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Abstract

In this paper we present a combination framework for the automated polynomial complexity analysis of
term rewrite systems. The framework covers both derivational and runtime complexity analysis, and is
employed as theoretical foundation in the automated complexity tool TCT. We present generalisations of
powerful complexity techniques, notably a generalisation of complexity pairs and (weak) dependency pairs.
Finally, we also present a novel technique, called dependency graph decomposition, that in the dependency
pair setting greatly increases modularity.
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1. Introduction

In implicit computational complexity (ICC for short) one often studies abstractions of real programming
languages in order to more clearly study the computational principle if only bounded resources are avail-
able [1, 2]. One abstract programming language framework often studied are term rewrite systems (TRSs for
short) and not surprisingly methods developed in ICC are applicable to measure the complexity of rewrite
systems [3].

In order to measure the complexity of a TRS it is natural to look at the maximal length of derivation
sequences—the derivation length—as suggested by Hofbauer and Lautemann in [4]. The resulting notion of
complexity is called derivational complexity. Based on earlier notions by Bonfante et al., Hirokawa and the
second author introduced in [5] a variation, called runtime complexity, that only takes basic or constructor-
based terms as start terms into account. The restriction to basic terms allows one to accurately express the
complexity of a program through the runtime complexity of a TRS. Noteworthy both notions constitute
an invariant cost model for rewrite systems [6, 7]. Thus techniques developed for complexity analysis of
rewrite systems become readily applicable in the implicit characterisation of complexity classes, a fact well
documented in the literature.

The body of research in the field of complexity analysis of rewrite systems provides a wide range of
different techniques to analyse the time complexity of rewrite systems, fully automatically. Techniques range
from direct methods, like polynomial path orders [8, 9] and other suitable restrictions of termination orders [3,
10], to transformation techniques, maybe most prominently adaptations of the dependency pair method [5,
11], semantic labeling over finite carriers [12], methods to combine base techniques [13] and the weight gap
principle [5, 13]. (See [14] for an overview of complexity analysis methods for term rewrite systems.) In
particular the dependency pair method for complexity analysis allows for a wealth of techniques originally
intended for termination analysis. We mention (safe) reduction pairs [5], various rule transformations [11],
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and usable rules [5]. Some very effective methods have been introduced specifically for complexity analysis
in the context of dependency pairs. For instance, path analysis [5, 15, 16] decomposes the analysed rewrite
relation into simpler ones, by treating paths through the dependency graph independently. Knowledge
propagation [11] is another complexity technique relying on dependency graph analysis, which allows one to
propagate bounds for specific rules along the dependency graph. Besides these, various minor simplifications
are implemented in tools, mostly relying on dependency graph analysis. With this paper, we provide
following contributions.

1. We propose a uniform combination framework for complexity analysis, that is capable of expressing the
majority of the rewriting based complexity techniques in a unified way. Such a framework is essential for
the development of a modern complexity analyser for term rewrite systems. The implementation of our
complexity analyser TCT [17], the Tyrolean Complexity Tool, closely follows the formalisation proposed
in this work. Noteworthy, TCT is currently the only tool that participates in all four complexity
sub-divisions of the annual termination competition.1

2. A majority of the cited techniques were introduced in restricted or incompatible contexts. For in-
stance, in [13] the derivational complexity of relative TRSs is considered. Conversely, neither [5, 16]
nor [11] treat relative systems, and restrict their attention to basic start terms. Where non-obvious,
we generalise these techniques to our setting. Noteworthy, our notion of P-monotone complexity pair
generalises complexity pairs from [13] for derivational complexity, µ-monotone complexity pairs for
runtime complexity analysis [16, 18], and safe reduction pairs studied in [5, 11] that work on depen-
dency pairs.2 We also generalise the two different forms of dependency pairs for complexity analysis
introduced in [5] and [11]. This for instance allows our tool TCT to employ these powerful techniques
on a TRS R relative to some theory expressed as a TRS S.

3. We introduce a novel proof technique for runtime complexity analysis called dependency graph de-
composition. Resulting sub-problems are syntactically of a simpler form, and the analysis of these
sub-problems is often easier. Importantly, the sub-problems are usually also computationally simpler
in the sense that their complexity is strictly smaller than the one of the input problem. If the com-
plexity of the two generated sub-problems is bounded by a function in O(f) and O(g) respectively,
then the complexity of the input is bounded by O(f · g). Experiments conducted with TCT indicate
that this estimation is often asymptotically precise.

As for the motivation of the results established here we want to emphasise the fact that in (static) program
analysis modularity (aka composability) of the techniques is of utmost importance and often considered
crucial (we exemplarily mention [19–21]). Similarly the concept of modularity is present in ICC literature,
cf. [22]. This is in stark contrast to existing results in the literature on complexity of rewriting. Our
framework, in particular the dependency graph decomposition method, overcome this deficiency to a certain
degree. A fact that is also observable through the provided experimental data.

Partly the results established here have already been presented in the conference paper [23]. In contrast
to the conference version we here provide full proofs and have striven for an elaborate description of the
adaptation of existing techniques within the novel complexity framework. Furthermore we carefully crafted
suitable examples showing the intrinsic expressivity of the proposed framework. Some parts of this article
are part of the first authors PhD thesis [24].

Related Work. Polynomial complexity analysis is an active research area in rewriting. While the concept
has received some attention quite early by work of Choppy et al. [25], only recently the field matured. As
mentioned above to a great extend these techniques are influenced, if not based on, principles stemming
from the implicit computational complexity area. For instance [8, 9] provides a syntactic complexity analysis
technique which essentially embodies tiered recursion in the form proposed by Bellantoni and Cook [26]. The

1http://www.termination-portal.org/wiki/Termination_Competition/.
2In [11] safe reductions pairs are called com-monotone reduction pairs.
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orders we discuss in Section 4.1 are closely related to the work of Bonfante et al. [3], where a characterisation
of the polytime computable functions is proposed.

We also want to mention ongoing approaches for the automated analysis of resource usage in programs.
Notably, Hoffmann et al. [27] provide an automatic multivariate amortised cost analysis exploiting typing,
which extends earlier results on amortised cost analysis. Finally Albert et al. [28] present an automated
complexity tool for Java

TM
Bytecode programs, Alias et al. [29] give a complexity and termination analysis

for flowchart programs, and Gulwani and Zuleger [19] as well as Zuleger et al. [20] provide an automated
complexity tool for C programs. Very recently Hofmann and Rodriguez proposed in [30] an automated
resource analysis for object-oriented programs via an amortised cost analysis. In all this works, composability
is a key issue.

Outline. The remainder of this paper is organised as follows. In the next section we cover some basics.
Our combination framework is then introduced in Section 3. In Section 4 we show how various existing
techniques can be suitable generalised for integration into our framework. Furthermore in this section we
also introduce the novel method of dependency graph decomposition. In Section 5 we shortly report on our
implementation and provide experimental evidence of the viability of our method. Finally, we conclude in
Section 6.

2. Preliminaries

We denote by N the set of natural numbers. Let R be a binary relation. The transitive closure of R
is denoted by R+ and its transitive and reflexive closure by R∗. For n ∈ N we denote by Rn the n-fold
composition of R. The binary relation R is well-founded (on a set A) if there exists no infinite chain a0, a1, . . .
with ai R ai+1 for all i ∈ N (a0 ∈ A). The relation R is finitely branching if for all elements a, the set
{b | a R b} is finite. A pre-order is a reflexive and transitive binary relation.

To compare partial functions we use Kleene equality : two partial functions f, g : A → B are equal, in
notation f =k g, if for all a ∈ A either f(a) and g(a) are defined and f(a) = g(a), or both f(a) and g(a) are
undefined. We write f >k g if for all a ∈ A with g(a) defined, f(a) is defined and f(a) = g(a) holds. Then
f =k g if and only if f >k g and g >k f .

Term Rewriting. We assume basic familiarity with rewriting [31] and only fix notations here. We denote
by V a countably infinite set of variables and by F a signature, i.e. a finite set of function symbols. Each
function symbol f ∈ F is equipped with a natural number k, the arity of f , which we also indicate by writing
f/k ∈ F . The signature F and variables V are fixed throughout the paper. The set of terms T (F ,V) is
the least set that contains all variables, and that contains f(t1, . . . , tk) whenever t1, . . . , tk ∈ T (F ,V) and
f/k ∈ F . The root, i.e. topmost, symbol of a term t is denoted by rt(t). A term is ground if it contains no
variables. We suppose a partitioning of F into constructors C and defined symbols D. Ground terms over
C are called values. A term t is called basic if its root symbol is a defined symbol and all arguments are
values. The set of basic terms is denoted by Tb(D, C). Terms are denoted by s, t, u, . . . , possibly followed by
subscripts. We denote by |t| the size of t, i.e., the number of occurrences of symbols in t.

A position is a finite sequence of positive natural numbers. We denote by ε the empty position, and p·q
denotes the concatenation of positions p and q. We say that a position p is above a position q if there exists
a position r such that p·r = q. If p is above q we also say that q is below r, and we write p 6 q. We write
p < q if p 6 q and p 6= q. Positions p and q are called parallel, in notation p || q, if neither p 6 q nor
q 6 r holds. We use t|p to refer to the subterm of the term t at position p, recursively defined as follows:
t|ε := t and t|i·p := ti|p where t = f(t1, . . . , tn) and i ∈ {1, . . . , n}. The set of all positions in t, i.e. the set
of positions p where t|p is defined, is denoted by Pos(t). For a set of symbols X , we use PosX (t) ⊆ Pos(t)
to denote the set of all positions p such that the root of the sub-term r|p is a symbol from X . For X = {x}
a singleton we also write Posx(t) instead of PosX (t).

Let 2 6∈ F denote a fresh constant, the hole. Elements C ∈ T (F ∪ {2},V) with n occurrences of 2 are
called n-holed contexts. For an n-holed context C and terms t1, . . . , tn, we denote by C[t1, . . . , tn] the term
obtained by replacing the n holes in C by the terms t1, . . . , tn from left to right. A substitution is a finite
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mapping σ : V → T (F ,V) from variables to terms, substitutions are denoted by σ, τ, . . . . We denote by σ
also the homomorphic extension of σ from terms to terms, and write tσ instead of σ(t).

Let → be a binary relation on terms. The relation → is called stable under substitutions if s→ t implies
sσ → tσ for every substitution σ. It is closed under contexts if s→ t implies C[s]→ C[t] for all contexts C.
The relation → is a rewrite relation if it is closed under contexts and stable under substitutions. For a set
of terms T ⊆ T (F ,V), we define →(T ) := {t | ∃s ∈ T. s→ t}.

A rewrite rule is a pair (l, r) of terms, in notation l→ r, such that the left-hand side l = f(l1, . . . , ln) is
not a variable, the root f is a defined symbol, and all variables appearing in the right-hand r occur also in
l. A term rewrite system (TRS for short) R (over the signature F and variables V) is a finite set of rewrite
rules. We always denote by R,S,Q rewrite systems. A function symbol f ∈ D is defined by R if it is the
root of a left-hand side in R. We denote by −→R the least rewrite relation that extends R. The relation
−→R is called the rewrite relation of R. A term t is called a normal form of R if there exists no term s with
s −→R t. The set of all normal forms of R is denoted by NF(R). Abusing notation we extend this notion to
binary relations → on terms in the obvious way.

For two TRSs Q and R, we define s Q−→R t if there exist a context C, substitution σ, and rule
f(l1, . . . , lk) → r ∈ R such that s = C[f(l1σ, . . . , lkσ)], t = C[rσ] and all terms liσ (i = 1, . . . , k) are Q
normal forms. The subterm f(l1σ, . . . , lkσ) of s is called the redex of the step s Q−→R t. A (possible infinite)
sequence of steps t0 Q−→R t1

Q−→R t2
Q−→R · · · is called a Q−→R rewrite sequence, or derivation. For clarity, we

sometimes underline the redex when we depict steps s Q−→R t. Note that by definition −→R = ∅−→R, and that
the relation R−→R corresponds to the innermost rewrite relation, where arguments have to be reduced first.
We extend Q−→R to a relative setting and define for TRSs R and S the relation Q−→R/S := Q−→∗S · Q−→R · Q−→∗S ,
which is called the Q-restricted rewrite relation of R modulo S. We emphasise that dh(t, Q−→R/S), when
defined, gives an upper bound on the number of R-steps in Q−→R∪S rewrite sequences starting from t.

The derivation height of a term t with respect to the binary relation → is given by dh(t,→) := max{n |
∃t0, . . . , tn. t = t0 → t1 → · · · → tn}. Observe that dh(t,→) is defined whenever → is finitely branching and
well-founded. For a set of starting terms T and n ∈ N we define

cp(n, T,→) := max{dh(t,→) | ∃t ∈ T. |t| 6 n} .

The derivational complexity of a TRS R is given by dcR(n) := cp(n, T (F ,V),−→R) for all n ∈ N. The
runtime complexity takes only basic terms as starting terms into account: rcR(n) := cp(n, Tb(D, C),−→R) for
all n ∈ N. By exchanging −→R with R−→R we obtain the notions of innermost derivational and innermost
runtime complexity, respectively.

3. A Combination Framework for Complexity Analysis

In this section we introduce the complexity framework underlying TCT. The proposed framework is
influenced to a great extent by the work of Thiemann [32] on the dependency pair framework for termination
analysis. The notion of complexity processor, or simply processor, lies at the heart of our framework. A
complexity processor dictates how to transform the analysed input problem into (hopefully) simpler sub-
problems. It also relates the complexity of the obtained sub-problems to the complexity of the input problem.
In our framework, such a processor is modeled as a set of inference rules

` P1 : f1 · · · ` Pn : fn

` P : f
,

over judgements of the form ` P : f . Here P denotes a complexity problem (problem for short) and
f : N→ N a bounding function. The validity of a judgement ` P : f is given when the function f binds the
complexity of the problem P asymptotically.

Conceptually, a complexity problem P consists of a set of starting terms T together with a relation
−→S∪W for TRSs S,W. The complexity function cpP : N→ N of P accounts for the number of applications
of rules from S in derivations starting from terms t ∈ T , measured in the size of t. The component W of P
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can be used to express rewriting of S relative to a theory. It will also be used in subsequently introduced
processors.

Definition 1 (Complexity Problem, Complexity Function).

1. A complexity problem P (problem for short) is a quadruple (S,W,Q, T ), in notation 〈S/W,Q, T 〉,
where S,W,Q are TRSs and T ⊆ T (F) a set of ground terms. We call S and W the strict and weak
component of P respectively. The set T is called the set of starting terms of P.

2. The rewrite relation of P is defined as −→P := Q−→S∪W , a derivation t −→P t1 −→P · · · is also called a
P-derivation (starting from t).

3. The complexity (function) cpP : N→ N of P is defined as the partial function

cpP(n) := cp(n, T , Q−→S/W) .

In the sequel P, always denotes a complexity problem. We always use S and W for the strict and weak
component of a complexity problem, whereas R refers to a set of rewrite rules that can occur in both
components. These notations are possibly followed by subscripts. We write l → r ∈ P for l → r ∈ S ∪W,
where S and W are the strict and weak component of P respectively.

Consider a problem P = 〈S/W,Q, T 〉. If Q−→S/W is terminating and finitely branching on T , then the
complexity function cpP is defined on all inputs, by König’s Lemma. The following example shows that in
the relative setting the termination property alone does not suffice that cpP is defined on all inputs.

Example 1. Consider the problem P1 := 〈S1/W1,∅, T1〉 where S1 := {g(s(x)) → g(x)}, W1 := {f(x) →
f(s(x)), f(x)→ g(x)}, and T1 := {f(⊥)}. Observe that −→P1

derivations are of the form

f(⊥) −→∗W1
f(sn(⊥)) −→W1

g(sn(⊥)) −→n
S1 g(⊥) ,

for n ∈ N, that is, f(⊥) −→n
S1/W1

g(⊥) holds for all n ∈ N. Thus, whereas −→S1/W1
is well-founded on T1,

cpP1
(m) =k dh(f(⊥),−→S1/W1

) is undefined for m > 2.

The example exploits that the rewrite relation, although well-founded, is not finitely branching. The next
example shows that for a complexity problem P = 〈S/W,Q, T 〉, even if Q−→S/W is not finitely branching on
T , the complexity function cpP can still be defined on all inputs.

Example 2 (Continued from Example 1). Consider the complexity problem P2 := 〈S2/W1,∅, T1〉, where
S2 := {g(x) → x}. The complexity function of P2 is constant, but f(⊥) −→S2/W1

sn(⊥) holds for all n ∈ N,
i.e. −→S2/W1

is not finitely branching on T1.

The following notions of innermost, runtime and derivational complexity problem allow us to carry over
techniques for rewrite systems, applicable in these restricted contexts, to complexity problems.

Definition 2 (Runtime, Derivational, Innermost Complexity Problem). Let P = 〈S/W,Q, T 〉 denote a
complexity problem.

1. Then P is called a runtime complexity problem if T ⊆ Tb(D, C) holds. Otherwise it is called a deriva-
tional complexity problem.

2. The problem P is called an innermost complexity problem if NF(Q) ⊆ NF(S ∪W).

As for runtime complexity analysis of rewrite systems, a runtime complexity problem takes only basic
starting terms into account. For an innermost complexity problem P as above, the rewrite relation −→P is
included in the innermost rewrite relation of R∪ S.

Definition 3 (Judgement, Processor, Proof).

1. A (complexity) judgement is a statement ` P : f where P is a complexity problem and f : N → N.
The judgement is valid if cpP is defined on all inputs, and cpP ∈ O(f).
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2. A complexity processor Proc (processor for short) is an inference rule

` P1 : f1 · · · ` Pn : fn

` P : f
Proc ,

over complexity judgements. The problems P1, . . . ,Pn are called the sub-problems generated by Proc
on P. The processor Proc is sound if ` P : f is valid whenever the judgements ` P1 : f1, . . . ,
` Pn : fn are valid. The processor is complete if the inverse direction holds.

3. Let empty denote the axiom ` 〈∅/W,Q, T 〉 : f for all TRSsW and Q, set of terms T and f : N→ N.
A complexity proof (proof for short) of a judgement ` P : f is a deduction using sound processors from
the axiom empty and assumptions ` P1 : f1, . . . , ` Pn : fn, in notation P1 : f1, . . . ,Pn : fn ` P : f .

We say that a complexity proof is closed if its set of assumptions is empty, otherwise it is open. We
follow the usual convention and annotate side conditions as premises to inference rules. When the list of
premises in a processor

` P1 : f1 · · · ` Pn : fn

` P : f
Proc ,

is empty, i.e. n = 0, we call Proc also a direct processor. The notion of complexity pair introduced in
Section 4.1 for example is an instance of a direct processor. Processors that are not direct processors are
called transformations.

Soundness of a processor guarantees that our formal system is correct. Completeness ensures that a
deduction gives asymptotically tight bounds.

Theorem 1. If there exists a closed complexity proof ` P : f , then the judgement ` P : f is valid.

Proof. The theorem follows by a standard induction on the size of proofs, exploiting that the underlying set
of processors is sound. 2

As we see in the sequel, our formalisation is expressive enough to cover a majority of the techniques
available for the automated complexity analysis. To justify our design choices, we briefly compare our
formulations to previously established notions.

Related Complexity Frameworks. Our notion of complexity problem is a natural extension of the one es-
tablished by Zankl and Korp [13] for derivational complexity analysis, which underlies the complexity tool
CaT3. CaT is a variation of the fast and powerful complexity analyser TTT2 [33]. In the framework underlying
CaT, a complexity problem consists of a relative rewrite system S/W together with a bounding function
f : N→ N. A processor in this setting is a function

((S1 ∪ S2)/W, f) 7→ (S1/(S2 ∪W), f ′) ,

which shifts rules S2 from the strict component to the weak component. This processor is sound if f(n) +
dc(S1∪S2)/W(n) ∈ O(f ′(n) + dcS1/(S2∪W)(n)) holds, where dcS/W := cp(n, T (F ,V),−→S/W) extends the
derivational complexity function from TRSs to relative rewrite systems. Our framework generalises these
notions in various aspects. First of all, we have made the set of starting terms abstract, which allows us to
cover the derivational and runtime complexity of TRSs. We also allow transformations where rules appearing
in the generated sub-problem do not appear in the input problem. Instances of such transformations are
for example the two notions of dependency pair transformations discussed in Section 4.3. Also, we permit
processors to transform the input problem into more than one sub-problem. Finally, we do not enforce
linear combinations of complexity certificates. The latter two properties are for instance necessary in the
formulation of dependency graph decomposition, discussed at the end of Section 4.5.

3http://cl-informatik.uibk.ac.at/software/cat/
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In the basic setting of the framework underlying AProVE [34], a complexity problem consists of a triple
(D,S,R) for dependency tuples S ⊆ D (compare Section 4.3) and rewrite rules R. Let W := D \ S. The
complexity of such a problem essentially amounts to the number of applications of dependency tuples from
S in derivations R−→S/W∪R starting from a suitable set of terms T . In our setting, the triple (D,S,R) can
thus be represented as the problem 〈S/W ∪R,R, T 〉. Our notion of complexity problem is more general,
since we do not restrict the strict component to dependency tuples. This generality is necessary to cover
full rewriting and derivational complexity analysis, because a canonical complexity problem cannot always
be transformed into the restricted form.

Finally, we note that Noschinski et al. [34] also propose an extension of their notion of complexity
problem, using an additional component K of known rules. These are rules whose complexity, in the sense
of the number of applications of rules from K in the considered derivations, has already been assessed.
This information can be reused in the knowledge propagation processor [34]. Our framework cannot capture
this extension, although we could in principle extend our notion of complexity problem sufficiently. This
of course incurs some complications, as in each processor the additional component K needs to be treated
properly.

4. Complexity Processors in TCT

We now discuss various methods implemented in TCT. Some of the techniques were initially introduced
in the context of termination analysis, but have been later adapted for the polynomial complexity analysis
in various works. We recast these techniques to suite complexity problems. Our notion of P-monotone
complexity pair, covered in Section 4.1, is inspired by the notion complexity pair introduced by Zankl
and Korp [13], but we weaken monotonicity requirements for runtime complexity analysis. P-monotone
complexity pair also generalise the notion of safe reduction pair proposed by Hirokawa and Moser [5].
Zankl and Korp [13] use complexity pairs in an iterated fashion, we adapt this approach in Section 4.2.
In Section 4.3 we suitably adapt the two forms of dependency pairs proposed by Hirokawa and Moser [5]
and Noschinski et al. [34]. We then generalise usable rules in Section 4.4 and present various simplification
techniques based on a dependency graph analysis in Section 4.5. Here, we also propose a novel technique,
called dependency graph decomposition. This technique constitutes a suitable adaptation of cycle analysis
proposed by Giesl et al. [35] for the termination analysis of rewrite systems.

Throughout the rest of this section, the following two rewrite systems will serve as running examples.
The first is a small toy example.

Example 3. Consider the rewrite system R× given by the following four rules.

1 : 0 + y → y 2 : s(x) + y → s(x+ y) 3 : 0× y → 0 4 : s(x)× y → y + (x× y) .

This TRS computes multiplication (and addition) on numerals constructed from the constant 0 and the
successor s. For n ∈ N, we use the notation n below to abbreviate numerals s(· · · s(0) · · · ), where the
successor s occurs n times.

Let T× denote the set of basic terms with defined symbols +,× and constructors s, 0. We denote by P×
the canonical runtime complexity problem 〈R×/∅,∅, T×〉, and by P×-i the innermost runtime complexity
〈R×/∅,R×, T×〉

The runtime complexity analysis of our second TRS RK is significantly more involved. This example
implements Kruskal’s algorithm for computing a spanning forest of minimal weight for a given graph, see
Figure 1.

Example 4. In RK, a graph is represented as a term graph(N,E) where N and E refer to the nodes and
edges respectively. Sets are encoded as lists, build from the constant [ ] and the binary symbol (::) in the
usual way. We suppose nodes and weights are given as natural numbers. For simplicity, these are encoded
as tally numbers sn(0). Edges e are given as triples (n,w,m), where the rules

5 : src((n,w,m))→ n 6 : wt((n,w,m))→ w 7 : trg((n,w,m))→ m ,
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Let N denote the nodes and E weighted edges of a graph G.

Set F := ∅ and P := {{n} | n ∈ N}.

For all edges e ∈ E, sorted increasingly by their weight, do:

If source and target of e occur in p, q ∈ P respectively, with p 6= q;
Set P := P \ {p, q} ∪ {p ∪ q} and F := F ∪ {e}.

Return F .

Figure 1: Kruskal’s algorithm for computing a spanning forest of minimal weight.

provide projections to the source node n, weight w, and target node m. The following rules contained in
RK implement Kruskal’s algorithm.

8 : forest(graph(N,E))→ kruskal(sort(E), [ ], partitions(N))

9 : partitions([ ])→ [ ]

10 : partitions(n :: N)→ (n :: [ ]) :: partitions(N)

11 : kruskal([ ],W, P )→W

12 : kruskal(e :: E,W,P )→ kruskal?(inBlock(e, P ), e, E,W,P )

13 : kruskal?(tt, e, E,W,P )→ kruskal(E,W,P )

14 : kruskal?(ff, e, E,W,P )→ kruskal(E, e :: W, join(e, P, [ ]))

15 : inBlock(e, [ ])→ ff

16 : inBlock(e, p :: P )→ (src(e) ∈ p ∧ trg(e) ∈ p) ∨ inBlock(e, P )

17 : join(e, [ ], q)→ q :: [ ]

18 : join(e, p :: P, q)→ join?(src(e) ∈ p ∨ trg(e) ∈ p, e, p, P, q)
19 : join?(tt, e, p, P, q)→ join(e, P, p ++ q)

20 : join?(ff, e, p, P, q)→ p :: join(e, P, q) .

The defined symbol forest starts the computation on input graph graph(N,E). The rules (11)—(14) are
used to iterate the loop from Figure 1. The rules (15) and (16) check the condition, and the remaining rules
(17)–(20) execute the body of the conditional. To sort edges according to their weight, the TRS RK uses
the following implementation of insertion sort.

21 : sort([ ])→ [ ] 22 : sort(e :: E)→ insert(e, sort(E))

23 : insert(e, [ ])→ e :: [ ] 24 : insert(e, f :: E)→ insert?(wt(e) 6 wt(f), e, f, E)

25 : insert?(tt, e, f, E)→ e :: (f :: E) 26 : insert?(ff, e, f, E)→ f :: insert(e, E) .

On the list representation of sets, membership and union is defined as expected:

27 : n ∈ [ ]→ ff 28 : n ∈ (m :: p)→ n = m ∨ n ∈ p
29 : [ ] ++ q → q 30 : (n :: p) ++ q → n :: (p ++ q) .

Finally, the following rules define standard Boolean operations, and comparisons on natural numbers.

31 : 0 = 0→ tt 32 : s(x) = 0→ ff 33 : 0 = s(y)→ ff 34 : s(x) = s(y)→ x = y

35 : 0 6 0→ tt 36 : s(x) 6 0→ ff 37 : 0 6 s(y)→ tt 38 : s(x) 6 s(y)→ x 6 y

39 : ff ∧ ff → ff 40 : ff ∧ tt→ ff 41 : tt ∧ ff → ff 42 : tt ∧ tt→ tt

43 : ff ∨ ff → ff 44 : ff ∨ tt→ tt 45 : tt ∨ ff → tt 46 : tt ∨ tt→ tt .
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We set RK := {(5)—(46)}. Let FK be the set of symbols occurring in RK. Furthermore, let TK := Tb(DK, CK)
denote the set of basic terms where defined symbols DK coincide with the symbols defined by RK, and
CK := FK \DK. The problem 〈RK/∅,RK, TK〉 is the canonical innermost runtime complexity problem of RK.
The complexity of this problem is quadratic. The non-trivial proof relies on the invariant that the third
argument P of kruskal denotes a partitioning of the initial set of nodes, at any time during reduction.

4.1. Suiting Reduction Orders to Complexity
Orders have been used quite early for the (automated) complexity analysis of rewrite systems. The

seminal paper by Bonfante et al. [3] gives an early account on using reduction orders for complexity analysis,
in the form of polynomial interpretations. Zankl and Korp [13] use pairs of orders (%,�), called complexity
pairs, to estimate the derivational complexity in a relative setting. Safe reduction pairs [5] constitute a
variation of complexity pairs. These are useful in conjunction with dependency pairs, compare Section 4.3.
In the following, we introduce P-monotone complexity pairs, which provide a unified account of these notions.

Fix a complexity problem P = 〈S/W,Q, T 〉, and consider a reduction

t = t0
Q−→S/W t1

Q−→S/W t2
Q−→S/W · · · ,

for starting term t ∈ T . Suppose we have shown termination of such sequences by means of a well founded
order � on terms: ti � ti+1 holds for all steps ti Q−→S/W ti+1. If there exists a function f : N→ N which gives
a bound on dh(t,�) expressed in the size of t ∈ T , then f gives an upper bound on the complexity function
of P. However, not every order � used in practice is finitely branching, and thus dh(t,�) is not necessarily
well-defined. To account for such orders, Hirokawa and Moser [15] propose the notion of G-collapsible order.
The following provides an adaptation of this notion.

Definition 4 (G-collapsible, Induced Complexity). Let P = 〈S/W,Q, T 〉 denote a complexity problem,
consider an order � on terms.

1. Suppose there exists a mapping G : T (F ,V)→ N such that

s Q−→S/W t and s � t =⇒ G(s) > G(t) ,

holds for all terms s ∈ −→∗P(T ). Then � is called G-collapsible on P. The order � is collapsible with
respect to P if there exists a mapping G such that � is G-collapsible on P.

2. Consider an order � which is G-collapsible with respect to P. Suppose that there exists a function
f : N→ N such that

G(t) ∈ O(f(|t|)) holds for all t ∈ T .

Then we say that � induces the complexity f on P.

Lemma 1. Let P = 〈S/W,Q, T 〉 denote a complexity problem. Let � be an order that is G-collapsible with
respect to P. Suppose

s Q−→S/W t =⇒ s � t ,

holds for all s ∈ −→∗P(T ). Then for all terms t ∈ T , dh(t, Q−→S/W) is defined and dh(t, Q−→S/W) 6 G(t).

Proof. Immediate consequence of the assumptions and Definition 4. 2

Consider an order � that induces the complexity f on P. If this order includes the relation Q−→S/W on
terms t ∈ −→∗P(T ), the above lemma shows that judgement ` P : f is valid. To check the inclusion, as
in [13] we consider a pair of orders (%,�) on terms. Here % denotes a pre-order on terms, and � an order
compatible with %: % · � ·% ⊆ �. Zankl and Korp [13] further require that both orders are monotone and
stable under substitutions. In this case, the assertions W ⊆ % and S ⊆ � imply Q−→S/W ⊆ � as desired.

Guided by the observation that monotonicity is required only on argument positions t hat can be rewritten
in reductions of starting terms, Hirokawa and Moser [16, 18] propose the use of µ-monotone orders for
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runtime complexity analysis. In this context, the mapping µ is used to designate which arguments are
usable in derivations, i.e. can be reduced. The following constitutes an adaptation of usable replacement
maps from rewrite systems Hirokawa and Moser [18] to complexity problems. A replacement map on F is
a mapping from function symbols f/k ∈ F to subsets of {1, . . . , k}. For a term t, the set Posµ(t) ⊆ Pos(t)
of µ-replacing positions in t is defined such that Posµ(t) := {ε} if t is a variable, and Posµ(t) := {ε} ∪
{i·p | i ∈ µ(f) and p ∈ Posµ(ti)} if t = f(t1, . . . , tk). For a binary relation → on terms we denote by Tµ(→)
the set of terms t where only sub-terms at µ-replacing positions are reducible: t ∈ Tµ(→) if for all positions
p ∈ Pos(t), if p 6∈ Posµ(t) then t|p ∈ NF(→).

Definition 5 (Usable Replacement Maps). Let P = 〈S/W,Q, T 〉 denote a complexity problem, and let
R denote a set of rewrite rules. A replacement map µ is called a usable replacement map for R in P, if
−→∗P(T ) ⊆ Tµ( Q−→R).

Hence, a usable replacement map for a set of rules R approximates those positions at which a step due to
R can happen, when considering P-derivations starting from T .

Example 5 (Continued from Example 3). Consider the P×-derivation

2× 1 −→P× 1 + (1× 1) −→P× 1 + (1 + (0× 1)) −→P× 1 + s(0 + (0× 1))

−→P× 1 + s(0 + 0) −→P× 1 + 1 −→P× s(0 + 1) −→P× 2 .

Observe that if addition occurs in a context, then either under the second argument of addition or under the
successor symbol. This holds even for all reductions of basic terms T×. The map µ+, defined by µ+(s) = {1},
µ+(+) = {2} and µ+(×) = ∅, thus constitutes a usable replacement map for the addition rules {1, 2} in
P×.

An order � on terms is called µ-monotone if it is monotone on µ-positions, in the sense that for all
function symbols f , if i ∈ µ(f) and si � ti holds then f(s1, . . . , si, . . . , sn) � f(s1, . . . , ti, . . . , sn) holds.

Definition 6 (P-monotone, Complexity Pair). Let P = 〈S/W,Q, T 〉 denote a complexity problem.

1. A complexity pair (%,�) consists of a pre-order % and an order � that are both closed under substi-
tutions and satisfy % · � ·% ⊆ �.

2. The complexity pair (%,�) is called P-monotone if

- � is µ-monotone for a usable replacement map µ of S in P; and
- % is τ -monotone for a usable replacement map τ of W in P.

Lemma 2. Let P = 〈S/W,Q, T 〉 be a complexity problem, and let R ⊆ S ∪W denote a set of rewrite rules
in P.

1. Let µ denote a usable replacement map for R in P, and suppose R ⊆ � holds for a µ-monotone order
� that is stable under substitutions. Then

s Q−→R t =⇒ s � t ,

holds for all s ∈ −→∗P(T ).

2. If (%,�) is a P-monotone complexity pair such that S ⊆ � and W ⊆ % holds, then

s Q−→S/W t =⇒ s � t ,

holds for all s ∈ −→∗P(T ).
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Proof. Consider the first assert. Since µ is a usable replacement map for R in P, it suffices to show the
claim for s ∈ Tµ( Q−→R). Suppose s Q−→R,p t, hence p ∈ Posµ(t). We show that for every prefix q of p,
s|q � t|q holds. The proof is by induction on |p| − |q|. The base case q = p is covered by compatibility and
stability under substitutions. For the inductive step, consider a prefix q·i of p, where by induction hypothesis
s|q·i � t|q·i. Since p ∈ Posµ(s) it is not difficult to see that i ∈ µ(f). Thus

s|q = f(s1, . . . , s|q·i, . . . , sn) � f(s1, . . . , t|q·i, . . . , sn) = t|q ,

follows by µ-monotonicity of � as desired. From this observation, the first assertion is obtained using q = ε.
For the second assertion, consider a Q-restricted relative step

s Q−→∗W · Q−→S · Q−→∗W t ,

for s ∈ −→∗P(T ). Using the assumptions on (%,�) and the inclusions W ⊆ % and S ⊆ � to satisfy the
assumptions of the first assertion, we obtain s %∗ · � · %∗ t. Hence s � t follows by transitivity of % and
the inclusion % · � ·% ⊆ �. 2

As immediate consequence of Lemma 1 and Lemma 2, we obtain the following processor.

Theorem 2 (Complexity Pair Processor). Consider a P-monotone complexity pair (%,�) such that � in-
duces the complexity f on P. The following direct processor is sound:

S ⊆ � W ⊆ %

` 〈S/W,Q, T 〉 : f
CP

.

Suppose no restriction is put on starting terms in P. By definition, only the full replacement map is also a
usable replacement map for rewrite rules occurring in P. Then Theorem 2 requires that the orders % and
� are monotone in all argument positions. Hence on unconstrained sets of starting terms, our notion of
P-monotone complexity pair corresponds to the notion employed by Zankl and Korp [13].

4.2. Relative Decomposition
A variation of the complexity pair processor, that iteratively orients disjoint subsets of S, occurred first

in [13]. The following processor constitutes a straightforward generalisation of [13, Theorem 4.4] to our
setting.

Theorem 3 (Decompose Processor). The following processor is sound:

` 〈S1/S2 ∪W,Q, T 〉 : f ` 〈S2/S1 ∪W,Q, T 〉 : g
` 〈S1 ∪ S2/W,Q, T 〉 : f + g

decompose .

Here f + g denotes the function h defined by h(n) := f(n) + g(n).

Proof. The lemma follows from the inequality

dh(t, Q−→S1∪S2/W) 6 dh(t, Q−→S1/S2∪W) + dh(t, Q−→S2/S1∪W) . 2

The decompose processor is a central ingredient for the automated complexity analysis. All participants of
the recent complexity sub-division of the annual termination competition rely on variations of this processor
for the combination of different proof techniques. In correspondence to the rule removal processor for
termination analysis [32], one can combine Theorem 2 and Theorem 3. See [13] and [34] where a similar
combination is proposed. This way the synthesis procedure implementing the complexity pair processor
can determine a fitting partitioning of strict rules. Unlike in the rule removal processor for termination, for
complexity analysis we need to keep the oriented rules in the weak component, cf. [13]. Oriented rules are
thus shifted from the strict to the weak component. This is illustrated by the following example.
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Example 6 (Continued from Example 5). Consider the linear polynomial interpretation A over N such that
0A = 0, sA(x) = x, x+A y = y and x×A y = 1. Let P3 := 〈{3}/{1, 2, 4},R×, Tb〉 denote the problem that
accounts for the rule 3 : 0 × y → 0 in P×. For a term t and assignment α : V → N, let [α]A(t) denote the
interpretation of t by A defined in the obvious way. The induced order >A together with the order >A,
defined by s >A t if [α]A(s) > [α]A(t) holds for all assignments α, forms a P3-monotone complexity pair
(>A, >A). Monotonicity can be shown using the replacement maps given in Example 5. The order >A
induces linear complexity on P3. According to Theorem 3, the following tree depicts a complexity proof
〈{1, 2, 4}/{3},∅, Tb〉 : g ` P× : n+ g.

{3} ⊆ >A {1, 2, 4} ⊆ >A

` 〈{3}/{1, 2, 4},∅, Tb〉 : n
CP

` 〈{1, 2, 4}/{3},∅, Tb〉 : g
` P× : n+ g

decompose.

The above complexity proof can now be completed iteratively, on the simpler problem 〈{1, 2, 4}/{3},∅, Tb〉.
Since the complexity of P× is quadratic, one has to use a technique beyond linear polynomial interpretations
here. The combination of complexity pairs with the decompose processor is formalised in the next Theorem.

Theorem 4 (Decompose CP Processor). Consider a P1-monotone complexity pair (%,�), for a complexity
problem P1 = 〈S1/S2 ∪ W,Q, T 〉. Suppose � induces the complexity f on P1. The following processor is
sound:

S1 ⊆ � W ∪ S2 ⊆ % ` 〈S2/S1 ∪W,Q, T 〉 : g
` 〈S1 ∪ S2/W,Q, T 〉 : f + g

decompose CP .

Proof. Immediate consequence of Theorem 2 and Theorem 3. 2

We remark that the decompose processor finds applications beyond its combination with complexity
pairs, cf. Section 4.5.2.

4.3. Dependency Pairs for Complexity Analysis
For termination analysis, it is nowadays standard to transform a termination problem first into a de-

pendency pair problem [36]. In essence, the dependency pairs of a TRS R reflect direct function calls in
rules of R. Termination of R is equivalent to the absence of infinite (and minimal) dependency pair chains,
i.e. sequences of successive applications of dependency pairs, allowing modification of arguments using the
original rules of R. Reasoning over dependency pairs opens the door for a wealth of techniques. For an
overview, we refer the reader to [32].

DPs track successive chains of function calls but forget contexts. The length of DP chains does in general
not properly reflect the runtime complexity of the rewrite system under consideration [37]. To make the
dependency pair technique applicable in the context of runtime complexity analysis, Hirokawa and Moser
[5] introduced a variation of dependency pairs, the weak dependency pairs. Weak dependency pairs group
various dependency pairs in a single rule, in order to simultaneously track multiple calls occurring in a
rewrite rule. More recently, Noschinski et al. [34] introduced another variation of (weak) dependency pairs,
dependency tuples, which overcome some deficiencies of the weak dependency pair approach. Dependency
tuples are however only sound for analysing the innermost runtime complexity of TRSs. Modern termination
tools like TCT thus implement both transformations.

In this section, we present the weak dependency pairs and dependency tuple transformation as complexity
processors in our framework. We reprove the central theorems of Hirokawa and Moser [5] and Noschinski
et al. [34], c.f. Theorem 5 and Theorem 6, respectively. This is necessary as neither Hirokawa and Moser [5]
nor Noschinski et al. [34] treat relative rewriting. In contrast, our formulations allow us to cover complexity
problems where the weak component in a complexity problem is not empty.

The following definition introduces the notion of dependency pair complexity problem (DP problem for
short), which is liberal enough to capture the weak dependency pair and dependency tuple transformation.
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Also, it allows us to express the various transformation techniques found in [5] and [34] that operate on
weak dependendency pairs and dependency tuples, respectively. These transformations are covered in the
following Section 4.4 and Section 4.5. As in [5, 34] we allow compound symbols in right hand sides of
(grouped) dependency pairs. As for termination analysis, we consider derivations starting from marked
terms only.

Definition 7 (Dependency Pairs, Dependency Pair Complexity Problem). Let F be a signature with de-
fined symbols D.

1. For each f/k ∈ D, let f ] denote a fresh function symbol of arity k, the dependency pair symbol (of f).
The least extension of F to all dependency pair symbols is denoted by F ].
For a term t ∈ T (F ,V) we define the marking of t as

t] :=

{
f ](t1, . . . , tk) if t = f(t1, . . . , tk) and f ∈ D,
t otherwise.

For a set T ⊆ T (F ,V), we denote by T ] the set of marked terms T ] = {t] | t ∈ T}.

2. We denote by Com = {c00, c10, . . . , c01, c11, . . . , c02, c12, . . . } a countable infinite signature of constructor
symbols, where the arity of cik in Com is k for all i, k ∈ N. Symbols in Com are called compound
symbols.

3. Let l, r, r1, . . . , rk ∈ T (F ,V) and cik ∈ Com. A rewrite rule of the form l] → r] or l] → cik(r]1, . . . , r
]
k) is

called a grouped dependency pair.

4. Let S and W be two TRSs over T (F ,V), and let S] and W] be two sets of dependency pairs. A
dependency pair complexity problem, or simply DP problem, is a runtime complexity problem P] =
〈S] ∪ S/W] ∪W,Q, T ]〉 over marked basic terms T ] ⊆ T ]b (D, C).

We keep the convention that R,S,W, . . . are TRSs over T (F ,V), and the marked versions R],S],W], . . .
always denote sets of dependency pairs. We abbreviate the compound symbols c0k (k ∈ N) by ck. The identity
of compound symbols occurring in terms is of no importance. This justifies that we write com(t]1, . . . , t

]
k)

for a term of the shape cik(t]1, . . . , t
]
k) (k, i ∈ N). For k = 1 we denote by com(t]) also the term t]. Hence

every dependency pair can be written as l] → com(r]1, . . . , r
]
k) for some terms l, r1, . . . , rk ∈ T (F ,V).

Following [5, 34], our notion of (grouped) dependency pair is different to the notion of dependency pairs
used in termination analysis [32, 36]. A grouped dependency pair l] → com(r]1, . . . , r

]
k) corresponds to the

combination of multiple dependency pairs l] → r]i (i = 1, . . . , k) obtained from the rule l → r. Precisely
which dependency pairs are combined depends on the used formalism, that is, whether we consider the
setting of Hirokawa and Moser [5] or Noschinski et al. [34]. In the following, we call grouped dependency
pairs simple dependency pairs, or DPs for short. No confusion can arise from this.

Example 7 (Continued from Example 3). Consider the DPs

47 : 0 +] y → c0 48 : s(x) +] y → x+] y 49 : 0×] y → c0 50 : s(x)×] y → c2(x+] (x× y), x×] y) ,

denoted by S]× below. Let T ]× be the set of marked basic terms with defined symbols +],×] and constructors
s, 0. Then P]×-i := 〈S]×/R×,R×, T

]
×〉, where R× are the rules for addition and multiplication depicted in

Example 3, is a DP problem. We anticipate that the DP problem P]×-i reflects the complexity of the canonical
innermost runtime complexity problem P]×-i of R×, compare Theorem 6 below.
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Call an n-holed context C a compound context if it contains only compound symbols. Consider the P]×-i
derivation

D : 2×] 1 −→P]
×-i

c2(1 +] (1× 1),1×] 1)

−→P]
×-i

c2(1 +] (1 + (0× 1)),1×] 1)

−→P]
×-i
· · ·

−→P]
×-i

c2(1 +] 1,1×] 1)

−→2
P]
×-i

c2(0 +] 1, c2(1 +] (0× 1),0×] 1)) .

Observe that any term in the above sequence can be written as C[t1, . . . , tn] where C is a maximal compound
context, and t1, . . . , tn are terms without compound symbols. For instance, the last term in this sequence
is given as C[0 ×] 1,1 +] (0 × 1),0 ×] 1] for C := c2(2, c2(2,2)). This holds even in general. Note that
the terms ti (i = 1, . . . , n) are not necessarily marked, as our notion of dependency pair problem permits
collapsing rule l] → x where x is a variable. We capture this observation with the set T ]→.

Definition 8. The set T ]→ is defined as the least set of terms such that

1. if t ∈ T (F) then t ∈ T ]→ and t] ∈ T ]→; and

2. if t1, . . . , tk ∈ T ]→ and ck ∈ Com then ck(t1, . . . , tk) ∈ T ]→.

The simple observation can now be formalised as follows.

Lemma 3. For every TRS R and DPs R], we have −→∗R]∪R(T ]→) ⊆ T ]→. In particular, −→∗P](T ]) ⊆ T ]→
holds for every DP problem P] with starting terms T ].

Proof. The first half of the lemma follows by inductive reasoning. From this, the second half of the lemma
follows, using that T ] ⊆ T ]→, taking R] := S] ∪W] and R := S ∪W. 2

4.3.1. Weak Dependency Pairs
To analyse the runtime complexity of TRS R, Hirokawa and Moser [5] group parallel function calls (and

variables) of a rule l→ r in a (weak) DP l] → ck(r]1, . . . , r
]
k). This is made precise in the following definition.

Definition 9 (Weak Dependency Pairs [5]). Let R denote a TRS.

1. Consider a rule l → C[r1, . . . , rk] in R, where C is a maximal context containing only constructors.
We define

WDP(l→ r) := l] → com(r]1, . . . , r
]
k) ,

and call WDP(l→ r) the weak dependency pair of l→ r.

2. The weak dependency pairs WDP(R) of a TRS R are given by

WDP(R) := {WDP(l→ r) | l→ r ∈ R} .

Notice that WDP(R) is unique up to renaming of compound symbols.4 Also note that for l → r ∈ R, the
left-hand side l] is always a marked term f ](l1, . . . , ln) with f ] a dependency pair symbol.

Example 8 (Continued from Example 3). Consider the TRS R× given in Example 3. Then WDP(R×)
consists of the following four rules:

51 : 0 +] y → y 52 : s(x) +] y → x+] y 53 : 0×] y → y 54 : s(x)×] y → x+] (x× y) .

4 In our implementation, we have chosen to assign for each rule a fresh compound symbol.
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In [5] it is shown that for any term t ∈ T (F ,V), dh(t,−→R) =k dh(t],−→WDP(R)∪R) holds. We extend this
result to our setting. The following lemma serves as a preparatory step.

Lemma 4. Let R and Q be two TRSs. Then every derivation

t = t0
Q−→R1

t1
Q−→R2

t2
Q−→R3

· · · ,

for a basic term t and Ri ⊆ R (i > 1) is simulated step-wise by a derivation

t] = s0
Q−→WDP(R1)∪R1

s1
Q−→WDP(R2)∪R2

s2
Q−→WDP(R3)∪R3

· · · ,

and vice versa.

Proof. For a term s, let P (s) ⊆ PosD(s) denote the set of minimal positions p with rt(s|p) a defined symbol.
Call a term u = C[u1, . . . , un] good for s if C is a maximal context containing only constructors (including
compound symbols) and there exists an injective mapping m : P (s) → Pos2(C) such that u|m(p) = s|p or
u|m(p) = (s|p)]. Observe that to every R-redex s|q in s the mapping m associates a WDP(R) ∪R-reducible
subterm u|m(p) of u. Here p is the (unique) prefix of q with p ∈ P (s).

Consider a step s Q−→{l→r},q t for l → r ∈ R, and suppose WDP(l → r) = l] → com(r]1, . . . , r
]
m). Fix a

term u = C[u1, . . . , un] with C a maximal constructor context that is good for s, as witnessed by a mapping
ms : P (s)→ Pos2(C). We show that there exists a term v with

u Q−→{WDP(l→r),l→r} v and v is good for t.

This property establishes the simulation from left to right. Let p ∈ P (s) denote the unique prefix of the
redex position q. We consider the cases q < p and q = p separately.

Consider first the case q < p. Then

u = C[u1, . . . , ui, . . . , un] Q−→{l→r} C[u1, . . . , vi, . . . , un] ,

for ui = u|m(p) and vi possible marked versions of s|p and t|p, respectively. Let v := C[u1, . . . , vi, . . . , vn].
By assumption p ∈ P (s) the root of t|p, viz the root of s|p, is defined. Thus P (s) = P (t) and the mapping
ms witnesses also that v is good for t.

Now consider the case where q = p. Then s|p = lσ and t|p = rσ for some substitution σ. We distinguish
again two sub-cases. First, suppose that ui = u|m(p) = (s|p)] is marked. Thus

u = C[u1, . . . , l
]σ, . . . , un] Q−→WDP(l→r) C[u1, . . . ,com(r]1σ, . . . , r

]
mσ), . . . , un] ,

by definition of WDP(l → r). Let v := C[u1, . . . ,com(r]1σ, . . . , r
]
mσ), . . . , un], and denote by Cr the max-

imal constructor context of com(r]1σ, . . . , r
]
mσ). Then it is not difficult to construct an injective map-

ping mr : P (rσ) → Pos2(Cr) which verifies that com(r]1σ, . . . , r
]
mσ) is good for rσ. Observe P (t) =

(P (s) \ {p}) ∪ {p · qi | qi ∈ P (rσ)} and that all positions in P (t) are parallel. Hence the injective mapping
mt, given by

mt(q) :=

{
ms(p)·mr(qi) if q = p·qi,
ms(q) if q || p.

is well-defined for every q ∈ Pos(t), and verifies that v is good for t.
Finally, suppose that u|m(p) is not marked, that is ui = lσ for some i ∈ {1, . . . , n}. Then

u = C[u1, . . . , lσ, . . . , un] Q−→{l→r} C[u1, . . . , rσ, . . . , un] .

Let v := C[u1, . . . , rσ, . . . , un]. Then v is good for t, following the pattern of the previous case, exploiting
that rσ is trivially good for itself.

For the direction from right to left, consider a term u = C[u1, . . . , un] where C is a compound context,
and ui (i = 1, . . . , n) denote possibly marked terms without compound symbols. Call a term s ∈ T (F ,V)
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good for u if s is obtained from u by unmarking symbols, and replacing C with a context consisting only of
constructors. By case analysis on u Q−→WDP(R])∪R v, it can be verified that for any such u, if s is good for
u then there exists a term t with s Q−→R t that is good for v. Since the starting term t] is trivially of the
considered shape, the simulation follows. 2

Theorem 5 (Weak Dependency Pair Processor). Let P = 〈S/W,Q, T 〉 denote a runtime complexity prob-
lem. The following processor is sound and complete.

` 〈WDP(S) ∪ S/WDP(W) ∪W,Q, T ]〉 : f
` 〈S/W,Q, T 〉 : f

WDP .

Proof. Let P] := 〈WDP(S) ∪ S/WDP(W) ∪ W,Q, T ]〉. Suppose first cpP] ∈ O(f(n)). Lemma 4 shows
that every −→P reduction of t ∈ T is simulated by a corresponding −→P] reduction starting from t] ∈ T ].
Observe that every Q−→S step in the considered derivation is simulated by a Q−→WDP(S)∪S step. We thus
obtain cpP ∈ O(f(n)). This proves soundness, completeness is obtained dual. 2

Observe that the generated sub-problem is a DP complexity problem as given by Definition 7. Notice also
that when the input is an innermost complexity problem, then so is the obtained DP problem.

Example 9 (Continued from Example 3 and 8). Reconsider the TRS R× given in Example 3, together with
WDP(R×) depicted in Example 8. According to the weak dependency pair processor, the inference

` 〈WDP(R×) ∪R×/∅,∅, T ]×〉 : n2

` 〈R×/∅,∅, T×〉 : n2
WDP .

is sound and complete.

The change in signature often makes the generated sub-problem easier to analyse. In particular, the gen-
erated sub-problem is amenable to many of the processors suited for dependency pair problems introduced
below.

4.3.2. Dependency Tuples
Consider a DP problem of the form 〈S]/W] ∪W,Q, T ]〉. The analysis of this problem requires only an

estimation of applications of DPs, which are applied in compound contexts only. This property makes the
analysis considerably simpler. Some processors tailored for DP problems are even sound only in this setting,
for instance (safe) reduction pairs (cf. Definition 11 below) and various syntactic simplifications proposed
in Section 4.5. In contrast to weak dependency pairs, dependency tuples [34] allow the translation of an
innermost runtime complexity problem directly into a DP problem of this simpler form. This approach,
however, cannot guarantee completeness.

Definition 10 (Dependency Tuples [34]). Let R denote a TRS.

1. Consider a rule l → r in R, and let r1, . . . , rk denote all sub-terms of the right-hand side whose root
symbol is a defined symbol. We define

DT(l→ r) := l] → com(r]1, . . . , r
]
k) ,

and call DT(l→ r) the dependency tuple of l→ r.

2. The dependency tuples DT(R) of a TRS R are given by

DT(R) := {DT(l→ r) | l→ r ∈ R} .

Example 10 (Continued from Example 7). The four DPs (47)–(50) depicted in Example 7 constitute the
dependency tuples of R× from Example 3.
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The central theorem of [34] states that dependency tuples are sound for innermost runtime complexity
analysis. We extend this result to a relative setting.

Lemma 5. Let R and Q be two TRSs such that NF(Q) ⊆ NF(R). Then every derivation

t = t0
Q−→R1

t1
Q−→R2

t2
Q−→R3

· · · ,

for a basic term t and Ri ⊆ R (i > 1) is simulated step-wise by a derivation

t] = s0
Q−→DT(R1)/R1

s1
Q−→DT(R2)/R2

s2
Q−→DT(R3)/R3

· · · .

Proof. The proof follows the pattern of the proof of Lemma 4. Define P (s) as the restriction of Pos(s) to re-
ducible subterms in s whose root symbol is defined: P (s) := {p | rt(s|p) ∈ D and s|p Q−→R t for some term t}.
Call a term u good for s if u = C[u]1, . . . , u

]
n] for a context C and u]1, . . . , u

]
n are marked version of the sub-

terms s|p for all p ∈ P (s). More precisely, there exists an injective function m : P (s)→ Pos2(C) such that
u|m(p) = (s|p)] for every position p ∈ P (s) holds.

Consider a rewrite step s Q−→Ri
t at position p, let l→ r ∈ Ri denote the rewrite rule applied in this step,

and let σ be the substitution with lσ = s|p. Consider a term u = C[u]1, . . . , u
]
n] good for s, as witnessed by

a mapping ms : P (s)→ Pos2(C). Observe that p ∈ P (s) and thus for DT(l→ r) = l] → com(r]1, . . . , r
]
m),

u = C[u]1, . . . , l
]σ, . . . , u]n] Q−→DT(l→r) C[u]1, . . . ,com(r]1σ, . . . , r

]
mσ), . . . , u]n] .

Let C ′ := C[2, . . . ,com(2, . . . ,2), . . . ,2] and let v′ := C ′[u]1, . . . , r
]
1σ, . . . , r

]
mσ, . . . , u

]
n].

Observe that P (t) ⊆ {q | q ∈ P (s) with q || p or q < p} ∪ {p·q | q ∈ PosD(r)}. This follows as the
substitution σ maps variables to NF(Q) ⊆ NF(R). Consider a position q ∈ P (t) with q < p, hence q ∈ P (s),
and j ∈ {1, . . . , n} be such that u]j = (s|q)]. Note that j exists as u is good for s. Since the rewrite position
p in s Q−→Ri

t is strictly below q, we have u]j
Q−→Ri

(t|q)]. Define v as the term obtained from v′ by rewriting
all terms u]j = v|ms(q) for q < p in this way. Thus Q−→DT(Ri)/Ri

v, it remains to show that v is good for t.
Consider a position q ∈ P (t) with q > p. By the observation on P (t), q = p·qj with qj ∈ PosD(r),

and thus r|qj = rj for some j ∈ {1, . . . ,m}. We denote by q′ the position of r]j in the right-hand side
com(r]1, . . . , r

]
m) of DT(l→ r). Then the following injective mapping mt : P (t)→ Pos2(C ′), defined by

mt(q) :=

{
ms(p)·q′ if q > p,
ms(q) if q || p or q < p,

witnesses that v is good for t: if q < p then we already observed v|mt(q) = v|ms(q) = (t|q)]. If q || p then
t|q = s|q and v|mt(q) = u|ms(q) and thus v|mt(q) = (s|t)] as desired. Finally, consider q > p, i.e. q = p·qj for
some qj ∈ PosD(r) and set rj := r|qj . Then (t|q)] = (rjσ)] = r]jσ = v|ms(p)·q′ = v|mt(p), which concludes
the final case. 2

Theorem 6 (Dependency Tuple Processor). Let P = 〈S/W,Q, T 〉 denote an innermost runtime complex-
ity problem. The following processor is sound.

` 〈DT(S)/DT(W) ∪ S ∪W,Q, T ]〉 : f
` 〈S/W,Q, T 〉 : f

DT .

Proof. The theorem follows in correspondence to Theorem 5, replacing the application of Lemma 4 with
Lemma 5. 2

We emphasise that for W = ∅, Theorem 6 corresponds to [34, Theorem 10]. The following example
clarifies that the restriction to innermost rewriting is necessary.
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Example 11. Consider the constructor TRS Rdup given by the following rules:

55 : btree(0)→ leaf 56 : btree(s(n))→ dup(btree(n)) 57 : dup(t)→ c(t, t) ,

that computes a binary tree of height n on input sn(0). This TRS admits exponential long outermost
reductions, obtained by successively duplicating redexes. The dependency tuples DT(Rdup) are given by the
three rules

58 : btree](0)→ c0 59 : btree](s(n))→ c2(dup](btree(n)), btree](n)) 60 : dup](t)→ c0 .

It is not difficult to see that in a DT(Rdup) ∪ Rdup derivation starting from btree](n) (n ∈ N), the overall
number of applications of a dependency pair is bounded linearly in n, i.e. ` 〈DT(Rdup)/Rdup,∅, T ]b 〉 : n.
Permitting the inference

` 〈DT(Rdup)/Rdup,∅, T ]b 〉 : n
` 〈Rdup/∅,∅, Tb〉 : n

would allow us to wrongly deduce that the runtime complexity of Rdup is linear.

Example 12 (Continued from Example 4). The following inference starts the proof of quadratic innermost
runtime complexity of the TRS RK given in Example 4. We transform its canonical innermost complexity
problem into a DP problem using dependency tuples (Theorem 6).

` 〈S]K/RK,RK, T ]K〉 : n2

` 〈RK/∅,RK, TK〉 : n2
DT .

Here S]K := DT(RK) consists of the DPs depicted in Figure 2.

4.3.3. Reduction Pairs
Reduction pairs were introduced in the context of termination analysis [36]. Safe reduction pairs [5],

aka com-monotone reduction pairs [34], constitute a variation that accounts for compound symbols in
complexity problems.

Definition 11 (Safe Reduction Pair [5]). A reduction pair (%,�) consists of a rewrite preorder % and a
compatible well-founded order � which is closed under substitutions. Here compatibility means that the
inclusion % · � · % ⊆ � holds. The reduction pair (%,�) is called safe if the order � is monotone in all
coordinates on compound symbols, i.e. for every ck ∈ Com, for all i = 1, . . . , k and terms s1, . . . , sk, s′i, if
si � s′i then ck(s1, . . . , si, . . . , sk) � ck(s1, . . . , s

′
i, . . . , sk) holds.

Proposition 1 ([5]). Let (%,�) be a safe reduction pair, let S] be a set of weak dependency pairs and let
W be a rewrite system. If S] ⊆ � and W ⊆ % then dh(t,−→S]/W) 6 f(t) where f : N→ N is the complexity
induced by �.

The above proposition refers to the application of safe reduction pairs in the main theorem of Hirokawa
and Moser [5]. Together with the following simple observation, this proposition is a straightforward conse-
quence of our complexity pair processor (Theorem 2)

Lemma 6. Let P] = 〈S]/W] ∪ W,Q, T ]〉 be a DP problem such that the strict component contains no
rewrite rules.

1. Suppose µ denotes a usable replacement map for dependency pairs R] in P]. Then µcom is a usable
replacement map for R] in P]. Here µcom denotes the restriction of µ to compound symbols in the
following sense: µcom(c) := µ(c) for all c ∈ Com, and otherwise µcom(f) := ∅ for f ∈ F ].
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61 : src]((n,w,m))→ c0 62 : wt]((n,w,m))→ c0 63 : trg]((n,w,m))→ c0

64 : forest](graph(N,E))→ c3(kruskal](sort(E), [ ], partitions(N)), sort](E), partitions](N))

65 : partitions]([ ])→ c0

66 : partitions](n :: N)→ partitions](N)

67 : kruskal]([ ],W, P )→ c0

68 : kruskal](e :: E,W,P )→ c2(kruskal?](inBlock(e, P ), e, E,W,P ), inBlock](e, P ))

69 : kruskal?](tt, e, E,W,P )→ kruskal](E,W,P )

70 : kruskal?](ff, e, E,W,P )→ c2(kruskal](E, e :: W, join(e, P, [ ])), join](e, P, [ ]))

71 : inBlock](e, [ ])→ c0

72 : inBlock](e, p :: P )→ c7((src(e) ∈ p ∧ trg(e) ∈ p) ∨] inBlock(e, P ), src(e) ∈ p ∧] trg(e) ∈ p,
src(e) ∈] p, trg(e) ∈] p, src](e), trg(e)], inBlock](e, P ))

73 : join](e, [ ], q)→ c0

74 : join](e, p :: P, q)→ c6(join?](src(e) ∈ p ∨ trg(e) ∈ p, e, p, P, q), src(e) ∈ p ∨] trg(e) ∈ p,
src(e) ∈] p, trg(e) ∈] p, src](e), trg(e)])

75 : join?](tt, e, p, P, q)→ c2(join](e, P, p ++ q), p ++] q)

76 : join?](ff, e, p, P, q)→ join](e, P, q)

77 : sort]([ ])→ c0

78 : sort](e :: E)→ c2(insert](e, sort(E)), sort](E))

79 : insert](e, [ ])→ c0

80 : insert](e, f :: E)→ c4(insert?](wt(e) 6 wt(f), e, f, E),wt(e) 6] wt(f),wt](e),wt](f))

81 : insert?](tt, e, f, E)→ c0

82 : insert?](ff, e, f, E)→ insert](e, E)

83 : n ∈] [ ]→ c0

84 : n ∈] (m :: p)→ c3(n = m ∨] n ∈ p, n =] m,n ∈] p)
85 : [ ] ++] q → c0

86 : (n :: p) ++] q → p ++] q

87 : 0 =] 0→ c0 88 : s(x) =] 0→ c0 89 : 0 =] s(y)→ c0 90 : s(x) =] s(y)→ x =] y

91 : 0 6] 0→ c0 92 : s(x) 6] 0→ c0 93 : 0 6] s(y)→ c0 94 : s(x) 6] s(y)→ x 6] y

95 : ff ∧] ff → c0 96 : ff ∧] tt→ c0 97 : tt ∧] ff → c0 98 : tt ∧] tt→ c0

99 : ff ∨] ff → c0 100 : ff ∨] tt→ c0 101 : tt ∨] ff → c0 102 : tt ∨] tt→ c0 .

Figure 2: Dependency tuples of TRS RK.
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2. If (%,�) denotes a safe reduction pair, then it is also a P-monotone complexity pair.

Proof. We consider the first assertion. For a proof by contradiction, suppose µcom is not a usable replacement
map for R] in P]. Thus there exists s ∈ −→∗P](T ) and position p ∈ Pos(s) such that s Q−→R],p t for some term
t, but p 6∈ Posµcom(s). Since s ∈ T ]→ by Lemma 3, symbols above position p in s are compound symbols,
and so p 6∈ Posµ(s) by definition of µcom. This contradicts however that µ is a usable replacement map for
R] in P].

From the first assertion one derives that reduction pairs are P-monotone, and thus the second assertion
holds. 2

4.4. Usable Rules
In termination analysis it is standard to consider only those rewrite rules that can occur between appli-

cations of dependency pairs, the usable rules. Hirowaka and Moser [5] have shown that this technique can be
safely employed for complexity analysis. The following definition captures an approximation of usable rules
that looks at defined function symbols. Although this transformation is usually only of use on dependency
pair problems, we nevertheless formulate it for the general case of complexity problems.

Definition 12 (Usable Rules). Consider a complexity problem P = 〈S/W,Q, T 〉.

1. Let DP collect the defined symbols in P, i.e., DP := {f | f(l1, . . . , lk)→ r ∈ P} . We define the binary
relation �d on DP such that f�dg holds if there exists a rule or dependency pair f(l1, . . . , lk)→ r ∈ P
such that g ∈ DP occurs in r. We say that f depends on g.

2. The set of usable symbols DUP(t) ⊆ DP of a term t is defined as

DUP(t) := {g | t contains symbol f ∈ DP with f �∗d g} .

The notion of usable symbols is extended to sets of terms T by DUP(T ) :=
⋃
t∈T DUP(t).

3. The usable rules UP(R) in P of R are given by

UP(R) := {f(l1, . . . , lk)→ r ∈ R | f ∈ DUP(T )} .

The following auxiliary lemma shows that the usable symbols of starting terms T are closed under P
reductions. In particular, this implies that only usable rules are ever triggered in derivations starting from
t ∈ T . Observe that the lemma crucially employs that starting terms are basic. This drastically simplifies
the proof of soundness, compared to the setting of termination analysis [38].

Lemma 7. Let P = 〈S/W,Q, T 〉 denote a complexity problem. Then

1. s −→P t implies DUP(t) ⊆ DUP(s); and

2. DUP(−→∗P(T )) = DUP(T ).

Proof. For the first assertion, suppose s −→P t holds. Let g ∈ DUP(t), we show g ∈ DUP(s). Hence by
assumption there exists a symbol h ∈ DP in t with h�∗d g. If h occurs also in s then by definition g ∈ DUP(s)
holds, hence suppose h does not occur in s. As s −→P t, there exist a rule f(l1, . . . , lk)→ r ∈ P, substitution
σ and context C such that s = C[f(l1σ, . . . , lkσ)] and t = C[rσ]. Since h does not occur in s but in t, it has
to occurs in r. Hence f �d h and thus f �∗d g. We obtain again g ∈ DUP(s) by definition of DUP(s) as desired.

Finally, the second assertion is a straightforward consequence of the first. 2

Theorem 7 (Usable Rules Processor). Let P = 〈S/W,Q, T 〉 denote a complexity problem. The following
processor is sound and complete:

` 〈UP(S)/UP(W),Q, T 〉 : f
` 〈S/W,Q, T 〉 : f

Usable Rules.
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12 1

Figure 3: Dependency Graph of P]
×-i.

Proof. Let R ∈ {S,W} and s ∈ −→∗P(T ). Consider a step s Q−→R t, where the rule f(l1, . . . , lk) → r ∈ R
has been applied. By definition, f ∈ DUP(s) and thus f ∈ DUP(T ) as a consequence of Lemma 7(2). Hence
f(l1, . . . , lk)→ r ∈ UP(R).

From this we obtain that every reduction t0
Q−→S/W t1

Q−→S/W t2
Q−→S/W · · · for t0 ∈ T turns into a

reduction t0
Q−→UP(S)/UP(W) t1

Q−→UP(S)/UP(W) t2
Q−→UP(S)/UP(W) · · · . Soundness of the processor follows.

As the inverse direction trivially holds, we conclude completeness. 2

Example 13 (Continued from Example 12). Consider the dependency pair problem 〈S]K/RK,RK, T ]K〉 given
in Example 12 with dependency pairs depicted in Figure 2. The defined symbols forest, kruskal and kruskal?
are not usable with respect to this problem, the only usable rules are thus UK := {9, 10, 15–46}. Application
of the usable rules processor gives the following inference.

` 〈S]K/UK,RK, T ]K〉 : n2

` 〈S]K/RK,RK, T ]K〉 : n2
Usable Rules.

Hence in total, the six rules {8, 11–14} defining forest, kruskal and kruskal? are dropped from the weak
component.

4.5. Dependency Graph Processors
The notion of dependency graph, a form of call and data flow graph, was initially proposed for the

termination analysis [36]. We adapt this notion to complexity problems, compare also [15].

Definition 13 (Dependency Graph). Let P] = 〈S] ∪ S/W] ∪W,Q, T ]〉 denote a DP problem.

1. The nodes of the dependency graph (DG for short) G of P] are the dependency pairs from S] ∪W],
and there is an arrow labeled by i ∈ N from s] → com(t]1, . . . , t

]
n) to u] → com(v]1, . . . , v

]
m) if for some

substitutions σ, τ : V → T (F ,V), t]iσ
Q−→∗S∪W u]τ holds.

2. A graph G is called an approximated dependency graph for P] if it includes the dependency graph of
P] in the following sense. The nodes of G are the dependency pairs from S] ∪W], and whenever there
is an arrow labeled by i ∈ N from s] → com(t]1, . . . , t

]
n) to u] → com(v]1, . . . , v

]
m) in the dependency

graph of P], then this arrow occurs also in G.

The dependency graph is not computable in general, however it is well understood how good approxi-
mations can be obtained [32].

Example 14 (Continued from Example 7). Figure 3 depicts the dependency graph of the DP problem P]×-i =

〈S]×/R×,R×, T
]
×〉 with S

]
× = {47–50} and R× depicted in Example 7 and Example 3, respectively.

In the following, we introduce various processors that transform a DP problem P] = 〈S] ∪ S/W] ∪
W,Q, T ]〉, based on an analysis of the (approximated) dependency graph of P]. To avoid reasoning up to
permutations of rewrite steps, we introduce a notion of derivation tree that disregards the order of parallel
steps under compound contexts. This notion rest on the observation that any term t ∈ −→P](T ]) is of the
form t = C[t1, . . . , tn] for a maximal compound context C by Lemma 3. Thus any further reduction of t
consists of possibly interleaved, but otherwise independent, reductions of the terms t1, . . . , tn.
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Derivation trees are hypergraphs where nodes are labeled by terms and edges by rules. Here, a (directed)
hypergraph over labels L is a triple G = (N,E, lab) where N is a set of nodes, E ⊆ N ×P(N) a set of edges,
and lab : N ∪ E → L a labeling function. For e = 〈u, {v1, . . . , vn}〉 ∈ E we call the node u the source, and
nodes v1, . . . , vn the targets of e. We denote by −⇀G the successor relation in the hypergraph G, i.e. u −⇀G v
if there exists an edge e = 〈u, {v1, . . . , vn}〉 ∈ E with v ∈ {v1, . . . , vn}. We set u K−⇀G v for labels K ⊆ L if
additionally lab(e) ∈ K holds, and abbreviate {l}−−⇀G by l−⇀G. If there exists a path u = w1 −⇀G · · · −⇀G wn = v
we say that v is reachable from u in G. We call a hypergraph G a hypertree (tree for short) if there exists
a unique node u ∈ N , the root of G, such that every v ∈ N is reachable from u by a unique path. We keep
the convention that every node is the source of at most one edge.

Definition 14 (Derivation Tree). Let P] = 〈S] ∪ S/W] ∪W,Q, T ]〉 denote a dependency pair problem.

1. Consider a term t ∈ T ](F ,V) ∪ T (F ,V). The set of P] derivation trees of t is defined as the least set
of hypertrees such that:

(a) T is a P] derivation tree of t where T consists of a unique node labeled by t.

(b) Suppose t Q−→{l→r} com(t1, . . . , tn) for l→ r ∈ P] and let Ti denote a P] derivation tree of ti for
i = 1, . . . , n. Then T is a P] derivation tree of t, where T is a tree with Ti (i = 1, . . . , n) rooted
at its ith child, the root of T is labeled by t, and the edge from the root of T to its children is
labeled by l→ r.

2. For a P] derivation tree T we denote by |T |R]∪R the number of edges labeled by a rule or dependency
pair l→ r ∈ R] ∪R.

2×] 1

50 : s(x)×] y → c2(y +] (x× y), x×] y)

1 +] (1× 1)

4 : s(x)× y → y + (x× y)

1 +] (1 + (0× 1))

1 +] 1

48 : s(x) +] y → x+] y

0 +] 1

47 : 0 +] y → c0

◦

1×] 1

50 : s(x)×] y → c2(y +] (x× y), x×] y)

1 +] (0× 1)

3 : 0× y → 0

1 +] 0

48 : s(x) +] y → x+] y

0 +] 0

47 : 0 +] y → c0

◦

0×] 1

49 : 0×] y → c0

◦

Figure 4: P]
×-i derivation tree of 2×] 1.

Consider a P] derivation tree T . Every edge 〈u, {v1, . . . , vn}〉 in T corresponds to a rewrite steps t Q−→l→r
com(t1, . . . , tn), with t and t1, . . . , tn precisely the label of source u and targets v1, . . . , vn respectively, and
l → r the label of the considered edge. We also say that l → r was applied at node u in T . This
correspondence can be lifted to rewrite sequences, and motivates our notion of the size |T |R]∪R of T with
respect to R] ∪R: |T |R]∪R refers to the number applications of rules from R] ∪R.
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Example 15 (Continued from Example 7). Recall the DP problem P]×-i = 〈S]×/R×,R×, T
]
×〉 from Example 7.

In Figure 4 we depict a P]×-i derivation tree T× of the term 2 ×] 1. Solid nodes indicate applications of
DPs from the strict component S]×. Conversely, dashed nodes indicate applications of weak rules R×. The
dotted lines indicate that we left out some rewrite steps with respect to R×. We have |T×|S]

×
= 7.

Lemma 8. Let P] = 〈S] ∪ S/W] ∪W,Q, T ]〉 be a DP problem. Then for every t ∈ T (F ,V) ∪ T ](F ,V),
we have

dh(t, Q−→S]∪S/W]∪W) =k max{|T |S]∪S | T is a P]-derivation tree of t} .

In particular,

cpP](n) =k max{|T |S]∪S | T is a P]-derivation tree of t ∈ T ] with |t| 6 n} ,

holds.

Proof. We consider the first assertion. Let t ∈ T (F ,V) ∪ T ](F ,V), and abbreviate

s := max{|T |S]∪S | T is a P]-derivation tree of t} and ` := dh(t, Q−→S]∪S/W]∪W) ..

We show ` >k s and s >k `. For the first inequality, suppose s is well-defined. Hence there exists a P]
derivation tree T of t with |T |S]∪S = s. A breadth first traversal on T constructs a P] derivation D, such
that every application of l→ r ∈ S] ∪ S translates to an application of l→ r in D. This derivation D then
witnesses ` >k s.

Inversely, for the second equality one can construct for an arbitrary P] derivation D starting from t ∈ T ]
a P] derivation tree T . Every application of a rule l → r ∈ P] in D translates to a unique edge in T . The
construction is carried out by induction on the length of D. One uses that the final term in this derivation
is of the form C[u1, . . . , un] ∈ T ]→ for C a maximal compound context (compare Lemma 3). Note also that
for each sub-term ui (i = 1, . . . , n), the constructed tree T contains a dedicated leaf labeled by ui. This
shows s >k `. 2

Remark. Our notion of derivation trees is related to the notion of chain tree given by Noschinski et al.
[34]. Whereas in P] derivation trees each edge corresponds to a single rewrite step, in chain trees an edge
corresponds to a dependency pair step l]σ → com(r]1σ, . . . , r

]
kσ) followed by normalisation of unmarked

sub-terms in the reduct. This notion is of limited use in our setting, as we also want to account for the
normalisation steps in Lemma 8.

Note that the dependency graph G of P] indicates in which order dependency pairs can occur in a
derivations of P]. To make this intuition precise, we adapt the notion of DP chain known from termination
analysis. Recall that for a derivation tree T , the symbol −⇀T denotes the child relation, and R−⇀T its
restriction to edges labeled by l→ r ∈ R.

Definition 15 (Dependency Pair Chain). Let T be a derivation tree, and consider a path

u1
{l1 → r1}−−−−−−⇀T · S ∪W−−−−⇀∗T u2 {l2 → r2}−−−−−−⇀T · S ∪W−−−−⇀∗T · · · ,

for a sequence of dependency pairs C : l1 → r1, l2 → r2, . . . . The sequence C is called a dependency pair
chain (in T ), or DP chain for brevity.

Example 16 (Continued from Example 14). Reconsider the P]×-i derivation tree T× given in Figure 4. This
tree gives rise to three maximal chains: the chain 50,48,47 along the left; the chain 50,50,48,47 along the
middle and the chain 50,50,49 along the right path.

Lemma 9. Every chain in a P] derivation tree is a path in the dependency graph of the DP problem P].
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Proof. Let P] = 〈S] ∪ S/W] ∪W,Q, T ]〉 and consider two successive DPs l1 → r1 := s] → com(t]1, . . . , t
]
n)

and l2 → r2 := u] → cm(v]1, . . . , v
]
m) in a DP chain of a P] derivation tree T . Thus there exists nodes

u1, u2, v1, v2 with
u1

l1 → r1−−−−−⇀T u2
S ∪W−−−−⇀∗T v1 l2 → r2−−−−−⇀T v2 ,

and thus there exist substitutions σ, τ such that u2 is labeled by t]iσ for some i ∈ {1, . . . , n} and v1 by u]τ .
As u2 S ∪W−−−−⇀∗T v1 we have t]iσ

Q−→∗S∪W u]τ by definition, and thus there is an edge from l1 → r1 to l2 → r2
in the DG of P], and hence in G. The lemma follows from this. 2

4.5.1. Simplification Techniques
In this section we introduce a handful of syntactic simplifications. None of the observations are very deep.

Nevertheless the resulting processors are important. They allow the reduction of a complexity problem to a
core set of rules reflecting the complexity of the input problem asymptotically.

Remove Weak Suffixes Processor. The leaf removal processor introduced in [34] states that all dependency
pairs that occur as leafs in the DG, that is, dependency pairs that constitute nodes in the DG without
outgoing edges, can be dropped from the input problem. This processor is sound in the setting of [34] where
all dependency pairs occur in the strict component. Without further restrictions, this processor is unsound
in our setting.

Example 17. The following inference is not sound

` 〈∅/{f] → c2(f], g])},∅, {f]}〉 : f
` 〈{g] → c0}/{f] → c2(f], g])},∅, {f]}〉 : f

,

despite the fact that g] → c0 is a leaf in the dependency graph of the input problem. Observe that the
complexity function of the input problem is undefined for inputs of sizes greater than two, whereas the
generated problem has trivially constant complexity.

Another situation where removal of leafs leads to problems is when our analysis has to account for
ordinary rewrite rules beside dependency pairs. Again this case is a priori excluded in [34].

Example 18. Consider the following inference, where f] → g](h) denotes a leaf in the dependency graph of
the input problem.

` 〈{h→ h}/∅,∅, {f]}〉 : f
` 〈{f] → g](h), h→ h}/∅,∅, {f]}〉 : f

,

Then the generated problem has constant complexity, whereas the complexity function of the input problem
is undefined for inputs greater than two.

We can however remove dependency pairs from the weak component that do not trigger rewrite steps
with respect to the strict component. Provided that the strict component of the input problem constitutes
of dependency pairs only, rules amenable for removal can be determined based on the dependency graph.

Definition 16 (Forward Closed). Let G be a dependency graph and let R] denote a set of dependency
pairs. We say that R] is closed under G-successors if for every edge from s→ t ∈ R] to u→ v in G we have
that also u→ v ∈ R]. For a complexity problem P], we call a set of DPs occurring in P] forward closed if
this set is closed under G-successors for the dependency graph G of P].

Note that forward closure of a set of DPs can be approximated based on an estimated dependency graph.

Theorem 8 (Remove Weak Suffixes Processor). Fix a DP problem P] = 〈S]/W] ∪W]
l ∪W,Q, T ]〉 where

W]
l is forward closed and S] ∩W]

l = ∅. The following processor is sound and complete.

` 〈S]/W] ∪W,Q, T ]〉 : f

` 〈S]/W] ∪W]
l ∪W,Q, T ]〉 : f

Remove Weak Suffixes .
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Proof. Let P]g := 〈S]/W] ∪ W,Q, T ]〉. The processor is trivially complete. To see that the processor is
sound, we show that for every P] derivation tree T of t] ∈ T ], there exists a P]g derivation tree T of t] with
|Tg|S] = |T |S] . Hence soundness follows by Lemma 8.

Consider a P] derivation tree T of t]. We define Tg as the derivation tree of t] that is obtained by
removing applications of dependency pairs fromW]

l . More precise, whenever there is an edge e labeled with
a DP from W]

l in T , we remove e and the sub-trees rooted in the target nodes of e. Then, by construction,
Tg is a P]g derivation tree of t]. Suppose now |T |S] 6= |Tg|S] , i.e. |T |S] > |Tg|S] . Then Tg misses a sub-tree
of T with an edge labeled by a DP l → r ∈ S]. This assumption gives rise to a DP chain where l → r is
preceded by a DP from W]

l . Since S] ∩W
]
l = ∅ by assumption, the DP l→ r does not occur in W]

l , hence
the DP chain contradicts that W]

l is forward closed, by Lemma 9. 2

Predecessor Estimation. Noschinski et al. [34] observed that the application of a dependency pair l → r in
a P] derivation can be estimated in terms of the application of its predecessors in the dependency graph of
P].

Definition 17. Let G be an approximated dependency graph. We denote by PreG(l → r) the set of all
(direct) predecessors of node l→ r in G. For a set of dependency pairs R] we set

PreG(R]) :=
⋃

l→r∈R]

PreG(l→ r) .

Then for an approximated dependency graph G of P], we have the following correspondence between the
number of applications of dependency pairs from R] and PreG(R]).

Lemma 10. Let P] = 〈S] ∪S/W] ∪W,Q, T ]〉 denote a DP problem, let G be an approximated dependency
graph for P], and let l→ r ∈ P] denote a dependency pair. For every P]-derivation tree T ,

|T |R]∪R 6 max{1, |T |(R]\{l→r})∪PreG(l→r)∪R ·∆} ,

where ∆ denote the maximal arity of a compound symbol occurring in a rule from P].

Proof. Consider the non-trivial case l→ r 6∈ PreG(l→ r) and let T denote a P] derivation tree with an edge
labeled by l → r ∈ R]. To conclude the lemma, we bind the applications of the DP l → r in T terms of
applications of DPs PreG(l → r). More precise, we show |T |{l→r} 6 max{1, |T |PreG(l→r) ·∆}. By Lemma 9
chains of T translate to paths in G. Hence if l→ r occurs in a DP chain of T , it is either the first DP in the
DP chain, or is headed by a DP from PreG(l → r). In the former case |T |{l→r} = 1. In the latter case, let
{u1, . . . , un} collect all sources of l→ r edges in T . To each node ui ∈ {u1, . . . , un} we can identify a unique
node pre(ui) such that pre(ui)

PreG(l→ r)−−−−−−−⇀T · S ∪W−−−−⇀∗T ui holds. Let {v1, . . . , vm} = {pre(u1), . . . , pre(un)}.
Since S ∪W−−−−⇀T is non-branching, and pre(ui) has at most ∆ successors, it follows that |T |{l→r} = n 6 ∆ ·m 6
∆ · |T |PreG(l→r). 2

Theorem 9 (Predecessor Estimation Processor). Let G denote an approximated dependency graph of the
DP problem P] = 〈S]1 ∪ S

]
2 ∪ S/W] ∪W,Q, T ]〉. The following processor is sound:

` 〈PreG(S]1) ∪ S]2 ∪ S/S
]
1 ∪W] ∪W,Q, T ]〉 : f

` 〈S]1 ∪ S
]
2 ∪ S/W] ∪W,Q, T ]〉 : f

Predecessor Estimation .

Proof. Soundness follows trivially from Lemma 10, employing Lemma 8. 2

We point out that the predecessor estimation processor is an adaptation of knowledge propagation intro-
duced in [34], not relying on a dedicated component K of known rules.

Application of the predecessor estimation processor makes only sense if PreG(S]1) 6= S]1. On the other
hand, it is always safe to take for S]1 a maximal set of DPs such that PreG(S]1) ⊆ S]2.

The combination of Theorem 8 and Theorem 9 allows us to remove DPs R] that occur as leafs in the
DG G of the input problem, provided PreG(R]) constitutes of dependency pairs that occur in the strict
component, as in [34]. This is clarified on our running example.
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Example 19 (Continued from Example 13). Observe that the DPs

L] := {61–63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87–89, 91–93, 95–102}

depicted in Example 12 occur as leafs in the dependency graph G of the complexity problem 〈S]K/UK,RK, T ]K〉.
Instantiating S]1 by L] and S]2 by

S]K \ L
] := {64, 66, 68–70, 72, 74–76, 78, 80, 82, 84, 86, 90, 94} ,

in Theorem 9, we can continue the complexity proof of Example 13 as follows.

` 〈(S]K \ L])/UK,RK, T ]K〉 : n2

` 〈(S]K \ L])/L] ∪ UK,RK, T ]K〉 : n2
Remove Weak Suffixes

` 〈S]K/UK,RK, T ]K〉 : n2
Predecessor Estimation

.

Observe that we employ PreG(L]) ⊆ S]K \ L], and that L] is trivially forward closed in the intermediate
problem.

Simplifying Right-hand Sides. In the proof step given in Example 19 we have removed all dependency pairs
defining the dependency pair symbols src], wt] and trg] as well as ∨] and ∧]. Since the strict component of
the considered DP problem contains only dependency pairs, it is safe to remove any calls to these symbols
in right-hand sides. For instance, the dependency pair

72 : inBlock](e, p :: P )→ c7
(
(src(e) ∈ p ∧ trg(e) ∈ p) ∨] inBlock(e, P ), src(e) ∈ p ∧] trg(e) ∈ p,

src(e) ∈] p, trg(e) ∈] p, src](e), trg(e)], inBlock](e, P )
)
,

can be simplified to

72s : inBlock](e, p :: P )→ c3(src(e) ∈] p, trg(e) ∈] p, inBlock](e, P )) .

Although this simplification has no effect on the complexity of the considered problem, it still makes an
automated analysis often easier. For instance, as a result of the transformation the usable rules, and also
constraints for complexity pairs, can get simpler. The next processor provides a formalisation of this idea,
which was first implemented in AProVE [34].

Theorem 10 (Simplify Right-hand Sides Processor). Let G denote an approximated dependency graph of
the DP problem P] = 〈S]/W] ∪ W,Q, T ]〉. For dependency pairs l] → com(r]1, . . . , r

]
k) ∈ S] ∪ W], call

an argument r]i removable if there is no outgoing edge from l] → com(r]1, . . . , r
]
k) labeled by i ∈ {1, . . . , k}.

Define
simpG(l] → com(r]1, . . . , r

]
k)) := l] → com(r]i1 , . . . , r

]
il

) ,

where {r]i1 , . . . , r
]
il
} ⊆ {r]1, . . . , r

]
k} collects all arguments of the right-hand side which are not removable. We

denote by simpG also its homomorphic extensions to sets.
The following processor is sound and complete.

` 〈simpG(S])/simpG(W]) ∪W,Q, T ]〉 : f
` 〈S]/W] ∪W,Q, T ]〉 : f

Simplify RHS .

Proof. Let P]g denote the generated problem 〈simpG(S])/simpG(W]) ∪W,Q, T ]〉.
Consider a P] derivation tree T of t] ∈ T ]. Call a sub-tree Ti resulting from the application of a DP

l] → com(r]1, . . . , r
]
k) ∈ S] ∪ W] in T removable, if its root is labeled by a term r]iσ for some removable

argument r]i and substitution σ. By Lemma 9 and the assumption that r]i is removable, Ti contains no
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64 : forest](graph(N,E))→ c3(kruskal](sort(E), [ ], partitions(N)), sort](E), partitions](N))

66 : partitions](n :: N)→ partitions](N)

68 : kruskal](e :: E,W,P )→ c2(kruskal?](inBlock(e, P ), e, E,W,P ), inBlock](e, P ))

69 : kruskal?](tt, e, E,W,P )→ kruskal](E,W,P )

70 : kruskal?](ff, e, E,W,P )→ c2(kruskal](E, e :: W, join(e, P, [ ])), join](e, P, [ ]))

72s : inBlock](e, p :: P )→ c3(src(e) ∈] p, trg(e) ∈] p, inBlock](e, P ))

74s : join](e, p :: P, q)→ c2(join?](src(e) ∈ p ∨ trg(e) ∈ p, e, p, P, q), src(e) ∈] p)
75 : join?](tt, e, p, P, q)→ c2(join](e, P, p ++ q), p ++] q)

76 : join?](ff, e, p, P, q)→ join](e, P, q)

78 : sort](e :: E)→ c2(insert](e, sort(E)), sort](E))

80s : insert](e, f :: E)→ c2(insert?](wt(e) 6 wt(f), e, f, E),wt(e) 6] wt(f))

82 : insert?](ff, e, f, E)→ insert](e, E)

84s : n ∈] (m :: p)→ c2(n =] m,n ∈] p)
86 : (n :: p) ++] q → p ++] q

90 : s(x) =] s(y)→ x =] y

94 : s(x) 6] s(y)→ x 6] y .

Figure 5: Simplified dependency pairs S]Ks.

applications of a DP, i.e. |Ti|S] = 0. By deleting all removable sub-trees of T , and replacing the application
of l] → com(r]1, . . . , r

]
k) ∈ S] ∪W] by simpG(l] → com(r]1, . . . , r

]
k)) ∈ simpG(S]) ∪ simpG(W]) we can thus

construct a P]g derivation tree Tg with |Tg|simpG(S]) = |T |S] . This concludes soundness of the processor, by
Lemma 8.

Inversely, completeness is shown by constructing from every P]g derivation tree a P] derivation tree,
obtained by replacing applications of simpG(l] → com(r]1, . . . , r

]
k)) by applications of l] → com(r]1, . . . , r

]
k).2

Example 20 (Continued from Example Example 19). By Theorem 10 the following inference is sound.

` 〈S]Ks/UK,RK, T ]K〉 : n2

` 〈(S]K \ L])/UK,RK, T ]K〉 : n2
Simplify RHS .

Here S]Ks := simpG(S]K \ L]) consists of the dependency pairs depicted in Figure 5.

4.5.2. Dependency Graph Decomposition
The simplified DP problem 〈S]Ks/UK,RK, T ]K〉 contains roughly half of the rules from the DP problem

〈S]K/RK,RK, T ]K〉. Still, TCT is not able to synthesise orders that orient all of the remaining dependency
pairs,5 even in an iterated fashion using the relative decomposition processor from Theorem 4. Motivated
by the inability to synthesise suitable orders for larger examples, we introduce a novel technique, called
dependency graph decomposition (DG decomposition for short). The aim of this transformation technique

5This statement remains correct for comparable provers like AProVE and CaT.
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is to decompose the input problem into several pieces that are manageable by complexity pairs. Our work
on this processor is also motivated by the fact that we are not aware of a single method for rewrite systems
which translates a complexity problem into computationally simpler sub-problems. Any proof is of the form

` P1 : f1 · · · ` Pn : fn

` P : f
,

with f ∈ O(fi) for some i ∈ {1, . . . , n}. This implies that the maximal bound one can prove is essentially
determined by the strength of the employed base techniques, viz, complexity pairs. In our experience
however, a complexity prover is seldom able to synthesise a suitable and precise complexity pair that induces
a complexity bound beyond a cubic polynomial.

Decomposition techniques are of utmost importance, and often considered crucial for the (static) resource
analysis. For instance, one of the main strengths of the type-based system of Hoffmann et al. [21] is precisely
its inherent composability. One strong points in the size-change abstraction [39] based analysis of Zuleger
et al. [20] is that global runtime bounds of imperative programs can be obtained by combining bounds
on strongly connected components (SCCs for short). The technique proposed here is similar, although not
identical, to such a decomposition. We also allow for a separate analysis of SCCs. Taking the call structure
into account, a global bounding function is obtained by multiplying bounds on sub-problems. Hence there
is also a clear relationship to the multiplicative composition of ranking functions introduced by Gulwani and
Zuleger [19].
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Figure 6: Dependency Graph GKs of DP problem 〈S]Ks/UK,RK, T ]
K 〉.

Before we continue, we want to remark that relative decomposition, as given in Theorem 3, can be used
to decompose the input problem guided by the dependency graph.

Example 21 (Continued from Example 20). Consider the DG GKs of the DP problem 〈S]Ks/UK,RK, T ]K〉, de-
picted in Figure 6. As demarcated by the rectangles in the figure, this graph has three independent sub-
graphs. Let S]Kk ⊆ S

]
Ks, S

]
srt ⊆ S

]
Ks and S

]
part ⊆ S

]
Ks denote the set of DPs as indicated in the three components

of the dependency graph. Essentially as an application of the relative decomposition processor, the DPs
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S]Kk, S
]
srt, and S

]
part can be treated completely independently. To this extend, consider the dependency pairs

64s : forest](graph(N,E))→ sort](E)

64k : forest](graph(N,E))→ kruskal](sort(E), [ ], partitions(N))

64p : forest](graph(N,E))→ partitions](N) ,

which reflect the three individual calls from forest] (via the DP 64) to the three components S]Kk, S
]
srt, and

S]part respectively. Consider the following three sub-problems which are obtained by considering only nodes
from the three indicated sub-graphs, together with the individual calls from forest]:

P]Kk := 〈S]Kk/{64k} ∪ UK,RK, T ]K〉 P]srt := 〈S]srt/{64s} ∪ Usrt,RK, T ]K〉 P]part := 〈S]part/{64p},RK, T ]K〉 .

Here Usrt := {7, 21–26, 35–38} ⊆ UK. We reason below that

` P]Kk : n2

...

` P]srt : n2

...

` P]part : n2

...

` 〈S]Ks/UK,RK, T ]K〉 : n2

is a sound inference. To see this, consider first the following intermediate DP problems

P]frst-rel := 〈{64}/S]Kk ∪ S
]
srt ∪ S

]
part ∪ UK,RK, T ]K〉 P]srt-rel := 〈S]srt/S

]
Kk ∪ S

]
part ∪ {64} ∪ UK,RK, T ]K〉

P]KK-rel := 〈S]Kk/S
]
srt ∪ S

]
part ∪ {64} ∪ UK,RK, T ]K〉 P]part-rel := 〈S]part/S

]
Kk ∪ S

]
srt ∪ {64} ∪ UK,RK, T ]K〉 .

These problems are obtained from the input problem 〈S]Ks/UK,RK, T ]K〉 by moving dependency pairs from
the strict to the weak component, in accordance to the partitioning of the DG GKs. Note that dependency
graphs of these problems coincide with the DG from GKs. Three applications of relative decomposition allow
us to deduce

` P]KK-rel : n
2

` P]srt-rel : n2
` P]part-rel : n2 ` P]frst-rel : n2

` 〈S]part ∪ {64}/S
]
srt ∪ S

]
Kk ∪ UK,RK, T ]K〉 : n2

` 〈S]srt ∪ S
]
part ∪ {64}/S

]
Kk ∪ UK,RK, T ]K〉 : n2

` 〈S]Ks/UK,RK, T ]K〉 : n2

Consider the intermediate problem P]frst-rel. Note that since the DP 64 has no incoming edges in the DG, i.e.
PreGKs({64}) = ∅, the complexity function of P]frst-rel is even constant. We can show this by one application
of the predecessor estimation processor and the axiom empty.

` 〈∅/S]Kk ∪ S
]
srt ∪ S

]
part ∪ {64} ∪ UK,RK, T ]K〉 : n2

empty

` P]frst-rel : n2
Predecessor Estimation

Consider now the intermediate DP problem P]srt-rel. The DPs S]Kk and S]part constitute a forward closed
set of weak DPs in P]srt-rel. So they can be simply dropped from P]srt-rel, by Theorem 8. As a consequence,
the right-hand side of the DP 64 can be simplified to

64s : forest](graph(N,E))→ sort](E) ,
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by Theorem 10. Finally, the set of rewrite rules can be narrowed to the usable rules Usrt, by Theorem 7. In
total, this proves P]srt : n2 ` P

]
srt-rel : n

2:

` 〈S]srt/{64s} ∪ Usrt,RK, T ]K〉 : n2

` 〈S]srt/{64s} ∪ UK,RK, T ]K〉 : n2
Usable Rules

` 〈S]srt/{64} ∪ UK,RK, T ]K〉 : n2
Simpl. DP-RHS

` 〈S]srt/S
]
Kk ∪ S

]
part ∪ {64} ∪ UK,RK, T ]K〉 : n2

Remove Weak Suffixes

By identical reasoning, we can prove P]Kk : n2 ` P]KK-rel : n
2, and likewise P]part : n2 ` P

]
part-rel : n

2. Putting
these proofs together yields the inference outlined in the beginning of the example.

This form of decomposition however fails to achieve one main motivation. The complexity of the input
problem is reflected in the complexity of at least one of the sub-problems. In the example above, the
complexity of P]Kk and P]srt is bounded by a quadratic polynomial from below.

t]

Tu

t]1

T1

t]i

Ti

t]n

Tn

Figure 7: Separation of derivation tree
T in upper and lower layer.

In contrast, dependency graph decomposition seeks to analyse re-
cursive definitions, reflected by cycles in the DG, separately. Consider
for instance the DP problem P]srt = 〈S]srt/{64s}∪Usrt,RK, T ]K〉 obtained
in Example 21, involving the dependency concerning the sorting al-
gorithm underlying RK. Let [e1, · · · , en] abbreviate a list of edges
e1 :: · · · :: (en :: [ ]). To estimate the complexity of P]srt, without loss
of generality we fix a derivation starting from t] := sort]([e1, · · · , en]).
The part of the DG of P]srt relevant for the reduction of t] consists
of the DPs 78, defining sort], and S]insert := {80s, 82, 94}. Edges are
as depicted in Figure 6. A reduction of t] involves one recursion with
respect to the DP 78. As indicated by the edge from 78 to 80s, each re-
cursion (possibly) triggers a sub-derivation that involves the DP 80s.
Indeed, a derivation tree of t] can be sketched as in Figure 7. The
terms t]i demarcate the first application of the DP 80s, i.e. the call to insert]. As a consequence of Lemma 9
and the shape of the DG, the gray subtrees Ti (i = 1, . . . , n) contain only application of DPs S]insert. More
precise, the trees Ti are derivation trees with respect to the problem P]l := 〈S]insert/Usrt,RK, T ]K〉. Dual, the
white part Tu reflects the recursion involving the DP 78, that is, Tu is a derivation tree of with respect to
the problem P]u := 〈{78}/Usrt,RK, T ]K〉. In principle, it should thus be possible to divide P]srt into P

]
l and

P]u, and propagate bounds on the complexity of P]l and P]l back to P]srt.
Observe that both problems admit linear complexity. This can be easily verified by tool TCT. Note that

in our example, the term t]i (i = 1, . . . , n) are of the form insert](ei, [e
′
i+1, . . . , e

′
n]) ∈ T ]K , where [e′i+1, . . . , e

′
n]

is the (unique) normal form of sort([ei+1, . . . , en]). Thus the application of DPs in a subtree Ti is bounded
by a linear function, in the size of t]i and thus t] = sort]([e1, . . . , en]). The number of applications of DPs in
Tu is bounded by a linear function in the size of t]. As this gives also a bound on the number of trees Ti,
we obtain overall a quadratic bound on the number of applications of DPs in the full tree T .

The dependency graph decomposition processor formalises this kind of reasoning. Fix a DP problem
P] = 〈S]∪S/W]∪W,Q, T ]〉. The separation of derivation trees T of P] into upper components Tu and lower
components (consisting of trees T1, . . . , Tn) is given by a partitioning of strict dependency pairs S] = S]u∪S

]
l

and weak dependency pairs W] = W]
u ∪ W

]
l , such that S]l ∪ W

]
l is forward closed in the DG of P]. For

instance, the set S]insert used above forms a forward closed in P]srt. For a derivation tree T of P], the separation
of DPs induces a separation of T into two (possibly empty) layers, demarcated by topmost applications of
DPs from S]l ∪W

]
l as indicated in Figure 7. The lower layer consists of the (maximal) subtrees T1, . . . , Tn

of T with a dependency pair l→ r ∈ S]l ∪W
]
l applied at the root. The upper layer consists of the derivation

tree Tu obtained from T by removing the sub-trees T1, . . . , Tn. Figure 7 illustrates this separation.
Define P]u := 〈S]u ∪ S/W]

u ∪ W,Q, T ]〉 and P]l := 〈S]l ∪ S/W
]
l ∪ W,Q, T ]〉. By construction, Tu is a

P]u derivation tree of t], i.e. contains no application of DPs from S]l ∪ W
]
l . The complexity function of
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P]u thus binds the number of applications of DPs and rules from S] ∪ S in Tu, in the size of t]. Dual, by
forward closure of S]l ∪W

]
l the P] derivations trees Ti from the lower layer are P]l derivation trees of terms

t]i . However, the complexity function of P]l may not suitably estimate the size of the derivation trees of t]i ,
more precise |Ti|S]

l∪S
, in the size of t]. On the one hand, t]i ∈ T ] does not hold in general. On the other

hand, the size of t]i does not necessarily relate linearly (even not polynomially) to the size of t]. To resolve
these issues, DG decomposition adds suitable dependency pairs sep(S]u ∪W]

u) to P]l , defined as follows.

Definition 18. For a set of DPs R] we define

sep(R]) := {l→ ri | l→ com(r1, . . . , ri, . . . , rk) ∈ R]} .

These DPs are used to extend the derivation tree Ti of t
]
i to a derivation tree of t] ∈ T ].

Example 22 (Continued from Example 21). Consider the DP problem P]srt = 〈S]srt/{64s} ∪ Usrt,RK, T ]K〉 to-
gether with the forward closed set of DPs S]insert := {80s, 82, 94}. Let T denote a P]srt derivation tree of
sort]([e1, . . . , en]) for edges e1, . . . , en. The nodes labeled by insert](ei, [e

′
i+1, . . . , e

′
n]), where [e′i+1, . . . , e

′
n] the

sorted list of [ei+1, . . . , en], demarcate the upper Tu and lower layer in T (i = 1, . . . , n). Then sep({64s, 78})
consists of 64s together with the DPs

78a : sort](e :: E)→ insert](e, sort(E)) 78b : sort](e :: E)→ sort](E) .

Observe that in combination with Usrt, these can be used to generate the terms insert](ei, [e
′
i+1, . . . , e

′
n])

(i = 1, . . . , n) from the initial term sort]([e1, . . . , en]). As a consequence, the complexity problem

P]insert := 〈S]insert/{64s, 78a, 78b} ∪ Usrt,RK, T ]K〉 ,

accounts for applications of DPs from S]insert in a sub-tree Ti (i = 1, . . . , n). Conversely, the DP problem
P]srt = 〈{78}/{64s} ∪ Usrt,RK, T ]K〉 accounts for the application of the DPs in the upper component Tu.

The next two technical lemmas formalise the central proof steps carried out in the informal reasoning
from above.

Lemma 11. Consider a DP problem P] = 〈S]u ∪ S
]
l ∪ S/W]

u ∪W
]
l ∪W,Q, T ]〉. Let S]l ∪W

]
l be a forward

closed set of DPs in P], and let T be a P] derivation tree T of t] ∈ T ]. Consider the maximal sub-trees
T1, . . . , Tn of T such that a DP from S]l ∪W

]
l is applied at the root, and let Tu be obtained from T by removing

T1, . . . , Tn. Then

1. Tu is a 〈S]u ∪ S/W]
u ∪W,Q, T ]〉 derivation tree of t];

2. for each i = 1, . . . , n, there exists a 〈S]l ∪ S/W
]
l ∪W ∪ sep(S]u ∪W]

u),Q, T ]〉 derivation tree of t], that
contains Ti as sub-tree.

Proof. The first assertion follows by definition. We consider the second assertion. Observe that on the path
from the root of T to Ti, by construction only dependency pairs l] → com(r]1, . . . , r

]
k) ∈ S]u∪W]

u are applied.
Replacing each application of l] → com(r]1, . . . , r

]
k) by a corresponding DP l] → r]i ∈ sep(S]u ∪W]

u) yields a
〈S]u∪S

]
l ∪S/W]

u∪W
]
l ∪W∪sep(S]u∪W]

u),Q, T ]〉 derivation tree of t]. This tree contains Ti as sub-tree. Since
S]l ∪W

]
l is forward closed, Lemma 9 yields that Ti contains only applications of DPs from S]l ∪W

]
l , besides

application of rules l→ r ∈ S∪W. Hence the constructed tree is even a 〈S]l ∪S/W
]
l ∪W∪sep(S]u∪W]

u),Q, T ]〉
derivation tree. 2

Lemma 12. Consider a DP problem P] = 〈S] ∪ S/W] ∪ W,Q, T ]〉. Let R] be a forward closed set of
DPs in P], and let T be a P] derivation tree T of t] ∈ T ]. Let T1, . . . , Tn denote the maximal sub-trees
of T with l → r ∈ R] applied at the root. There exists a constant ∆ ∈ N depending only on P] such that
n 6 max{1, |T |PreG(R])\R] ·∆}.

31



Proof. The proof is a slight variation of the proof of Lemma 10. Let ∆ be the maximal arity of a compound
symbol from P], and observe that every node in T has at most ∆ successors. Denote by {u1, . . . , un} the
roots of Ti (i = 1, . . . , n). The non-trivial case is n > 1. In this case, each path from the root of T to
the nodes ui ∈ {u1, . . . , un} contains at least one node with a DP applied. Let {v1, . . . , vm} collect such
nodes closest to {u1, . . . , un}. In particular, we can thus associate to every node ui ∈ {u1, . . . , un} a node
vi′ ∈ {v1, . . . , vm} and DP l → r ∈ P] such that vi′ {li → ri}−−−−−−⇀T · S ∪W−−−−⇀∗T ui holds. As vi′ has at most ∆
successors and S ∪W−−−−⇀T is non-branching, it follows that n 6 ∆ ·m. By Lemma 9, for i = 1, . . . , n we see
li → ri ∈ PreG(R]). As Ti is maximal, li → ri 6∈ R]. Hence m 6 |T |PreG(R])\R] and the lemma follows. 2

Theorem 11 (Dependency Graph Decomposition Processor). Consider a DP problem P] = 〈S]u ∪ S
]
l ∪

S/W]
u ∪W

]
l ∪W,Q, T ]〉 together with an approximated dependency graph G of P] such that:

1. S]l ∪W
]
l is forward closed in G, and

2. PreG(S]l ∪W
]
l ) ∩W]

u = ∅.

The following processor is sound.

` 〈S]u ∪ S/W]
u ∪W,Q, T ]〉 : f ` 〈S]l ∪ S/W

]
l ∪ sep(S]u ∪W]

u) ∪W,Q, T ]〉 : g

` 〈S]u ∪ S
]
l ∪ S/W]

u ∪W
]
l ∪W,Q, T ]〉 : f ∗ g

,

for all functions f and g such that f(n) 6= 0 and g(n) 6= 0. Here f ∗ g denotes the function h defined by
h(n) := f(n) · g(n).

Proof. Consider a P] derivation tree of t] ∈ T ]. We estimate |T |S]
u∪S]

l∪S
by a function in O(f ∗ g), tacitly

employing Lemma 8. Consider the separation of T as induced by forward closure of S]l ∪W
]
l into the upper

layer Tu, and lower layer that consists of the derivation trees Ti of t
]
i (i = 1, . . . , n). By Lemma 11(2) the

trees Ti (i = 1, . . . ,m) can be extended to 〈S]l ∪ S/W
]
l ∪W ∪ sep(S]u ∪W]

u),Q, T ]〉 derivation tree T ′i of t].
In particular, the complexity of 〈S]l ∪ S/W

]
l ∪W ∪ sep(S]u ∪W]

u),Q, T ]〉 binds applications of S]l ∪ S in Ti,
i.e. |Ti|S]

l∪S
= |T ′i |S]

l∪S
. Hence |Ti|S]

l∪S
∈ O(g(|t]|)) by the second pre-condition of the processor. Similar,

Lemma 11(1) and the first precondition of the processor gives |Tu|S]
u∪S ∈ O(f(|t]|)). By assumption 2 and

Lemma 12 we see n 6 max{1, |T |PreG(S]
l∪W

]
l )\(S

]
l∪W

]
l )
} 6 max{1, |Tu|S]

u∪S}. Putting these bounds together
we get

|T |S]
u∪S]

l∪S
= |Tu|S]∪S +

∑n
i=1|Ti|S]∪S

= |Tu|S]
u∪S +

∑n
i=1|Ti|S]

l∪S

6 |Tu|S]
u∪S + max{1, |Tu|S]

u∪S} ·maxni=1|Ti|S]
l∪S

∈ O(f(|t]|)) +O(f(|t]|)) · O(g(|t]|)) = O(h(|t]|)) . 2

The next example shows that the DP problem P]srt has quadratic complexity, using Theorem 11.

Example 23 (Continued from Example 22). Consider the DP problem P]srt from Example 21, and let G de-
note the DG of P]srt. We already observed that the set DPs S]insert = {80s, 82, 94} is forward closed in P]srt.
As no DP in PreG(S]insert) = {78} occurs in the weak component of P]srt, also the second precondition of
Theorem 11 is satisfied, and thus

` 〈{78}/{64s} ∪ Usrt},RK, T ]K〉 : n ` P]insert : n

` P]srt : n2
.

Using the simplifications presented in Theorem 10 and Theorem 7, together with suitable complexity pairs
(Theorem 2), it is not difficult to prove the assumptions of this inference. We conclude ` P]srt : n2 by
Theorem 11.
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We want to remark that DG decomposition can overestimate the complexity, i.e. DG decomposition is
not complete. For this reason it is not always beneficial to exhaustively apply this processor.

Example 24 (Continued from Example 23). The set {94} constitutes a forward closed set of DPs in the DP
problem P]insert depicted in Example 22. Consider the two DPs

80a : insert](e, f :: E)→ insert?](wt(e) 6 wt(f), e, f, E) 80b : insert](e, f :: E)→ wt(e) 6] wt(f) .

Then we have
sep({64s, 78a, 78b, 80s, 82}) = {64s, 78a, 78b, 80a, 80b, 82} .

Applying the DG decomposition processor yields thus sub-problems

〈{80s, 82}/{64s, 78a, 78b} ∪ Usrt,RK, T ]K〉 ,

for the upper, and
〈{94}/{64s, 78a, 78b, 80a, 80b, 82} ∪ Usrt,RK, T ]K〉 ,

for the lower component. The complexity of both problems is bounded from below by a linear function.
Hence employing DG decomposition, we can only prove a quadratic upper bound on the complexity of P]insert,
whereas the complexity of P]insert is in fact linear.

Finally, we remark that iterated application of Theorem 11 extends to a separate analysis of all cycles.
Hence our method is closely connected to cycle analysis as introduced for termination in [35]. Unlike for
cycle analysis, dependency graph decomposition takes the call-structure between cycles into account. As
demonstrated in the next example, this is essential in the context of complexity analysis.

Example 25. Let P]exp := 〈R]exp/Rexp,Rexp, T ]b 〉 where the dependency pairs R]exp are

103 : d](s(x))→ d](x) 104 : e](s(x))→ c2(d](e(x)), e](x)) ,

and the rewrite system Rexp is given by the four rules

105 : d(0)→ 0 106 : d(s(x))→ s(s(d(x)) 107 : e(0)→ s(0) 108 : e(s(x))→ d(e(x)) ,

that compute exponentiation on numerals. The following depicts the DG of P]exp.

104 103

2 1

1

A decomposition of the dependency pairs in P]exp into cycles, as in termination analysis [35], amounts in our
setting to an inference

` 〈{104}/Rexp,Rexp, T ]b 〉 : f ` 〈{103}/Rexp,Rexp, T ]b 〉 : g

` 〈{103, 104}/Rexp,Rexp, T ]b 〉 : h
.

While the complexity of 〈{103}/Rexp,Rexp, T ]b 〉 and 〈{104}/Rexp,Rexp, T ]b 〉 is linear, the complexity of P]exp
is exponential. On the other hand, DG decomposition extends the sub-problem 〈{103}/Rexp,Rexp, T ]b 〉
obtained from the lower cycle with the two DPs

104a : e](s(x))→ d](e(x)) 104b : e](s(x))→ e](x) .

The so obtained sub-problem 〈{103}/{104a, 104b} ∪ Rexp,Rexp, T ]b 〉 has exponential complexity.
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5. Implementation Issues

The proposed framework forms the backbone of our complexity tool TCT, the Tyrolean Complexity Tool.6
TCT is a highly configurable, state-of-the-art complexity analyser for term rewrite system. We kindly refer
the reader to the system description [17] for details on usage and features of TCT. As indicated by the
results of the annual international termination competition,7 which features four dedicated categories for
the complexity analysis of term rewrite systems, TCT is competitive on an international level. In the recent
full run of the competition8 our tool scored highest in three out of the four categories, both in the number
of solved systems and precision of the certificate (as indicated by the global score).

Our tool features currently 23 techniques for runtime and, where applicable, for derivational complexity
analysis. The proposed framework allows us to seamlessly combine all implemented techniques in our tool.
It goes without saying that TCT is not blindly applying the implemented methods to construct a proof tree.
The search space would simply be too high. It is clear that complete processors should be preferred over
incomplete ones, since any application of an incomplete processor reduces the chance to prove a tight bound
on the complexity. There is however theoretically no preferable strategy to combine complete processors. In
practice, it makes sense to employ a dependency pair transformation (Theorem 5 or Theorem 6, respectively)
first, because these enable the various simplifications discussed in Section 4.4 and Section 4.5. Also, it is
preferable to apply syntactic methods before the notoriously slow semantic techniques.

input initial
simplifications DP transformation DP simplifications rel. decomposition

and orderings

DG decomposition

empty? success

maybe

success

fail

success

no yes

fail

Figure 8: Schematic presentation of the default proof-search strategy DGD underlying TCT as flow chart.

Figure 8 outlines the current default proof-search strategy underlying TCT. Here, boxes correspond to
the following sub-strategies. Our experiments confirm that this strategy works effectively in the majority of
cases we tested, in terms of the number of proven examples and the precision of the deduced bounds.

- Initial simplifications: Initially, the criterion of Hirokawa et al. [40] is used to transform a complex-
ity problem to the corresponding innermost complexity problem, if applicable. Also, on innermost
complexity problems some trivial simplifications are employed that possibly remove rules which are
inapplicable during reductions.

- DP transformation: For runtime complexity analysis, the weak dependency pairs processor (Theorem 5)
is employed to transform the current problem into a DP problem. This processor is coupled with the
weightgap condition [5], under which all rewrite rules from the strict component can be moved to the
weak component. For a given innermost runtime complexity problem, the dependency tuples proces-
sor (Theorem 6) might also be used. However, the application of dependency tuples is problematic,
since the processor is in general not complete. But on the other hand, also the application of the weak

6TCT is released under the GNU Lesser General Public License (LGPL) Version 3. A web-interface and sources can be
found online at http://cl-informatik.uibk.ac.at/software/tct/.

7C.f. http://termination-portal.org/wiki/Termination_Competition.
8Results available at http://termcomp.uibk.ac.at/termcomp/competition/competitionSummary.seam?comp=455446.
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dependency pair processor is problematic whenever the weightgap condition cannot be established.
The presence of rewrite rules besides DPs in the strict component blocks the application of various
techniques employed later. Most notably complexity pairs in the form of safe reduction pairs (compare
Lemma 6), but also various DP simplification techniques, are blocked.

In practice, it seems that the latter problem out weights incompleteness of dependency tuples. As
compromise, in the current strategy dependency tuples are preferred over weak dependency pairs
whenever the weightgap condition cannot be established.

- DP simplifications: At this stage the strategy chains various DP simplification techniques. The prede-
cessor estimation and remove weak suffix processors (Theorem 9 and Theorem 8 respectively) are used
to delete dependency pairs, compare Example 19. If applicable, the current DP problem is decom-
posed using the relative decomposition processor (Theorem 3) as dictated by the dependency graph,
compare Example 21. Finally, right hand-sides of DPs are simplified and rules are restricted to usable
ones (Theorem 7 and Theorem 10).

- Relative decomposition and orderings: At this stage, the decomposition processor in conjunction with
different complexity pairs (Theorem 4) is employed. To facilitate multiple cores, various instances,
parameterised by different complexity pairs, are run in parallel. The processors are directed towards
shifting leafs in the dependency graph from the strict to the weak component, using predecessor
estimation (Theorem 9) to extend the set of shifted DPs. This enables removal of the oriented rules
by the subsequent triggered DP simplifications.

We remark that TCT synthesises complexity pairs by constructing suitable polynomial and matrix
interpretations (of dimension one to four) that induce polynomial bounds, as well as (small) polynomial
path orders [8, 9]. For polynomial interpretations, TCT essentially interprets constructors by strongly
linear polynomials [3] only. For matrix interpretations our strategy uses the criterion of Middeldorp
et al. [41] based on automata techniques.

In the present strategy, we employ interpretations up to induced degree two, using rather low coeffi-
cients (ranging up to seven). Higher parameters show significant effect on the execution time, without
improving much on the applicability of the strategy. To keep the complexity certificate tight, the
application of complexity pairs is ordered by the induced degree (starting from zero).

- DG decomposition: Dependency graph decomposition is the central part of the strategy, it is employed
whenever orderings fail to produce a result. In general, there is no favourable choices to pick a lower
component S]l ∪W

]
l suitable for Theorem 11. We decided to pick for the lower component a maximal

set of forward closed nodes excluding topmost cycles in the DG of the considered problem, i.e. cycles
not reachable from any other cycle in the DG. Successive applications of DG decomposition are thus
performed outside in.

5.1. Experimental Evaluation
In the following, we contrast the strength of TCT with its default proof-search strategy DGD to the

comparable provers AProVE [42] and CaT. As AProVE features only support for innermost rewriting, the
tool is excluded from benchmarks that do not restrict inputs to innermost complexity problem. Dual, CaT
does not feature dedicated support for innermost rewriting and is therefore excluded on experiments on
innermost problems.

To show the effect of the various methods, we (partly) contrast our default strategy DGD to the following
modifications.

- Direct: With this strategy we check the power of direct methods. Precisely the complexity pairs
outlined in stage relative decomposition and orderings are employed in a direct setting, i.e. relying on
Theorem 2 only.
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- RD: With this configuration we indicate the strength of Zankl and Korp [13] decomposition processor
in combination with complexity pairs. This strategy corresponds to the stage relative decomposition
and orderings of our default strategy DGD.

- DP+RD: This strategy extends the strategy RD with the weak dependency pairs and dependency tuples
processor. More precise, the strategy correspond to the default strategy with stage DG decomposition
disabled. Should stage relative decomposition and orderings fail, the computation is aborted.

- DGD-g: This strategy is a variation of the default strategy DGD where DG decomposition is employed
exhaustively, immediately after initial DP simplifications.

Setup. All experiments were conducted on a machine with a 8 dual core AMD Opteron
TM

885 processors
running at 2.60GHz, and 64Gb of RAM.9 Every test was run with a generous timeout of 300 seconds. The
employed version of TCT is version 2.0, binaries for AProVE and CaT are the ones provided by the annual
termination competition of 2012.10

Data Sets. Unarguably, the termination problem data base (TPDB for short), underlying the international
termination competition, is the most extensive selection of examples available. Still, it was primarily intended
as a means to assess the strength of termination provers, and falls short of interesting examples for runtime
complexity analysis. We have therefore compiled two collections of TRSs specifically targeted at runtime
complexity analysis.

- Data set RaML: To test the applicability of runtime complexity analysis of TRSs in the context of
program analysis, we have employed a naive (but complexity preserving) transformation of RaML
programs considered in [27] into TRSs.11 We remark that in this transformation, we do not take
typing information into account. We however use the call-by-value strategy adopted by RaML to
obtain an innermost runtime complexity problem. Also, built-in operations like comparison operations
on Integers and Boolean operations are assigned unitary cost. This is achieved by modeling their
semantics with rewrite rules occurring in the weak component of the constructed problem. Data set
RaML collects the examples obtained by this translation from the example collection available in the
source repository of the RaML prototype.12

- Data set RC: This data set is mostly a compilation of examples found in the literature on the runtime
complexity analysis of term rewrite systems. Also, it contains various sorting algorithms on lists and
standard examples of Peano arithmetic.

Assessment. In Table 1 we contrast AProVE and TCT in the above mentioned configurations on the data set
RaML. Here entries indicate the estimated upper bounds on the runtime complexity. An entry ? indicates
that the tool gave up, and an entry ∞ indicates that the tool was aborted due to a timeout. The graph
depicted in Figure 9 summarise the data of Table 1 for AProVE and selected configurations of TCT. Here
totals on solved instances are plotted against the execution time. To put emphasis on the precision of
the obtained certificate, we only take optimal solutions, in the sense that no other run of AProVE or TCT
produced a tighter upper bound, into account. In contrast, dotted lines indicate the overall number of
systems, disregarding optimality.

The experiments clearly illustrates the need for transformations. Only two examples could be solved
by applying complexity pairs directly. The results drawn in Column RD in Table 1 shows that relative
decomposition gives an improvement on the direct approach. Column DP+RD indicates the usefulness
of the dependency pair transformations. Two additional problems can be solved in the dependency pair

9Average PassMark CPU Mark 2851; data from http://www.cpubenchmark.net/.
10Available through http://termcomp.uibk.ac.at/.
11The corresponding tool is available online at http://cl-informatik.uibk.ac.at/cbr/tools/RaML/.
12Available online at http://raml.tcs.ifi.lmu.de/.
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Direct RD DP+RD DGD-g DGD AProVE

appendall O(n2) O(n2) O(n) O(n) O(n) O(n)
bfs ? ? O(n) O(n2) O(n) ∞

bftmmult ? ? ∞ O(n4) O(n3) ∞
bitonic ? ? ∞ O(n4) O(n4) ∞

bitvectors ∞ ∞ ∞ O(n2) O(n2) ∞

clevermmult ? ? ? O(n3) O(n2) O(n2)
duplicates ? O(n2) O(n2) O(n3) O(n2) O(n2)

dyade ? ? O(n2) O(n2) O(n2) O(n2)
eratosthenes ? O(n3) O(n2) O(n2) O(n2) ∞

flatten ? ? ? O(n2) O(n2) O(n2)

insertionsort ? O(n3) O(n2) O(n2) O(n2) O(n2)
listsort ? ? ? O(n3) O(n2) ∞

lcs ? ? ? O(n2) O(n2) ∞
martix ? ? ∞ O(n4) O(n3) ∞

mergesort ? ∞ ∞ O(n2) O(n2) ∞

minsort ? O(n3) O(n2) O(n2) O(n2) O(n3)
queue ? ? ∞ O(n5) O(n5) ∞

quicksort ? ∞ ∞ O(n2) O(n2) ∞
rationalpotential O(n) O(n) O(n) O(n) O(n) O(n)

splitandsort ? ? ? O(n3) O(n3) ∞

subtrees ? O(n2) O(n2) O(n2) O(n2) O(n2)
tuples ? ? ∞ ∞ ∞ ∞

Table 1: Experimental results on data set RaML.
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Figure 9: Data set RaML: number of solved instances, depending on execution time.
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setting, and for three problems a more precise certificate could be obtained. Still, the majority of the
problems remain unsolved.

The results concerning configurations DGD and DGD-g indicate the gain in power of our tool through
DG decomposition. Out of the 22 examples, only the example tuples, which computes for fixed i = 1, . . . , 4
and given set S (encoded as list) the set of all subsets of S of size i, cannot be handled. The runtime
complexity of this example is perfectly described by the resource polynomials defined in terms of binomial
coefficients of [27]. It is also worth mentioning that in 30 seconds, after which AProVE and configuration
DP+RD fail to handle any further system, configurations DGD and DGD-g can handle significantly more
systems. As we mentioned above, incompleteness is a clear drawback of dependency graph decomposition,
compare also Example 24. Figure 9 indicates that even thought immediate, iterative application of this
processors (as implemented in the configuration DGD-g) significantly improves the execution time, precision
of the certificate is lost. In contrast, the standard configuration DGD retains precision.

Finally we remark that the RaML-prototype developed by Hoffmann et al. [21] beats TCT on the (un-
transformed) data set, in precision of the estimated bound, and in the speed of the analysis. We attribute
this mainly to the naive transformation of RaML programs to TRSs. The RaML-prototype can use for
instance domain information given by the semantics of RaML programs. This information is lost during
transformation. As for the above mentioned rewriting tools, also the RaML-prototype is not capable of
inferring logarithmic bounds. As a consequence, not every example was classified optimal. For instance, the
runtime complexity of program mergesort, which implements the mergesort algorithm on list, should have
complexity O(n · log(n)), but all tests classified the runtime of this program as quadratic or above.
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Figure 10: Data set RC for (a) full and (b) innermost rewriting: number of solved instances, depending on execution time.

In Tables 2 we compare our tool TCT to CaT (full rewriting) and AProVE (innermost rewriting) respec-
tively, on the data set RC. For TCT we indicate results with respect to configuration without DG decomposi-
tion (configuration DP+RD) and including DG decomposition (configuration DGD). Figure 10 relates again
execution times to the number of solved instances, as in Figure 9. The results are similar to the ones on
the data set RaML. In contrast to innermost rewriting, TCT can only partly benefit from DG decomposition.
Observe that weak dependency pairs leave rules from the input problem in the strict component. In contrast,
DG decomposition operates on dependency pairs only.
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Full rewriting Innermost rewriting

Answer DP+RD DGD CaT DP+RD DGD AProVE

jones1 O(n) O(n) O(n) O(n) O(n) O(n)

jones2 O(n) O(n) ? O(n) O(n) O(n)

jones4 O(n) O(n) O(n) O(n) O(n) O(n)

jones5 ∞ ∞ ? ∞ ∞ ∞

jones6 O(n) O(n) O(n) O(n) O(n) O(n)

flatten O(n) O(n) O(n) O(n) O(n) O(n)

reverse ∞ O(n2) ? ∞ O(n2) O(n2)

shuffle ∞ O(n3) ? ∞ O(n3) O(n3)

shuffleshuffle ∞ O(n4) ? ∞ O(n4) ∞

clique ∞ ∞ ? ∞ O(n3) ?

dcquad ∞ ∞ ? ∞ ∞ O(n2)

egypt ∞ ∞ ? O(n) O(n) O(n)

eratosthenes ∞ ∞ ? O(n2) O(n2) ∞

lcs ∞ ? ∞ ∞ ∞ ∞

mmult-nat ∞ ∞ ? ∞ O(n5) O(n2)

qbf ∞ ∞ ? O(n) O(n) O(n)

sat ∞ ∞ ? O(n2) O(n2) O(n2)

z86 O(1) O(1) O(n) O(1) O(1) O(1)

bits O(n) O(n2) O(n) O(n) O(n2) O(n2)

div O(n) O(n) ? O(n) O(n2) O(n2)

mult ∞ ∞ ? O(n2) O(n2) O(n2)

mult2 ∞ ∞ ? ∞ O(n3) O(n3)

quad ∞ ∞ ? ∞ O(n2) O(n2)

square ∞ ∞ ? O(n2) O(n2) O(n2)

bubblesort-nat ∞ ∞ ? ∞ O(n2) O(n3)

isort ∞ ∞ ? ∞ O(n2) O(n2)

mergesort ∞ ∞ ? ∞ O(n4) ∞

mergesort-nat ∞ ∞ ? ∞ O(n5) ∞

quicksort-buggy O(n) O(n) ? O(n) O(n) O(n)

quicksort ∞ ∞ ? ∞ O(n2) O(n2)

Table 2: Experimental results on data set RC.
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6. Conclusion

We have presented a combination framework for automated polynomial complexity analysis of term
rewrite systems. The framework is general enough to reason about both runtime and derivational complex-
ity, and to formulate a majority of the techniques available for proving polynomial complexity of rewrite
systems. On the other hand, it is concrete enough to serve as a basis for a modular complexity analyser, as
demonstrated by our automated complexity analyser TCT which closely implements the discussed framework.

Besides the combination framework we have introduced the notion of P-monotone complexity pair that
unifies the different orders used for complexity analysis in the cited literature, and we have introduced or
adapted various syntactic simplification techniques. Last but not least, we have presented the dependency
graph decomposition processor. This processor is easy to implement, and greatly improves modularity. The
provided experimental results highlight the strength of our framework, and in particular of the dependency
graph decomposition processor.
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