solve problems. The interactive interface constitutes
essentially of a tiny wrapper around ghci, the interpreter bundled with the Glasgow Haskell
compiler. Users familiar with ghci will note that all features available in ghci are also
available in TCT-i. The interactive interface is started from the command-line by supplying
the option -i to the TCT executable.

$ tct -i
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help

$......................................................................................................................
This is version 2.0 of the Tyrolean Complexity Tool.

(c) Martin Avanzini <martin.avanzini@uibk.ac.at>,
Georg Moser <georg.moser@uibk.ac.at>, and
Andreas Schnabl <andreas.schnabl@uibk.ac.at>.

This software is licensed under the GNU Lesser General Public
License, see <http://www.gnu.org/licenses/>.

Don’t know how to start? Type ’help’.
TCT>

The interactive interface maintains a proof state, which consists conceptually of a list of
open problems together with proof information. The command load "<file>" is used to
populate the proof state by the TRS given as argument.

TCT> load "examples/div.trs"

Current Proof State --------------------------------------------------
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Selected Open Problems:
-----------------------

Strict Trs:
{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y)
, %(0(), s(y)) -> 0()
, %(s(x), s(y)) -> s(%(-(x, y), s(y))) }

StartTerms: basic terms
Strategy: none

----------------------------------------------------------------------

The current state can be inspected at any time by typing the command state. We note that
the rewrite strategy and set of start terms are defined in accordance to the input file. The
commands set[DC|RC|IDC|IRC] provide short-hands to these accordingly.

The primary means to modify the proof state is the use of the command apply. This
command takes a single argument, a transformation or processor respectively, which is applied
by default on all open problems collected in the current proof state. Both processors and
transformations as imported from Tct.Instances qualify as arguments to apply. Of course
one can also use the various combinators that we have seen so far to construct more complex
arguments. Notably, since TCT-i loads the configuration file of TCT, all declarations given in
the configuration are available as top-level bindings, and can thus be used in conjuction with
apply. Recall that our configuration defines a transformation withDP that computes weak
dependency pairs or dependency tuples respectively, applying various transformations on
success. We use this transformation to simplify the input problem.

TCT> apply withDP

Problems simplified. Use ’state’ to see the current proof state.

The output of apply is intentionally kept short.11 By typing state one can observe that
our initially loaded complexity problem has been replaced by the problem obtained by our
transformation withDP. To see that proof generated so far, one can use the command proof.
Note that as long as the list of open problems is not empty, this proof is marked as open.

TCT> proof

1) dp [OPEN]:
-------------

We consider the following problem:
Strict Trs:

{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y)
, %(0(), s(y)) -> 0()
, %(s(x), s(y)) -> s(%(-(x, y), s(y))) }

StartTerms: basic terms
Strategy: none

We add following weak dependency pairs:
$......................................................................................................................

1.1) Open Problem [OPEN]:
-------------------------

We consider the following problem:
Strict DPs:

{ -^#(x, 0()) -> c_1(x)
, -^#(s(x), s(y)) -> c_2(-^#(x, y))
, %^#(s(x), s(y)) -> c_4(%^#(-(x, y), s(y))) }

Weak Trs:
{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y) }

StartTerms: basic terms
Strategy: none

11To override this behaviour and see actions performed, one can use the command setShowProofs, or
alternatively set the field interactiveShowProofs to True in the configuration record of TCT.
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Besides state and proof, following commands allow for further inspection of the current
proof state. The command problems returns the list of open problems, wdgs and cwdgs
return the corresponding dependency graphs respectively congruence graph and uargs returns
the usable argument positions. Cf. [12] for an explanation of these attributes. For instance,
we can use cwdgs to inspect the congruence graph of our open problem as follows.

TCT> [cwdg] <- cwdgs
Congruence Graph of Problem 1:

->1:{1,2}
|
‘->2:{3}

Here dependency-pairs are as follows:

Strict DPs:
{ 1: -^#(x, 0()) -> c_1(x)
, 2: -^#(s(x), s(y)) -> c_2(-^#(x, y))
, 3: %^#(s(x), s(y)) -> c_4(%^#(-(x, y), s(y))) }

TCT> :module +Tct.Method.DP.DependencyGraph
TCT> isEdgeTo cwdg 1 2

True

Once the list of open problem is empty, the complexity of the input problem has been
successfully proven. We can do so on our running example using the matrix processor that
we have already used before.

TCT> apply matrix
Hurray, the problem was solved with certicficate YES(O(1),O(n^2)).
Use ’proof’ to show the complete proof.

We have found a closed proof that verifies that our initial problem has at most quadratic
runtime complexity. We remark that the runtime complexity of the input TRS is even linear.
Inspecting the proof we see that the imprecision in the certificate was introduced in the
last proof step. Fortunately TCT-i provides a command undo that can be used to revert the
effect of apply. In fact, it reverts any modification on the proof state, except of course the
effect of undo itself. We refine the proof by restricting the induced degree of the constructed
interpretation.

TCT> undo
Current Proof State --------------------------------------------------

Selected Open Problems:
-----------------------

Strict DPs:
{ -^#(x, 0()) -> c_1(x)
, -^#(s(x), s(y)) -> c_2(-^#(x, y))
, %^#(s(x), s(y)) -> c_4(%^#(-(x, y), s(y))) }

Weak Trs:
{ -(x, 0()) -> x
, -(s(x), s(y)) -> -(x, y) }

StartTerms: basic terms
Strategy: none

----------------------------------------------------------------------

TCT> apply $ matrix ‘withDegree‘ Just 1
Hurray, the problem was solved with certicficate YES(O(1),O(n^1)).
Use ’proof’ to show the complete proof.

Here the function withDegree is used to modify the default parameters as defined in matrix.12
We finally end up with a closed proof that verifies that our loaded TRS has linear runtime
complexity. Using the command writeProof "<file>" one can write the constructed proof
to the given file.

12The application operator $ has low, right-associative binding precedence.
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This completes the short tutorial. We remark that for the GNU Emacs13 enthusiast,
we have also crafted a small major-mode for TCT-i. This mode is available in the source
distribution of TCT. The mode can be started by typing M-x tct into GNU Emacs. In addition
to the features explained above, the major-mode provides a refurbished view on the proof
state, compare Figure 3 which shows an example session. The approximated dependency
graph depicted in Figure 3 is visualised using the dot tool of the Graphviz toolkit.14

Figure 3 TCT Major Mode for GNU Emacs.

4 Conclusion and Future Work

Our complexity analyser TCT has matured to a state where we can say that it is both
versatile and powerful. This is underpinned by the experimental evidence given online15
which highlights in particular the strength of the underlying combination framework presented
in [5].

We of course seek to keep the implementation in line with the active research community.
In the upcoming version, we also intend to remove some out-dated design choices, foremost
the separation of processors and transformations, which will result in a significantly simplified
core. Also, we currently investigate the integration of constrained rewriting. This should
leverage the design of complexity preserving reductions from real world programs to rewrite
systems, in the hope that TCT will act as a powerful backend.
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