
On a Correspondence between Predicative
Recursion and Register Machines∗

Martin Avanzini1, Naohi Eguchi2, and Georg Moser1

1 Institute of Computer Science,
University of Innsbruck, Austria
{martin.avanzini,georg.moser}@uibk.ac.at

2 Mathematical Institute,
Tohoku University, Japan
eguchi@math.tohoku.ac.jp

Abstract
We present the small polynomial path order sPOP∗. Based on sPOP∗, we study a class of rewrite
systems, dubbed systems of predicative recursion of degree d, such that for rewrite systems in this
class we obtain that the runtime complexity lies in O(nd). We show that predicative recursive
rewrite systems of degree d define functions computable on a register machine in time O(nd).

1998 ACM Subject Classification F.2.2, F.4.1, F.4.2, D.2.4, D.2.8

Keywords and phrases Runtime Complexity, Polynomial Time Functions, Implicit Computa-
tional Complexity, Rewriting

1 Introduction

In [1] we propose the small polynomial path order (sPOP∗ for short). The order sPOP∗

provides a characterisation of the class of polynomial time computable function (polytime
computable functions for short) via term rewrite systems. Any polytime computable function
gives rise to a rewrite system that is compatible with sPOP∗. On the other hand any function
defined by a rewrite system compatible with sPOP∗ is polytime computable. The proposed
order embodies the principle of predicative recursion as proposed by Bellantoni and Cook [4].
Our result bridges the subject of (automated) complexity analysis of rewrite systems and
the field of implicit computational complexity (ICC for short).

Based on sPOP∗, one can delineate a class of rewrite systems, dubbed systems of pre-
dicative recursion of degree d, such that for rewrite systems in this class we obtain that
the runtime complexity lies in O(nd). This is a tight characterisation in the sense that one
can provide a family of systems of predicative recursion of depth d, such that their runtime
complexity is bounded from below by Ω(nd) [1]. In this note, we study the connection
between functions f defined by predicative recursive term rewrite systems (TRSs) of degree
d and register machines. We show that any such function can be computed by a register
machine operating in time O(nd). This result further emphasises the fact that the runtime
complexity of a TRS (cf. [7]) is an invariant cost model [3]. Our work was essentially motiv-
ated by Leivant’s work on predicative recurrence [8] and Marion’s strict ramified primitive
recursion [10].

∗ This work is partially supported by FWF (Austrian Science Fund) project I-608-N18 and by a grant of
the University of Innsbruck.

© M. Avanzini, N. Eguchi and G. Moser;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Let R be a TRS and fix a (quasi)-precedence < := �] ∼ on the symbols of R.
We are assuming that the arguments of every function symbol are partitioned in to nor-
mal and safe ones. Notationally we write f(t1, . . . , tk ; tk+1, . . . , tk+l) with normal argu-
ments t1, . . . , tk separated from safe arguments tk+1, . . . , tk+l by a semicolon. We define
the equivalence ∼s on terms respecting this separation as follows: s ∼s t holds if s = t

or s = f(s1, . . . , sk ; sk+1, . . . , sk+l) and t = g(t1, . . . , tk ; tk+1, . . . , tk+l) where f ∼ g and
si ∼s tπ(i) for all i = 1, . . . , k+ l such that the permutation π on {1, . . . , k+ l} maps normal
to normal argument positions. We write s .n t if t is a proper subterm of s (modulo ∼s) at a
normal argument position: f(s1, . . . , sk ; sk+1, . . . , sk+l) .n t if si � · ∼s t and i ∈ {1, . . . , k}.

The following definition introduces small polynomial path orders >spop∗. The order
allows recursive definitions only on recursive symbols Drec ⊆ D. Symbols in D \ Drec are
called compositional and denoted by Dcomp. To retain the separation under ∼s, we require
∼ ⊆ C2 ∪ D2

rec ∪ D2
comp. We set >spop∗ := ∼s ∪ >spop∗ and also write >spop∗ for the product

extension of >spop∗ to tuples ~s = 〈s1, . . . , sn〉 and ~t = 〈t1, . . . , tn〉: ~s >spop∗ ~t holds if
si >spop∗ ti for all i = 1, . . . , n and ~s >spop∗ ~t holds if additionally si0 >spop∗ ti0 for some
i0 ∈ {1, . . . , n}. We denote by T (F≺f ,V) the set of terms build from variables and function
symbols F≺f := {g | f � g}.

I Definition 1.1. Let s = f(s1, . . . , sk ; sk+1, . . . , sk+l). Then s >spop∗ t if either

1) si >spop∗ t for some argument si of s.
2) f ∈ D, t = g(t1, . . . , tm ; tm+1, . . . , tm+n) with f � g and the following conditions hold:

(i) s .n tj for all normal arguments tj of t, (ii) s >spop∗ tj for all safe arguments tj of t,
and (iii) tj 6∈ T (F≺f ,V) for at most one j ∈ {1, . . . , k + l}.

3) f ∈ Drec, t = g(t1, . . . , tk ; tk+1, . . . , tk+l) with f ∼ g and the following conditions hold: (i)
〈s1, . . . , sk〉 >spop∗ 〈tπ(1), . . . , tπ(k)〉 for some permutation π, (ii) 〈sk+1, . . . , sk+l〉 >spop∗
〈tτ(k+1), . . . , tτ(k+l)〉 for some permutation τ .

The depth of recursion rd(f) is inductively defined in correspondence to the rank of f
in <, but only takes recursive symbols into account: Let n = max {0} ∪ {rd(g) | f � g}.
Then rd(f) := 1 + n if f ∈ Drec and otherwise rd(f) := n. We say a constructor TRS R is
predicative recursive of degree d if R is compatible with an instance >spop∗ and the maximal
depth of recursion of a function symbol in R is d.

I Theorem 1.2 ([1]). Let R be predicative recursive of degree d. Then the innermost runtime
complexity of R lies in O(nd). Moreover, this bound is tight.

As one anonymous reviewer points out, Theorem 1.2 also holds with respect to full
rewriting, if R is in addition a non-duplicating overlay system [6].

2 Register Machines Compute Predicative TRSs

Let W denote the set of words over a binary alphabet. Fix a predicative constructor TRS R
of degree d that computes functions over W. We will now show that the functions computed
by R can be realised on a register machine (RM) [5], operating in time asymptotic to nd
where n is the size of the input.

First we make precise the notion of computation on TRSs. We assume that the encoding
of words W as terms makes use of dyadic successors s0 and s1 that append the corresponding
character to its argument, as well as the constant ε to construct the empty word. Henceforth
we set C := {s0, s1, ε} and by the one-to-one correspondence between ground constructor
terms and binary wordsW we allow ourselves to confuse these sets. Let f be a defined symbol

in R of arity k. Then R computes the function f : Wk →W defined as f(w1, . . . , wk) = w

if f(w1, . . . , wk) −→!
R w. This notion is well-defined if R is orthogonal (hence confluent) and

completely defined, i.e., normal forms and constructor terms coincide.
A RM over W contains a finite set of registers R = {x1, . . . , xn} that store words over

W. We use the notion of RM from [5] adapted from N to binary words W and identify RMs
with goto-programs over variables R that allow to (i) copy (the content of) one variable to
another, (ii) appending 0, 1, or removing the last bit of a variable, and (iii) that can perform
conditional branches based on the last bit of a variable. A RM computes the function
f : Wk → W with k 6 n defined as follows: f(w1, . . . , wk) = w if on initial assignment wi
to xi for all i = 1, . . . , k and ε to xi for all i = k + 1, . . . , n, the associated goto-program
halts and the content of a dedicated output-variable xo equals w. The complexity of an RM
is given by the number of executed instructions as function in the sum of sizes of the input.

To simplify matters, we normalise right-hand sides of rewrite rules. Throughout the fol-
lowing, we denote by ~u,~v, ~w, possibly extended by subscripts, vectors of constructor terms.
Let Rn denote some fixpoint on R of following normalisation operator: if the TRS con-
tains a rule f(~uf ; ~vf) → g(~ug ; ~t1, h(~uh ; ~t2), ~t3) where f � h, h ∈ D and ~t1, ~t2 or ~t3 con-
tain at least one defined symbol, replace the rule with f(~uf ; ~vf) → g′(~uf ; ~vf , ~t1, ~t2, ~t3) and
g′(~uf ; ~vf , ~x1, ~x2, ~x3)→ g(~ug ; ~x1, h(~uh ; ~x2), ~x3). Here g′ is a fresh composition symbol so that
f � g′ � g, h and variables ~x1, ~x2, ~x3 do not occur elsewhere. Note that Rn is well-defined
as in each step the number of defined symbols in right-hand sides are decreasing.

I Lemma 2.1. We have (i) −→R ⊆ −→+
Rn

and (ii) Rn is predicative recursive of degree d.

By Property (i) it is easy to verify that any function computed by R is also computed by
Rn. Property (ii) and the definition of Rn allows the classification of each f(~ul ; ~vl)→ r ∈ Rn
into one of the following forms.
- Construction Rule: r is a constructor term;
- Recursion Rule: r = g(~ug ; ~vg, f′(~ur ; ~vr), ~wg) where f � g and f ∼ f ′;
- Composition Rule: r = g(~ug ; ~vg, h(~ur ; ~vr), ~wg) where f � g, h.
In the latter two cases the context g(~ug ; ~vg,2, ~wg) might also be missing. Note that for
recursion rules, the sum of sizes of ~ul is strictly greater than the sum of the sizes of ~ur.

I Theorem 2.2. Let R be an orthogonal and completely defined predicative system of degree
d. Every function f computed by R is computed by a register machine RMf operating in
time O(nd), where n refers to the sum of the sizes of normal arguments.

Proof. Consider a function f computed byR, and let f be the corresponding defined symbol.
We define a program Pf which, on input variables ~If initialised with ~v, computes f(~v) in a
dedicated output variable Of , executing no more than O(nrd(f)) instructions. The program Pf
works by reduction according to the normalised TRSRn. For this note thatRn is orthogonal,
hence Lemma 2.1 (1) gives that Rn reduces f(~v) to f(~v) independent on the evaluation
strategy. The construction is by induction on the rank f in < (on the extended signature of
Rn). We only consider the more involved inductive step. By induction hypothesis for each
g below f in the precedence there exist a program Pg that compute the function defined by
g operating in time O(nrd(g)), where n is the sum of sizes of normal arguments to g.

Suppose the input variables ~If hold the arguments ~v. Due to linearity, pattern matches
can be hard-coded by looking at suffixes in ~If bounded in size by a constant. Consequently
in a constant number of steps Pf can check which rules applies on f(~v). First suppose
f ∈ Dcomp, thus f(~u) reduces either using a construction or composition rule.

The interesting case is when f(~u) i−→Rn
g(~v1, h(~w), ~v2) due to a composition rule. Since

f � g, h, induction hypothesis gives programs Pg and Ph that compute the functions defined

by g and h respectively. The program Pf first stores the arguments to h in the dedicated
input registers ~Ih and executes the code of Ph. Since ~w are constructor terms, initialisation
of ~Ih requires only constant time similar to above. Further the sum of sizes of normal inputs
in ~u and ~w differ only by a constant factor c1, hence executing Ph takes time O((c1 ·n)rd(h)) =
O(nrd(h)). We repeat the procedure using a program Pg in time O(nrd(g)). Here we employ
that due to separation of safe and normal arguments, the complexity of computing the call
of g does not depend on the result of h(~w). Overall, employing rd(f) > rd(g), rd(h), the
runtime is in O(nrd(h) + nrd(g)) ⊆ O(nrd(f)).

Now suppose f ∈ Drec and thus rd(f) > 1. Consider an innermost reduction of f. Wlog

f(~v) = f0(~v0) i−→Rn
g1(~u1, f1(~v1), ~w1) i−→R g1(~u1, g2(~u2, . . . , gk(~uk, fk(~vk), ~wk), . . . , ~w2), ~w1)

where the first k applications follow from applying recursive rules, and fk(~vk) matches either
a construction or composition rule. By definition the sum of sizes of normal arguments
in the recursion arguments ~v0, . . . , ~vk is strictly decreasing, and conclusively k is bounded
by n. To compute f(~v), the program Pf evaluates the last term inside out, starting from
fk(~vk). Since we have only a constant number of registers at our disposal, we cannot program
the machine to memorise or recompute all recursion arguments ~v0, . . . , ~vk in time linear in
n. Instead, we employ per argument position of f an additional register and exploit the
following one-to-one correspondence between arguments ~vi+1 and ~vi: ~vi+1 is obtained from
~vi by flipping and chopping a constant number of bits according to the rewrite rule applied
in step i. For i = 0, . . . , n, the machine performs this operation on the input registers storing
~vi, pushing the chopped bits onto the corresponding auxiliary registers in constant time. To
recall the rule applied in step i, we associate each rule with a binary number of fixed size,
and push this number on an additional register that we abuse as a call stack. Since ~vi+1 is
obtained from ~vi by executing a constant number of instructions, ~vk is constructed in time
k = O(n), allowing stepwise reconstruction of recursion arguments starting from ~vk.

Recall that the sum of sizes of normal recursion arguments ~vi (i = 1, . . . , k) is de-
creasing and consequently bounded by n. Consider the evaluation of fk(~vk) that reduces
by construction either using a composition or projection rule. In both cases we con-
clude that fk(~vk) is computed in time O(nrd(f)−1) as in the case f ∈ Dcomp, employing
rd(f) > rd(g) for all g such that f � g. The evaluation is then continued inside out ex-
actly as in the case f ∈ Dcomp, recovering the arguments ~vi from ~vi+1 after each step in
constant time. Employing rd(f) > rd(gi) we see that the application of gi is bounded by
O(nrd(g)) ⊆ O(nrd(f)−1). Overall, employing k = O(n), the procedure stops after executing
at most O(n) + O(n · nrd(f)−1) = O(nrd(f)) instructions. This concludes the final case. J

3 Experimental Results

We have implemented sPOP∗ in the Tyrolean Complexity Tool TCT1. In Table 1 we con-
trast sPOP∗ to its predecessors lightweight multiset path orders (LMPO for short) [9] and
polynomial path orders [2] (POP∗ for short)2. LMPO characterises the class of polytime com-
putable functions, also by embodying the principle of predicative recursion. Since LMPO al-
lows simultaneous recursion it fails at binding the runtime complexity polynomially. POP∗

characterises predicative recursive systems but cannot give a precise bound on the runtime

1 TCT is open source and available from http://cl-informatik.uibk.ac.at/software/tct.
2 See http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2012 for full experimental

evidence and explanation on the setup.

http://cl-informatik.uibk.ac.at/software/tct
http://cl-informatik.uibk.ac.at/software/tct/experiments/wst2012

complexity. Finally we also included multiset path orders (MPO for short) in the table, as
all mentioned orders are essentially syntactic restrictions of MPO.

bound MPO LMPO POP∗ sPOP∗

O(1) 9\0.06

O(n1) 32\0.07

O(n2) 38\0.09

O(n3) 39\0.20

O(nk) 43\0.05 39\0.20

yes 76\0.09 57\0.05 43\0.05 39\0.07

maybe 681\0.16 700\0.11 714\0.11 718\0.11

Figure 1 Number of oriented problems and
average execution time in seconds.

Comparing LMPO and MPO, the experi-
ments reveal that enforcing predicative recur-
sion limits the power of our techniques by
roughly one fourth on our testbed. Compar-
ing POP∗ with sPOP∗ we see an increase in
precision accompanied with only a minor de-
crease in power. Of the four systems that
can be handled by POP∗ but not by sPOP∗,
two fail to be oriented because sPOP∗ weakens
the multiset status to product status, and two
fail because sPOP∗ enforces a more restrictive
composition scheme.

4 Conclusion and Future Work

We have shown that predicative TRSs of recursion depth d can be computed by RMs op-
erating in time O(nd). One question that remains open is the reverse direction on the
correspondence between RMs and predicative TRSs. Using a pairing constructor for col-
lecting the contents of the registers, the simulation of O(nd) time-bounded RMs is straight
forward to define using recursion up to depth d. Without such a constructor however, the
proof gets significantly more involved. Still, we are sufficiently convinced of our argument to
conjecture that also the reverse direction on the correspondence between RMs and predic-
ative TRSs holds. More precisely, suppose f is computable by a RM in time O(nd). Then
there exists a predicative recursive TRS R of degree d that computes f . In future work we
also want to investigate whether we can weaken the assumptions in Theorem 2.2 so that
compatibility with sPOP∗ is no longer required.

References
1 M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characterisation of the

Polytime Computable Functions. CoRR, cs/CC/1201.2553, 2012.
2 M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proc. of 9th FLOPS,

volume 4989 of LNCS, pages 130–146, 2008.
3 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime

Computability. In Proc. of 21st RTA, volume 6 of LIPIcs, pages 33–48, 2010.
4 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime

Functions. CC, 2(2):97–110, 1992.
5 K. Erk and L. Priese. Theoretische Informatik: Eine umfassende Einführung. Springer

Verlag, 3te auflage edition, 2008.
6 N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for Termination and Complexity.

JAR, 2012. To appear.
7 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency

Pair Method. CoRR, abs/1102.3129, 2011. submitted.
8 D. Leivant. Stratified Functional Programs and Computational Complexity. In Proc. 20th

POPL, pages 325–333, 1993.
9 J.-Y. Marion. Analysing the Implicit Complexity of Programs. IC, 183:2–18, 2003.

10 J.-Y. Marion. On Tiered Small Jump Operators. LMCS, 5(1), 2009.

	Introduction
	Register Machines Compute Predicative TRSs
	Experimental Results
	Conclusion and Future Work

