
A New Order-theoretic Characterisation of the Polytime Computable
FunctionsI

Martin Avanzinia, Naohi Eguchia, Georg Mosera

aInstitute of Computer Science, University of Innsbruck, Austria

Abstract

We propose a new order-theoretic characterisation of the class of polytime computable functions. To this
avail we define the small polynomial path order (sPOP∗ for short). This termination order entails a new
syntactic method to analyse the innermost runtime complexity of term rewrite systems fully automatically:
for any rewrite system compatible with sPOP∗ that employs recursion up to depth d, the (innermost) runtime
complexity is polynomially bounded of degree d. This bound is tight. Thus we obtain a direct correspondence
between a syntactic (and easily verifiable) condition of a program and the asymptotic worst-case complexity
of the program.

Keywords: Term Rewriting, Complexity Analysis, Implicit Computational Complexity, Automation
2000 MSC: 68Q42,
2000 MSC: 03D15,
2000 MSC: 03B70

1. Introduction

In this paper we are concerned with the complexity analysis of term rewrite systems (TRSs for short).
Based on a careful investigation into the principle of predicative recursion as proposed by Bellantoni and
Cook [1] we introduce a new termination order, the small polynomial path order (sPOP∗ for short). The
order sPOP∗ provides a new characterisation of the class FP of polytime computable functions. Any function
f computable by a TRS R compatible with sPOP∗ is polytime computable. On the other hand for any
polytime computable function f , there exists a TRS Rf computing f such that R is compatible with
sPOP∗. Moreover sPOP∗ directly relates the depth of recursion of a given TRS to the polynomial degree
of its runtime complexity. More precisely, we call a rewrite system R predicative recursive of degree d if
R is compatible with sPOP∗ and the depth of recursion of all function symbols in R is bounded by d (see
Section 3 for the formal definition). We establish that any predicative recursive rewrite system of degree
d admits runtime complexity in O(nd). Here n refers to the sum of the sizes of inputs. Furthermore we
obtain a novel, order-theoretic characterisation of DTIME(nd), the class of functions computed on register
machines in O(nd) steps.

Thus we obtain a direct correspondence between a syntactic (and easily verifiable) condition of a program
and the asymptotic worst-case complexity of the program. In this sense our work is closely related to similar
studies in the field of implicit computational complexity (ICC for short). On the other hand the order
sPOP∗ entails a new syntactic criteria to automatically establish polynomial runtime complexity of a given
TRS. This criteria extends the state of the art in runtime complexity analysis as it is more precise or
more efficient than related techniques. Note that the proposed syntactic method to analyse the (innermost)

IThis work has been partially supported by the Austrian Science Fund, project number I-603-N18, by the John Templeton
Foundation, and the Japan Society for the Promotion of Science.

Email addresses: martin.avanzini@uibk.ac.at (Martin Avanzini), naohi.eguchi@uibk.ac.at (Naohi Eguchi),
georg.moser@uibk.ac.at (Georg Moser)

Preprint submitted to Theoretical Computer Science May 7, 2014

runtime complexity of rewrite systems is fully automatic. For any given TRS, compatibility with sPOP∗ can
be efficiently checked by a machine. Should this check succeed, we get an asymptotic bound on the runtime
complexity directly from the parameters of the order. It should perhaps be emphasised that compatibility
of a TRS with sPOP∗ implies termination and thus our complexity analysis technique does not presuppose
termination.

In sum, in this work we make the following contributions:

- We propose a new recursion-theoretic characterisation Bwsc over binary words of the class FP. We
establish that those Bwsc functions that are definable with d nestings of predicative recursion can be
computed by predicative recursive TRSs of degree d (cf. Theorem 4). Note that these functions belong
to DTIME(nd).

- We propose the new termination order sPOP∗; sPOP∗ captures the recursion-theoretic principles of
the class Bwsc. Thus we obtain a new order-theoretic characterisation of the class FP. Moreover,
for any predicative recursive TRS of degree d its runtime complexity lies in O(nd) (cf. Theorem 1).
Furthermore this bound is tight, that is, we provide a family of TRSs, delineated by sPOP∗, whose
runtime complexity is bounded from below by Ω(nd), cf. Example 5.

- We extend upon sPOP∗ by proposing a generalisation, denoted sPOP∗PS, admitting the same proper-
ties as above. This generalisations incorporates a more general recursion scheme that makes use of
parameter substitution (cf. Theorem 2).

- We establish a novel, order-theoretic characterisation of DTIME(nd). We show that DTIME(nd) cor-
responds to the class of functions computable by tail-recursive predicative TRSs of degree d. This
characterisation is based on the generalised small polynomial path order sPOP∗PS (cf. Theorem 6).

- sPOP∗ gives rise to a new syntactic method for polynomial runtime complexity method. This method
is fully automatic. We have implemented the order sPOP∗ in the Tyrolean Complexity Tool TCT,
version 2.0, an open source complexity analyser [2]. The experimental evidence obtained indicates the
efficiency of the method and the obtained increase in precision.

1.1. Related Work
There are several accounts of predicative analysis of recursion in the (ICC) literature. We mention only

those related works which are directly comparable to our work. See [3] for an overview on ICC.
The class Bwsc is a syntactic restriction of the recursion-theoretic characterisation N of the class FEXP of

exponential time computable functions, given by Arai and the second author in [4]. To account for the fact
that FEXP is not closed under composition in general, the definition of N relies on a syntactically restricted
form of composition. The same composition scheme allows a fine-grained control in our class Bwsc through
the degree of recursion. In [5] the authors use the class N as a sufficient basis for an order-theoretic account
of FEXP, the exponential path order (EPO∗ for short). Due to the close relationship of Bwsc and N , our
order is both conceptually and technically close to EPO∗.

Notably the clearest connection of our work is to Marion’s light multiset path order (LMPO for short) [6]
and the polynomial path order (POP∗ for short) [7–9]. Both orders form a strict extension of sPOP∗, but lack
the precision of the latter. Although LMPO characterises FP, the runtime complexity of compatible TRSs
is not polynomially bounded in general. POP∗ induces polynomial runtime complexities, but the obtained
complexity certificate is usually very imprecise. In particular, due to the multiset status underlying POP∗,
for each d ∈ N one can form a TRS compatible with POP∗ that defines only a single function, but whose
runtime is bounded from below by a polynomial of degree d, in the sizes of the inputs.

In Bonfante et. al. [10] restricted classes of polynomial interpretations are studied that can be employed
to obtain polynomial upper bounds on the runtime complexity of TRSs. Polynomial interpretations are
complemented with quasi-interpretations in [11], giving rise to alternative characterisations of complexity
classes. None of the above results are applicable to relate the depth of recursion to the runtime complexity,
in the sense mentioned above. Furthermore it is unknown how the body of work on quasi-interpretations can

2

be employed in the context of runtime complexity analysis. We have also drawn motivation from Leivant’s
and Marion’s characterisations of DTIME(nd) [12, 13], that provide related fine-grained classification of the
polytime computable functions. Again, these results lack applicability in the context of runtime complexity
analysis.

Polynomial complexity analysis is an active research area in rewriting. Starting from [14] interest in this
field greatly increased over the last years, see for example [15–17] and [18] for an overview. This is partly
due to the incorporation of a dedicated category for complexity into the annual termination competition
(TERMCOMP).1 However, it is worth emphasising that the most powerful techniques for runtime complexity
analysis currently available, basically employ semantic considerations on the rewrite systems, which are
notoriously inefficient.

We also want to mention ongoing approaches for the automated analysis of resource usage in programs.
Notably, Hoffmann et al. [19] provide an automatic multivariate amortised cost analysis exploiting typing,
which extends earlier results on amortised cost analysis. Finally Albert et al. [20] present an automated
complexity tool for Java Bytecode programs, Alias et al. [21] give a complexity and termination analysis for
flowchart programs, and Gulwani et al. [22] as well as Zuleger et al. [23] provide an automated complexity
tool for C programs.

1.2. Outline
We present the main intuition behind sPOP∗ and provide an informal account of the obtained technical

results.
The order sPOP∗ essentially embodies the predicative analysis of recursion set forth by Bellantoni and

Cook [1]. In [1] a recursion-theoretic characterisation B of the class of polytime computable functions is
proposed. This analysis is connected to the important principle of tiering introduced by Simmons [24] and
Leivant [12, 25, 26]. The essential idea is that the arguments of a function are separated into normal and
safe arguments (or correspondingly into arguments of different tiers). Building on this work we present a
subclass Bwsc of B. Crucially the class Bwsc admits only a weak form of composition. Inspired by a result
of Handley and Wainer [27], we show that Bwsc captures the polytime functions. This establishes our first
main result.

We formulate the class Bwsc over the set {0, 1}∗ of binary words, the empty word is denoted by ε. Argu-
ments of functions are partitioned into normal and safe ones. In notation, we write f(t1, . . . , tk ; tk+1, . . . , tk+l)
where normal arguments are to the left, and safe arguments to the right of the semicolon. Abbreviate
~x = x1, . . . , xk and ~y = y1, . . . , yl. The class Bwsc, depicted in Fig. 1, is the smallest class containing certain
initial functions and closed under safe recursion on notation (SRN) and weak safe composition (WSC).
By the weak form of composition only values are ever substituted into normal argument positions.

Suppose the definition of a TRS R is based on the equations in Bwsc. It is not difficult to deduce a
precise bound on the runtime complexity of R by measuring the number of nested applications of safe
recursion, the so called depth of recursion. In contrast Bellantoni and Cooks definition [1] of B is obtained
from Fig. 1 by replacing weak safe composition with the more liberal scheme of safe composition (SC):
f(~x ; ~y) = h(~i(~x ;) ;~j(~x ; ~y)). As soon as one of the functions ~i is size increasing, a tight correspondence
between the runtime complexity and the depth of recursion is lost.

Our central observation is that from the function algebra Bwsc, one can distill a termination argument
for the TRS R. With sPOP∗, this implicit termination argument is formalised as a termination order.
In order to employ the separation of normal and safe arguments, we fix for each defined symbol in R a
partitioning of argument positions into normal and safe positions. For constructors we fix (as in Bwsc) that
all argument positions are safe. Moreover sPOP∗ restricts recursion to normal argument. Dual, only safe
argument positions allow the substitution of recursive calls. Via the order constraints we can also guarantee
that only normal arguments are substituted at normal argument positions. We emphasise that our notion of
predicative recursive TRS is more liberal than the class Bwsc. Notably values are not restricted to words, but

1http://termcomp.uibk.ac.at/.

3

http://termcomp.uibk.ac.at/

Initial Functions Si(;x) = xi (i = 0, 1)
P (; ε) = ε
P (;xi) = x (i = 0, 1)

Ik,lj (~x ; ~y) = xj (j ∈ {1, . . . , k})
Ik,lj (~x ; ~y) = yj−k (j ∈ {k + 1, . . . , l + k})
C(; ε, y, z0, z1) = y
C(;xi, y, z0, z1) = zi (i = 0, 1)
O(~x ; ~y) = ε

Weak Safe Composition f(~x ; ~y) = h(xi1 , . . . , xin ;~g(~x ; ~y))

Safe Recursion on Notation f(ε, ~x ; ~y) = g(~x ; ~y)
f(zi, ~x ; ~y) = hi(z, ~x ; ~y, f(z, ~x ; ~y)) (i = 0, 1)

Figure 1: Defining initial functions and operations for Bwsc

can be formed from arbitrary constructors. We allow arbitrary deep right-hand sides, and implicit casting
from normal to safe arguments. Still the main principle underlying Bwsc remains reflected.

The remainder of the paper is organised as follows. After giving some preliminaries, Section 3 introduces
the order sPOP∗. Here we also prove correctness of sPOP∗ with respect to runtime complexity analysis. In
Section 4 we incorporate parameter substitution into the order sPOP∗. In Section 5 we then show that these
orders are complete for FP, in particular we precisely relate sPOP∗ to the class Bwsc. In total we obtain an
order-theoretic characterisation of FP. Exploiting the fine-grained control given by the degree of recursion,
in Section 6 we provide an order-theoretic characterisation of DTIME(nd). Finally in Section 7 and 8 we
clarify the expressiveness of the established small polynomial path orders and conclude.

2. Preliminaries

We denote by N the set of natural numbers {0, 1, 2, . . . }. For a finite alphabet A of characters, we
denote by W(A) the set of words over A, the empty word is denoted by ε. Let R be a binary relation.
We denote by R+ the transitive, by R∗ the transitive and reflexive closure, and Rn denotes for n ∈ N the
n-fold composition of R. We write a R b for (a, b) ∈ R, the relation R is well-founded if there exists no
infinite sequence a1 R a2 R a3 R The relation R is a preorder if it is transitive and reflexive, it is a
strict partial order if it is irreflexive, antisymmetric and transitive, and R is an equivalence relation if it is
reflexive, symmetric and transitive. Note that the transitive and reflexive closure of an order R (on a set
S) gives always a preorder. Consider a preorder >. Define a ∼ b if a > b and b > a. Then this equivalence
defines a partitioning of > into the equivalence ∼ and a strict partial order >.

2.1. Term Rewriting
We assume at least nodding acquaintance with the basics of term rewriting [28]. We fix a countably

infinite set of variables V and a finite set of function symbols F , the signature. For each f ∈ F , the arity
of f is fixed. The set of terms formed from F and V is denoted by T (F ,V). A term t ∈ T (F ,V) is called
ground if it contains no variables. The set of ground terms is indicated by T (F). The signature F contains
a distinguished set of constructors C ⊆ F , elements of T (C) ⊆ T (F) are called values. Elements of F that
are not constructors are called defined symbols and collected in D. If not mentioned otherwise we denote by
x, y, z variables, f, g, h, . . . denote defined symbols. Terms are denoted by l, r or s, t, and values by u, v, w.
All denotations are possibly followed by subscripts. We use the notation ~s to abbreviate a finite sequence
of terms s1, . . . , sn.

The root symbol of term t is denoted as rt(t). The size of t is denoted by |t| and refers to the number of
occurrences of symbols t, the depth dp(t) is given recursively by dp(t) = 1 if t ∈ V, and dp(f(t1, . . . , tn)) =
1 + max{dp(ti) | i = 1, . . . , n}. Here we employ the convention that the maximum of an empty set is equal
to 0. A rewrite rule is a pair (l, r) of terms, in notation l→ r, such that the left-hand side l = f(l1, . . . , ln)

4

is not a variable, the root f is defined, and all variables appearing in the right-hand r occur also in l. A
term rewrite system (TRS for short) R is a set of rewrite rules.

We adopt call-by-value semantics and define the rewrite relation −→R as follows.

(i)
f(l1, . . . , ln)→ r ∈ R, σ : V → T (C)

f(l1σ, . . . , lnσ) −→R rσ
(ii)

s −→R t

f(. . . , s, . . .) −→R f(. . . , t, . . .)
.

If s −→R t we say that s reduces to t in one step. For (i) we make various assumptions on R: we suppose
that there is exactly one matching rule f(l1, . . . , ln) → r ∈ R; the arguments li (i = 1, . . . , n) contains no
defined symbols; and variables occur only once in f(l1, . . . , ln). That is, throughout this paper we fix R
to denote a completely defined,2 orthogonal constructor TRS [28]. Furthermore we are only concerned with
innermost rewriting. Note that orthogonality enforces that our model of computation is deterministic.3 If
a term t has a normal form, then this term is unique and denoted by t↓. For every n-ary defined symbol
f ∈ D, R defines a partial function JfK : T (C)n → T (C) where

JfK(u1, . . . , un) := f(u1, . . . , un)↓ if f(u1, . . . , un)↓ ∈ T (C) ,

and JfK(u1, . . . , un) is undefined otherwise. Note that when R is terminating, i.e. when −→R is well-founded,
the function JfK is total.

Following [29] we adopt a unitary cost model. Bounds are of course expressed with respect to the size
of terms. Let Tb(F) denote the set of basic (also called constructor based) terms f(u1, . . . , un) where f ∈ D
and u1, . . . , un ∈ T (C). We define the (innermost) runtime complexity function rcR : N→ N as

rcR(n) := max{` | ∃s ∈ Tb(F), |s| 6 n and s = t0 −→R t1 −→R . . . −→R t`} .

Hence rcR(n) maximises over the derivation height of terms s of size up to n, regarding only basic terms.
The latter restriction accounts for the fact that computations start only from basic terms. The runtime
complexity function is well-defined if R is terminating. If rcR is asymptotically bounded from above by
a polynomial, we simply say that the runtime of R is polynomially bounded. This unitary cost model is
reasonable:

Proposition 1 (Adequacy Theorem [30–32]). All functions JfK computed by R are computable on a conven-
tional models of computation, viz Turing machines, such that the time complexity on the latter is polynomially
related to rcR.

In particular, if the runtime of R is polynomially bounded then JfK is polytime computable on a Turing
machine for all f ∈ D.

We say that a function symbol f is defined based on g, in notation f IR g, if there exists a rewrite rule
f(l1, . . . , ln)→ r ∈ R where g occurs in r. We call f recursive if f I+

R f holds, i.e. if f is defined based on
itself. Recursive functions symbols are collected in Drec ⊆ D. Noteworthy our notion also captures mutual
recursion. We denote by > the least preorder on F containing IR and where constructors are equivalent,
i.e. c > d and d > c for all constructors c, d ∈ C. The preorder > is called the precedence of R. We denote
by > and ∼ the separation of > into the strict partial order > and the equivalence ∼. Note that for f ∼ g,
if f ∈ C then also g ∈ C; similar f ∈ Drec implies g ∈ Drec. The rank of f ∈ F with respect to > is
inductively defined by rk(f) = 1 + max{rk(g) | f > g}. The depth of recursion rd(f) of f ∈ F is defined in
correspondence to the rank, but only takes recursive symbols into account: let d = max{rd(g) | f > g} be
the maximal recursion depth of a function symbol g underlying the definition of f ; then rd(f) := 1 + d if f
is recursive, otherwise rd(f) := d.

2The restriction is not necessary, but simplifies our presentation, compare [9].
3As in [9] it is possible to adopt nondeterministic semantics, dropping orthogonality.

5

Example 1. Consider following TRS Rarith, written in predicative notation.

1: +(0 ; y)→ y 3: +(s(;x) ; y)→ s(+(x ; y)) 5: f(x, y ;)→ +(x ;×(y, y ;))

2: ×(0, y ;)→ 0 4: ×(s(;x), y ;)→ +(y ;×(x, y ;)) .

The TRS Rarith follows along the line of Bwsc from Fig. 1. The functions J+K and J×K denote addition and
multiplication on natural numbers, in particular JfK(sm(0), sn(0)) = sr(0) where r = m+n2. The precedence
is given by f > × > + > s ∼ 0 where addition (+) and multiplication (×) are recursive, but f is not recursive.
We have rd(+) = 1 since addition is recursive, as f is not recursive but multiplication is recursive we have
rd(f) = rd(×) = 2.

2.2. Register Machines
In this paper, we are considering register machine (RM for short) over wordsW(A) as initially proposed

by Shepherdson and Sturgis in [33]. We employ following notations and conventions. A RM M consists of a
finite set of registers that store words over W(A). Like values, i.e. constructor terms, words are denoted by
u, v, w, and ~u,~v, ~w denote sequences of words. No confusion can arise from this. For r a register, we use 〈r〉
to refer to the content of register r. The control of M consists of a finite sequences of (labeled) instructions
I1; I2; . . . ; Il which are executed sequentially by M . Here an instruction can be one of the following:

(i) Append instruction A(a)(r): place a ∈ A on the left-hand end of 〈r〉;
(ii) Delete instruction D(r): remove the left-most character from 〈r〉, if 〈r〉 6= ε;
(iii) Conditional jump instruction J (a)(r)[j]: jump to instruction Ij , if the left-most character of 〈r〉 is

a ∈ A, otherwise proceed with the next instruction;
(iv) Copy instruction C(r, r′): overwrite 〈r′〉 by 〈r〉.

Our definition departs from [33] in following minor respects. Unlike in [33], we suppose that the set of
registers is finite. This simplification does not impose any restrictions. Due to the absence of memory
indirection instructions, only a fixed number of registers can be accessed by a machine M anyway. The
instructions (i)–(iii) correspond to the minimal instruction set given in [33, Section 6], with the difference
that in [33] the instruction (i) appends to the right. The additional copy instruction (iv) added from the
extended instruction set of [33, Section 2] ensures that copying words has unitary cost. A configuration
of the RM M is a tuple 〈j, w1, . . . , wm〉 where w1, . . . , wm ∈ W(A) are the content of the m registers and
j ranges over the labels 1, . . . , l of instructions I1, . . . , Il of M , and the dedicated halting label l + 1. We
denote by →M the one-step transition relation obtained in the obvious way from our informal account of
the instruction set (i)–(iv). For the halting label l + 1 we set 〈l + 1, u1, . . . , um〉 →M 〈l + 1, u1, . . . , um〉 for
all words ui (i = 1, . . . ,m). We say that the RM M computes the (partial) function fM : W(A)k →W(A)
with k 6 m defined as follows:

fM (u1, . . . , uk) := vm :⇔ ∃`.〈1, u1, . . . , uk, ~ε〉 →`
M 〈l + 1, v1, . . . , vm〉 .

We also say that on inputs u1, . . . , uk the computation halts in ` steps. Denote by |u| the length, or size,
of the word u. Extend this to ~u = u1, . . . , uk so that |~u| =

∑k
i=1|ui| denotes the sum of the sizes of ~u. Let

d ∈ N. We denote by DTIME(nd) the class of functions f : W(A)k → W(A) computed by some RM M in
the above way, where M halts on all inputs ~u in no more than O(|~u|d) steps.

3. The Small Polynomial Path Order

We arrive at the formal definition of the small polynomial path order (sPOP∗ for short). Conceptually
this order is a tamed recursive path order with product status, embodying predicative analysis of recursion
set forth by Bellantoni and Cook [1].

Throughout this section, fix a TRS R. For each function symbol f , we assume an a priori separation
of argument positions into normal and safe ones. Arguments under normal positions play the rôle of
recursion parameters, whereas safe argument positions allow the substitution of recursive results, compare

6

the definition of Bwsc drawn in Fig. 1 on page 4. For constructors c we fix that all argument positions are
safe. As in Example 1, we indicate this separation directly in terms and write f(~s ;~t) where the arguments
~s to the left of the semicolon are normal, the remaining arguments ~t are safe. This separation and the
precedence > underlying the analysed TRS R induces an instance of sPOP∗, which is denoted by >spop∗
below.

In order to define >spop∗, we introduce some auxiliary relations. First of all, we lift equivalence ∼
underlying the precedence > of R to terms, disregarding the order on arguments: s and t are equivalent, in
notation s ∼ t, if s = t, or s = f(s1, . . . , sn) and t = g(t1, . . . , tn) where f ∼ g and there exists a permutation
π on argument positions {1, . . . , n} such that si ∼ tπ(i) for all i = 1, . . . , n. Safe equivalence s∼ ⊆ ∼ takes
also the separation of argument positions into account. In the definition of s s∼ t, we additionally require
that i is a normal argument position of f if and only if π(i) is normal argument position of g. We emphasise
that ∼ (and consequently s∼) preserves values: if s ∼ t and s ∈ T (C) then t ∈ T (C). We extend the subterm
relation to term equivalence. Consider s = f(s1, . . . , sk ; sk+1, . . . , sk+l). Define s D/∼ t if either s ∼ t or
s B/∼ t, where s B/∼ t holds if si D/∼ t for some argument si of s (i = 1, . . . k + l). We denote by Bn/∼
the restriction of B/∼ where only normal arguments are considered: s Bn/∼ t if si D/∼ t for some normal
argument position i ∈ {1, . . . , k}.

Definition 1. Let s and t be terms such that s = f(s1, . . . , sk ; sk+1, . . . , sk+l). Then s >spop∗ t if one of
the following alternatives holds.

1. si >spop∗ t for some argument si of s (i ∈ {1, . . . , k + l}).
2. f ∈ D, t = g(t1, . . . , tm ; tm+1, . . . , tm+n) where f > g and the following holds:

- s Bn/∼ tj for all normal arguments t1, . . . , tm;

- s >spop∗ tj for all safe arguments tm+1, . . . , tm+n;

- t contains at most one (recursive) function symbol h with f ∼ h.
3. f ∈ Drec, t = g(t1, . . . , tk ; tk+1, . . . , tk+l) where f ∼ g and the following holds:

- 〈s1, . . . , sk〉 >spop∗ 〈tπ(1), . . . , tπ(k)〉 for some permutation π on {1, . . . , k};
- 〈sk+1, . . . , sk+l〉 >spop∗ 〈tτ(k+1), . . . , tτ(k+l)〉 for some permutation τ on {k + 1, . . . , k + l}.

Here s >spop∗ t denotes that either s s∼ t or s >spop∗ t holds. In the last clause we use >spop∗ also for the
extension of >spop∗ to products: 〈s1, . . . , sn〉 >spop∗ 〈t1, . . . , tn〉 means si >spop∗ ti for all i = 1, . . . , n, and
〈s1, . . . , sn〉 >spop∗ 〈t1, . . . , tn〉 indicates that additionally si0 >spop∗ ti0 holds for at least one i0 ∈ {1, . . . , n}.

Throughout the following, we write s >〈i〉spop∗ t if s >spop∗ t follows from the ith clause in Definition 1. A
similar notation is employed for the consecutive introduced orders.

We say that the TRS R is compatible with >spop∗ if all rules are oriented from left to right: l >spop∗ r
for all rules l→ r ∈ R. As sPOP∗ forms a restriction of the recursive path order, compatibility with sPOP∗

implies termination [28].

Definition 2. We call the TRS R predicative recursive (of degree d) if R is compatible with an instance of
sPOP∗ and the maximal recursion depth rd(f) of f ∈ F is d.

Consider the orientation of a rule f(l1, . . . , ln) → r ∈ R. The case >〈2〉spop∗ is intended to capture functions
f defined by weak safe composition (WSC), compare Fig. 1. In particular the use of Bn/∼ allows only
the substitution of normal arguments of f in normal argument positions of g. The last restriction put
onto >〈2〉spop∗ is used to prohibit multiple recursive calls. If one drops this restriction, the TRS consisting
of f(0 ;) → 0 and f(s(;x) ;) → c(; f(x ;), f(x ;)) is compatible with sPOP∗ but its runtime complexity can
be only exponentially bounded. Finally, >〈3〉spop∗ accounts for recursive calls, in combination with >〈2〉spop∗ we
capture safe recursion (SRN). The next theorem provides our second main result.

Theorem 1. Suppose R is a predicative recursive TRS of degree d. Then the derivation height of any basic
term f(~u ;~v) is bounded by a polynomial of degree rd(f) in the sum of the depths of normal arguments ~u. In
particular, the runtime complexity function rcR is bounded by a polynomial of degree d.

7

As a consequence of Theorem 1 and the adequacy theorem (c.f. Proposition 1), any predicative recursive
(and orthogonal) TRS R computes a function from FP. We remark that Theorem 1 remains valid for
the standard notion of innermost rewriting [28] on constructor TRSs. Neither orthogonality nor our fixed
call-by-value reduction strategy is essential, compare [9].

We continue with an informal account of Definition 1 in our running example, the admittedly technical
proof is shortly postponed.

Example 2 (Example 1 continued). We show that the TRS Rarith depicted in Example 1 is predicative
recursive. Recall that the precedence underlying Rarith is given by f > × > + > s ∼ 0, and that Drec =
{×,+}. The degree of recursion of Rarith is thus two.

The case >〈1〉spop∗ is standard in recursive path orders and allows the treatment of projections as in rules
1 and 2. We have +(0 ; y) >〈1〉spop∗ y using y s∼ y and likewise ×(0, y ;) >〈1〉spop∗ 0 using 0 s∼ 0. Observe that the
rule

5 : f(x, y ;)→ +(x ;×(y, y ;)) ,

is oriented by >〈2〉spop∗ only: using f > × and twice f(x, y ;) Bn/∼ y, i.e., y is a normal argument of f(x, y ;), we
have f(x, y ;) >〈2〉spop∗ ×(y, y ;). Using that also f > + and f(x, y ;) Bn/∼ x holds, another application of >〈2〉spop∗
orients rule 5.

Finally, consider the recursive cases of addition (rule 3) and multiplication (rule 4). These can be oriented
by a combination of >〈2〉spop∗ and >〈3〉spop∗. We exemplify this on the rule

4 : ×(s(;x), y ;)→ +(y ;×(x, y ;)) .

Employing × > +, case >〈2〉spop∗ is applicable. Thus orientation of this rule simplifies to ×(s(;x), y ;) Bn/∼ y
and ×(s(;x), y ;) >spop∗ ×(x, y ;). The former constraint is satisfied by definition. Since × is recursive,
using >〈3〉spop∗ the latter constraint reduces to 〈s(;x), y〉 >spop∗ 〈x, y〉 and the trivial constraint 〈〉 >spop∗ 〈〉.
Clearly 〈s(;x), y〉 >spop∗ 〈x, y〉 holds as s(;x) >〈1〉spop∗ x and y s∼ y. Hence we are done.

Note that any other partitioning of argument positions of multiplication invalidates the orientation of
rule 4. The sub-constraint ×(s(;x), y ;) >spop∗ ×(x, y ;) requires that at least the first argument position of
times is normal, the sub-constraint ×(s(;x), y ;) Bn/∼ y enforces that also the second parameter is normal.
The order thus determines that multiplication performs recursion on its first arguments, and that the second
parameter should be considered normal since it is used as recursion parameter in addition. Reconsidering
the orientation of rule 5, the use of Bn/∼ propagates that f takes only normal arguments.

By Theorem 1 we obtain that addition admits linear, and multiplication as well as f admits quadratic
runtime complexity. Overall the runtime complexity of Rarith is quadratic.

The following examples clarifies the need for data tiering.

Example 3 (Example 2 continued). Consider the extension of Rarith by the two rules

6 : exp(0, y)→ s(; 0) 7 : exp(s(;x), y)→ ×(y, exp(x, y) ;) ,

that express exponentiation yx in an exponential number of steps. The definition of exp is not predicative
recursive, since the recursive result exp(x, y) is substituted as recursion parameter to multiplication. For
this reason the orientation with >spop∗ fails.

The next example is negative, in the sense that the considered TRSs admits polynomial runtime com-
plexity, but fails to be compatible with sPOP∗.

Example 4 (Example 3 continued). Consider now the TRS Rarith where the rule 4 is replaced by the
rule

4a : ×(s(;x), y ;)→ +(×(x, y ;) ; y) .

The resulting system admits polynomial runtime complexity. On the other hand, Theorem 1 is inapplicable
since the system is not predicative recursive.

8

s

S(s)

s1

S(s1)

. . .

. . .

s`

S(s`)

−→R

·>`

−→R

·>`

−→R

·>`

Figure 2: Predicative Embedding of −→R into ·>`

We emphasise that the bound provided in Theorem 1 is tight, in the sense that for any d we can define
a predicative TRS Rd of degree d admitting runtime complexity Ω(nd).

Example 5. We define a family of TRSs Rd (d ∈ N) inductively as follows: R0 := {f0(x ;)→ a} and Rd+1

extends Rd by the rules

fd+1(x ;)→ gd+1(x, x ;) gd+1(s(;x), y ;)→ b(; fd(y ;), gd+1(x, y ;)) .

Let d ∈ N. It is easy to see that Rd is predicative recursive (with underlying precedence fd > gd > fd−1 >
gd−1 > . . . > f0 > a ∼ b). As only gi (i = 1, . . . , d) are recursive, the recursion depth of Rd is d.

But also the runtime complexity of Rd is in Ω(nd): For d = 0 this is immediate. Otherwise, consider
the term fd+1(sn(; a) ;) (n ∈ N) which reduces to gd+1(sn(; a), sn(; a) ;) in one step. As the latter iterates
fd(s

n(a)) for n times, the lower bound is established by inductive reasoning.

We now show that sPOP∗ is correct, i.e. we prove Theorem 1. SupposeR is a predicative recursive TRS of
degree d. Our proof makes use of a variety of ingredients. In Definition 3 we define a predicative interpretation
S that flatten terms to sequences of terms, separating safe from normal arguments. In Definition 4 we
introduce a family of orders (·>`)`∈N on sequences of terms. The definition of ·>` (for fixed `) does not
explicitly mention predicative notions and is conceptually simpler than >spop∗. In Lemma 4 we show that
predicative interpretations S embeds rewrite steps into ·>`, as pictured in Fig. 2. Consequently the derivation
height of s is bounded by the length of ·>` descending sequences, which in turn can be bounded sufficiently
whenever s is basic (cf. Lemma 7).

Consider a step C[f(~uσ ;~vσ)] −→R C[rσ] = t. Due to the limitations imposed by >spop∗, it is not difficult
to see that if rσ is not a value itself, then at least all normal arguments are values. We capture this
observation in the set T →b , defined as the least set such that (i) T (C) ⊆ T →b , and (ii) if f ∈ F , ~v ⊆ T (C)
and ~t ⊆ T →b then f(~v ;~t) ∈ T →b . This set is closed under rewriting.

Lemma 1. Suppose R is compatible with >spop∗. If s ∈ T →b and s −→R t then t ∈ T →b .

Proof. The lemma follows by a straightforward inductive argument on Definition 1.

Observe that T →b includes all basic terms. For the runtime complexity analysis of R, it thus suffices to
consider reductions on T →b only.

3.1. Predicative Interpretation of Terms as Sequences
Predicative interpretations separate safe from normal arguments. To this avail, we define the normalised

signature Fn to contain all symbols from F , with the sole difference that the arity of defined symbols f
with k normal arguments is k in Fn. A term t is normalised, if t ∈ T (Fn). Below we retain the separation
into constructors, recursive and non-recursive symbols. As a consequence, the rank and recursion depth
coincide with respect to both signatures, and also T (C) ⊆ T (Fn). Terms Tb(Fn) are also called basic, these
are obtained from Tb(F) by dropping safe arguments.

To formalise sequences of (normalised) terms, we use an auxiliary variadic function symbol ◦. Here
variadic means that the arity of ◦ is finite but arbitrary. We always write [t1 · · · tn] for ◦(t1, . . . , tn), and
if we write f(t1, . . . , tn) then f 6= ◦. We use a, b, . . . to denote terms or sequences of terms. In contrast,
s, t, u, v, possibly followed by subscripts, denote terms which are not sequences. Abusing set-notation, we
write t ∈ [t1 · · · tn] if t = ti for some i ∈ {1, . . . , n}. We lift terms equivalence to sequences by disregarding
the order of elements: [s1 · · · sn] ∼ [t1 · · · tn] if si ∼ tπ(i) for all i = 1, . . . , n and some permutation π on

9

{1, . . . , n}. We denote by aa b the concatenation of sequences. To avoid notational overhead we overload
concatenation to both terms and sequences. For sequences a define lift(a) := a, and for terms t define
lift(t) := [t]. We set aab := [s1 · · · sm t1 · · · tn] where lift(a) = [s1 · · · sm] and lift(b) = [t1 · · · tn].

Definition 3. We define the predicative interpretation S, mapping terms t ∈ T →b to sequences of normalised
terms as follows:

S(t) :=

{
[] if t is a value,
[f(u1, . . . , uk)]aS(tk+1)a · · ·aS(tk+l) otherwise, where t = f(u1, . . . , uk ; tk+l, . . . , tk+1).

Note that the predicative interpretation S(t) is a sequence of (normalised) basic terms for any term t ∈ T →b .
To get the reader prepared for the definition of the order ·>` on sequences as defined below, we exemplify
Definition 3 on a predicative recursive TRS.

Example 6. Consider following predicative recursive TRS Rf where

1 : f(0 ; y)→ y 2 : f(s(x) ; y)→ g(x ; f(x ; y)) .

Consider a substitution σ : V → T (C). The embedding S(lσ) ·>` S(rσ) of root steps (l→ r ∈ Rf) results in
the following order constraints.

S(f(0 ; yσ)) = [f(0)] ·>` [] = S(yσ) by rule 1,
S(f(s(xσ) ; yσ)) = [f(s(xσ))] ·>` g(xσ)a f(xσ) = S(g(xσ ; f(xσ ; yσ))) by rule 2.

Kindly observe that in the first line we employed S(yσ) = [] because yσ is a value. In the second line we
tacitly employed the overloading of concatenation:

S(g(xσ ; f(xσ ; yσ))) = [g(xσ)]aS(f(xσ ; yσ)) = [g(xσ)]a [f(xσ)]a [] = g(xσ)a f(xσ) .

Consider now a rewrite step s −→R t below the root for s ∈ T →b . As s ∈ T →b , without loss of generality
the rewrite step happens below a safe argument position. Hence

s = h(~v ; s1, . . . , si, . . . , sl) −→R h(~v ; s1, . . . , ti, . . . , sl) = t

for some values ~v, terms s1, . . . , sl and si −→R ti. To embed such rewrite steps we have to prove

[h(~v)]aS(s1)a · · ·aS(si)a · · ·aS(sl) ·>` [h(~v)]aS(s1)a · · ·aS(ti)a · · ·aS(sl) .

We emphasise that for a root step lσ −→R rσ of a predicative recursive TRS R, the length of S(rσ) does
not depend on σ, since images of σ are removed by the predicative interpretation. As a consequence, each
step in an R-derivation on T →b increases the length of predicative interpretations by a constant (depending
on R) only. Below, we bind this constant by the maximal size of a right-hand side in R.

3.2. Small Polynomial Path Order on Sequences
We arrive at the definition of the order ·>` on sequences. This order is used to orient images of the

predicative interpretation S. The parameter ` ∈ N in ·>` controls the width of terms and sequences, and is
crucial for the analysis of the length of ·>`-descending sequences carried out below.

Definition 4. Let > denote a precedence. For all ` > 1 we define ·>` on terms and sequences of terms
inductively such that:

1. f(s1, . . . , sn) ·>` g(t1, . . . , tm) if f ∈ D, f > g and the following conditions hold:

- f(s1, . . . , sn) B/∼ tj for all j = 1, . . . ,m;

- m 6 `.

10

2. f(s1, . . . , sn) ·>` g(t1, . . . , tn) if f ∈ Drec, f ∼ g and for some permutation π on {1, . . . , n}:
- 〈s1, . . . , sn〉 B/∼ 〈tπ(1), . . . , tπ(n)〉.

3. f(s1, . . . , sn) ·>` [t1 · · · tm] if the following conditions hold:

- f(s1, . . . , sn) ·>` tj for all j = 1, . . . ,m;

- at most one element tj0 (j0 ∈ {1, . . . ,m}) contains a symbols g with f ∼ g;
- m 6 `.

4. [s1 · · · sn] ·>` [t1 · · · tm] if there exists terms or sequences bi (i = 1, . . . , n) such that:

- [t1 · · · tm] ∼ b1a · · ·abn;
- 〈s1, . . . , sn〉 ·>` 〈b1, . . . , bn〉.

We denote by a ·>` b that either a ∼ b or a ·>` b holds. We use B/∼ and ·>` also for their extension
to products: 〈s1, . . . , sn〉 B/∼ 〈ti, . . . , tn〉 if si D/∼ ti for all i = 1, . . . , n, and si0 B/∼ ti0 for at least one
i0 ∈ {1, . . . , n}; likewise 〈s1, . . . , sn〉 ·>` 〈ti, . . . , tn〉 if si ·>` ti for all i = 1, . . . , n, and si0 ·>` ti0 for at least
one i0 ∈ {1, . . . , n}.

We point out that ·>` misses the case: f(s1, . . . , sn) ·>` t if si ·>` t for some argument si. Since predicative
interpretations remove values, the clause is not needed, compare the embedding of rule 1 given in Example 6.
This case would invalidate the central Lemma 7 given below, which estimates the length of ·>` descending
sequences. Observe that on constructor based left-hand sides, the order constraints imposed by ·>〈1〉` and
·>〈2〉` translate to the order constraints imposed by >〈2〉spop∗ and >〈3〉spop∗ on normal arguments. The clauses ·>〈3〉`
and ·>〈4〉` extend the order from terms to sequences. Noteworthy the second clause in ·>〈3〉` reflects that we do
not allow multiple recursive calls, compare >〈2〉spop∗ and the definition of the predicative interpretation. We
exercise Definition 4 on the constraints obtained in Example 6.

Example 7 (Example 6 continued). We show that the order constraints drawn in Example 6 can be
resolved for ` = 2. Let σ : V → T (C) be a substitution. Consider first the root step f(0 ; yσ) −→R yσ
due to rule 1. Exploiting the shape of σ, we have S(f(0 ; yσ)) = [f(0)] ·>〈4〉` [] = S(yσ). For the root step
f(s(xσ) ; yσ) −→R g(xσ ; f(xσ ; yσ)) caused by rule 2 we have

1 : s(xσ) B/∼ xσ

2 : f(s(xσ)) B/∼ xσ by 1,

3 : f(s(xσ)) ·>〈1〉2 g(xσ) if f > g, using 2,

4 : f(s(xσ)) ·>〈2〉2 f(xσ) by 1,

5 : f(s(xσ)) ·>〈3〉2 g(xσ)a f(xσ) using 3 and 4,

6 : S(f(s(xσ) ; yσ)) = [f(s(xσ))] ·>〈4〉2 g(xσ)a f(xσ) = g(xσ ; f(xσ ; yσ)) using 5.

Note that g(xσ)a f(xσ) = [g(xσ) f(xσ)] and thus ` = 2 is needed in the proof step 5.

The next lemma collects frequently used properties of ·>`.

Lemma 2. For all ` > 1 we have:

- ·>` ⊆ ·>`+1,

- ∼ · ·>` · ∼ ⊆ ·>`, and

- a ·>` b implies aac ·>` bac.

11

Proof. All but the third property follow directly from definition. Suppose a ·>` b holds, and let lift(c) =
[r1 · · · rl]. We show aac ·>` bac. First suppose a = f(s1, . . . , sn). Then we conclude

aac = [f(s1, . . . , sn) r1 · · · rl] ·>〈4〉` bar1a · · ·arl = bac

employing the assumption a ·>` b and ri ∼ ri for all i = 1, . . . , l. Otherwise a = [s1 · · · sn], hence a ·>〈4〉` b
by assumption. Then b ∼ b1 a · · ·a bn with si ·>` bi for all i = 1, . . . , n, where at least one orientation is
strict. From this and again using ri ∼ ri (i = 1, . . . , l) we conclude

aac = [s1 · · · sn r1 · · · rl] ·>〈4〉` b1a · · ·abnar1a · · ·arl = bac .

We emphasise that as a consequence of Lemma 2 we have that c1aaac2 ·>` c1abac2 holds whenever
a ·>` b holds. The order constraints on sequences are defined so that sequences purely act as containers. More
precise, every ·>`-descending sequence starting from [s1 · · · sn] can be seen as a combination of possibly
interleaved, but otherwise independent ·>`-descending sequences starting from the elements si (i = 1, . . . , n).

3.3. Predicative Embedding
We now close the diagram outlined in Fig. 2 on Page 9, that is we prove the predicative embedding

exemplified in Example 7 on the TRS Rf . As a preparatory step, we consider root steps lσ −→R rσ first.
The complete embedding is then established in Lemma 4.

Lemma 3. Consider a rewrite rule l→ r ∈ R. Let σ : V → T (C) be a substitution. If l >spop∗ r holds then
S(lσ) ·>|r| S(rσ).

Proof. Let l = f(l1, . . . , lm ; lm+1, . . . , lm+n). We first show

l >spop∗ r =⇒ f(l1σ, . . . , lmσ) ·>|r| S(t) for all t ∈ S(rσ) , (∗)

by induction on |r|. The non-trivial case is when rσ is not a value, otherwise S(rσ) = []. Suppose thus
r = g(r1, . . . , rm′ ; rm′+1, . . . , rm′+n′) where r is not a value. By definition

S(rσ) = [g(r1σ, . . . , rm′σ)]aS(rm′+1σ)a · · ·aS(rm′+n′σ) .

First consider the element g(r1σ, . . . , rm′σ) ∈ S(rσ). We either have l >〈2〉spop∗ r or l >〈3〉spop∗ r by the
assumption that r is not a value. In the case l >〈2〉spop∗ r, we have f > g and l Bn/∼ rj for all normal
arguments rj (j = 1, . . . ,m′). The latter reveals that the instances rjσ are equivalent to proper sub-
terms of the left-hand side f(l1σ, . . . , lmσ). Using this and that trivially m′ 6 |r| holds we conclude
f(l1σ, . . . , lmσ) ·>〈1〉|r| g(r1σ, . . . , rm′σ). In the remaining case l >〈3〉spop∗ r, we have m′ = m, f ∼ g where
f, g ∈ Drec and moreover 〈l1, . . . , lm〉 >spop∗ 〈rπ(1), . . . , rπ(m)〉 for some permutation π. By reasoning as
above we see 〈l1σ, . . . , lmσ〉 B/∼ 〈rπ(1)σ, . . . , rπ(m)σ〉 and conclude f(l1σ, . . . , lmσ) ·>〈2〉|r| g(r1σ, . . . , rm′σ).
Hence overall we obtain f(l1σ, . . . , lmσ) ·>|r| g(r1σ, . . . , rm′σ).

Now consider the remaining elements t ∈ S(rσ), where t 6= g(r1σ, . . . , rm′σ). Then each t occurs in the
interpretation of a safe argument of rσ, say t ∈ S(rjσ) for some j ∈ {m′+ 1, . . . ,m′+n′}. One verifies that,
l >spop∗ rj holds: if l >〈2〉spop∗ r then by definition, otherwise l >〈3〉spop∗ r holds and we obtain l >〈1〉spop∗ rj . By
induction hypothesis we have f(l1σ, . . . , lmσ) ·>|rj | t. As ·>|rj | ⊆ ·>|r| we hence obtain f(l1σ, . . . , lmσ) ·>|r| t
for all t ∈ S(rjσ) and safe positions j ∈ {m′ + 1, . . . ,m′ + n′} of g. This concludes (∗).

We return to the proof of the lemma. A standard induction gives that the length of S(rσ) is bounded
by |r|, compare the remark after Example 6. Using that σ maps to values, a second induction on l >spop∗ r
gives that S(rσ) contains at most one (defined) function symbol g equivalent to f . Summing up, using (∗)
we conclude f(l1σ, . . . , lmσ) ·>〈3〉|r| S(rσ). Observe that by assumption the direct subterms of lσ are values,
and thus S(lσ) = [f(l1σ, . . . , lmσ)] by definition. The lemma thus follows by one application of ·>〈4〉|r|.

12

Lemma 4. Let R denote a predicative recursive TRS and let ` := max{|r| | l → r ∈ R}. If s ∈ T →b and
s −→R t then S(s) ·>` S(t).

Proof. Let s ∈ T →b and consider a rewrite step s −→R t. We prove the lemma by induction on the rewrite
position. In the base case we consider a root step s = lσ −→R rσ = t for some rule l→ r ∈ R. Since R
is predicative recursive, l >spop∗ r holds. By Lemma 3 we have S(lσ) ·>|r| S(rσ). Since |r| 6 ` the result
follows.

For the inductive step, consider a rewrite step below the root. Since s ∈ T →b this step is of the form

s = f(~v ; s1, . . . , si, . . . , sn) −→R f(~v ; s1, . . . , ti, . . . , sn) = t ,

where si −→R ti for some i ∈ {1, . . . , n}. Wlog. we assume t is not a value. Using the induction hypothesis
S(si) ·>` S(ti) and Lemma 2 we conclude

S(sσ) = f(~v)aS(s1)a · · ·aS(si)a · · ·aS(sn) ·>` f(~v)aS(s1)a · · ·aS(ti)a · · ·aS(sn) = S(tσ) .

3.4. Binding the Length of ·>`-Descending Sequences
The following function G` relates a term, or sequence of terms, to the length of its longest ·>`-descending

sequence.

Definition 5. For all ` > 1, we define G`(a) := max{m | a ·>` a1 ·>` · · · ·>` am}.

This function is well-defined, as ·>` is well-founded. The latter can be seen as ·>` forms a restriction of the
multiset path order [34]. We remark that due to Lemma 2, G`(a) = G`(b) whenever a ∼ b. The following
lemma confirms that sequences act as containers only.

Lemma 5. For all sequences [s1 · · · sn], G`([s1 · · · sn]) =
∑n
i=1 G`(si).

Proof. Let a = [s1 · · · sn] be a sequence and observe G`(a1aa2) > G`(a1) + G`(a2). This is a consequence
of Lemma 2. Hence, in particular we obtain: G`(a) = G`(s1a · · ·asn) >

∑n
i=1 G`(si).

To complete the proof, we proceed by induction on G`(a). The base case G`(a) = 0 follows trivially. For
the induction step, we show that a ·>` b implies G`(b) <

∑n
i=1 G`(si). From this, we obtain G`([s1 · · · sn]) 6∑n

i=1 G`(si), which together with the above observation yields G`([s1 · · · sn]) =
∑n
i=1 G`(si). Suppose

a ·>` b. Then this is only possible due to ·>〈4〉` . Hence b is equivalent to b1 a · · · a bn, where si ·>` bi
for all i = 1, . . . , n and si0 ·>` bi0 for at least one i0 ∈ {1, . . . , n}. In particular, G`(bi) 6 G`(si) and
G`(bi0) < G`(si0). As we have G`(bi) 6 G`(b) < G`(a) for all i = 1, . . . , n, induction hypothesis is applicable
to b and all bi (i ∈ {1, . . . , n}). It follows that

G`(b) =
∑
t∈b

G`(t) =

n∑
i=1

∑
t∈bi

G`(t) =

n∑
i=1

G`(bi) <
n∑
i=1

G`(si) .

We now approach Lemma 7, where we show that G`(f(u1, . . . , uk)) 6 c · (2 +m)
rd(f) for some constant

c ∈ N and m =
∑k
i=1 dp(ui). The proof of Lemma 7 is slightly involved, and requires induction on the rank

r of f and side induction on m. The constant c is defined in terms of c(r, d) for natural numbers r, d ∈ N:

c(r, d) :=

{
1 if r = 1, and
c(r − 1, d) · `d+1 + 1 otherwise .

Below the argument r will be instantiated by the rank, and d by the depth of recursion of a function symbol
f . The next lemma is a technical lemma to ease the presentation of the proof of Lemma 7. The assumptions
correspond exactly to the main induction hypothesis (IH) and side induction hypothesis (SIH) of Lemma 7.

13

Lemma 6. Consider f(u1, . . . , uk) ·>` g(v1, . . . , vl) and suppose that

f > g =⇒ G`(g(v1, . . . , vl)) 6 c(rk(g), rd(g)) ·
(
2 +

l∑
i=1

dp(vi)
)rd(g)

, (IH)

f ∼ g,
l∑
i=1

dp(vi) <

k∑
i=1

dp(ui) =⇒ G`(g(v1, . . . , vl)) 6 c(rk(g), rd(g)) ·
(
2 +

l∑
i=1

dp(vi)
)rd(g) . (SIH)

Then

f(u1, . . . , uk) ·>〈1〉` g(v1, . . . , vl) =⇒ G`(g(v1, . . . , vl)) 6 c(rk(f)− 1, rd(f)) · `rd(f) ·
(
2 +

k∑
i=1

dp(ui)
)rd(g)

,

(†)

f(u1, . . . , uk) ·>〈2〉` g(v1, . . . , vl) =⇒ G`(g(v1, . . . , vl)) 6 c(rk(f), rd(f)) ·
(
1 +

k∑
i=1

dp(ui)
)rd(f) . (‡)

Proof. First consider the case f(u1, . . . , uk) ·>〈1〉` g(v1, . . . , vl). Then f > g and so rk(f) > rk(g) and rd(f) >

rd(g) hold. From the order constraints on arguments we can derive
∑l
i=1 dp(vi) 6 l ·

∑k
i=1 dp(ui). Observe

that the assumption gives also l 6 `. Summing up, simple arithmetical reasoning gives the implication (†)
from (IH). Similar, when f(u1, . . . , uk) ·>〈2〉` g(v1, . . . , vl) holds we have rk(f) = rk(g) and rd(f) = rd(g).
The order constraints on arguments give

∑l
i=1 dp(vi) <

∑k
i=1 dp(ui). From this, the implication (‡) follows

directly from (SIH).

Lemma 7. For all f ∈ D, G`(f(u1, . . . , uk)) ∈ O
(
(
∑k
i=1 dp(ui))

rd(f))
.

Proof. Let ` be fixed. To show the theorem, we show

f(u1, . . . , uk) ·>` b =⇒ G`(b) < c(rk(f), rd(f)) ·
(
2 +

k∑
i=1

dp(ui)
)rd(f) .

In proof we employ induction on rk(f) and side induction on m :=
∑k
i=1 dp(ui). Abbreviate r := rk(f) and

d := rd(f). Assume that f(u1, . . . , uk) ·>` b holds. We prove G`(b) < c(r, d) · (2 +m)
d, where we show only

the more involved inductive case r > 1. The base case r = 1 follows by similar reasoning. We analyse two
cases.

If b = [t1 · · · tl] is a sequence, then by assumption f(v1, . . . , vk) ·>〈3〉` b. Thus l 6 ` and f(v1, . . . , vk) ·>` tj ,
i.e. either f(v1, . . . , vk) ·>〈1〉` tj or f(v1, . . . , vk) ·>〈2〉` tj holds for all j = 1, . . . , l. Due to the second condition
imposed on ·>〈3〉` , we even have f(v1, . . . , vk) ·>〈1〉` tj for all but one j 6= j0 ∈ {1, . . . , l}. Suppose first that
f is recursive. Then f(v1, . . . , vk) ·>〈1〉` tj implies d > rd(rt(tj)) > 0. Using induction and side induction
hypothesis to satisfy the assumptions of Lemma 6, we obtain

G`(tj) 6 c(r − 1, d) · `d · (2 +m)
d−1 (for all j 6= j0)

G`(tj0) 6 max{c(r − 1, d) · `d · (2 +m)
d−1

, c(r, d) · (1 +m)
d} .

Here the second inequality is obtained by combining the conclusions of the two implications provided by
Lemma 6. We conclude the case as follows.

G`(b) =

l∑
j=1

G`(tj) by Lemma 5,

6 c(r, d) · (1 +m)
d

+ l ·
(
c(r − 1, d) · `d · (2 +m)

d−1) above consequences of Lemma 6,

< c(r, d) · (1 +m)
d

+ c(r, d) · (2 +m)
d−1 using l 6 ` and unfolding c(r, d),

6 c(r, d) · (2 +m)
d .

14

Suppose now that f is not recursive. Then also f(v1, . . . , vk) ·>〈1〉` tj0 . Employing that f > rt(tj) implies
d > rd(rt(tj)), using Lemma 5 and Lemma 6 we see

G`(b) =

l∑
j=1

G`(tj) 6 l · (c(r − 1, d) · `d · (2 +m)
d
) < c(r, d) · (2 +m)

d .

This finishes the cases when b is a sequence.
Finally, when b = g(t1, . . . , tl) is a term we conclude directly by Lemma 6, using c(r − 1, d) · `d < c(r, d)

similar to above.

Putting things together, we arrive at the proof of our first theorem.

Proof of Theorem 1. Let R denote a predicative recursive TRS. We prove the existence of a constant c ∈ N
such that for all values ~u,~v the derivation height of f(~u ;~v) is bounded by c · nrd(f), where n is the sum of
the depths of normal arguments ~u.

Consider a derivation f(~u ;~v) −→R t1 −→R · · · −→R tn. Let i ∈ {0, . . . , n− 1}. By Lemma 1 it follows that
ti ∈ T →b , and consequently S(ti) ·>` S(ti+1) due to Lemma 4. So in particular the length n is bounded by the
length of ·>` descending sequences starting from S(f(~u ;~v)) = [f(~u)]. By Lemma 5, G`([f(~u)]) = G`(f(~u)).
Thus Lemma 7 gives the constant c ∈ N as desired.

4. Parameter Substitution

Bellantoni already observed that his definition of FP is closed under safe recursion on notation with
parameter substitution. Here a function f is defined from functions g, h0, h1 and ~p by

f(ε, ~x ; ~y) = g(~x ; ~y)
f(zi, ~x ; ~y) = hi(z, ~x ; ~y, f(z, ~x ; ~p(z, ~x ; ~y))) (i = 0, 1) . (SRNPS)

We introduce the small polynomial path order with parameter substitution (sPOP∗PS for short), where clause
>〈3〉spop∗ is extended to account for the schema (SRNPS). Theorem 1 remains valid under this extension.

Definition 6. Let s and t be terms such that s = f(s1, . . . , sk ; sk+1, . . . , sk+l). Then s >spop∗ps t if one of
the following alternatives holds.

1. si >spop∗ps t for some argument si of s (i ∈ {1, . . . , k + l}).
2. f ∈ D, t = g(t1, . . . , tm ; tm+1, . . . , tm+n) where f > g and the following holds:

- s Bn/∼ tj for all normal arguments t1, . . . , tm;
- s >spop∗ps tj for all safe arguments tm+1, . . . , tm+n;
- t contains at most one (recursive) function symbols g with f ∼ g.

3. f ∈ Drec, t = g(t1, . . . , tk ; tk+1, . . . , tk+l) where f ∼ g and the following holds:
- 〈s1, . . . , sk〉 >spop∗ps 〈tπ(1), . . . , tπ(k)〉 for some permutation π on {1, . . . , k};
- s >spop∗ps tj for all safe arguments tj ;
- arguments t1, . . . , tk+l contain no (recursive) symbols g with f ∼ g.

Here s >spop∗ps t denotes that either s s∼ t or s >spop∗ps t. In the last clause, we use >spop∗ps also for the
product extension of >spop∗ps (modulo permutation).

We adapt the notion of predicative recursive TRS of degree d to sPOP∗PS in the obvious way. Note that
>spop∗ ⊆ >spop∗ps does not hold in general, due to the third constraint put onto >〈3〉spop∗ps . Still, the above order
extends the analytic strength of small polynomial path orders.

Lemma 8. If a TRS R is compatible with >spop∗ then R is also compatible with >spop∗ps using the same
precedence and separation of argument positions.

15

Proof. Consider the orientation l >spop∗ r of a rule l→ r ∈ R. To prove the lemma, we show that l >spop∗ps r

holds by replacing every application of >〈i〉spop∗ by >〈i〉spop∗ps . We prove this claim by induction on >spop∗. We
consider the only non-trivial case where s >〈3〉spop∗ t appears in the proof of l >spop∗ps r. Compare the case
>〈3〉spop∗ with the new case >〈3〉spop∗ps . Using the induction hypothesis, the order constraints on normal arguments
are immediately satisfied. Now fix a safe argument tj of t. From s >〈3〉spop∗ t we obtain a safe argument si
of s with si >spop∗ tj . Hence si >spop∗ps tj holds by induction hypothesis. Thus s >〈1〉spop∗ps tj holds as desired.
Observe that the safe arguments si of s are proper subterms of the left-hand side l, hence the terms si
contain no defined symbols. Since >spop∗ collapses to the subterm relation on constructor terms, it follows
that the safe argument tj of t are constructor terms too. From this we see that the final constraint of >〈3〉spop∗ps
is satisfied.

Parameter substitution extends the analytic power of sPOP∗ significantly. Noteworthy, sPOP∗PS can deal
with tail-recursive rewrite systems.

Example 8. The TRS Rrev consisting of the three rules

rev(xs ;)→ revtl(xs ; nil) revtl(nil ; ys)→ ys revtl(cons(;x, xs) ; ys)→ revtl(xs ; cons(;x, ys)) ,

which reverses lists formed from the constructors nil and cons. Define the separation of argument positions
as indicated in the rules. The underlying precedence is given as rev > revtl > cons. Since revtl is the only
recursive symbol, the degree of recursion of Rrev is one.

Notice that orientation of the final rule with the induced sPOP∗ reduces to the unsatisfiable con-
straint ys >spop∗ cons(;x, ys). In contrast, orientation with the induced POP∗PS reduces to the constraint
revtl(cons(;x, xs) ; ys) >spop∗ps cons(;x, ys), which can be resolved by one application of >〈2〉spop∗ps followed by
three applications of >〈1〉spop∗ps .

As a consequence of the next theorem, the runtime of Rrev is inferred to be linear.

Theorem 2. Let R be a predicative recursive TRS of degree d (with respect to Definition 6). Then the
derivation height of any basic term f(~u ;~v) is bounded by a polynomial of degree rd(f) in the sum of the
depths of normal arguments ~u. In particular, the runtime complexity function rcR is bounded by a polynomial
of degree d.

Proof. We observe that under the new definition all proofs, in particular the predicative embedding shown
in Section 3.3, go through unchanged.

5. Predicative Recursive Rewrite Systems Compute all Polytime Functions

In this section we show that sPOP∗ is complete for FP. Indeed, we can even show a stronger result. Let
f be a function from Bwsc that makes only use of d nestings of safe recursion on notation, then there exists
a predicative recursive TRS Rf of degree d that computes the function f .

By definition Bwsc ⊆ B for Bellantoni and Cooks predicative recursive characterisation B of FP given
in [1]. Concerning the converse inclusion, the following theorem states that the class Bwsc is large enough to
capture all the polytime computable functions.

Theorem 3. Every polynomial time computable function belongs to Bwsc.

One can show this fact by following the proof of Theorem 3.7 in [27], where the unary variant of Bwsc is
defined and the inclusion corresponding to Theorem 3 is shown.The completeness of sPOP∗ for the polytime
computable functions is an immediate consequence of Theorem 3 and the following result.

Theorem 4. For any Bwsc-function f there exists a predicative recursive TRS R computing f and of degree
d, where d equals the maximal number of nested application of (SRN) in the definition of f .

16

Proof. Let f be a function coming from Bwsc. A witnessing TRS R is obtained via a term rewriting
characterisation of the class Bwsc depicted in Fig. 1 on page 4. The term rewriting characterisation expresses
the definition of Bwsc as an infinite TRS RBwsc . We define a one-to-one correspondence between functions
from Bwsc and the set of function symbols for RBwsc as follows. Constructor symbols ε, s0 and s1 are
used to denote binary words. The function symbols Si, P, I

k,l
j , C and Ok,l correspond respectively to the

initial functions Si, P , I
k,l
j , C and Ok,l of Bwsc. The symbol SUB[h, i1, . . . , in,~g] is used to denote the

function obtained by composing functions h and ~g according to the schema of (WSC). Finally, the function
symbol SRN[g, h0, h1] corresponds to the function defined by safe recursion on notation from g, h0 and h1 in
accordance to the schema (SRN). With this correspondence, RBwsc is obtained by orienting the equations
in Fig. 1 from left to right.

By induction according to the definition of f in Bwsc we show the existence of a TRS Rf and a precedence
>f such that:

1. Rf is a finite restriction of RBwsc ,
2. Rf contains the rule(s) defining the function symbol f corresponding to f ,
3. Rf is compatible with >spop∗ induced by >f ,
4. f is maximal in the precedence >f underlying Rf , and
5. the depth of recursion rd(f) equals the maximal number of nested application of (SRN) in the definition

of f in Bwsc.

It can be seen from Condition (1), (3) and (5) that the theorem is witnessed by Rf . To exemplify the
construction we consider the step case that f is defined from some functions g, h0, h1 ∈ Bwsc by the schema
(SRN). By induction hypothesis we can find witnessing TRSs Rg,Rh0

,Rh1
with underlying precedences

>g,>h0 ,>h1 respectively for g, h0, h1. Extend the set of function symbols by a new recursive symbol
f := SRN[g, h0, h1]. Let Rf be the TRS consisting of Rg, Rh0 , Rh1 and the following three rules:

f(ε, ~x ; ~y)→ g(~x ; ~y) f(si(;x), ~x ; ~y)→ hi(z, ~x ; ~y, f(z, ~x ; ~y)) (i = 0, 1) .

It is not difficult to see that the precedence >f of Rf extends the precedences >g, >h0
and >h1

by f ∼ f
and f > g′ for g′ ∈ {g, h0, h1}.

Let >spop∗ be the sPOP∗ induced by >f . Then it is easy to check that Rf enjoys Condition (1) and (2).
In order to show Condition (3), it suffices to orient the three new rules by >spop∗. For the first rule,
f(ε, ~x; ~y) >〈2〉spop∗ g(~x; ~y) holds by the definition of>f . For the remaining two rules we only orient the case i = 0.
Since f is a recursive symbol and s0(; z) >〈1〉spop∗ z holds, f(s0(; z), ~x ; ~y) >〈3〉spop∗ f(z, ~x ; ~y) holds. This together
with the definition of the precedence >f allows us to conclude f(s0(; z), ~x ; ~y) >〈2〉spop∗ h0(z, ~x ; ~y, f(z, ~x ; ~y)).

Consider Condition (4). For each function g′ ∈ {g, h0, h1} from Bwsc, the corresponding function symbol
g′ is maximal in the precedence >g′ by induction hypothesis for g′. Hence by the definition of >f , f is
maximal in >f .

It remains to show Condition (5). Notice that rd(f) = 1+max{rd(g), rd(h0), rd(h1)}, since f is a recursive
symbol. Without loss of generality let us suppose rd(g) = max{rd(g), rd(h0), rd(h1)}. Then by induction
hypothesis for g, rd(g) equals the maximal number of nested application of (SRN) in the definition of g in
Bwsc. Hence rd(f) = 1 + rd(g) equals the one in the definition of f in Bwsc.

We obtain that predicative recursive TRSs give a sound and complete characterisation of the polytime
computable functions.

Theorem 5. The following classes of functions are equivalent:

1. The class of functions computed by predicative recursive TRSs.
2. The class of functions computed by predicative recursive TRSs allowing parameter substitution.
3. The class FP of functions computable in polynomial time.

17

Proof. Let PR1 and PR2 refer to the classes defined in clauses (1) and (2) respectively. We have

PR1

(Def.)
⊆ PR2

(Thm. 2)
⊆ FP

(Thm. 3)
⊆ Bwsc

(Thm. 4)
⊆ PR1 .

For the second inclusion we tacitly employed the adequacy theorem.

We remark that from our standing restriction on TRSs, orthogonality is essentially used to ensure
that semantics of TRSs are well-defined. Orthogonality could be replaced by the less restrictive, although
undecidable, notion of confluence.

As a corollary to Theorem 5 we obtain that the class FP, viz Bwsc, is closed under parameter substitution.

Corollary 1. For any functions g, h0, h1, ~p ∈ Bwsc, there exists a unique polytime computable function f
such that f(ε, ~x ; ~y) = g(~x ; ~y) and f(zi, ~x ; ~y) = hi(z, ~x ; ~y, f(z, ~x ; ~p(z, ~x ; ~y))) for each i = 0, 1.

6. Predicative Recursion precisely captures Register Machine Computations

Exploiting the fine-grained control given by the degree of recursion, we now provide an order-theoretic
characterisation of DTIME(nd) via predicative tail-recursive TRSs.

Definition 7. A TRS R is tail-recursive if for every rule f(~v)→ r ∈ R, if g with g ∼ f occurs in r then it
occurs at the root position in r. The TRS R is predicative tail-recursive (of degree d), if it is tail-recursive
and predicative recursive (of degree d), with respect to Definition 6.

For instance, the TRS Rrev from Example 8 is a predicative tail-recursive TRS. The restriction to tail-
recursion is unarguably severe. Still, predicative tail-recursive TRSs of degree d can compute polynomials
c · nd + e (in unary notation) for all c, e ∈ N.

Example 9. Let p(n) := c ·nd + e denote a polynomial with constants c, d, e ∈ N. The TRS Rp is given by
the following rules.

p0(x, y ; z)→ sc(; z)

pr(0, y ; z)→ z for r = 1, . . . , d,
pr(s(;x), y ; z)→ pr(x, y ; pr−1(y, y ; z))) for r = 1, . . . , d,

p(x ;)→ pd(x, x ; se(; 0))

This TRS is tail-recursive, moreover it is predicative recursive with recursive symbols p1, . . . , pd and prece-
dence pd > · · · p1 > p0 > s ∼ 0. In total, Rp is thus predicative tail-recursive, of degree d.

Let pnq = sn(; 0) denote the denotation of n ∈ N as value with constructors s and 0. One verifies
that for u, v, w ∈ N, pr(puq, pvq, pwq) reduces to the value pc · u · vr−1 + wq, for r = 1, . . . , d. Thus
JpK(pnq) = pc · n · nd−1 + eq = pc · nd + eq for all n ∈ N.

6.1. Predicative Tail-Recursive TRSs of Degree d are Complete for DTIME(nd)

Fix a register machineM that computes a function f : W(A)k →W(A) in time O(nd). We show that this
function is computable by a predicative tail-recursive TRS of degree d. Let CA denote the set of constructors
that contains a symbol ε, and for each a ∈ A an unary symbol a. Then the word w = a1, . . . , al ∈ W(A) can
be represented as value a1(· · · (al(ε)) · · ·) over CA. Having this correspondence in mind, we confuse words
with such values below. Furthermore, we suppose for each instruction label j = 1, . . . , l+1 ofM a designated
constant j used to denote this label. The following lemma shows that the one-step transition relation of M
is expressible by a predicative TRS RM0 of degree 0.

Lemma 9. Let M be a RM with m registers. There exists a predicative tail-recursive TRS RM0 of degree 0
defining the symbols M0,M1, . . . ,Mm, such that

M0(; j, u1, . . . , vm) −→RM
0

j′ and Mi(; j, u1, . . . , um) −→RM
0
vi (i = 1, . . . ,m)

iff 〈j, u1, . . . , um〉 →M 〈j′, v1, . . . , vm〉.

18

Proof. Suppose 〈j, u1, . . . , um〉 →M 〈j′, v1, . . . , vm〉. For the definition of M0, note that j′ 6= j + 1 only if
the jth instruction in the control of M is a jump instruction. In this case, j′ can be determined by the
left-most character of one of the values ui (i ∈ {1, . . . ,m}). And so j′ can be computed in one step using
pattern-matching on the inputs j, u1, . . . , um only. Similarly, for the definition of Mi (i = 1, . . . ,m), the
word vi is either a(ui), ε, one of u1, . . . , um or the direct subterm of ui. Again the precise shape can be
determined purely by pattern matching on the inputs j, u1, . . . , um.

Lemma 10. Let f ∈ DTIME(nd). Then f is computed by a predicative tail-recursive TRS Rf of degree d.

Proof. Suppose the function f : W(A)k → W(A) is computed by a RM M in time p(n) ∈ O(nd). Let
c, e ∈ N denote constants such that p(n) 6 c · |n|d + e for all n ∈ N. The construction of Rf is an adaption
of the TRS Rp given in Example 9, using the TRS RM0 provided in Lemma 9 to simulate one step of the
RM M . Let m > k be the numbers of registers of M . For function symbols ~M := M0, . . . ,Mm as provided
in Lemma 9, let ~M〈`〉(;~t) be the `-fold parallel composition of ~M on terms ~t, given by ~M〈0〉(;~t) := ~t and

~M〈`+1〉(;~t) := M0(; ~M〈`〉(;~t)), . . . ,Mm(; ~M〈`〉(;~t)) .

Observe that iterated application of Lemma 9 yields:

~M
〈`〉
j (; l, u1, . . . , um) −→∗RM

0
vj ⇐⇒ (l, u1, . . . , um) −→`

M (l′, v1, . . . , vm) for all ` > 1 and j = 1, . . . ,m. (1)

For each r = 1, . . . , d and i = 0, . . . ,m, let fr,i be fresh a function symbol with 2 · k normal and m
safe argument positions. Let ~x := x1, . . . , xk, ~y := y1, . . . , yk and ~z := z0, . . . , zm denote pairwise distinct
variables. The TRS Rf extends RM0 by the following rules.

f0,i(~x, ~y ;~z)→ ~M
〈c〉
i (;~z)

fr,i(~ε, ~y ;~z)→ zi

fr,i(~ε, a(xj), . . . , xk, ~y ;~z)→ fr,i(~ε, xj , . . . , xk, ~y ; fr−1,0(~y, ~y ;~z), . . . , fr−1,m(~y, ~y ;~z))

f(~x ;)→ fd,m(~x, ~x ; ~M〈e〉(; 1, ~x,~ε)) .

Here the index r ranges over 1, . . . , d, the index i ranges over 0, . . . , k and a ∈ A. Let ~u and ~v be vectors of
words of length k. Observe that

fr,i(~u,~v ;w1, . . . , wk,~ε) −→∗Rf
~M
〈c·|~u|·|~v|r−1〉
i (;w1, . . . , wk,~ε)↓ .

This derivation can be shown by induction on r and |~u|, in correspondence to Example 9. For words
~w = w1, . . . , wk, this thus yields

f(~w ;) −→∗Rf
~M〈c·|~w|·|~w|

d−1〉
m (; ~M〈e〉m (; 1, ~w, ~ε))↓ = ~M〈c·|~w|

d+e〉
m (; 1, ~w, ~ε)↓ . (2)

Putting the derivations (1) and (2) together, and using that RM M runs in time p(n) 6 c · |~w|d + e on input
w1, . . . , wk, we conclude that JfK(w1, . . . , wk) = f(w1, . . . , wk) holds.

Observe that the precedence > of Rf on defined symbols is given by

f > fd,0, . . . , fd,m > · · · > f0,0, . . . , f0,m > M0, . . . ,Mm ,

where only the symbols fr,i for r > 0 are recursive in Rf . In particular, the recursion depth of Rf is thus d.
It is also not difficult to see that Rf is predicative recursive. As Rf is tail-recursive, the lemma follows.

19

6.2. Predicative Tail-Recursive TRSs of Degree d are Sound for DTIME(nd)

We now show the converse of Lemma 10. Fix a predicative tail-recursive TRS R of degree d. Call a
function symbol monadic if its arity is at most one. Suppose all constructors of R are monadic and consider
a defined symbol f in R. We show that the function JfK computed by R can be implemented on a RM
Mf , operating in time O(nd). The restriction to monadic constructors allows us to identify values of R with
words over the alphabet AC , which contains for every constructor ai ∈ C a distinct letter ai. We use the word
c1, . . . , cl to denote the value c1(c2(. . . cl−1(cl) . . .)). Having this correspondence in mind, we again confuse
words with values.

To ease presentation, we first consider the sub-case where R is simple. Here a rule f(~u ;~v) → r is
called simple if r is a constructor term or r = g(~w ;h1(~u ;~v), . . . , hk(~u ;~v)) where g is either a defined or a
constructor symbol and h1, . . . , hk ∈ D. Furthermore R is called simple if all its rules are simple.

Lemma 11. If R is simple, then JfK ∈ DTIME(nrd(f)) for every defined symbol f from R.

Proof. For each defined symbol f in R with k normal and l safe arguments, we define a corresponding
RM Mf with input registers ~xf = xf1 , . . . , x

f
k+l and output variable zf . On input ~u = u1, . . . , uk and

~v = v1, . . . , vl the RMs Mf run in time O(|~u|rd(f)). To simplify the presentation, we first suppose that the
precedence of R is strict on defined symbols, i.e. f ∼ g for f, g ∈ D implies f = g. The construction is by
induction on the rank p of f , the bound is proven by induction on p and side induction on |u|. Suppose the
input registers ~xf hold the values ~u,~v.

First observe that Mf is able to determine in constant time (depending only on R) the (unique) rewrite
rule applicable to f(~u ;~v). Since there are only a constant number of rules in R, it suffice to realise that
the time required for pattern matching depends only on R. To this end, suppose we want to match f(~u ;~v)

against the left hand-side f(~ln ; ~ls) → r ∈ R. Due to linearity, Mf can match the arguments ~u,~v against
~ln, ~ls individually. For this, the RMMf just has to copy sequentially each argument w ∈ ~u,~v to a temporary
register, wi can then be matched against the corresponding argument li ∈ ~ln, ~ls using a constant number of
jump and delete instructions.

Once the applicable rewrite rule has been identified, the RM Mf can proceed according to its right-hand
side as follows. If f(~u ;~v) rewrites in one step to a value, say w, then w = C[xσ] for some constructor context
C and substitution σ : V → T (C). Then some input register xi ∈ ~xf holds the word C ′[xσ]. Notice that the
contexts C and C ′ depend only on the applied rewrite rule. Hence Mf can provide the result w in register
zf in constant time. Thus suppose f(~u ;~v) does not rewrite to a value in one step. Since R is simple

f(~u ;~v) −→R g(w1, . . . , wm ;h1(~u ;~v), . . . , hn(~u ;~v)) where h1, . . . , hn ∈ D .

As R is predicative recursive, f > hj holds for all j = 1, . . . , n. Furthermore, either f > g or f = g
holds by our assumption that > is strict on defined symbols. In both cases, order constraints on normal
arguments give f(~u ;~v) Bn/∼ wi (i = 1, . . . ,m), i.e. some input register holds a superterm of wi. The RM
Mf can prepare the arguments wi in dedicated registers xgi for all i = 1, . . . ,m in constant time. By
induction hypothesis, there exist RMs Mhj

(j = 1, . . . , n) that on input registers ~xhj
initialised by ~u,~v,

compute the value JhjK(~u ;~v) in time O(|~u|rd(hj)). The RM Mf can use these machines as sub-procedures
(cf. [33]) in order to compute JhjK(~u ;~v) (j = 1, . . . , n). Overall this requires at most O(|~u|d) steps, where
d := max{rd(h1), . . . , rd(hn)} 6 rd(f) is the maximal recursion depth of the defined symbols hi. The
interesting case is now when g ∈ D. We analyse the cases f > g and f = g independently.

If f > g then as before we can use a machine Mg given by induction hypothesis that computes
JgK(~w ; Jh1K(~u ;~v), . . . , JhnK(~u ;~v)) = JfK(~u ;~v) where ~w := w1, . . . , wm in time O(|~w|rd(g)), from the already
initialised input registers ~xg. As a consequence of the order constraints onR we see |wi| 6 max{|uj | | uj ∈ ~u}
for all i = 1, . . . ,m. Thus |w| 6 m · |~u|, and hence overall the procedure takes time O(|~u|d) + O(|~w|rd(g)) ⊆
O(|~u|rd(f)). For the inclusion we employ d 6 rd(f) and rd(g) 6 rd(f) as given by the assumptions.

Otherwise f = g, hence f is recursive. Recall that >spop∗ps collapses to the subterm relation (modulo
equivalence) on values. From the order constraint on normal arguments 〈~u〉 >spop∗ps 〈~w〉 it is thus not
difficult to derive |~w| < |~u|. Recall d = max{rd(h1), . . . , rd(hn)} < rd(f) since f is recursive. Thus it follows

20

that |~u|d + |~w|rd(f) 6 |~u|rd(f) + 1. Using the side induction hypothesis we conclude that Mf operates in time
O(|~u|d) + O(|~w|rd(f)) = O(|~u|rd(f)) overall. We conclude this final case.

To lift the assumption on the precedence, suppose {f1, . . . , f`} is the set of all function symbols equivalent
to f ∈ D, i.e., f1, . . . , f` are defined by mutual recursion. Since this class is finite, one can store i (for
i = 1, . . . , `) in a dedicated register of Mf , say r. Although more tedious, it is not difficult to see that the
above construction can then be altered, so that Mf computes f〈r〉(~u ;~v) on input ~u,~v.

We now remove the restriction that R is simple. For that we define the relation on TRSs as follows.
Let h1, . . . , hk be fresh symbols not appearing in R. Then

R] {f(~uf ;~vf)→ g(~ug ; t1, . . . , tk)} R∪ {f(~uf ;~vf)→ g(~ug ;h1(~uf ;~vf), . . . , hk(~uf ;~vf))}
∪ {hi(~uf ;~vf)→ ti | i = 1, . . . , k} ,

provided the transformed rule f(~uf ;~vf) → g(~ug ; t1, . . . , tk) is not already simple. The relation enjoys
following properties.

Lemma 12.

1. The relation is well-founded.
2. If R S then −→R ⊆ −→+

S .
3. Let R be a predicative tail-recursive TRS of degree d that uses only monadic constructors. If R S

then S enjoys the same properties.

Proof. Let ‖R‖ :=
∑
r∈R|r|, where R = {r | l→ r ∈ R is not a simple rule}. Then an infinite chain R1

R2 · · · translates into an infinite descend ‖R1‖ > ‖R2‖ > · · · . Hence property 1 follows.
Suppose now R S. For property 2, consider a rewrite step C[f(~ufσ ;~vfσ)] −→R C[g(~ugσ ; t1σ, . . . , tkσ)]

using a transformed rule f(~uf ;~vf)→ g(~ug ; t1, . . . , tk) ∈ R. Then

C[f(~ufσ ;~vfσ)] −→S C[g(~ugσ ;h1(~ufσ ;~vfσ), . . . , hk(~ufσ ;~vfσ))] −→k
S C[g(~ugσ ; t1σ, . . . , tkσ)] ,

simulates the considered step. So clearly −→R ⊆ −→+
S follows.

Finally consider property 3, and consider a TRS S such that R S. Let f(~uf ;~vf)→ g(~ug ; t1, . . . , tk),
denote the rule which is replaced by

f(~uf ;~vf)→ g(~ug ;h1(~uf ;~vf), . . . , hk(~uf ;~vf)) and hi(~uf ;~vf)→ ti (i = 1, . . . , k).

Let > denote the precedence underlying R, and w the precedence underlying the simplified TRS S. Notice
that w is an extension of >, which collapses to > on the signature F of R. As the freshly introduced symbols
hi are not recursive, the recursion depth of every symbol h ∈ F is preserved by the transformation.

It is obvious that when R is tail-recursive, so is S. It thus remains to verify that S is oriented by the
order Aspop∗ps . Since > ⊆ w, and as a consequence >spop∗ps ⊆ wspop∗ps , it suffices to show that the orientation
f(~uf ;~vf) >spop∗ps g(~ug ; t1, . . . , tk) of the replaced rule implies

f(~uf ;~vf) Aspop∗ps g(~ug ;h1(~uf ;~vf), . . . , hk(~uf ;~vf)) (3)

hi(~uf ;~vf) Aspop∗ps ti (i = 1, . . . , k) . (4)

We perform case analysis on the assumption.
Suppose first f(~uf ;~vf) >〈1〉spop∗ps g(~ug ; t1, . . . , tk) holds. Note that by the shape of left-hand sides in R

and definition of the precedence, g is a constructor in the considered case. In particular g admits only safe
argument positions. Thus f(~uf ;~vf) A〈2〉spop∗ps g(~ug ;h1(~uf ;~vf), . . . , hk(~uf ;~vf)) holds using f(~uf ;~vf) A〈2〉spop∗ps
hi(~uf ;~vf) (i = 1, . . . , k). This concludes (3). The assumption give also f(~uf ;~vf) B/∼ ti for all i = 1, . . . , k,
thus hi(~uf ;~vf) A〈1〉spop∗ps ti holds and we conclude (4).

Finally suppose that f(~uf ;~vf) >spop∗ps g(~ug ; t1, . . . , tk) follows by >〈2〉spop∗ps either or >〈3〉spop∗ps . Using the
order constraint f(~uf ;~vf) >spop∗ps hi(~uf ;~vf) for all i = 1, . . . , k, we see that (3) follows by A〈2〉spop∗ps or A

〈3〉
spop∗ps

21

respectively. For equation (4), observe that since R is tail-recursive, the assumption gives f(~uf ;~vf) >spop∗ps ti
(i = 1, . . . , k) using only applications of >〈1〉spop∗ps and >

〈2〉
spop∗ps

. Repeating these proofs, but employing hi A g

instead of f > g yields a proof of (4).

Lemma 13. Let R be a predicative tail-recursive TRS of degree d, and suppose all constructors are monadic.
Then JfK ∈ DTIME(nrd(f)) for every defined symbol f from R.
Proof. Let S be a -normal form of our analysed TRS R. Then S is simple as otherwise -reducible.
Using the assumptions on R, Lemma 12 yields that S satisfies the preconditions of Lemma 11. Moreover,
it shows that S computes all functions computed by R. We conclude by Lemma 11.

6.3. Predicative Tail-Recursive TRSs of Degree d Characterise DTIME(nd)

By Lemma 10 and Lemma 13, we obtain following correspondence.

Theorem 6. For each d ∈ N, the following classes of functions are equivalent:
1. The class of functions computed by predicative tail-recursive TRSs of degree d, using only monadic

constructors.
2. The class DTIME(nd) of functions computed by register machines operating in time O(nd).

This theorem is closely connected to the recursion-theoretic characterisation of the polytime computable
functions provided by Leivant [12], and the one of Marion [13]. Leivant uses ramified recurrence schemes to
impose data tiering on functions defined by recursive means. Restricted to word algebras and two tiers, a
function f in Leivant’s class belongs to DTIME(nd), where d corresponds to the number of nested recursive
definitions in f . Vice verse, any function in DTIME(nd) is expressible in Leivant’s class using two tiers, and
maximal d nested recursive definitions. Hence there is a precise correspondence between the functions f
defined in Leivant’s class based on d nested recursive definitions, and the functions definable by predicative
recursive TRS of degree d. Syntactically, the restriction to two tiers in Leivant’s class results in a composition
scheme conceptually similar to weak safe composition. Substitution is only allowed on arguments not used
for recursion.

Our result as well as Leivant’s characterisation, relies on recursion schemes that go beyond primitive
recursion with data tiering. Leivant allows recursive definitions by simultaneous recursion. We note that
in our context, simultaneous recursion cannot be permitted. In general, such an extension would invalidate
Theorem 1 and Theorem 2 respectively. Instead, we resort to parameter substitution, which is essential for
our completeness result. Still simultaneous recursion can be reduced to primitive recursion, preserving the
data tiering principle underlying [12]. However, this program transformation relies on a form of tupling, and
does not preserve the number of nestings of recursive definitions. In our context, parameter substitution
can be eliminated in recursive definitions in a similar spirit, at the expense of the depth of recursion.

Restoring to strict ramified recurrence schemes, Marion [13] provides a fine-grained characterisation of
DTIME(nd) in the spirit of Leivant’s characterisation and our result above. The underlying strict ramification
principle requires that each recursive definition increases the tier of an input. As a consequence, the exponent
d is reflected in the maximal level of an input tier. Crucial here again is the restriction to a composition
scheme akin to our weak form of composition.

In Marion’s characterisation, functions can return multiple values. As a consequence, the simulation of
register machine computations requires neither simultaneous recursion nor similar concepts. It is not difficult
to show that a modification of our computational model, which accounts for multi-valued functions, allows
the completeness result given in Lemma 10 even if we disallow parameter substitution. We feel however
that such a modification, tailored specifically to register machines, introduces a rather ad-hoc flavor to our
formulation of computation by TRSs.

7. Examples and Experimental Evaluation

We briefly contrast the orders sPOP∗ and sPOP∗PS to its predecessor POP∗ [9], Marion’s LMPO [6],
as well as interpretation methods found in state-of-the-art complexity provers. Furthermore, we present
experimental results.

22

Lightweight Multiset Path Order and Polynomial Path Orders. The order sPOP∗ forms a restriction of
POP∗ and LMPO, whereas the latter two orders are incomparable in general. In contrast to the family
of polynomial path orders, LMPO allows multiple recursive calls in right-hand sides. As clarified in the
next example, extending our methods would invalidate the corresponding main results (Theorem 1 and
Theorem 2 respectively).

Example 10. The TRS Rbin is given by the following rules:

bin(x, 0)→ s(0) bin(0, s(y))→ 0 bin(s(x), s(y))→ +(bin(x, s(y)), bin(s(x), y)) .

For a precedence > that fulfils bin > s and bin > + we obtain that Rbin is compatible with LMPO. This
TRS can however neither be handled by sPOP∗ nor sPOP∗PS. It is straightforward to verify that the family
of terms bin(sn(0), sm(0)) admits derivations whose length grows exponentially in n. Still the underlying
function can be proven polynomial, essentially relying on memoisation techniques [6].

On the other hand, POP∗ integrates a multiset status. In contrast, both LMPO and sPOP∗ are restricted
to product status.

Example 11. Consider the following one-ruled TRS Rlevy originally stemming from Jean-Jaques Lévy:4

f(g(;x), y ; y)→ g(; f(x, x ; y)) .

Polynomial runtime complexity of this system can be shown by POP∗. The system is neither compatible
with an instance of LMPO nor sPOP∗, because the product of arguments to f cannot be ordered.

However, the system becomes orientable with an instance of sPOP∗PS, if we make also the second argument
of f safe. Observe that f(g(;x) ; y, y) >〈3〉spop∗ps f(x ;x, y) holds, using 〈g(;x)〉 >spop∗ps 〈x〉, f(g(;x) ; y, y) >〈1〉spop∗ps x

as well as f(g(;x) ; y, y) >〈1〉spop∗ps y. From this, one application of >〈2〉spop∗ps orients the rule. Since f is the only
recursive symbol, Theorem 2 shows that the runtime complexity of Rlevy is at most linear.

Even though sPOP∗ forms a restriction of POP∗ and LMPO, its extension by parameter substitution is
incomparable to LMPO and POP∗. Consider the following TRS.

Example 12. The TRS Radd consists of the following rules.5

+(0 ; y)→ y +(s(;x) ; y)→ s(; + (x ; y)) +(s(;x) ; y)→ +(x ; s(; y))

Due to the last rule, the TRS Radd is neither compatible with sPOP∗, POP∗ nor LMPO. The system is
however compatible with the instance >spop∗ps of sPOP∗PS as induced by the precedence underlying Radd and
separation of argument positions indicated in the rules. The degree of recursion of Radd is one. The runtime
complexity of Radd is inferred to be linear by Theorem 2.

We remark that POP∗ can be extended by parameter substitution [9]. Unless PSPACE = P, this extension
does however not carry over to LMPO, without sacrificing polytime computability. For instance, the natural
extension of LMPO by parameter substitution can handle Example 36 from [11]. This example encodes the
PSPACE complete problem of quantifier elimination on quantified Boolean formulas.

Polynomial and Matrix Interpretations. Small polynomial path orders are in general incomparable to inter-
pretation methods, notably matrix [36] and polynomial interpretations [37]. These are the most frequently
used base techniques in complexity tools nowadays. A polynomial interpretation is an F-algebra [28] A with
carrier N, where interpretations fA : Nk → N (for every k-ary function symbol f) are monotone polynomi-
als. A TRS R is compatible with a polynomial interpretation, aka polynomially terminating, if for every rule
l→ r ∈ R, under any assignment the left-hand side l is interpreted in A larger than the interpretation of the

4This is example 2.59 in Steinbach and Kühler’s collection of TRSs [35].
5This is example 2.09 in Steinbach and Kühler’s collection of TRSs [35].

23

right-hand side r. We say that a polynomial interpretation A induces polynomial runtime complexity if the
interpretation of every basic term is bounded by a polynomial in the size of s. For such an interpretation A
compatible with R, the runtime complexity of R is bounded by a polynomial. Additive polynomial interpre-
tations [10], where all constructors c are interpreted by additive polynomials cA(x1, . . . , xk) = δ +

∑k
i=1 xi

(δ ∈ N) induce polynomial runtime complexity.
Not every polynomially terminating TRS is predicative recursive, even if only additive interpretations are

employed. Vice verse, not every predicative recursive TRS is polynomially terminating so that the underlying
interpretation induces polynomial runtime complexity. This is clarified in the next two examples.

Example 13. The one-ruled TRS {f(c(x)) → f(d(x))} is polynomially terminating, using interpretations
cA(x) = x+ 1 and fA(x) = dA(x) = x, but it is not compatible with any of the above mentioned restrictions
of recursive path orders.

Example 14. Consider the predicative tail-recursive TRS Rbtree, which consists of the following two rewrite
rules:

f(0 ; y)→ y f(s(;x) ; y)→ f(x ; c(; y, y)) .

Suppose this rewrite system is compatible with a polynomial interpretation A. Consider the reduction
of a basic term sn := f(sn(; 0) ; s(; 0)) for n ∈ N. This yields a binary tree vn of height n, with leafs
s(; 0). Observe that by monotonicity, cA(x, y) > x + y holds. Note that orientation requires that sA(x) >
x. As a consequence, the interpretation of terms vn grows exponentially in n. As by compatibility the
interpretations of terms necessarily decrease during reduction, it follows that A does not induce polynomial
runtime complexity.

A matrix interpretation A is similar to a polynomial interpretation, but the underlying carrier of the
F-algebra is Nd (d > 1), and interpretation functions are of shape fA(~x1, . . . , ~xk) = F1 ·~x1 + · · ·+Fk ·~xk+f .
Here Fi (i = 1, . . . , k) denote matrices of size d × d, and f is vector over N. The notions of compatibility
and induced polynomial complexity carry over naturally from polynomial interpretations. As for (additive)
polynomial interpretations it can be shown that matrix interpretations are incompatible to small path orders.
This is clarified in the next example.

Example 15 (Continued from Examples 2 and 13). Reconsider the predicative recursive TRS Rarith

from Example 1. This system cannot be shown compatible with matrix interpretations. Intuitively this
holds due to the linear form of matrix interpretations. The interpretation of a basic term ×(x, y ;) has to
be a non-linear expression in both x and y.

Vice verse, the (additive) polynomial interpretation given in Example 13 turns naturally into a matrix
interpretation compatible with the one-ruled TRS depicted in Example 13. On the other hand, this TRS is
not predicative recursive.

Our final example shows that even in cases where semantic methods apply, order-based techniques might
deduce a tighter bound.

Example 16 (Continued from Example 11). While the TRS Rlevy given in Example 11 can be handled
with semantic methods, the polynomial interpretations can only verify a quadratic upper bound. To the
contrary, sPOP∗PS can verify the (non-optimal) linear bound.

Experimental Assessment. The small polynomial path order sPOP∗ gives rise to a new, fully automatic,
syntactic method for polynomial runtime complexity analysis. We have implemented this technique in our
complexity tool TCT [2]. In particular the complexity proofs above have been obtained automatically with
TCT.

In order to further test the viability of small polynomial path orders, we performed experiments on the
relative power of sPOP∗ (respectively sPOP∗PS) with respect to LMPO [6], POP∗ [8] and interpretations [10,

24

LMPO POP∗ sPOP∗ sPOP∗PS SEM SEM+sPOP∗PS

TC O(1) — — 9/0.13 9/0.13 — 3/0.12

O(n) — — 23/0.16 37/0.21 83/0.73 89/0.70

O(n2) — — 6/0.22 7/0.23 20/2.17 17/1.84

O(n3) — — 1/0.58 1/0.62 — 1/6.66⋃
k∈N

O(nk) — 43/0.12 — — — —

Compatible 54/0.14 43/0.12 39/0.17 54/0.21 103/1.01 110/0.91

Incompatible 543/0.25 554/0.25 558/0.24 543/0.25 25/4.48 25/4.54

Timeout — — — — 469/10.0 462/10.0

TCO O(1) — — 5/0.12 5/0.12 — 3/0.12

O(n) — — 14/0.15 19/0.18 44/0.84 45/0.78

O(n2) — — 4/0.20 4/0.21 13/2.04 11/1.94⋃
k∈N

O(nk) — 24/0.11 — — — —

Compatible 29/0.13 24/0.11 23/0.15 54/0.17 57/1.11 59/0.96

Incompatible 261/0.13 266/0.17 267/0.17 702/0.17 8/4.36 8/4.29

Timeout — — — — 225/10.0 223/10.0

Table 1: Number of oriented problems and average execution times (secs.) on data-sets TC and TCO.

36] suited to polynomial complexity analysis. Experiments were conducted with TCT version 2.0,6 on a
machine with 8 Dual-Core Opteron

TM
885 processors (2.6GHz). We abort TCT if a complexity certificate

could not be found within 10 seconds. We selected two data-sets: data-set TC constitutes of 597 terminating
constructor TRSs and data-set TCO, containing 290 examples, resulting from restricting test-suite TC to
orthogonal systems.7

Table 1 summarises the results obtained on data-sets TC and TCO.8 On the larger benchmark TC,
the total of 39 examples drawn in column sPOP∗ are necessarily a subset of the 54 examples compatible
with LMPO, and also the 43 examples compatible with POP∗. Note that LMPO induces only exponential
bounded runtime complexity. On three examples, including the TRS Rbin depicted in Example 10, this
bound is indeed tight. Whereas POP∗ can only give an unspecified polynomial bound, sPOP∗ assesses
the complexity of compatible systems between constant and cubic. Thus sPOP∗ brings about a significant
increase in precision, accompanied with only minor decrease in power. This assessment remains true, if we
consider the smaller benchmark set TCO. Parameter substitution increases the analytic power of POP∗ on
test-suite TC from 39 to 54 examples. From the 15 new examples, 13 examples are neither compatible with
LMPO nor POP∗.

The last two columns in Table 1 indicate the strength of semantic techniques and their combination
with sPOP∗ (column SEM+sPOP∗PS). In column SEM we employed matrix interpretations [36] (dimension
1 to 3) as well as additive polynomial interpretations [10] (degree 2 and 3). Here we make use of the
modular combination technique proposed by Zankl and Korp [38] to combine the interpretation techniques.
Coefficients, respectively entries in coefficients, range up to 7. To ensure that matrix interpretations induce
polynomial runtime complexity, we resort to the non-trivial criteria found in [16]. Column SEM+sPOP∗PS
corresponds to column SEM, where sPOP∗PS is additionally integrated.

6Available from http://cl-informatik.uibk.ac.at/software/tct/.
7The test-suites are taken from the Termination Problem Database (TPDB), version 8.0; http://termcomp.uibk.ac.at.
8Full experimental evidence is provided under http://cl-informatik.uibk.ac.at/software/tct/experiments/

spopstar-ICC.

25

http://cl-informatik.uibk.ac.at/software/tct/
http://termcomp.uibk.ac.at
http://cl-informatik.uibk.ac.at/software/tct/experiments/spopstar-ICC
http://cl-informatik.uibk.ac.at/software/tct/experiments/spopstar-ICC

It is immediate that syntactic techniques alone cannot compete with the expressive power of interpre-
tations. If we consider the total number of compatible systems only, semantic techniques are roughly twice
as powerful as the strongest syntactic technique (sPOP∗PS). Still, the syntactic techniques proposed in this
work provide a fruitful addition to the interpretation method. Contrasting columns SEM and SEM+sPOP∗PS,
not only the total number of certified systems, but also the precision of the obtained certificates, is increased
by the addition of sPOP∗PS. Note also the slight decrease in execution time.

8. Conclusion

We propose a new order, the small polynomial path order sPOP∗, together with its extension sPOP∗PS
to parameter substitution. Based on sPOP∗, we delineate a class of rewrite systems, dubbed systems of
predicative recursion of degree d, such that for rewrite systems in this class we obtain that the runtime
complexity lies in O(nd). Exploiting the control given by the degree of recursion, we establish a novel
characterisation of the functions computable in time O(nd), on register machines via the small polynomial
path order sPOP∗PS.

Thus small polynomial path orders induce a new order-theoretic characterisation of the class of polytime
computable functions. This order-theoretic characterisation enables a fine-grained control of the complexity
of functions in relation to the number of nested applications of recursion. One the other hand, small
polynomial path orders provide a novel syntactic, and very fast, criteria to automatically establish polynomial
runtime complexity of a given TRS. The latter criteria extends the state of the art in runtime complexity
analysis as it can be more precise or more efficient than previously known techniques.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments that greatly helped in
improving the presentation.

References

[1] S. Bellantoni, S. Cook, A new Recursion-Theoretic Characterization of the Polytime Functions, Computational Complexity
2 (2) (1992) 97–110.

[2] M. Avanzini, G. Moser, Tyrolean Complexity Tool: Features and Usage, in: Proc. of 24th RTA, Vol. 21 of Leibniz
International Proceedings in Informatics, 2013, pp. 71–80.

[3] P. Baillot, J.-Y. Marion, S. R. D. Rocca, Guest Editorial: Special Issue on Implicit Computational Complexity, ACM
Transactions on Computational Logic 10 (4).

[4] T. Arai, N. Eguchi, A New Function Algebra of EXPTIME Functions by Safe Nested Recursion, ACM Transactions on
Computational Logic 10 (4) (2009) 24:1–24:19.

[5] M. Avanzini, N. Eguchi, G. Moser, A Path Order for Rewrite Systems that Compute Exponential Time Functions, in:
Proc. of 22nd RTA, Vol. 10 of Leibniz International Proceedings in Informatics, 2011, pp. 123–138.

[6] J.-Y. Marion, Analysing the Implicit Complexity of Programs, Information and Computation 183 (2003) 2–18.
[7] T. Arai, G. Moser, Proofs of Termination of Rewrite Systems for Polytime Functions, in: Proc. of 15th FSTTCS, Vol.

3821 of Lecture Notes in Computer Science, 2005, pp. 529–540.
[8] M. Avanzini, G. Moser, Complexity Analysis by Rewriting, in: Proc. of 9th FLOPS, Vol. 4989 of Lecture Notes in Computer

Science, 2008, pp. 130–146.
[9] M. Avanzini, G. Moser, Polynomial Path Orders, Logical Methods in Computer Science 9 (4).

[10] G. Bonfante, A. Cichon, J.-Y. Marion, H. Touzet, Algorithms with Polynomial Interpretation Termination Proof, Journal
of Functional Programming 11 (1) (2001) 33–53.

[11] G. Bonfante, J.-Y. Marion, J.-Y. Moyen, Quasi-interpretations: A Way to Control Resources, TCS 412 (25) (2011)
2776–2796.

[12] D. Leivant, Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time, in: Feasible Mathe-
matics II, Progress in Computer Science and Applied Logic, Vol. 13, Birkhäuser Boston, 1995, pp. 320–343.

[13] J.-Y. Marion, On Tiered Small Jump Operators, Logical Methods in Computer Science 5 (1) (2009) 1–19.
[14] G. Moser, A. Schnabl, Proving Quadratic Derivational Complexities Using Context Dependent Interpretations, in: Proc.

19th RTA, Vol. 5117 of Lecture Notes in Computer Science, 2008, pp. 276–290.
[15] N. Hirokawa, G. Moser, Automated Complexity Analysis Based on the Dependency Pair Method, CoRR abs/1102.3129,

submitted.

26

[16] A. Middeldorp, G. Moser, F. Neurauter, J. Waldmann, H. Zankl, Joint Spectral Radius Theory for Automated Complexity
Analysis of Rewrite Systems, in: Proc. of 4th CAI, Vol. 6472 of Lecture Notes in Computer Science, 2011, pp. 1–20.

[17] M. Avanzini, G. Moser, A Combination Framework for Complexity, in: Proc. of 24th RTA, Vol. 21 of Leibniz International
Proceedings in Informatics, 2013, pp. 55–70.

[18] G. Moser, Proof Theory at Work: Complexity Analysis of Term Rewrite Systems, CoRR abs/0907.5527, Habilitation
Thesis.

[19] J. Hoffmann, K. Aehlig, M. Hofmann, Multivariate Amortized Resource Analysis, Transactions on Programming Languages
and Systems 34 (3) (2012) 14.

[20] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, G. Puebla, D. Ramírez, G. Román, D. Zanardini, Termination
and Cost Analysis with COSTA and its User Interfaces, Electronic Notes in Theoretical Computer Science 258 (1) (2009)
109–121.

[21] C. Alias, A. Darte, P. Feautrier, L. Gonnord, Multi-dimensional Rankings, Program Termination, and Complexity Bounds
of Flowchart Programs, in: Proc. 17th SAS, Vol. 6337 of Lecture Notes in Computer Science, 2010, pp. 117–133.

[22] S. Gulwani, K. Mehra, T. Chilimbi, SPEED: Precise and Efficient Static Estimation of Program Computational Complex-
ity, in: Proc. of 36th POPL, ACM, 2009, pp. 127–139.

[23] F. Zuleger, S. Gulwani, M. Sinn, H. Veith, Bound Analysis of Imperative Programs with the Size-Change Abstraction, in:
Proc. of 18th SAS, Vol. 6887 of Lecture Notes in Computer Science, 2011, pp. 280–297.

[24] H. Simmons, The Realm of Primitive Recursion, Archive for Mathematical Logic 27 (1988) 177–188.
[25] D. Leivant, A Foundational Delineation of Computational Feasiblity, in: Proc. of 6th LICS, IEEE Computer Society,

1991, pp. 2–11.
[26] D. Leivant, Stratified Functional Programs and Computational Complexity, in: Proc. of 20th POPL, 1993, pp. 325–333.
[27] W. G. Handley, S. S. Wainer, Complexity of Primitive Recursion, in: Computational Logic, NATO ASI Series F: Computer

and Systems Science, Vol. 165, 1999, pp. 273–300.
[28] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[29] N. Hirokawa, G. Moser, Automated Complexity Analysis Based on the Dependency Pair Method, in: Proc. of 4th IJCAR,

Vol. 5195 of Lecture Notes in Artificial Intelligence, 2008, pp. 364–380.
[30] U. Dal Lago, S. Martini, On Constructor Rewrite Systems and the Lambda-Calculus, in: Proc. of 36th ICALP, Vol. 5556

of Lecture Notes in Computer Science, 2009, pp. 163–174.
[31] M. Avanzini, G. Moser, Complexity Analysis by Graph Rewriting, in: Proc. of 10th FLOPS, Vol. 6009 of Lecture Notes

in Computer Science, 2010, pp. 257–271.
[32] M. Avanzini, G. Moser, Closing the Gap Between Runtime Complexity and Polytime Computability, in: Proc. of 21st

RTA, Vol. 6 of Leibniz International Proceedings in Informatics, 2010, pp. 33–48.
[33] J. C. Shepherdson, H. E. Sturgis, Computability of Recursive Functions, Journal of the Association for Computing

Machinery 10 (1963) 217–255.
[34] M. F. Ferreira, Termination of term rewriting. well-foundedness, totality and transformations, Ph.D. thesis, University of

Utrecht, Faculty for Computer Science (1995).
[35] J. Steinbach, U. Kühler, Check your ordering - termination proofs and open problems, Tech. Rep. SEKI-Report SR-90-25,

University of Kaiserslautern (1990).
[36] J. Endrullis, J. Waldmann, H. Zantema, Matrix Interpretations for Proving Termination of Term Rewriting, Journal of

Automated Reasoning 40 (3) (2008) 195–220.
[37] D. Lankford, On Proving Term Rewriting Systems are Noetherian, Tech. Rep. MTP-3, Louisiana Technical University

(1979).
[38] H. Zankl, M. Korp, Modular Complexity Analysis via Relative Complexity, in: Proc. of 21st RTA, Vol. 6 of Leibniz

International Proceedings in Informatics, 2010, pp. 385–400.

27

	Introduction
	Related Work
	Outline

	Preliminaries
	Term Rewriting
	Register Machines

	The Small Polynomial Path Order
	Predicative Interpretation of Terms as Sequences
	Small Polynomial Path Order on Sequences
	Predicative Embedding
	Binding the Length of []-Descending Sequences

	Parameter Substitution
	Predicative Recursive Rewrite Systems Compute all Polytime Functions
	Predicative Recursion precisely captures Register Machine Computations
	Predicative Tail-Recursive TRSs of Degree d are Complete for `39`42`"613A``45`47`"603ADTIME(nd)
	Predicative Tail-Recursive TRSs of Degree d are Sound for `39`42`"613A``45`47`"603ADTIME(nd)
	Predicative Tail-Recursive TRSs of Degree d Characterise `39`42`"613A``45`47`"603ADTIME(nd)

	Examples and Experimental Evaluation
	Conclusion

