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Abstract. In this paper we introduce a restrictive version of the mul-
tiset path order, called polynomial path order. This recursive path order
induces polynomial bounds on the maximal number of innermost rewrite
steps. This result opens the way to automatically verify for a given pro-
gram, written in an eager functional programming language, that the
maximal number of evaluation steps starting from any function call is
polynomial in the input size. To test the feasibility of our approach we
have implemented this technique and compare its applicability to exist-
ing methods.

1 Introduction

Term rewriting is a conceptually simple but powerful abstract model of com-
putation that underlies much of declarative programming. In rewriting, proving
termination is an important research field. Powerful methods have been intro-
duced to establish termination of a given term rewrite system. One of the most
natural ways to proof termination is the use of interpretations. Consequentially
this technique has been introduced quite early. Moreover, if one is interested in
automatically proving termination, polynomial interpretations provide a natural
starting point, cf. [10]. However, termination proofs via polynomial interpreta-
tions are limited as the longest possible rewrite sequences admitted by rewrite
systems compatible with a polynomial interpretation are double-exponential (in
the size of the initial term), see [13]. Another well-studied (and direct) termina-
tion technique is the use of reduction orders—for example simplification orders.
Still this technique is limited, which can again be shown by the analysis of the
induced derivation length, cf. [12,25,15]. In recent years the emphasis shifted
towards transformation techniques like the dependency pair method or semantic
labeling. Transformation techniques have significantly increased the possibility
to automatically prove termination.

Once we have established termination of a given rewrite system R, it seems
natural to direct the attention to the analysis of the complexity of R. In rewrit-
ing the complexity of a rewrite system R is measured as the maximal derivation
length with respect to R. As mentioned above for direct termination methods
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a significant amount of investigations has been conducted, providing a suitable
foundation for further research. Unfortunately, almost nothing is known about
the length of derivations induced by state-of-the-art termination techniques like
the dependency pair method or semantic labeling. For the dependency pair
method no results on the induced derivation length are known. Partial result
with respect to semantic labeling are reported in [18].

In this paper we introduce a restriction of the multiset path order, called
polynomial path order (denoted as >pop∗). Our main result states that this recur-
sive path order induces polynomial bounds on the maximal length of innermost
rewrite steps. As we have successfully implemented this technique, we thus can
automatically verify for a given term rewrite system R that R admits at most
polynomial innermost derivation length (on the set of constructor-based terms).
This opens the way to automatically verify for a given program—written in an
eager functional programming language—that its runtime complexity is polyno-
mial (in the input size). The only restrictions in the applicability of the result
are that (i) the functional program P is transformable into a term rewrite system
R and (ii) a feasible (i.e., polynomial) derivation length with respect to R gives
rise to a feasible runtime complexity of P. In short the transformation has to be
non-termination and complexity preserving.

The definition of polynomial path orders employs the idea of tiered recur-
sion [6]. Syntactically this amount to a separation of arguments into normal
and safe argument. (Below this will be governed by the presences of mappings
safe and nrm associating with each function symbol a list of argument positions.)
We explain our approach by an example rewrite system that clearly admits at
most polynomial derivation length.

Example 1. Consider the following rewrite system Rmult.

add(x, 0) → x mult(0, y) → 0

add(s(x), y) → s(add(x, y)) mult(s(x), y) → add(y, mult(x, y))

We suppose that all arguments of the successor (s) are safe (safe(s) = {1}), that
the second argument of addition (add) is safe (safe(add) = {2}) and that all
arguments of multiplication (mult) are normal (safe(mult) = ∅). Furthermore
let the (strict) precedence > be defined as mult > add > s. Then Rmult is
compatible with >pop∗ (see Definition 4) and as a consequence of our main
theorem (see Section 3) we conclude that the number of rewrite steps starting
from mult(sn(0), sm(0)) is polynomially bounded in n and m. (Here we write sn(0)
as abbreviation of s(. . . (s(0) . . . )) with n occurrences of the successor symbol s.)

The polynomial path order is an extension of the path order for FP intro-
duced by Arai and the second author in [1]. A central motivation of this research
is the observation that the direct application of the latter order is only successful
on a handful of (very simple) rewrite systems. The path order for FP gains only
power if additional transformations are performed. Unfortunately, such powerful
transformations are difficult to find automatically.

Further note that the polynomial path order is to some extent related to the
light multiset path order introduced by Marion [17]. Roughly speaking the light



multiset path order is a tamed version of the multiset path order, characterising
the functions computable in polytime. It seems important to stress that the
below stated main theorem fails for the light multiset path order. This can be
easily seen from the next example.

Example 2. Consider the following rewrite system Rbin. (This is Example 2.21
about binomial coefficients from [22].)

bin(x, 0) → s(0) bin(s(x), s(y)) → +(bin(x, s(y)), bin(x, y))
bin(0, s(y)) → 0

For a precedence that fulfills bin > s, bin > + and separations of arguments
safe(bin) = ∅, safe(+) = {1, 2}, we obtain that Rbin is compatible with the light
multiset path order, cf. [17]. However it is straightforward to verify that the
(innermost) derivation height of bin(sn(0), sm(0)) is exponential in n.

To test the feasibility of our approach we have implemented a small complex-
ity analyser based on the polynomial path order and compare its applicability
to existing techniques. To do so, we also have implemented the light multiset
path order and a restricted form of polynomial interpretations, so-called additive
polynomial interpretations, cf. [7]. Note that compatibility with addivite polyno-
mial interpretations induces polynomial derivation length for constructor-based
terms, cf. [7].

The research in [7,17] falls into the realm of implicit complexity theory. In
this context related work to our research is due to Bonfante et al. [8] but see
also seminal work by Hofmann [14] and Schwichtenberg [20]. While [14,20] are
incomparable to our techniques, a comparison to [8] is also not straightforward.
Our principal concern is that the termination techniques employed allow for an
complexity analysis of the subjected program. On the other hand the crucial
feature of quasi-interpretations (the central contribution of [8]) is their weak
monotonicity, hence termination can only be shown in conjunction with other
termination techniques. For example the class of polytime computable functions
can be characterised as the class of functions computable by confluent construc-
tor rewrite systems compatible with the multiset path order and that admit
only additive quasi-interpretations, cf. [8]. This interesting result renders an in-
sightful implicit characterisation of the polytime computable function, but it is
of little help, if one wants to obtain a complexity analysis of a term rewrite
system subjected to a modern termination prover. Recently an interesting appli-
cation of quasi-interpretations has been reported by Lucas and Peña [16]. Here
the dependency pair method is used in conjunction with quasi-interpretations
to obtain bounds on the memory consumption of Safe programs. This method is
easily automatable, but new ideas are necessary to yield bounds on the runtime
behaviour of functional programs.

The remainder of this paper is organised as follows. In the next section we re-
call basic notions and starting points of this paper. In Section 3 we have collected
our main results. In order to prove these results we extend results originally pre-
sented in [1]. Our findings in this direction are presented in Section 4. The central



argument to prove the main theorem is then given in Section 5. In Section 6 we
give the experimental evidence mentioned above. In Section 7 we touch upon
an application of our main theorem in recent work (together with Hirokawa and
Middeldorp) where we study the termination behaviour of Scheme programs.
Finally in Section 8 we conclude and mention possible future work.

2 Preliminaries

We assume familiarity with term rewriting [4,23]. Let V denote a countably
infinite set of variables and F a signature. The set of terms over F and V is
denoted by T (F ,V). We always assume that F contains at least one constant.
The arity of a function symbol f is denoted as ar(f). Let > be a precedence on
the signature F . The rank of a function symbol is defined inductively as follows:
rk(f) = 1+max{rk(g) | g ∈ F∧f > g}. (Here we employ the convention that the
maximum of an empty set equals 0.) We write � to denote the subterm relation
and � for its converse. The strict part of � is denoted by �. Var(t) denotes the
set of variables occurring in a term t. The size (depth) of a term t is denoted as
size(t) (dp(t)). The width of a term t is defined inductively as follows: wd(t) = 1,
if t is a variable or a constant, otherwise if t = f(t1, . . . , tn) with n > 0, we set
wd(t) = max{n, wd(t1), . . . ,wd(tn)}. The Buchholz norm of a term t is defined
inductively as follows: ‖t‖ = 1, if t is a variable and for t = f(t1, . . . , tn) we set
‖t‖ = 1 + max{n, ‖t1‖, . . . , ‖tn‖}. We write [t1, . . . , tn] to denote multisets and
] for the summation of multisets.

A term rewrite system (TRS for short) R over T (F ,V) is a set of rewrite
rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). (If not mentioned otherwise, we
assume R is finite.) The root symbols of left-hand sides of rewrite rules are called
defined, while all other function symbols are called constructors. For a given
signature F the defined symbols are denoted as D, while the constructor symbol
are collected in C. The smallest rewrite relation that contains R is denoted by
→R. We simply write → for →R if R is clear from context. Let s and t be
terms. If exactly n steps are preformed to contract s to t we write s →n t. A
term s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V) such that
s → t. The innermost rewrite relation i−→R of a TRS R is defined on terms as
follows: s i−→R t if there exist a rewrite rule l → r ∈ R, a context C, and a
substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of lσ are
normal forms of R. A TRS is called confluent if for all s, t1, t2 ∈ T (F ,V) with
s →∗ t1 and s →∗ t2 there exists a term t3 such that t1 →∗ t3 and t2 →∗ t3. A
TRS is non-overlapping if it has no critical pairs, cf. [4]. A TRS R is left-linear if
for all rules l → r ∈ R, all variables in l occur at most once. If R is additionally
non-overlapping, then R is called orthogonal. Note that every orthogonal TRS
is confluent. A constructor TRS is a TRS whose signature F can be partitioned
into the defined symbols D and constructor symbols C in such a way that the
left-hand side of each rule has the form f(s1, . . . , sn) with f ∈ D and for all
i: si ∈ T (C,V). A defined function symbol is completely defined if it does not
occur in any ground term in normal form. A TRS is completely defined if each



defined symbol is completely defined. An element of T (C,V) is called a value; we
set Val(R) = T (C,V). We call a TRS terminating if no infinite rewrite sequence
exists. The derivation length of a term t with respect to a terminating TRS R
and rewrite relation →R is defined as usual: Dl(R,→)(s) = max{n | ∃t s →n t}.
We call a term t = f(t1, . . . , tn) constructor-based if all its arguments ti are
values, i.e., ti ∈ T (C,V) for all 1 6 i 6 n. The set Tb collects all constructor-
based terms. The runtime complexity (with respect to R) is defined as follows:
RcR(m) = max{Dl(R, i−→)(t) | t = f(t1, . . . , tn) ∈ Tb and

∑n
i size(ti) 6 m}.

A proper order is a transitive and irreflexive relation. The reflexive closure
of a proper order � is denoted as �=. A proper order � is well-founded if there
is no infinite decreasing sequence t1 � t2 � t3 · · · . A well-founded proper order
that is also a rewrite relation is called a reduction order. We say a reduction
order � and a TRS R are compatible if R ⊆ �. It is well-known that a TRS is
terminating if and only if there exists a compatible reduction order.

3 Main Result

In the sequel R denotes a constructor TRS over a (possible variadic) signature
F . Let > denote a precedence on F such that for all f ∈ D we have for all
c ∈ C: f > c. (Recall that F contains at least one constant.) We assume that R
is completely defined, i.e., ground normal forms and ground values coincide.3

For each n-ary function symbol f ∈ D of fixed arity, we suppose the existence
of a mapping safe that associates with f a (possibly empty) list {i1, . . . , im}
with 1 6 i1 < · · · < im 6 n. For a mapping safe and a term t = f(t1, . . . , tn),
safe(f) denotes the safe argument positions of t. The argument positions of
t not included in safe(f) are called normal and are denoted by nrm(f). The
mapping safe (nrm) is referred to as safe (normal) mapping. We generalise safe
(normal) mappings to constructor symbols and variadic function symbols as
follows: For each function symbol f ∈ C, we fix safe(f) = {1, . . . , ar(f)} and for
each variadic function symbol f ∈ D we assert safe(f) = ∅. The normalised
signature Fn contains a function symbol fn for each f ∈ F . If f is of fixed-
arity and nrm(f) = {i1, . . . , ip}, then ar(f) = p. The normalised signature Cn is
defined accordingly.

Definition 3. Let > be a precedence and safe a safe mapping. We define >pop

inductively as follows: s = f(s1, . . . , sn) >pop t if one of the following alternatives
holds:

1. f is a constructor and si >=
pop t for some i ∈ {1, . . . , n},

2. si >=
pop t for some i ∈ nrm(f), or

3. t = g(t1, . . . , tm) with f ∈ D and f > g and s >pop ti for all 1 6 i 6 m.

3 The assumption that R is completely defined arises naturally in the context of
implicit characterisation of complexity classes. We follow this convention to some
extent, but show that this restriction is not necessary.



We write s >pop t 〈i〉 if s >pop t follows by application of clause (i) in
Definition 3. A similar notation will be used for the orders defined below.

Definition 4. Let > be a precedence and safe a safe mapping. We define the
polynomial path order >pop∗ (POP∗ for short) inductively as follows: s =
f(s1, . . . , sn) >pop∗ t if one of the following alternatives holds:

1. s >pop t,
2. si >=

pop∗ t for some i ∈ {1, . . . , n},
3. t = g(t1, . . . , tm), with f ∈ D, f > g, and the following properties hold:

– s >pop∗ ti0 for some i0 ∈ safe(g) and
– either s >pop ti or s � ti and i ∈ safe(g) for all i 6= i0,

4. t = f(t1, . . . , tm) and for nrm(f) = {i1, . . . , ip}, safe(f) = {j1, . . . , jq} the
following properties hold:
– [si1 , . . . , sip ] (>pop∗)mul [ti1 , . . . , tip ],
– [sj1 , . . . , sjq ] (>=

pop∗)mul [tj1 , . . . , tjq ].

Here (>pop∗)mul denotes the multiset extension of >pop∗ and recall that for vari-
adic function symbols, the set of safe arguments is empty.

Example 5. Consider the following TRS Rinsert (This is a simplification of an
example from [17].)

if(true, x, y) → x x>0 → true

if(false, x, y) → y 0> s(x) → false

ins(x, nil) → cons(x, nil) s(x)> s(y) → x>y

ins(x, cons(y, ys)) → if(y>x, cons(x, cons(y, ys)), cons(y, ins(x, ys)))

We represent lists with the help of the constructors nil and cons. To show com-
patibility with POP∗, we assume a precedence � that fulfills ins � if, ins � >,
ins � cons, 0 � true, and 0 � false. Further we define a safe mapping safe as
follows:

safe(s) = {1} safe(if) = {1, 2, 3} safe(ins) = ∅
safe(cons) = {1, 2} safe(>) = {2}

It is straightforward to verify that the induced polynomial path order �pop∗ is
compatible with Rinsert.

An easy inductive argument shows that if s ∈ Val(R) and s >pop∗ t, then
t ∈ Val(R). Note that >pop∗ is not a reduction order. Although >pop∗ is a well-
founded proper order that is closed under substitutions, the order is not closed
under contexts due to the restrictive definition of clause 4 in the above definition.
However we still have the following theorem, which follows as the multiset path
order extends >pop∗.

Theorem 6. Every TRS R that is compatible with >pop∗ for some well-founded
precedence > is terminating.



As normal and safe arguments are distinguisable, we strengthen the notion of
runtime complexity as follows: Rcn

R(m) = max{Dl(R, i−→)(t) | t = f(t1, . . . , tn) ∈
Tb and

∑
i∈nrm(f) size(ti) 6 m}. This function is called the normal runtime

complexity.

Main Theorem. Let R be a finite, completely defined constructor TRS. As-
sume further R is compatible with >pop∗, i.e., R ⊆ >pop∗. Then the induced
(normal) runtime complexity is polynomial.

Assume R is a finite, constructor TRS that is not completely defined; i.e.,
at least one defined function symbol occurs in a ground normal form. To obtain
a completely defined TRS it suffices to add suitable rules, thus we arrive at the
following corollary, see [3] for the proof.

Corollary 7. Let R be a finite, constructor TRS. Assume further R is compat-
ible with >pop∗, i.e., R ⊆ >pop∗. Then the induced (normal) runtime complexity
is polynomial.

Definition 8. The predicative rewrite relation s p−→ t is defined as follows: s p−→ t
if s → t by contracting safe argument positions first, i.e., if there exist a rewrite
rule l → r ∈ R, a context C, and a substitution σ such that s = C[lσ], t = C[rσ]
and all safe argument position of lσ are in normal form.

Clearly predicative rewriting is a generalisation of innermost rewriting. Es-
sentially following the pattern of the proof of the theorem, we arrive at the
following corollary.

Corollary 9. Let R be a finite constructor TRS. Assume further R is compat-
ible with >pop∗, i.e., R ⊆ >pop∗. Then for all f ∈ F of arity n, with nrm(f) =
{i1, . . . , ip} and for all values s1, . . . , sn: Dl(R,

p−→)(f(s1, . . . , sn)) is bounded by a
polynomial in the sum of the sizes of the normal argument terms si1 , . . . , sip .

Remark 10. Beckmann and Weiermann observed in [5] that general rewriting is
too powerful to serve as a suitable computation model to characterise the class
of polytime computable functions as a TRS. Their notion of a feasible rewrite
system is reflected adequately in the notion of predicative rewriting.

4 Polynomial Path Order on Sequences

In this section we extend definitions and results originally presented in [1]. The
main aim is to define a polynomial path order I on sequences of terms such that
I induces polynomial derivation length with respect to a compatible TRS R.

Let � 6∈ Fn be a variadic function symbol. We extend the normalised signa-
ture Fn by � and define Seq(Fn,V) = T (Fn ∪ {�},V). Elements of Seq(Fn,V)
are sometimes referred to as sequences. Instead of �(s1, . . . , sn), we usually
write (s1 · · · sn) and denote the empty sequence () as ∅. Let a = (a1 . . . an)
and b = (b1 . . . bm) be elements of Seq(Fn,V). For a 6= ∅ and b 6= ∅ define
a @ b = (a1 . . . an b1 . . . bm). If a = ∅ (b = ∅) we set a @ b = b (a @ b = a).



Let > denote the precedence on Fn induced by the total precedence > on F .
Buchholz [9] was the first to observe that finite term rewrite systems compatible
with recursive path orders � are even compatible to finite approximations of �.
This observation carries over to polynomial path orders. The following definitions
generalise the path order on FP (POP for short) as defined in [1]. To keep this
exposition short, we only state the definition of approximations of the polynomial
path order I on sequences. The general definitions for m and I is obtained
by dropping the restrictions on depth and width, cf. [3]. Note that I can be
conceived as the limit of the finite approximations Ik. We use the convention
that f ∈ Fn, i.e., s = f(s1, . . . , sn) implicitly indicates that f 6= �.

Definition 11. Let k, l > 1 and let > be a precedence. We define ml
k inductively

as follows: s ml
k t for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following

alternatives holds:

1. si (m=)l
k t for some i ∈ {1, . . . , n},

2. s = f(s1, . . . , sn) such that of the following two possibilities holds:
– t = g(t1, . . . , tm) with f > g or
– t = (t1 · · · tm),

and s ml−1
k ti for all 1 6 i 6 m, and m < k + wd(s), or

3. s = (s1 · · · sn), t = (t1 · · · tm) and the following properties hold:
– [t1, . . . , tm] = N1 ] · · · ]Nn,
– there exists i ∈ {1, . . . , n} such that [si] 6= Ni,
– for all 1 6 i 6 n such that [si] 6= Ni we have si ml

k r for all r ∈ Ni

– m < k + wd(s).

We write mk to abbreviate mk
k.

Definition 12. Let k, l > 1 and let > be a precedence. We define the approx-
imation of the polynomial path order Il

k on sequences inductively as follows:
s Il

k t for s = f(s1, . . . , sn) or s = (s1 · · · sn) if one of the following alternatives
holds:

1. s ml
k t,

2. si (I=)l
k t for some i ∈ {1, . . . , n},

3. s = f(s1, . . . , sn), t = (t1 · · · tm), and the following properties hold:
– s Il−1

k ti0 for some i0 ∈ {1, . . . , n},
– s ml−1

k ti for all i 6= i0, and
– m < k + wd(s),

4. s = f(s1, . . . , sn), t = f(t1, . . . , tm) with (s1 · · · sn) Il
k (t1 · · · tm), or

5. s = (s1 · · · sn), t = (t1 · · · tm) and the following properties hold:
– [t1, . . . , tm] = N1 ] · · · ]Nn,
– there exists i ∈ {1, . . . , n} such that [si] 6= Ni,
– for all 1 6 i 6 n such that [si] 6= Ni: si ml

k r for all r ∈ Ni, and
– m < k + wd(s).

We write Ik to abbreviate Ik
k.



Note that ∅ is the minimal element of mk and Ik and that I is a reduction
order. The following lemmas are direct consequences of the definitions.

Lemma 13.

1. If s Ik t and k < l, then s Il t.
2. If s Ik t, then C[s] Ik C[t], where C[2] denotes a context over Seq(Fn,V).

Lemma 14. If s Il
k t, then dp(t) 6 dp(s)+ l and wd(t) 6 k +wd(s). Moreover,

if s Il
k t, then ‖t‖ 6 ‖s‖+ k + l.

By Lemma 14, there exists a (uniform) constant c such that ‖t‖ 6 ‖s‖ + c,
whenever s Ik t. And thus if we have a Ik-descending sequence s = t0 Ik t1 Ik

· · · Ik t` we conclude that ‖ti‖ 6 ci + ‖s‖ for all i > 1.

Definition 15. We define

Gk(s) := max{` ∈ N | ∃(t0, . . . , t`) : s = t0 Ik t1 Ik · · · Ik t`}

Fk,p(m) := max{Gk(f(t1, . . . , tn)) : rk(f) = p ∧
∑

i

Gk(ti) 6 m}

In the definition of Fk,p, we assume f ∈ Fn.

A direct consequence of Definition 15 is that Gk((t1 · · · tn)) = n+
∑n

i=1 Gk(ti)
holds. The following lemma is generalisation of a similar lemma in [1] and the
proof given in [1] can be easily adapted.

Lemma 16. We define dk,0 := k + 1 and dk,p+1 := (dk,p)k + 1. Then for all
k, p there exists a constant c (depending only on k and p) such that for all m:
Fk,p(m) 6 c(m + 2)dk,p .

As a consequence of Lemma 16 we obtain that Fk,p(m) is asymptotically
bounded by mdk,p for large enough m. The following lemma follows by a standard
inductive argument.

Lemma 17. For all k, there exists a constant c such that for s ∈ T (Cn∪{�},V):
Gk(s) 6 c · size(s)2.

We arrive at the main theorem of this section.

Theorem 18. For all f ∈ Fn of arity n, for all s1, . . . , sn ∈ T (Cn ∪ {�}), and
for all k: Gk(f(s1, . . . , sn)) is bounded by a polynomial in the sum of the sizes of
s1, . . . , sn. The polynomial depends only on k and the rank of f .

Proof. Let f ∈ Fn and let s1, . . . , sn ∈ T (Cn ∪ {�}). By Lemma 16 there exists
c1 ∈ N depending on k and rk(f) such that

Gk(f(s1, . . . , sn)) 6 mc1 (1)

if
∑

i Gk(si) 6 m and m is large enough. By Lemma 17, there exists a constant
c2 (depending on the rank of the function symbols in si) such that Gk(si) 6
c2 · size(si)2. Replacing m in (1) by c2 · (

∑
i size(si))2 and setting c = cc1

2 yields:

Gk(f(s1, . . . , sn)) 6 [c2 · (
∑

i

size(si))2]c1 = c · (
∑

i

size(si))2c1

ut



5 Predicative Interpretation

The purpose of this section is to prove our main theorem. Let R denote a com-
pletely defined, constructor TRS. We embed the order >pop∗ into Ik such that
k depends only on R. This becomes possible if we represent the information
on normal and safe arguments underlying the definition of >pop∗ explicitly by
interpreting the signature F in the normalised signature Fn.

Definition 19. The maximal size of the safe values of a term t is defined as
follows:

sv(t) =

{
‖t‖ t ∈ Val(R)
max{sv(ti) | i ∈ safe(f)} t = f(t1, . . . , tn) and t 6∈ Val(R)

We represent sv(t) unary. Let s denote a fresh constant that is minimal in
the precedence > on Fn. We define SV(t) = U(sv(t)), where U : N → T ({s,�})
denotes the representation of n as a sequence (s · · · s) with n occurrences of
the constant s. As a direct consequence of the definition, we have: s � t implies
SV(s) Ik SV(t) for any k.

Definition 20. Let safe denote a safe mapping. A predicative interpretation
(with respect to T (F ,V)) is a pair (S,N) of mappings S : T (F ,V) → T (Fn,V)
and N : T (F ,V) → T (Fn,V), defined as follows:

S(t) =

{
∅ if t ∈ Val(R)
(fn(N(sj1), . . . ,N(sjp)) S(si1) . . . S(siq )) if t 6∈ Val(R)

N(t) = (S(t)) @ SV(t)

In the definition of S, we assume t = f(s1, . . . , sn), nrm(f) = {j1, . . . , jp} and
safe(f) = {i1, . . . , iq}. (Recall that safe(f) ∪ nrm(f) = {1, . . . , n}.)

Note that N(s) mk S(s) (and thus N(s) Ik S(s)) holds for any k. We arrive
at the two main lemmas of this section.

Lemma 21. Let f(l1, . . . , ln) → r ∈ R, let σ : V → Val(R) be a substitu-
tion and let k = 2 · max{size(r) | l → r ∈ R}. If f(l1, . . . , ln) >pop r then
fn(N(li1σ), . . . ,N(lipσ)) mk Q(rσ) for Q ∈ {S,N}, where nrm(f) = {i1, . . . , ip}.

Proof. We sketch the proof plan: Instead of showing the lemma directly, one
shows the following stronger property for terms s, t ∈ T (F ,V) where s is either
a value or of form f(s1, . . . , sn) such that siσ ∈ Val(R) for all 1 6 i 6 n.

(†)
Let ` = ‖t‖, if f ∈ D, then s >pop t implies Q(sσ) m2`

fn(N(s1σ), . . . ,N(spσ)) m2` Q(tσ); otherwise N(sσ) m2`

N(tσ) holds.

Here we suppose safe(f) = {p+1, . . . , n}. To show (†) one proceeds by induction
on >pop. See [3] for the complete proof. ut



Lemma 22. Let l → r ∈ R, let σ : V → Val(R) be a substitution, and let
k = 2 · max{size(r) | l → r ∈ R}. If l >pop∗ r then Q(lσ) Ik Q(rσ) for
Q ∈ {S,N}.

Proof. Similar to the proof of Lemma 21 one shows the following property for
terms s, t ∈ T (F ,V) where s is either a value or of form f(s1, . . . , sn) such that
siσ ∈ Val(R) for all 1 6 i 6 n.

(‡)

Let ` = ‖t‖. If f ∈ D, then s = f(s1, . . . , sn) >pop∗
t implies (i) fn(N(s1σ), . . . ,N(spσ)) I2` S(tσ) and (ii)
(fn(N(s1σ), . . . ,N(spσ))) @ SV(sσ) I2` N(tσ). Otherwise
if f ∈ C then N(sσ) I2` N(tσ) holds.

Here we suppose safe(f) = {p+1, . . . , n}. To show (‡) one proceeds by induction
on >pop∗. See [3] for the complete proof. ut

From Lemmata 21 and 22 the main lemma of this section follows.

Lemma 23. Let s and t be terms such that s i−→ t and let k = 2 ·max{size(r) |
l → r ∈ R}. Then Q(s) Ik Q(t) for Q ∈ {S,N}.

Main Theorem. Let R be a finite, completely defined constructor TRS. As-
sume further R is compatible with >pop∗. Then the induced (normal) runtime
complexity is polynomial.

Proof. Let t = f(t1, . . . , tn) be term in Tb and without loss of generality let
safe(f) = {p + 1, . . . , n}. We set k = 2 ·max{size(r) | l → r ∈ R}. By Lemma 23
any innermost rewrite steps t i−→ u induces S(t) Ik S(u). Thus we obtain:

Dl(R, i−→)(f(t1, . . . , tn)) = max{` | ∃u t i−→` u}
6 max{` | ∃ (s′1, . . . , s

′
`) : S(t) Ik s′1 Ik · · · Ik s′`}

6 Gk(S(f(t1, . . . , tn)))

Next notice that S(f(t1, . . . , tn)) = (fn(N(t1), . . . ,N(tp)) ∅ . . . ∅). By Theo-
rem 18 and the observation following Definition 15 we see that

Gk((fn(N(t1), . . . ,N(tp)) ∅ . . . ∅)) 6 n + 1 + Gk(fn(N(t1), . . . ,N(tp)))

Employing Lemma 16, we see (for a fixed f) that n+1+Gk(fn(N(t1), . . . ,N(tp)))
is asymptotically bounded by a polynomial in the sum of the sizes of the argu-
ments N(t1),. . . ,N(tp). By definition size(N(ti)) = ‖ti‖ 6 size(ti) for all 1 6 i 6 p.

Hence for each term t ∈ Tb, Dl(R, i−→)(t) is bounded by a polynomial in the
sum of the sizes of the normal argument terms of t. In particular, as the signature
F is finite, the normal runtime complexity function is polynomial. ut

Remark 24. In the above theorem we assume a constructor TRS. It is not dif-
ficult to see that this restriction is not necessary. (Essentially one replaces the
application of Lemmata 21 and 22 by the application of the properties (†) and
(‡) respectively.) However, the restriction that the arguments of f are in normal
form is necessary. Hence we prefer the given formulation of the theorem.



6 Experimental Data

To prove compatibility of a given TRS R with recursive path orders we have to
find a precedence > such that the induced order is compatible with R. When
we want to orient R by a polynomial path order >pop∗ we additionally require a
suitable safe mapping. To automate this search we encode the constraint s >pop∗
t into a propositional formula:

τ(s >pop∗ t) = τ1(s >pop∗ t) ∨ τ2(s >pop∗ t) ∨ τ3(s >pop∗ t) ∨ τ4(s >pop∗ t)

Here τ i(·) is designed to encode clause (i) from Definition 4. Based on such
an encoding, compatibility of a TRS with >pop∗ becomes expressible as the
satisfiability of the formula

(∧
l→r∈R τ(l >pop∗ r)

)
∧P ∧S. Here the subformula

P is satisfiable if and only if all the variables >f,g (defined below) encode a
strict precedence, see [26] for a suitable definition of P . The subformula S is
used to cover the additional conditions imposed on safe mappings defined in the
beginning of Section 3.

We only describe cases (2)–(4), the encoding for case (1)—the comparison
using the weaker order >pop—can be easily derived in a similar fashion. If s =
f(s1, . . . , sn) we set τ2(s >pop∗ t) =

∨
i si >=

pop∗ t, otherwise τ2(s >pop∗ t) = ⊥.
For case (3) we introduce for every function symbol f and argument position i of
f the (propositional) variables βf,i, such that βf,i = true represents the assertion
i ∈ safe(f). Moreover, for all function symbols f, g we introduce variables >f,g

such that truth of >f,g expresses that f > g holds. If s = f(s1, . . . , sn) and
t = g(t1, . . . , tm) for f ∈ D with f 6= g, we define τ3(s >pop∗ t) as:

>f,g ∧
m∨

i0=1

(τ(s >pop∗ ti) ∧ βg,i0 ∧
m∧

i=1,i 6=i0

(τ(s >pop ti) ∨ (βg,i ∧ (s � ti)))

(For s, t of different shape, we set τ3(s >pop∗ t) = ⊥.) To deal with case (4) we
follow [19]. The main idea is to describe a multiset comparison in terms of mul-
tiset covers. Formally, a multiset cover is a pair of mappings γ : {1, . . . ,m} →
{1, . . . , n} and ε : {1, . . . , n} → {true, false} such that for all i, j (1 6 i 6
n, 1 6 j 6 m): if ε(i) = true then the set {j | γ(j) = i} is a singleton. It
is easy to see that [s1, . . . , sn] (�=)mul [t1, . . . , tm] if there exists a multiset
cover (γ, ε) such that for each j there exists an i with γ(j) = i and ε(i) =
true implies si = tj , while ε(i) = false implies si � tj . Similarly we obtain
[s1, . . . , sn] �mul [t1, . . . , tm] if [s1, . . . , sn] (�=)mul [t1, . . . , tm] and ε(i) = false
for some i ∈ {1, . . . , n}.

This definition allows an easy encoding of multiset comparisons and based on
it, clause (4) of Definition 4 becomes representable (for terms s = f(s1, . . . , sn)
and t = f(t1, . . . , tm)) as the conjunction of the following two conditions together
with the assumption that there exists a suitable multiset cover (γ, ε):

– whenever γ(j) = i then the indicated argument positions i and j, are either
both normal or both safe,



– at least one cover is strict (ε(i) = false) for some normal argument position
i of f .

We introduce variables γi,j and εi, where γi,j = true represents γ(j) = i and
εi = true denotes ε(i) = true (1 6 i 6 n, 1 6 j 6 m). Summing up, we set
τ4(s (>pop∗)mul t) (s = f(s1, . . . , sn) and t = f(t1, . . . , tm)) equal to:

n∧
i=1

m∧
j=1

(
γi,j →

(
εi → τ(si = tj)

)
∧

(
¬εi → τ(si � tj)

)
∧

(
βf,i ↔ βf,j

))
∧

m∧
j=1

one(γ1,j , . . . , γn,j) ∧
n∧

i=1

(
εi → one(γi,1, . . . , γi,m)

)
∧

n∨
i=1

(
¬βf,i ∧ ¬εi

)
Here one(α1, . . . , αn) is satisfiable if and only if exactly one of the variables
α1, . . . , αn is true. And if s, t do not have the assumed form, we set τ4(s (>pop∗
)mul t) = ⊥.

We compare the polynomial path order POP∗ to a restricted class of polyno-
mial interpretations (SMC for short) [7] and to LMPO [17]. SMC refers to simple-
mixed polynomial interpretations where constructor symbols are interpreted by
a strongly linear (also called additive) polynomial [7]. Defined symbols on the
other hand are interpreted by simple-mixed polynomials [10]. Since POP∗ and
LMPO are in essence syntactic restrictions of MPO we also provide a compari-
son to MPO. POP∗ is implemented using the previously described propositional
encoding; while the implementation of SMC rests on a propositional encoding
of the techniques described in [10]. To check satisfiability we employ MiniSat.4

LMPO and MPO are implemented using an extension of the constraint solving
technique described in [11], which allows us to compare different implementation
techniques at the same time.

As testbed we use those TRSs from the termination problem data base ver-
sion 4.0 that can be shown terminating with at least one of the tools that par-
ticipated in the termination competition 2007.5 We use three different testbeds:
T collects the 957 terminating TRSs from TPDB, TC collects the 449 TRSs
from the TPDB that are also constructor systems, and TCO collects the 236
TRSs that are terminating, constructor based and orthogonal.6 The results of
our comparisons are given in Table 1. The tests presented below were conducted
on a small complexity analyser running single-threaded on a 2.1 GHz Intel Core
2 Duo with 1 GB of memory. For each system we used a timeout of 30 seconds.

Some comments: What is noteworthy is the good performance of POP∗as a
direct termination method in comparison to MPO. It is well-known that MPO
implies primitive recursive derivation length, cf. [12]. In contrast to this POP∗

4 Available online at http://minisat.se.
5 These 957 systems can be found online: http://www.lri.fr/∼marche/

termination-competition/2007/webform.cgi?command=trs&file=trs-standard.

db&timelimit=120
6 The main reason for this delineation is that in related work [7,17] confluent con-

structor TRS are considered.

http://minisat.se
http://www.lri.fr/~marche/termination-competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit=120
http://www.lri.fr/~marche/termination-competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit=120
http://www.lri.fr/~marche/termination-competition/2007/webform.cgi?command=trs&file=trs-standard.db&timelimit=120


Table 1. Experimental results

POP∗ LMPO SMC MPO

T Yes 65 74 156 106
Maybe 892 812 395 847
Timeout (30 sec.) 0 71 406 4

TC Yes 41 54 83 65
Maybe 408 372 271 381
Timeout (30 sec.) 0 23 95 3

TCO Yes 19 25 38 29
Maybe 217 201 147 207
Timeout (30 sec.) 0 10 51 0

Average yes time (milliseconds) 15 14 1353 10

implies polynomial runtime complexity and is thus a much weaker order. Still
more than half of the TRSs compatible with MPO are also compatible with
POP∗. On the other hand the comparison between POP∗ and LMPO is quite
favourable for our approach. Compatibility with LMPO tells us that the given
TRS is (in principle) polytime computable, while compatibility with POP∗ tells
additionally that the runtime of a straightforward implementation (using an
innermost strategy) is polytime computable. Hence compatibility with POP∗

provides us with a theoretical stronger result, while the difference on the exper-
imental data appears negligible.

The good performance of SMC in strength is a clear indication that currently
(restrictions of) semantic termination techniques (like polynomial interpreta-
tions) are of some interest in automatically estimating the runtime complexity
of TRSs. This may be surprising, as for additive polynomial interpretations it is
(almost) trivial to check that the induced upper bound on the derivation height
is polynomial. However, the significant increase in the time necessary to find an
additive polynomial interpretation, as indicated in Table 1, clearly shows the
limits of semantic methods for large examples.

7 An Application: Complexity of Scheme Programs

In recent work together with Hirokawa and Middeldorp (see [2]) we study the
runtime complexity of (a subset of) Scheme programs by a translation into so-
called S-expression rewrite systems (SRS for short). By designing the translation
to be complexity preserving, the complexity of the initial Scheme program can
be estimated by analysing the complexity of the resulting SRS. Here we indicate
how our main theorem is applicable to (a subset of) S-expression rewrite systems,
cf. [24].



Definition 25. Let K be a set of constants, V be a set of variables such that
V ∩K = ∅, and ◦ /∈ K∪V a variadic function symbol. We define the set S(K,V)
of S-expressions built from K and V as T (K ∪ {◦},V). We write (s1 · · · sn)
instead of ◦(s1, . . . , sn). An S-expression rewrite system (SRS for short) is a
TRS with the property that the left- and right-hand sides of all rewrite rules are
S-expressions.

Let S be an SRS over S(K,V) and let K = D ∪ C such that D ∩ C = ∅.
We call the elements of C constructor constants and the elements of D defined
constants. We momentarily redefine the notion of value in the context of SRSs.
The set of values Val(S) of S with respect to C is inductively defined as follows:

1. if v ∈ K then v ∈ Val(S),
2. if v1, . . . , vn ∈ Val(S) and c ∈ C then (c v1 . . . vn) ∈ Val(S).

Observe that (defined) constants are values, this reflects that in Scheme
procedures are values, cf. [21] and allows for a representation of higher-order
programs. Scheme programs are conceivable as SRSs allowing conditional if ex-
pressions in conjunction with an eager, i.e., innermost rewrite strategy. Thus we
can delineate a class of SRSs that easily accommodate a suitably large subset of
Scheme programs.

Definition 26. S is called a constructor if, for every l → r ∈ S, l = (l0 · · · ln)
with l0 ∈ D and li ∈ Val(S) for all i ∈ {1, . . . , n}. (Here the set of values Val(S)
is defined with respect to C.)

Corollary 27. Let > denote a precedence on K such that for all f ∈ D we
have for all c ∈ C: f > c and let >pop∗ denote the induced POP∗. Let S be a
constructor SRS compatible with >pop∗. Then for all f ∈ D of arity n and for
all values s1, . . . , sn: Dl(S, i−→)((f s1 . . . sn)) is bounded by a polynomial in the
sum of the sizes of the arguments s1, . . . , sn.

Proof. It is important to note that the set of S-expressions S(K,V) equals T (K∪
{◦},V), i.e., SRSs are first-order rewrite systems, whose single defined symbol
is the variadic function symbol ◦.

Hence Theorem 27 follows almost immediately from Corollary 7. However the
fact that according to the above definition values may contain defined symbol
need to be taken into account. For that is suffices to redefine Definitions 19
and 20 in the natural way. It is not difficult to argue that suitable adaption of
Lemmata 21 and 22 to SRSs are provable. ut

8 Conclusion

In this paper we have introduced a restriction of the multiset path order, called
polynomial path order (POP∗ for short). Our main result states that POP∗

induces polynomial runtime complexity. In Section 6 we have provided evidence
that our approach performs well in comparison to related methods. In Section 7



the necessary theory to apply our main theorem in the context of (higher-order)
functional languages with eager evaluations has been developed. In related work
(together with Hirokawa and Middeldorp), studying the termination behaviour
and the runtime complexity of (a subclass of higher-order) Scheme programs,
this basis has proven quite useful, cf. [2].

In concluding we also want to mention that as an easy corollary to our main
theorem we obtain that POP∗ also characterises the polytime computable func-
tions. To be precise the polytime computable functions are exactly the functions
computable by an orthogonal constructor TRS (based on a simple signature)
compatible with POP∗. (Here simple signature means that the size of any con-
structor term depends linearly on its depth, an equivalent restriction is necessary
in [17].) See [3] for details.

In future work we will strengthen the applicability of our method. The ex-
perimental evidence presented in Section 6 shows that compatibility of rewrite
systems with POP∗ can be easily and quickly tested. However, the strength of the
method seems to be improvable. One possible field of future work is to extend
POP∗ to quasi-precedences. The theoretical changes necessary to accomodate
quasi-precedences seem to be manageable. Another natural extension is to com-
bine POP∗ with the transformation technique of semantic labeling, cf. [27]. It is
easy to see that semantic labeling (in the basic form) does not affect the deriva-
tion length. Furthermore for finite models the main theorem remains directly
applicable.
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