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Abstract
We show how the complexity of higher-order functional programs
can be analysed automatically by applying program transformations
to a defunctionalised versions of them, and feeding the result
to existing tools for the complexity analysis of first-order term
rewrite systems. This is done while carefully analysing complexity
preservation and reflection of the employed transformations such
that the complexity of the obtained term rewrite system reflects on
the complexity of the initial program. Further, we describe suitable
strategies for the application of the studied transformations and
provide ample experimental data for assessing the viability of our
method.

Categories and Subject Descriptors F.3.2 [Semantics of program-
ming languages]: Program Analysis

Keywords Defunctionalisation, term rewriting, termination and
resource analysis

1. Introduction
Automatically checking programs for correctness has attracted the
attention of the computer science research community since the birth
of the discipline. Properties of interest are not necessarily functional,
however, and among the non-functional ones, noticeable cases are
bounds on the amount of resources (like time, memory and power)
programs need when executed.

Deriving upper bounds on the resource consumption of programs
is indeed of paramount importance in many cases, but becomes
undecidable as soon as the underlying programming language is
non-trivial. If the units of measurement become concrete and close
to the physical ones, the problem gets even more complicated,
given the many transformation and optimisation layers programs are
applied to before being executed. A typical example is the one of
WCET techniques adopted in real-time systems [54], which do not
only need to deal with how many machine instructions a program
corresponds to, but also with how much time each instruction costs
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when executed by possibly complex architectures (including caches,
pipelining, etc.), a task which is becoming even harder with the
current trend towards multicore architectures.

As an alternative, one can analyse the abstract complexity of
programs. As an example, one can take the number of instructions
executed by the program or the number of evaluation steps to
normal form, as a measure of its execution time. This is a less
informative metric, which however becomes accurate if the actual
time complexity of each instruction is kept low. One advantage
of this analysis is the independence from the specific hardware
platform executing the program at hand: the latter only needs
to be analysed once. This is indeed a path which many have
followed in the programming language community. A variety of
verification techniques have been employed in this context, like
abstract interpretations, model checking, type systems, program
logics, or interactive theorem provers; see [3, 5, 35, 50] for some
pointers. If we restrict our attention to higher-order functional
programs, however, the literature becomes much sparser.

Conceptually, when analysing the time complexity of higher-
order programs, there is a fundamental trade-off to be dealt with.
On the one hand, one would like to have, at least, a clear relation
between the cost attributed to a program and its actual complexity
when executed: only this way the analysis’ results would be infor-
mative. On the other hand, many choices are available as for how
the complexity of higher-order programs can be evaluated, and one
would prefer one which is closer to the programmer’s intuitions.
Ideally, then, one would like to work with an informative, even if
not-too-concrete, cost measure, and to be able to evaluate programs
against it fully automatically.

In recent years, several advances have been made such that
the objectives above look now more realistic than in the past, at
least as far as functional programming is concerned. First of all,
some positive, sometime unexpected, results about the invariance of
unitary cost models1 have been proved for various forms of rewrite
systems, including the λ-calculus [1, 6, 19]. What these results tell
us is that counting the number of evaluation steps does not mean
underestimating the time complexity of programs, which is shown to
be bounded by a polynomial (sometime even by a linear function [2])
in their unitary cost. This is good news, since the number of rewrite
steps is among the most intuitive notions of cost for functional
programs, at least when time is the resource one is interested in.

But there is more. The rewriting-community has recently de-
veloped several tools for the automated time complexity analysis
of term rewrite system, a formal model of computation that is at
the heart of functional programming. Examples are AProVE [26],
CaT [55], and TCT [8]. These first-order provers (FOPs for short) com-
bine many different techniques, and after some years of development,

1 In the unitary cost model, a program is attributed a cost equal to the number
of rewrite steps needed to turn it to normal form.
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Figure 1. Complexity Analysis by HOCA and FOPs.

start being able to treat non-trivial programs, as demonstrated by
the result of the annual termination competition.2 This is potentially
very interesting also for the complexity analysis of higher-order
functional programs, since well-known transformation techniques
such as defunctionalisation [48] are available, which turn higher-
order functional programs into equivalent first-order ones. This has
been done in the realm of termination [25, 44], but appears to be
infeasible in the context of complexity analysis. Conclusively this
program transformation approach has been reflected critical in the
literature, cf. [35].

A natural question, then, is whether time complexity analy-
sis of higher-order programs can indeed be performed by going
through first-order tools. Is it possible to evaluate the unitary cost of
functional programs by translating them into first-order programs,
analysing them by existing first-order tools, and thus obtaining
meaningful and informative results? Is, for example plain defunc-
tionalisation enough? In this paper, we show that the questions above
can be answered positively, when the necessary care is taken. We
summarise the contributions of this paper.
1. We show how defunctionalisation is crucially employed in a

transformation from higher-order programs to first-order term
rewrite systems, such that the time complexity of the latter re-
flects upon the time complexity of the former. More precisely,
we show a precise correspondence between the number of reduc-
tion steps of the higher-order program, and its defunctionalised
version, represented as an applicative term rewrite systems (see
Proposition 2).

2. But defunctionalisation is not enough. Defunctionalised pro-
grams have a recursive structure too complicated for FOPs to
be effective on them. Our way to overcome this issue consists
in further applying appropriate program transformations. These
transformations must of course be proven correct to be viable.
Moreover, we need the complexity analysis of the transformed
program to mean something for the starting program, i.e. we also
prove the considered transformations to be at least complexity
reflecting, if not also complexity preserving. This addresses the
problem that program transformations may potentially alter the
resource usage. We establish inlining (see Corollary 1), instanti-
ation (see Theorem 2), uncurrying (see Theorem 3), and dead
code elimination (see Proposition 4) as, at least, complexity
reflecting program transformations.

3. Still, analysing abstract program transformations is not yet suf-
ficient. The main technical contribution of this paper concerns
the automation of the program transformations rather than the
abstract study presented before. In particular, automating in-
stantiation requires dealing with the collecting semantics of
the program at hand, a task we pursue by exploiting tree au-
tomata and control-flow analysis. Moreover, we define program
transformation strategies which allow to turn complicated de-
functionalised programs into simpler ones that work well in
practice.

4. To evaluate our approach experimentally, we have built HOCA.3

This tool is able to translate programs written in a pure,

2 http://termination-portal.org/wiki/Termination_
Competition.
3 Our tool HOCA is open source and available under http://cbr.uibk.ac.
at/tools/hoca/.

monomorphic subset of OCaml, into a first-order rewrite system,
written in a format which can be understood by FOPs.

The overall flow of information is depicted in Figure 1. Note that
by construction, the obtained certificate reflects onto the runtime
complexity of the initial OCaml program, taking into account the
standard semantics of OCaml. The figure also illustrates the mod-
ularity of the approach, as the here studied subset of OCaml just
serves as a simple example language to illustrate the method: related
languages can be analysed with the same set of tools, as long as
the necessary transformation can be proven sound and complexity
reflecting.

Our testbed includes standard higher-order functions like foldl
and map, but also more involved examples such as an implemen-
tation of merge-sort using a higher-order divide-and-conquer com-
binator as well as simple parsers relying on the monadic parser-
combinator outlined in Okasaki’s functional pearl [43]. We empha-
sise that the methods proposed here are applicable in the context of
non-linear runtime complexities. The obtained experimental results
are quite encouraging.

The remainder of this paper is structured as follows. In the
next section, we present our approach abstractly on a motivating
example and clarify the challenges of our approach. In Section 3
we then present defunctionalisation formally. Section 4 presents the
transformation pipeline, consisting of the above mentioned program
transformations. Implementation issues and experimental evidence
are given in Section 5 and 6, respectively. Finally, we conclude in
Section 7, by discussing related work. An extended version of this
paper with more details is available [10].

2. On Defunctionalisation: Ruling the Chaos
The main idea behind defunctionalisation is conceptually simple:
function-abstractions are represented as first-order values; calls
to abstractions are replaced by calls to a globally defined apply-
function. Consider for instance the following OCaml-program:

l e t comp f g = fun z → f (g z ) ; ;
l e t r e c walk x s =

match x s w i t h
[] → ( fun z → z )

| x :: y s → comp (walk y s )
( fun z → x :: z ) ; ;

l e t rev l = walk l [] ; ;
l e t main l = rev l ; ;

Given a list xs, the function walk constructs a function that, when
applied to a list ys, appends ys to the list obtained by reversing xs.
This function, which can be easily defined by recursion, is fed in
rev with the empty list. The function main only serves the purpose
of indicating the complexity of which function we are interested at.

Defunctionalisation can be understood already at this level.
We first define a datatype for representing the three abstractions
occurring in the program:

t y p e ’a c l =

Cl1 o f ’a c l * ’a c l (* fun z → f (g z) *)

| Cl2 (* fun z → z *)

| Cl3 o f ’a (* fun z → x::z *)

More precisely, an expression of type ’a cl represents a function
closure, whose arguments are used to store assignments to free
variables. An infix operator (@), modelling application, can then be
defined as follows:4

4 The definition is rejected by the OCaml type-checker, which however, is
not an issue in our context.

http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://cbr.uibk.ac.at/tools/hoca/
http://cbr.uibk.ac.at/tools/hoca/


l e t r e c (@) c l z =

match c l w i t h
Cl1( f ,g) → f @ (g @ z )
| Cl2 → z
| Cl3( x) → x :: z ; ;

Using this function, we arrive at a first-order version of the original
higher-order function:

l e t comp f g = Cl1( f ,g) ; ;
l e t r e c walk x s =

match x s w i t h
[] → Cl2

| x :: y s → comp (walk y s ) Cl3( x) ; ;
l e t rev l = walk l @ [] ; ;
l e t main l = rev l ; ;

Observe that now the recursive function walk constructs an explicit
representation of the closure computed by its original definition.
The function (@) carries out the remaining evaluation. This program
can already be understood as a first-order rewrite system.

Of course, a systematic construction of the defunctionalized
program requires some care. For instance, one has to deal with
closures that originate from partial function applications. Still, the
construction is quite easy to mechanize, see Section 3 for a formal
treatment. On our running example, this program transformation
results in the rewrite system Arev, which looks as follows:5

1 Cl1( f ,g) @ z → f @ (g @ z )
2 Cl2 @ z → z
3 Cl3( x) @ z → x :: z
4 comp1( f ) @ g → Cl1( f ,g)
5 comp @ f → comp1( f )
6 matchwalk ([]) → Cl2

7 matchwalk( x :: y s ) →
comp @ ( fix walk @ y s ) @ Cl3( x)

8 walk @ x s → matchwalk( x s )
9 fix walk @ x s → walk @ x s

10 rev @ l → fix walk @ l @ []

11 main( l ) → rev @ l

Despite its conceptual simplicity, current FOPs are unable to
effectively analyse applicative rewrite systems, such as the one
above. The reason this happens lies in the way FOPs work, which
itself reflects the state of the art on formal methods for complexity
analysis of first-order rewrite systems. In order to achieve com-
posability of the analysis, the given system is typically split into
smaller parts (see for example [9]), and each of them is analysed
separately. Furthermore, contextualisation (aka path analysis [31])
and a restricted form of control flow graph analysis (or dependency
pair analysis [30, 42]) is performed. However, at the end of the
day, syntactic and semantic basic techniques, like path orders or
interpretations [52, Chapter 6] are employed. All these methods
focus on the analysis of the given defined symbols (like for instance
the application symbol in the example above) and fail if their recur-
sive definition is too complicated. Naturally this calls for a special
treatment of the applicative structure of the system [32].

How could we get rid of those (@), thus highlighting the deep
recursive structure of the program above? Let us, for example, focus

5 In Arev, rule (9) reflects that, under the hood, we treat recursive let
expressions as syntactic sugar for a dedicated fixpoint operator.

on the rewriting rule

Cl1(f,g) @ z → f @ (g @ z) ,

which is particularly nasty for FOPs, given that the variables f and
g will be substituted by unknown functions, which could potentially
have a very high complexity. How could we simplify all this? The
key observation is that although this rule tells us how to compose
two arbitrary closures, only very few instances of the rule above
are needed, namely those were g is of the form Cl3(x), and f is
either Cl2 or again of the form Cl1(f,g). This crucial information
can be retrieved in the so-called collecting semantics [41] of the
term rewrite system above, which precisely tells us which object
will possibly be substituted for rule variables along the evaluation
of certain families of terms. Dealing with all this fully automatically
is of course impossible, but techniques based on tree automata, and
inspired by those in [33] can indeed be of help.

Another useful observation is the following: function symbols
like, e.g. comp or matchwalk are essentially useless: their only
purpose is to build intermediate closures, or to control program
flow: one could simply shortcircuit them, using a form of inlining.
And after this is done, some of the left rules are dead code, and can
thus be eliminated from the program. Finally we arrive at a truly
first-order system and uncurrying brings it to a format most suitable
for FOPs.

If we carefully apply the just described ideas to the example
above, we end up with the following first-order system, calledRrev,
which is precisely what HOCA produces in output:

1 Cl11(Cl2,Cl3( x), z ) → x :: z
2 Cl11(Cl1( f ,g),Cl3( x), z ) → Cl11( f ,g, x :: z )
3 fix 1

walk ([]) → Cl2

4 fix 1
walk ( x: y s ) → Cl1( fix

1
walk ( y s ),Cl3( x ))

5 main( l ) → []

6 main( x: y s ) → Cl11( fix
1
walk ( y s ),Cl3( x ),[])

This term rewrite system is equivalent to Arev from above, both
extensionally and in terms of the underlying complexity. However,
the FOPs we have considered can indeed conclude that main has
linear complexity, a result that can be in general lifted back to the
original program.

Sections 4 and 5 are concerned with a precise analysis of the
program transformations we employed when turning Arev intoRrev.
Before, we recap central definitions in the next section.

3. Preliminaries
The purpose of this section is to give some preliminary notions about
the λ-calculus, term rewrite systems, and translations between them;
see [11, 45, 52] for further reading.

To model a reasonable rich but pure and monomorphic func-
tional language, we consider a typed λ-calculus with constants and
fixpoints akin to Plotkin’s PCF [46]. To seamlessly express pro-
grams over algebraic datatypes, we allow constructors and pattern
matching. To this end, let C1, . . . , Ck be finitely many constructors,
each equipped with a fixed arity. The syntax of PCF-programs is
given by the following grammar:

Exp e, f ::= x | Ci(~e) | λx .e | e f | fix(x .e)

| match e {C1(~x1) 7→ e1; · · · ; Ck(~xk) 7→ ek} ,

where x ranges over variables. Note that the variables ~xi in a match-
expression are considered bound in ei. A simple type system can be
easily defined [10] based on a single ground type, and on the usual
arrow type constructor. We claim that extending the language with
products and coproducts would not be problematic.



We adopt weak call-by-value semantics. Here weak means
that reduction under any λ-abstraction λx .e and any fixpoint-
expressions fix(x .e) is prohibited. The definition is straightforward,
see e.g. [29]. Call-by-value means that in a redex e f , the expression
f has to be evaluated. A match-expression match e {C1(~x1) 7→
e1; · · · ; Ck(~xk) 7→ ek} is evaluated by first evaluating the guard e
to a value Ci(~v). Reduction then continues with the corresponding
case-expression ei with values ~vi substituted for variables ~xi. The
one-step weak call-by-value reduction relation is denoted by→v .
Elements of the term algebra over constructors C1, . . . , Ck embed-
ded in our language are collected in Input. A PCF-program with
n input arguments is a closed expression P = λx1 · · ·λxn.e of
first-order type. What this implicitly means is that we are interested
in an analysis of programs with a possibly very intricate internal
higher-order structure, but whose arguments are values of ground
type. In this is akin to the setting in [12] and provides an intuitive
notion of runtime complexity for higher-order programs, without
having to rely on ad-hoc restrictions on the use of function-abstracts
(as e.g. [35]). This way we also ensure that the abstractions reduced
in a run of P are the ones found in P , an essential property for
performing defunctionalisation. We assume that variables in P have
been renamed apart, and we impose a total order on variables in P .
The free variables FV(e) in the body e of P can this way be defined
as an ordered sequence of variables.

Example 1. We fix constructors [] and (::) for lists, the latter
we write infix. Then the program computing the reverse of a list,
as described in the previous section, can be seen as the PCF term
Prev := λl.rev l where

rev = λl.fix(w.walk) l [] ;

walk = λxs.match xs

{
[] 7→ λz.z ;

x::ys 7→ comp (w ys) (λz.x::z)

}
;

comp = λf.λg.λz.f (g z) .

The second kind of programming formalism we will deal with
is the one of term rewrite systems (TRSs for short). Let F =
{f1, . . . , fn} be a set of function symbols, each equipped again
with an arity, the signature. We denote by s, t, . . . terms over the
signatureF , possibly including variables. A position p in t is a finite
sequence of integers, such that the following definition of subterm
at position p is well-defined: t|ε = t for the empty position ε, and
t|ip = ti|p for t = f(t1, . . . , tk). For a position p in t, we denote
by t[s]p the term obtained by replacing the subterm at position p in
t by the term s. A context C is a term containing one occurrence
of a special symbol 2, the hole. We define C[t] := C[t]p for p the
position of 2 in C, i.e. C|p = 2.

A substitution, is a finite mapping σ from variables to terms. By
tσ we denote the term obtained by replacing in t all variables x in
the domain of σ by σ(x ). A substitution σ is at least as general as a
substitution τ if there exists a substitution ρ such that τ(x ) = σ(x )ρ
for each variable x . A term t is an instance of a term s if there exists
a substitution σ, with sσ = t; the terms t and s unify if there exists
a substitution µ, the unifier, such that tµ = sµ. If two terms are
unifiable, then there exists a most general unifier (mgu for short).

A term rewrite system R is a finite set of rewrite rules, i.e. di-
rected equations f(l1, . . . , lk)→ r such that all variables occurring
in the right-hand side r occur also in the left-hand side f(l1, . . . , lk).
The roots of left-hand sides, the defined symbols ofR, are collected
in DR, the remaining symbols F \ DR are the constructors of
R and collected in CR. Terms over the constructors CR are con-
sidered values and collected in T (CR). We denote by −→R the
one-step rewrite relation of R, imposing call-by-value semantics.
Call-by-value means that variables are assigned elements of T (CR).
Throughout the following, we consider non-ambiguous rewrite sys-
tems, that is, the left-hand sides are pairwise non-overlapping. De-

spite the restriction to non-ambiguous rewrite systems, the rewrite
relation−→R may be non-deterministic: e.g. no control in what order
arguments of terms are reduced is present. However, the following
special case of the parallel moves lemma [11] tells us that this form
of non-determinism is not harmful for complexity-analysis.

Proposition 1. For a non-ambiguous TRS R, all normalising
reductions of t have the same length, i.e. if t −→m

R u1 and t −→n
R u2

for two irreducible terms u1 and u2, then u1 = u2 and m = n.

An applicative term rewrite system (ATRS for short) is usually
defined as a TRS over a signature consisting of a finite set of
nullary function symbols and one dedicated binary symbol (@),
the application symbol. We follow the usual convention that (@)
associates to the left. Here, we are more liberal and just assume the
presence of (@), and allow function symbols that take more than one
argument. Throughout the following, we are foremost dealing with
ATRSs, which we denote byA,B below. We also write (@) infix and
assume that it associates to the left.

In the following, we show that every PCF-programP can be seen
as an ATRSAP . To this end, we first define an infinite schemaAPCF

of rewrite rules which allows us to evaluate the whole of PCF. The
signature underlying APCF contains, besides the application-symbol
(@) and constructors C1, . . . , Ck, the following function symbols,
called closure constructors: (i) for each PCF term λx .e with n free
variables an n-ary symbol lamx .e; (ii) for each PCF term fix(x .e)
with n free variables an n-ary symbol fixx .e; and (iii) for each
match-expression match e {cs} with n free variables a symbol
matchcs of arity n + 1. Furthermore, we define a mapping [ · ]Φ
from PCF terms to APCF terms as follows.

[ x ]Φ := x ;
[λx .e ]Φ := lamx .e(~x ), where ~x = FV(λx .e) ;

[ Ci(e1, . . . , ek) ]Φ := Ci([ e1 ]Φ, . . . , [ ek ]Φ) ;
[ e f ]Φ := [ e ]Φ @ [ f ]Φ ;

[ fix(x .e) ]Φ := fixx .e(~x ), where ~x = FV(fix(x .e)) ;
[match e {cs} ]Φ := matchcs([ e ]Φ, ~x ), where ~x = FV({cs}) .

Based on this interpretation, each closure constructor is equipped
with one or more of the following defining rules:

lamx .e(~x ) @ x → [ e ]Φ ;
fixx .e(~x ) @ y → [ e{fix(x .e)/x} ]Φ @ y , where y is fresh;

matchcs(Ci(~xi), ~x )→ [ ei ]Φ, for i ∈ {1, . . . , k}.

Here, we suppose cs = {C1(~x1) 7→ e1; · · · ; Ck(~xk) 7→ ek}.
For a program P = λx1 · · ·λxn.e, we defineAP as the least set

of rules that (i) contains a rule main(x1, . . . , xn) → [ e ]Φ, where
main is a dedicated function symbol; and (ii) whenever l→ r ∈ AP
and f is a closure-constructor in r, then AP contains all defining
rules of f from the schema APCF. Crucial, AP is always finite, in
fact, the size of AP is linearly bounded in the size of P [10].
Remark. This statement becomes trivial if we consider alternative
defining rule

fixx .e(~x ) @ y → [ e ]Φ{x/fixx .e(~x )} @ y ,

which would also correctly model the semantics of fixpoints fix(x .e).
Then the closure constructors occurring in AP are all obtained
from sub-expressions of P . Our choice is motivated by the fact
that closure constructors of fixpoints are propagates to call sites,
something that facilitates the complexity analysis of AP .

Example 2. The expression Prev from Example 1 gets translated
into the ATRS APrev = Arev we introduced in Section 2. For
readability, closure constructors have been renamed.



We obtain the following simulation result, a proof of which can
be found in [10].

Proposition 2. Every→v-reduction of an expression P d1 · · · dn
(dj ∈ Input) is simulated step-wise by a call-by-value AP -
derivation starting from main(d1, . . . , dn).

As the inverse direction of this proposition can also be stated,AP
can be seen as a sound and complete, in particular step-preserving,
implementation of the PCF-program P .

In correspondence to Proposition 2, we define the runtime
complexity of an ATRS A as follows. As above, only terms d ∈
Input built from the constructors C are considered valid inputs.
The runtime of A on inputs d1, . . . , dn is defined as the length of
the longest rewrite sequence starting from main(d1, . . . , dn). The
runtime complexity function is defined as the (partial) function which
maps the natural number m to the maximum runtime ofA on inputs
d1, . . . , dn with

∑n
j=1|dj | 6 m, where the size |d| is defined as

the number of occurrences of constructors in d.
Crucial, our notion of runtime complexity corresponds to the

notion employed in first-order rewriting and in particular in FOPs.
Our simple form of defunctionalisation thus paves the way to our
primary goal: a successful complexity analysis ofAP with rewriting-
based tools can be relayed back to the PCF-program P .

4. Complexity Reflecting Transformations
The result offered by Proposition 2 is remarkable, but is a Pyrrhic
victory towards our final goal: as discussed in Section 2, the
complexity of defunctionalised programs is hard to analyse, at least
if one wants to go via FOPs. It is then time to introduce the four
program transformations that form our toolbox, and that will allow
us to turn defunctionalised programs into ATRSs which are easier
to analyse.

In this section, we describe the four transformations abstractly,
without caring too much about how one could implement them.
Rather, we focus on their correctness and, even more importantly
for us, we verify that the complexity of the transformed program is
not too small compared to the complexity of the original one. We
will also show, through examples, how all this can indeed be seen as
a way to simplify the recursive structure of the programs at hand.

A transformation is a partial function f from ATRSs to ATRSs.
In the case that f(A) is undefined, the transformation is called
inapplicable to A. We call the transformation f (asymptotically)
complexity reflecting if for every ATRS A, the runtime complexity
of A is bounded (asymptotically) by the runtime complexity of
f(A), whenever f is applicable on A. Conversely, we call f
(asymptotically) complexity preserving if the runtime complexity
of f(A) is bounded (asymptotically) by the complexity of A,
whenever f is applicable on A. The former condition states a
form of soundness: if f is complexity reflecting, then a bound
on the runtime complexity of f(A) can be relayed back to A.
The latter conditions states a form of completeness: application
of a complexity preserving transformation f will not render our
analysis ineffective, simply because f translated A to an inefficient
version. We remark that the set of complexity preserving (complexity
reflecting) transformations is closed under composition.

4.1 Inlining
Our first transformation constitutes a form of inlining. This allows
for the elimination of auxiliary functions, this way making the
recursive structure of the considered program apparent.

Consider the ATRS Arev from Section 2. There, for instance,
the call to walk in the definition of fixwalk could be inlined, thus
resulting in a new definition:

fixwalk @ xs → matchwalk(xs) .

Informally, thus, inlining consists in modifying the right-hand-sides
of ATRS rules by rewriting subterms, according to the ATRS itself.
We will also go beyond rewriting, by first specializing arguments
so that a rewrite triggers. In the above rule for instance, matchwalk
cannot be inlined immediately, simply because matchwalk is defined
itself by case analysis on xs. To allow inlining of this function
nevertheless, we specialize xs to the patterns [] and x::ys, the
patterns underlying the case analysis of matchwalk. This results in
two alternative rules for fixwalk, namely

fixwalk @ []→ matchwalk([]) ;
fixwalk @ (x::ys)→ matchwalk(x::ys) .

Now we can inline matchwalk in both rules. As a consequence the
rules defining fixwalk are easily seen to be structurally recursive, a
fact that FOPs can recognise and exploit.

A convenient way to formalise inlining is by way of narrow-
ing [11]. We say that a term s narrows to a term t at a non-
variable position p in s, in notation s

µ
 A,p t, if there exists a

rule l → r ∈ A such that µ is a unifier of left-hand side l and the
subterm s|p (after renaming apart variables in l → r and s) and
t = sµ[rµ]p. In other words, the instance sµ of s rewrites to t at
position p with rule l → r ∈ A. The substitution µ is just enough
to uncover the corresponding redex in s. Note, however, that the
performed rewrite step is not necessarily call-by-value, the mgu µ
could indeed contain function calls. We define the set of all inlinings
of a rule l→ r at position p which is labeled by a defined symbol
by

inlineA,p(l→ r) := {lµ→ s | r µ
 A,p s} .

The following example demonstrates inlining through narrowing.

Example 3. Consider the substitutions µ1 = {xs 7→ []} and
µ2 = {xs 7→ x::ys}. Then we have

matchwalk(xs)
µ1 Arev,ε Cl2

matchwalk(xs)
µ2 Arev,ε comp @ (fixwalk@ ys) @ Cl3(x) .

Since no other rule of Arev unifies with matchwalk(xs), the set

inlineArev,ε(fixwalk @ xs → matchwalk(xs))

consists of the two rules

fixwalk @ []→ Cl2 ;
fixwalk @ (x::ys)→ comp @ (fixwalk @ ys) @ Cl3(x) .

Inlining is in general not complexity reflecting. Indeed, inlining
is employed by many compilers as a program optimisation technique.
The following examples highlight two issues we have to address.
The first example indicates the obvious: in a call-by-value setting,
inlining is not asymptotically complexity reflecting, if potentially
expensive function calls in arguments are deleted.

Example 4. Consider the following inefficient system:

1 k(x , y) → x
2 main (0) → 0

3 main(S(n)) → k(main(n),main(n))

Inlining k in the definition of main results in an alternative def-
inition main(S(n)) → main(n) of rule (3), eliminating one of
the two recursive calls and thereby reducing the complexity from
exponential to linear.

The example motivates the following, easily decidable, condition.
Let l→ r denote a rule whose right-hand side is subject to inlining
at position p. Suppose the rule u → v ∈ A is unifiable with the
subterm r|p of the right-hand side r, and let µ denote the most
general unifier. Then we say that inlining r|p with u→ v is redex



preserving if whenever xµ contains a defined symbol of A, then
the variable x occurs also in the right-hand side v. The inlining
l→ r at position p is called redex preserving if inlining r|p is redex
preserving with all rule u→ v such that u unifies with r|p. Redex-
preservation thus ensures that inlining does not delete potential
function calls, apart from the inlined one. In the example above,
inlining k(main(n),main(n)) is not redex preserving because the
variable y is mapped to the redex main(n) by the underlying unifier,
but y is deleted in the inlining rule k(x,y) → x.

Our second example is more subtle and arises when the studied
rewrite system is under-specified:

Example 5. Consider the system consisting of the following rules.

1 h(x ,0) → x
2 main (0) → 0

3 main(S(n)) → h(main(n),n)

Inlining h in the definition of main will specialise the variable n to 0
and thus replaces rule (3) by main(S(0)) → main(0). Note that
the runtime complexity of the former system is linear, whereas its
runtime complexity is constant after transformation.

Crucial for the example, the symbol h is not sufficiently defined,
i.e. the computation gets stuck after completely unfolding main. To
overcome this issue, we require that inlined functions are sufficiently
defined. Here a defined function symbol f is called sufficiently
defined, with respect to an ATRS A, if all subterms f(~t) occurring
in a reduction of main(d1, . . . , dn) (dj ∈ Input) are reducible. This
property is not decidable in general. Still, the ATRSs obtained from
the translation in Section 3 satisfy this condition for all defined
symbols: by construction, reductions do not get stuck. Inlining, and
the transformations discussed below, preserve this property.

We will now show that under the above outlined conditions,
inlining is indeed complexity reflecting. Fix an ATRS A. In proofs
below, we denote by ;A an extension of −→A where not all
arguments are necessarily reduced, but where still a step cannot
delete redexes: s;A t if s = C[lσ] and t = C[rσ] for a contextC,
rule l→ r ∈ A and a substitution σ which satisfies σ(x ) ∈ T (CA)
for all variables x which occur in l but not in r. By definition,
−→A ⊆ ;A. The relation ;A is just enough to capture rewrites
performed on right-hand sides in a complexity reflecting inlining.

The next lemma collects the central points of our correctness
proof. Here, we first consider the effect of replacing a single
application of a rule l→ r with an application of a corresponding
rule in inlineA,p(l → r). As the lemma shows, this is indeed
always possible, provided the inlined function is sufficiently defined.
Crucial, inlining preserves semantics. Complexity reflecting inlining,
on the other hand, does not optimise the ATRS under consideration
too much, if at all.

Lemma 1. Let l→ r be a rewrite rule subject to a redex preserving
inlining of function f at position p in r. Suppose that the symbol f
is sufficiently defined by A. Consider a normalising reduction

main(d1, . . . , dn) −→∗A C[lσ] −→A C[rσ] −→`
A u ,

for di ∈ Input (i = 1, . . . , n) and some ` ∈ N. Then there exists a
term t such that the following properties hold:

1. lσ −→inlineA,p(l→r) t; and
2. rσ ;I t, where I collects all rules that are unifiable with the

right-hand side r at position p; and
3. C[t] −→>`−1

A u.

In consequence, we thus obtain a term t such that

main(d1, . . . , dn) −→∗A C[lσ] −→inlineA,p(l→r) C[t] −→>`−1
A u ,

holds under the assumptions of the lemma. Complexity preservation
of inlining, modulo a constant factor under the outlined assumption,
now follows essentially by induction on the maximal length of
reductions. As a minor technical complication, we have to consider
the broader reduction relation ;A instead of −→A. To ensure that
the induction is well-defined, we use the following specialization of
[28, Theorem 3.13].

Proposition 3. If a term t has a normalform wrt.−→A, then all ;A
reductions of t are finite.

Theorem 1. Let l → r be a rewrite rule subject to a redex
preserving inlining of function f at position p in r. Suppose that the
symbol f is sufficiently defined byA. Let B be obtained by replacing
rule l → r by the rules inlineA,p(l → r). Then every normalizing
derivation with respect to A starting from main(d1, . . . , dn) (dj ∈
Input) of length ` is simulated by a derivation with respect to B
from main(d1, . . . , dn) of length at least b `

2
c.

Proof. Suppose t is a reduct of main(d1, . . . , dn) occurring in a
normalising reduction, i.e. main(d1, . . . , dn) −→∗A t −→∗A u, for u a
normal form of A. In proof, we show that if t −→∗A u is a derivation
of length `, then there exists a normalising derivation with respect to
B whose length is at least b `

2
c. The theorem then follows by taking

t = main(d1, . . . , dn).
We define the derivation height dh(s) of a term s wrt. the

relation ;A as the maximal m such that t ;m
A u holds. The

proof is by induction on dh(t), which is well-defined by assumption
and Proposition 3. It suffices to consider the induction step. Suppose
t −→A s −→`

A u. We consider the case where the step t −→A s is
obtained by applying the rule l → r ∈ A, otherwise, the claim
follows directly from induction hypothesis. Then as a result of
Lemma 1(1) and 1(3) we obtain an alternative derivation

t −→B w −→`′
A u ,

for some term w and `′ satisfying `′ > ` − 1. Note that s ;A w
as a consequence of Lemma 1(2), and thus dh(s) > dh(w) by
definition of derivation height. Induction hypothesis onw thus yields
a derivation t −→B w −→∗B u of length at least b `

′

2
c+1 = b `

′+2
2
c >

b `+1
2
c.

We can then obtain that inlining has the key property we require
on transformations.

Corollary 1 (Inlining Transformation). The inlining transforma-
tion, which replaces a rule l → r ∈ A by inlineA,p(l → r), is
asymptotically complexity reflecting whenever the function consid-
ered for inlining is sufficiently defined and the inlining itself is redex
preserving.

Example 6. Consider the ATRS Arev from Section 2. Three appli-
cations of inlining result in the following ATRS:

1 Cl1( f ,g) @ z → f @ (g @ z )
2 Cl2 @ z → z
3 Cl3( x) @ z → x :: z
4 comp1( f ) @ g → Cl1( f ,g)
5 comp @ f → comp1( f )
6 matchwalk ([]) → Cl2

7 matchwalk( x :: y s ) →
comp @ ( fix walk @ y s ) @ Cl3( x)

8 walk @ x s → matchwalk( x s )
9 fix walk @ [] → Cl2

10 fix walk @ ( x :: y s ) →
Cl1( fix walk @ ys ,Cl3( x ))



11 rev @ l → fix walk @ l @ []

12 main( l ) → fix walk @ l @ []

The involved inlining rules are all non-erasing, i.e. all inlinings are
redex preserving. As a consequence of Corollary 1, a bound on the
runtime complexity of the above system can be relayed, within a
constant multiplier, back to the ATRS Arev.

Note that the modified system from Example 6 gives further
possibilities for inlining. For instance, we could narrow further
down the call to fixwalk in rules (10), (11) and (12), performing case
analysis on the variable ys and l , respectively. Proceeding this way
would step-by-step unfold the definition of fixwalk, ad infinitum.
We could have also further reduced the rules defining matchwalk and
walk. However, it is not difficult to see that these rules will never be
unfolded in a call to main, they have been sufficiently inlined and
can be removed. Elimination of such unused rules will be discussed
next.

4.2 Elimination of Dead Code
The notion of usable rules is well-established in the rewriting
community. Although its precise definition depends on the context
used (e.g. termination [4] and complexity analysis [30]), the notion
commonly refers to a syntactic method for detecting that certain
rules can never be applied in derivations starting from a given set of
terms. From a programming point of view, such rules correspond to
dead code, which can be safely eliminated.

Dead code arises frequently in automated program transforma-
tions, and its elimination turns out to facilitate our transformation-
based approach to complexity analysis. The following definition
formalises dead code elimination abstractly, for now. Call a rule
l→ r ∈ A usable if it can be applied in a derivation

main(d1, . . . , dk) −→A · · · −→A t1 −→{l→r} t2 ,

where di ∈ Input. The rule l → r is dead code if it is not usable.
The following proposition follows by definition.

Proposition 4 (Dead Code Elimination). Dead code elimination,
which maps an ATRS A to a subset of A by removing dead code
only, is complexity reflecting and preserving.

It is not computable in general which rules are dead code. One
simple way to eliminate dead code is to collect all the function
symbols underlying the definition of main, and remove the defining
rules of symbols not in this collection, compare e.g. [30]. This
approach works well for standard TRSs, but is usually inappropriate
for ATRSs where most rules define a single function symbol, the
application symbol. A conceptually similar, but unification based,
approach that works reasonably well for ATRSs is given in [24].
However, the accurate identification of dead code, in particular in
the presence of higher-order functions, requires more than just a
simple syntactic analysis. We show in Section 5.2 a particular form
of control flow analysis which leverages dead code elimination. The
following example indicates that such an analysis is needed.

Example 7. We revisit the simplified ATRS from Example 6. The
presence of the composition rule (1), itself a usable rule, makes
it harder to infer which of the application rules are dead code.
Indeed, the unification-based method found in [24] classifies all
rules as usable. As we hinted in Section 2, the variables f and g are
instantiated only by a very limited number of closures in a call of
main(l). In particular, none of the symbols rev, walk, comp and
comp1 are passed to Cl1. With this knowledge, it is not difficult to see
that their defining rules, together with the rules defining matchwalk,
can be eliminated by Proposition 4. Overall, the complexity of
the ATRS depicted in Example 6 is thus reflected by the ATRS
consisting of the following six rules.

1 Cl1( f ,g) @ x → f @ (g @ x)
2 Cl2 @ z → z
3 Cl3( x) @ z → x :: z
4 fix walk @ [] → Cl2

5 fix walk @ ( x :: y s ) →
Cl1( fix walk @ y s ,Cl3( x ))

6 main( l ) → fix walk @ l @ []

4.3 Instantiation
Inlining and dead code elimination can indeed help in simplifying
defunctionalised programs. There is however a feature of ATRS
they cannot eliminate in general, namely rules whose right-hand-
sides have head variables, i.e. variables that occur to the left of
an application symbol and thus denote a function. The presence of
such rules prevents FOPs to succeed in all but trivial cases. The
ATRS from Example 7, for instance, still contains one such rule,
namely rule (1), with head variables f and g. The main reason FOPs
perform poorly on ATRSs containing such rules is that they lack
a sufficiently powerful form of control flow analysis, and they are
thus unable to realise that function symbols simulating higher-order
combinators are passed arguments of a very specific shape, and are
thus often harmless. This is the case, as an example, for the function
symbol Cl1.

The way out consists in specialising the ATRS rules. This has
the potential of highlighting the absence of certain dangerous
patterns, but of course must be done with great care, without hiding
complexity under the carpet of non-exhaustive instantiation. All this
can be formalised as follows.

Call a rule s → t an instance of a rule l → r, if there is a
substitution σ with s = lσ and t = rσ. We say that an ATRS B is
an instantiation of A iff all rules in B are instances of rules from A.
This instantiation is sufficiently exhaustive if for every derivation

main(d1, . . . , dk) −→A t1 −→A t2 −→A · · · ,

where di ∈ Input, there exists a corresponding derivation

main(d1, . . . , dk) −→B t1 −→B t2 −→B · · · .

The following theorem is immediate from the definition.

Theorem 2 (Instantiation Transformation). Every instantiation
transformation, mapping any ATRS into a sufficiently exhaustive
instantiation of it, is complexity reflecting and preserving.

Example 8 (Continued from Example 7). We instantiate the rule
Cl1(f,g) @ x → f @ (g @ x) by the two rules

Cl1(Cl2,Cl3(x)) @ z→ Cl3(x) @ (Cl2 @ z)

Cl1(Cl1(f,g),Cl3(x)) @ z→ Cl1(f,g) @ (Cl2 @ z) ,

leaving all other rules from the TRS depicted in Example 7 intact.
As we reasoned already before, the instantiation is sufficiently
exhaustive: in a reduction of main(l) for a list l , arguments to Cl1
are always of the form as indicated in the two rules. Note that the
right-hand side of both rules can be reduced by inlining the calls in
the right argument. Overall, we conclude that the runtime complexity
of our running example is reflected in the ATRS consisting of the
following six rules:

1 Cl2 @ z → z
2 Cl1(Cl2,Cl3( x )) @ z → x :: z
3 Cl1(Cl1( f ,g),Cl3( x )) @ z →

Cl1( f ,g) @ ( x :: z )
4 fix walk @ [] → Cl2



5 fix walk @ ( x :: y s ) →
Cl1( fix walk @ ys ,Cl3( x ))

6 main( l ) → fix walk @ l @ []

4.4 Uncurrying
The ATRS from Example 8 is now sufficiently instantiated: for
all occurrences of the @ symbol, we know which function we are
applying, even if we do not necessarily know to what we are
applying it. The ATRS is not yet ready to be processed by FOPs,
simply because the application symbol is anyway still there, and
cannot be dealt with.

At this stage, however, the ATRS can indeed be brought to a
form suitable for analysis by FOPs through uncurrying, see e.g. the
account of Hirokawa et al. [32]. Uncurrying an ATRSA involves the
definition of a fresh function symbol fn for each n-ary application

f(t1, . . . , tm) @ tm+1 @ · · · @ tm+n ,

encountered in A. This way, applications can be completely elim-
inated. Although in [32] only ATRSs defining function symbols
of arity zero are considered, the extension to our setting poses no
problem. We quickly recap the central definitions.

Define the applicative arity aaA(f) of a symbol f in A as the
maximal n ∈ N such that a term

f(t1, . . . , tm) @ tm+1 @ · · · @ tm+n ,

occurs in A.

Definition 1. The uncurrying xty of a term t = f(t1, . . . , tm) @
tm+1 @ · · · @ tm+n, with n 6 aaA(f) is defined as

xty := f
n(xt1y, . . . , xtmy, xtm+1y, . . . , xtm+ny) ,

where f0 = f and fn (1 ≤ n ≤ aaA(f)) are fresh function symbols.
Uncurrying is homomorphically extended to ATRSs.

Note that xAy is well-defined whenever A is head variable free,
i.e. does not contain a term of the form x @ t for variable x. We
intend to use the TRS xAy to simulate reductions of the ATRSA. In
the presence of rules of functional type however, such a simulation
fails. To overcome the issue, we η-saturate A.

Definition 2. We call an ATRS A η-saturated if whenever

f(l1, . . . , lm) @ lm+1 @ · · · @ lm+n → r ∈ A with n < aaA(f),

then it contains also a rule

f(l1, . . . , lm) @ lm+1 @ · · · @ lm+n @ z → r @ z ,

where z is a fresh variable. The η-saturation Aη of A is defined as
the least extension of A that is η-saturated.

Remark. The η-saturation Aη of an ATRS A is not necessarily
finite. A simple example is the one-rule ATRS f → f @ a where
both f and a are function symbols. Provided that the ATRS A is
endowed with simple types, and indeed the simple typing of our
initial program is preserved throughout our complete transformation
pipeline, the η-saturation of A becomes finite.

Example 9 (Continued from Example 8). The ATRS from Exam-
ple 8 is not η-saturated: fixwalk is applied to two arguments in
rule (6), but its defining rules, rule (4) and (5), take a single argu-
ment only. The η-saturation thus contains in addition the following
two rules

fixwalk @ [] @ z→ Cl2 @ z ;
fixwalk @ (x::ys) @ z→ Cl1(fixwalk @ ys,Cl3(x)) @ z .

One can then check that the resulting system is η-saturated.

Lemma 2. Let Aη be the η-saturation of A.

1. The rewrite relation −→Aη coincides with −→A.
2. Suppose Aη is head variable free. If s −→Aη t then xsy −→xAηy
xty.

Proof. For Property 1, the inclusion −→A ⊆ −→Aη follows trivially
from the inclusionA ⊆ Aη . The inverse inclusion−→A ⊇ −→Aη can
be shown by a standard induction on the derivation of l→ r ∈ Aη .

Property 2 can be proven by induction on t. The proof follows
the pattern of the proof of Sternagel and Thiemann [51]. Notice that
in [51, Theorem 10], the rewrite system xAηy is enriched with uncur-
rying rules of the form fi(x1, . . . , xn) @ y → fi+1(x1, . . . , xn, y).
Such an extension is not necessary in the absence of head variables.
In our setting, the application symbol is completely eliminated by
uncurrying, and thus the above rules are dead code.

As a consequence, we immediately obtain the following theorem.

Theorem 3 (Uncurrying Transformation). Suppose that A is head
variable free. The uncurrying transformation, which maps an ATRS
A to the system xAηy, is complexity reflecting.

Example 10 (Continued from Example 9). Uncurrying the η-
saturated ATRS, consisting of the six rules from Example 8 and the
two rules from Example 9, results in the following set of rules:

1 Cl11(Cl2,Cl3( x), z ) → x :: z
2 Cl11(Cl1( f ,g),Cl3( x), z ) → Cl11( f ,g, x :: z )
3 Cl12( z ) → z
4 fix 1

walk ([]) → Cl2

5 fix 1
walk ( x: y s ) → Cl1( fix

1
walk ( y s ),Cl3( x ))

6 fix 2
walk ([], z ) → Cl12( z )

7 fix 2
walk ( x :: ys , z ) →

Cl11 ( fix
1
walk ( y s ),Cl3( x), z )

8 main( l ) → fix 2
walk ( l ,[])

Inlining the calls to fix2walk and Cl12(z), followed by dead code
elimination, results finally in the TRSRrev from Section 2.

5. Automation
In the last section we have laid the formal foundation of our
program transformation methodology, and ultimately of our tool
HOCA. Up to now, however, program transformations (except for
uncurrying) are too abstract to be turned into actual algorithms. In
dead code elimination, for instance, the underlying computation
problem (namely the one of precisely isolating usable rules) is
undecidable. In inlining, one has a decidable transformation, which
however results in a blowup of program sizes, if blindly applied.

This section is devoted to describing some concrete design
choices we made when automating our program transformations.
Another, related, issue we will talk about is the effective combination
of these techniques, the transformation pipeline.

5.1 Automating Inlining
The main complication that arises while automating our inlining
transformation is to decide where the transformation should be
applied. Here, there are two major points to consider: first, we want
to ensure that the overall transformation is not only complexity
reflecting, but also complexity preserving, thus not defeating its
purpose. To address this issue, we employ inlining conservatively,
ensuring that it does not duplicate function calls. Secondly, as we
already hinted after Example 6, exhaustive inlining is usually not
desirable and may even lead to non-termination in the transformation
pipeline described below. Instead, we want to ensure that inlining



simplifies the problem with respect to some sensible metric, and
plays well in conjunction with the other transformation techniques.

Instead of working with a closed inlining strategy, our imple-
mentation inline(P) is parameterised by a predicate P which,
intuitively, tells when inlining a call at position p in a rule l→ r is
sensible at the current stage in our transformation pipeline. The al-
gorithm inline(P) replaces every rule l→ r by inlineA,p(l→ r)
for some position p such that P (p, l→ r) holds. The following four
predicates turned out to be useful in our transformation pipeline. The
first two are designed by taking into account the specific shape of
ATRSs obtained by defunctionalisation, the last two are generic.

• match: This predicate holds if the right-hand side r is labeled
at position p by a symbol of the form matchcs. That is, the
predicate enables inlining of calls resulting from the translation
of a match-expression, thereby eliminating one indirection due
to the encoding of pattern matching during defunctionalisation.

• lambda-rewrite: This predicate holds if the subterm r|p is of
the form lamx .e(~t) @ s. By definition it is enforced that inlining
corresponds to a plain rewrite, head variables are not instantiated.
For instance, inline(lambda-rewrite) is inapplicable on
the rule Cl2(f,g) @ z → f @ (g @ z). This way, we avoid
that variables f and g are improperly instantiated.

• constructor: The predicate holds if the right-hand sides of all
rules used to inline r|p are constructor terms, i.e. do not give
rise to further function calls. Overall, the number of function
calls therefore decreases. As a side effect, more patterns become
obvious in rules, which facilitates further inlining.

• decreasing: The predicate holds if any of the following two
conditions is satisfied: (i) proper inlining: the subterm r|p
constitutes the only call-site to the inlined function f. This way,
all rules defining f in A will turn to dead code after inlining.
(ii) size decreasing: each right-hand side in inlineA,p(l → r)
is strictly smaller in size than the right-hand side r. The aim
is to facilitate FOPs on the generated output. In the first case,
the number of rules decreases, which usually implies that in
the analysis, a FOP generates less constraints which have to
be solved. In the second case, the number of constraints might
increase, but the individual constraints are usually easier to
solve.

We emphasise that all inlinings performed on our running example
Arev are captured by the instances of inlining just defined.

5.2 Automating Instantiation and Dead Code Elimination via
Control Flow Analysis

One way to effectively eliminate dead code and apply instantiation,
as in Examples 7 and 8, consists in inferring the shape of closures
passed during reductions. This way, we can on the one hand
specialise rewrite rules being sure that the obtained instantiation is
sufficiently exhaustive, and on the other hand discover that certain
rules are simply useless, and can thus be eliminated.

To this end, we rely on an approximation of the collecting
semantics. In static analysis, the collecting semantics of a program
maps a given program point to the collection of states attainable
when control reaches that point during execution. In the context of
rewrite systems, it is natural to define the rewrite rules as program
points, and substitutions as states. Throughout the following, we
fix an ATRS A = {li → ri}i∈{1,...,n}. We define the collecting
semantics of A as a tuple (Z1, . . . , Zn), where

Zi := {(σ, t) | ∃~d ∈ Input.

main(~d) −→∗A C[liσ] −→A C[riσ] and riσ −→∗A t} .

Here the substitutions σ are restricted to the set Var(li) of variables
occurring in the left-hand side in li.

The collecting semantics ofA includes all the necessary informa-
tion for implementing both dead code elimination and instantiation:

Lemma 3. The following properties hold:
1. The rule li → ri ∈ A constitutes dead code if and only

if Zi = ∅.
2. Suppose the ATRS B is obtained by instantiating rules li → ri

with substitutions σi,1, . . . , σi,ki . Then the instantiation is
sufficiently exhaustive if for every substitution σ with (σ, t) ∈
Zi, there exists a substitution σi,j (j ∈ {1, . . . , ik}) which is
at least as general as σ.

Proof. The first property follows by definition. For the second
property, consider a derivation

main(d1, . . . , dk) −→∗A C[liσ] −→A C[riσ] ,

and thus (σ, riσ) ∈ Zi. By assumption, there exists a substitution
σi,j (i ∈ {1, . . . , ik}) is at least as general as σ. Hence the ATRS
B can simulate the step from C[liσ] −→A C[riσ], using the rule
liσi,j → riσi,j ∈ B. From this, the property follows by inductive
reasoning.

As a consequence, the collecting semantics of A is itself not
computable. Various techniques to over-approximate the collecting
semantics have been proposed, e.g. by Feuillade et al. [23], Jones
[33] and Kochems and Ong [36]. In all these works, the approx-
imation consists in describing the tuple (Z1, . . . , Zn) by a finite
object.

In HOCA we have implemented a variation of the technique of
Jones [33], tailored to call-by-value semantics (already hinted at
in [33]). Conceptually, the form of control flow analysis we perform
is close to a 0-CFA [41], merging information derived from different
call sites. Whilst being efficient to compute, the precision of this
relatively simple approximation turned out to be reasonable for our
purpose.

The underlying idea is to construct a (regular) tree grammar
which over-approximates the collecting semantics. Here, a tree
grammar G can be seen as a ground ATRS whose left-hand sides
are all function symbols with arity zero. The non-terminals of G
are precisely the left-hand sides. For the remaining, we assume that
variables occurring A are indexed by indices of rules, i.e. every
variable occurring in the ith rule li → ri ∈ A has index i. Hence the
set of variables of rewrite rules in A are pairwise disjoint. Besides
a designated non-terminal S, the start-symbol, the constructed tree
grammar G admits two kinds of non-terminals: non-terminals Ri
for each rule li → ri and non-terminals zi for variables zi occurring
in A. Note that the variable zi is considered as a constant in G. We
say that G is safe for A if the following two conditions are satisfied
for all (σ, t) ∈ Zi: (i) zi −→∗G σ(zi) for each zi ∈ Var(li); and
(ii) Ri −→∗G t. This way, G constitutes a finite over-approximation
of the collecting semantics of A.

Example 11. Figure 2 shows the tree grammar G constructed by
the method described below, which is safe for the ATRS A from
Example 6. The notation N → t1 | · · · | tn is a short-hand for the
n rules N → ti.

The construction of Jones consists of an initial automaton
G0, which describes considered start terms, and which is then
systematically closed under rewriting by way of an extension
operator δ(·). Suitable to our concerns, we define G0 as the tree
grammar consisting of the following rules:

S → main(* , . . . ,*) and
* → Cj(* , . . . ,*) for each constructor Cj of A.



* → [] | *::*
S → main(*) | R12

R12 → fixwalk @ l12 @ [] | R9 @ [] | R10 @ [] | R1 | R2

| Cl1(R9 ,Cl3(x10 )) | Cl1(R10 ,Cl3(x10 ))

R10 → Cl1(fixwalk@ ys10 ,Cl3(x10 ))

R9 → Cl2

R1 → f1 @ (g1 @ z1 ) | f1 @R3 | R1 | R2

R3 → x3::z3

R2 → z2

l12 → *

x10 → *

ys10 → *

z3 → z1

f1 → R9 | R10

g1 → Cl3(x10 )

z1 → R3 | []
z2 → R3 | []
x3 → x10

Figure 2. Over-approximation of the collecting semantics of the ATRS from Example 6.

Then clearly S −→∗G main(d1, . . . , dn) for all inputs di ∈ Input.
We let G be the least set of rules satisfying G ⊇ G0 ∪ δ(G) with

δ(G) :=
⋃

N→C[u]∈G

Extcbv(N → C[u]) .

Here, Extcbv(N → C[u]) is defined as the following set of rules: N → C[Ri ], li → ri ∈ A,
Ri → ri, and u −→∗G liσ is minimal
zi → σ(zi) for all zi ∈ Var(li) and σ normalised wrt. A.


In contrast to [33], we require that the substitution σ is normalised,
thereby modelling call-by-value semantics. The tree grammar G
is computable using a simple fix-point construction. Minimality
of f(t1, . . . , tk) −→∗G liσ means that there is no shorter sequence
f(t1, . . . , tk) −→∗G liτ with liτ −→∗G liσ, and ensures that G is
finite [33], thus the construction is always terminating.

We illustrate the construction on the ATRS from Example 6.

Example 12. Revise the ATRS from Example 6. To construct the
safe tree grammar as explained above, we start from the initial
grammar G0 given by the rule

S → main(*) * → [] | *::* ,

and then successively fix violations of the above closure condition.
The only violation in the initial grammar is caused by the first pro-
duction. Here, the right-hand side main(*) matches the (renamed)
rule 12: main(l12 ) →fixwalk@ l12 @ [], using the substitution
{ l12 7→ *}. We fix the violation by adding productions

S → R12 R12 → fixwalk @ l12 @ [] l12 → * .

The tree grammar G constructed so far tells us that l12 is a list. In
particular, we have the following two minimal sequences which
makes the left subterm of the R12 -production an instances of the
left-hand sides of defining rules of fixwalk (rules (9) and (10)):

fixwalk @ l12 −→+
G fixwalk @ [] ,

fixwalk @ l12 −→+
G fixwalk @ *::* .

To resolve the closure violations, the tree grammar is extended by
productions

R12 → R9 @ [] R9 → Cl2

because of rule (9), and by

R12 → R10 @ [] x10 → *

R10 → Cl1(fixwalk@ ys10 ,Cl3(x10 )) ys10 → * .

due to rule (10). We can now identify a new violation in the
production of R10 . Fixing all violations this way will finally result
in the tree grammar depicted in Figure 2.

The following lemma confirms that G is closed under rewriting
with respect to the call-by-value semantics. The lemma constitutes
a variation of Lemma 5.3 from [33].

Lemma 4. If S −→∗G t and t −→∗A C[liσ] −→A C[riσ] then
S −→∗G C[Ri ], Ri −→G ri and zi −→∗G σ(zi) for all zi ∈ Var(li).

Theorem 4. The tree grammar G is safe for A.

Proof. Fix (σ, t) ∈ Zi, and let z ∈ Var(li). Thus main(~d) −→∗A
C[liσ] −→A C[riσ] and riσ −→∗A t for some inputs d ∈ Input. As
we have S −→∗G main(~d) since G0 ⊆ G, Lemma 4 yields Ri −→G ri
and zi −→∗G σ(z), i.e. the second safeness conditions is satisfied.
Clearly, Ri −→G ri −→∗G riσ. A standard induction on the length of
riσ −→∗A t then yields Ri −→∗A t, using again Lemma 4.

We arrive now at our concrete implementation cfa(A) that
employs the above outlined call flow analysis to deal with both
dead code elimination and instantiation on the given ATRS A.
The construction of the tree grammar G follows itself closely the
algorithm outlined by Jones [33]. Recall that the ith rule li → ri ∈
A constitutes dead code if the ith component Zi of the collecting
semantics of A is empty, by Lemma 3(1). Based on the constructed
tree grammar, the implementation identifies rule li → ri as dead
code when G does not define a productionRi → t and thus Zi = ∅.
All such rules are eliminated, in accordance to Proposition 4. On
the remaining rules, our implementation performs instantiation as
follows. We suppose ε-productions N →M , for non-terminals M ,
have been eliminated by way of a standard construction, preserving
the set of terms from non-terminals in G. Thus productions in G
have the form N → f(t1, . . . , tk). Fix a rule li → ri ∈ A. The
primary goal of this stage is to get rid of head variables, with respect
to the η-saturated ATRS Aη , thereby enabling uncurrying so that
the ATRS A can be brought into functional form. For all such head
variables z, then, we construct a set of binders

{zi 7→ fresh(f(t1, . . . , tk)) | zi → f(t1, . . . , tk) ∈ G} ,

where the function fresh replaces non-terminals by fresh variables,
discarding binders where the right-hand contains defined symbols.
For variables z which do not occur in head positions, we construct
such a binder only if the production zi → f(t1, . . . , tk) is unique.
With respect to the tree grammar of Figure 2, the implementation
generates binders

{ f1 7→ Cl2, f1 7→ Cl1(f’,Cl3(x’))} and {g1 7→ Cl3(x’’)} .

The product-combination of all such binders gives then a set
of substitution {σi,1, . . . , σi,ik} that leads to sufficiently many
instantiations liσi,j → riσi,j of rule li → ri, by Lemma 3(2). Our
implementation replaces every rule li → ri ∈ A by instantiations
constructed this way.

The definition of binder was chosen to keep the number of com-
puted substitutions minimal, and hence the generated head variable
free ATRS small. Putting things together, we see that the instantia-
tion is sufficiently exhaustive, and thus the overall transformation
is complexity reflecting and preserving by Theorem 2. By cfaDCE
we denote the variation of cfa that performs dead code elimination,
but no instantiations.



simplify = simpATRS; toTRS; simpTRS where
simpATRS =

e x h a u s t i v e inline(lambda -rewrite );

e x h a u s t i v e inline(match );

e x h a u s t i v e inline(constructor );

usableRules

toTRS = cfa; uncurry; usableRules

simpTRS =

e x h a u s t i v e (( inline(decreasing );

usableRules) > cfaDCE)

Figure 3. Transformation Strategy in HOCA.

5.3 Combining Transformations
We have now seen all the building blocks underlying our tool
HOCA. But in which order should we apply the introduced program
transformations? In principle, one could try to blindly iterate the
proposed techniques and hope that a FOP can cope with the output.
Since transformations are closed under composition, the blind
iteration of transformations is sound, although seldom effective. In
short, a strategy is required that combines the proposed techniques
in a sensible way. There is no clear notion of a perfect strategy. After
all, we are interested in non-trivial program properties. However, it
is clear that any sensible strategy should at least (i) yield overall a
transformation that is effectively computable, (ii) generate ATRSs
whose runtime complexity is in relation to the complexity of the
analysed program, and (iii) produce ATRSs suitable for analysis via
FOPs.

In Figure 3 we render the transformation strategy underlying
our tool HOCA. More precise, Figure 3 defines a transformation
simplify based on the following transformation combinators:

• f1;f2 denotes the composition f2 ◦ f1, where f1(A) = f1(A)
if defined and f1(A) = A otherwise;

• the transformation exhaustivef iterates the transformation f
until inapplicable on the current ATRS; and

• the operator > implements left-biased choice: f1 > f2 applies
transformation f1 if successful, otherwise f2 is applied.

It is easy to see that all three combinators preserve the two cru-
cial properties of transformations, viz, complexity reflection and
complexity preservation.

The transformation simplify depicted in Figure 3 is composed
out of three transformations simpATRS, toTRS and simpTRS, each
itself defined from transformations inline(P) and cfa describe in
Sections 5.1 and 5.2, respectively, the transformation usableRules
which implements the aforementioned computationally cheap, unifi-
cation based, criterion from [24] to eliminate dead code (see Sec-
tion 4.2), and the transformation uncurry, which implements the
uncurrying-transformation from Section 4.4.

The first transformation in our chain, simpATRS, performs in-
lining driven by the specific shape of the input ATRS obtained by
defunctionalisation, followed by syntax driven dead code elimina-
tion. The transformation toTRS will then translate the intermediate
ATRSs to functional form by the uncurrying transformation, using
control flow analysis to instantiate head variables sufficiently and
further eliminate dead code. The transformation simpTRS then sim-
plifies the obtained TRS by controlled inlining, applying syntax
driven dead code elimination where possible, resorting to the more
expensive version based on control flow analysis in case the simpli-
fication stales. To understand the sequencing of transformations in
simpTRS, observe that the strategy inline(decreasing) is inter-
leaved with dead code elimination. Dead code elimination, both in

the form of usableRules and cfaDCE, potentially restricts the set
inlineA,p(l→ r), and might facilitate in consequence the transfor-
mation inline(decreasing). Importantly, the rather expensive,
flow analysis driven, dead code analysis is only performed in case
both inline(decreasing) and its cheaper cousin usableRules
fail.

The overall strategy simplify is well-defined on all inputs ob-
tained by defunctionalisation, i.e. terminating [10]. Although we
cannot give precise bounds on the runtime complexity in general, in
practice the number of applications of inlinings is sufficiently con-
trolled to be of practical relevance. Importantly, the way inlining and
instantiation is employed ensures that the sizes of all intermediate
TRSs are kept under tight control.

6. Experimental Evaluation
So far, we have covered the theoretical and implementation aspects
underlying our tool HOCA. The purpose of this section is to indicate
how our methods performs in practice. To this end, we compiled a
diverse collection of higher-order programs from the literature [22,
35, 43] and standard textbooks [15, 47], on which we performed
tests with our tool in conjunction with the general-purpose first-
order complexity tool TCT [8], version 2.1.6 For comparison, we have
also paired HOCA with the termination tool TTT2 [37], version 1.15.

In Table 1 we summarise our experimental findings on the 25
examples from our collection.7 Row S in the table indicates the total
number of higher-order programs whose runtime could be classified
linear, quadratic and at most polynomial when HOCA is paired with
the back-end TCT, and those programs that can be shown terminating
when HOCA is paired with TTT2. In contrast, row D shows the same
statistics when the FOP is run directly on the defunctionalised
program, given by Proposition 2. To each of those results, we state
the minimum, average and maximum execution time of HOCA and the
employed FOP. All experiments were conducted on a machine with
a 8 dual core AMD Opteron™ 885 processors running at 2.60GHz,
and 64Gb of RAM.8 Furthermore, the tools were advised to search
for a certificate within 60 seconds.

As the table indicates, not all examples in the testbed are sub-
ject to a runtime complexity analysis through the here proposed
approach. However, at least termination can be automatically ver-
ified. For all but one example (namely mapplus.fp) the obtained
complexity certificate is asymptotically optimal. As far as we know,
no other fully automatic complexity tool can handle the five open
examples. We will comment below on the reason why HOCA may
fail.

Let us now analyse some of the programs from our testbed.
For each program, we will briefly discuss what HOCA, followed by
selected FOPs can prove about it. This will give us the opportunity
to discuss about specific aspects of our methodology, but also about
limitations of the current FOPs.

Reversing a List. Our running example, namely the functional
program from Section 2 which reverses a list, can be transformed
by HOCA into a TRS which can easily be proved to have linear
complexity. Similar results can be proved for other programs.

Parametric Insertion Sort. A more complicated example is a
higher-order formulation of the insertion sort algorithm, example
isort-fold.fp, which is parametric on the subroutine which
compares the elements of the list being sorted. This is an example

6 We ran also experiments with AProVE and CaT as back-end, this however
did not extend the power.
7 Examples and full experimental evidence can be found on the HOCA
homepage.
8 Average PassMark CPU Mark 2851; http://www.cpubenchmark.net/.

http://www.cpubenchmark.net/


Table 1. Experimental Evaluation conducted with TCT and TTT2.

constant linear quadratic polynomial terminating

D # systems 2 5 5 5 8
FOP execution time 0.37 / 1.71 / 3.05 0.37 / 4.82 / 13.85 0.37 / 4.82 / 13.85 0.37 / 4.82 / 13.85 0.83 / 1.38 / 1.87

S # systems 2 14 18 20 25
HOCA execution time 0.01 / 2.28 / 4.56 0.01 / 0.54 / 4.56 0.01 / 0.43 / 4.56 0.01 / 0.42 / 4.56 0.01 / 0.87 / 6.48
FOP execution time 0.23 / 0.51 / 0.79 0.23 / 2.53 / 14.00 0.23 / 6.30 / 30.12 0.23 / 10.94 / 60.10 0.72 / 1.43 / 3.43

which cannot be handled by linear type systems [13]: we do
recursion over a function which in an higher-order variable occurs
free. Also, type systems like the ones in [35], which are restricted to
linear complexity certificates, cannot bind the runtime complexity of
this program. HOCA, instead, is able to put it in a form which allows
TCT to conclude that the complexity is, indeed quadratic.

Divide and Conquer Combinators. Another noticeable exam-
ple is the divide an conquer combinator, defined in example
mergesort-dc.fp, which we have taken from [47]. We have
then instantiated it so that the resulting algorithm is the merge
sort algorithm. HOCA is indeed able to translate the program into
a first-order program which can then be proved to be terminating
by FOPs. This already tells us that the obtained ATRS is in a form
suitable for the analysis. The fact that FOPs cannot say anything
about its complexity is due to the limitations of current FOPS which,
indeed, are currently not able to perform a sufficiently powerful
non-local size analysis, a necessary condition for proving merge
sort to be a polynomial time algorithm. Similar considerations hold
for Okasaki’s parser combinator, various instances of which can be
proved themselves terminating.

7. Related Work
What this paper shows is that complexity analysis of higher-order
functional programs can be made easier by way of program trans-
formations. As such, it can be seen as a complement rather than an
alternative to existing methodologies. Since the literature on related
work is quite vast, we will only give in this section an overview of
the state of the art, highlighting the differences with to our work.

Control Flow Analysis. A clear understanding of control flow
in higher-order programs is crucial in almost any analysis of
non-functional properties. Consequently, the body of literature on
control flow analysis is considerable, see e.g. the recent survey
of Midtgaard [39]. Closest to our work, control flow analysis has
been successfully employed in termination analysis, for brevity we
mention only [25, 34, 44]. By Jones and Bohr [34] a strict, higher-
order language is studied, and control flow analysis facilitates the
construction of size-change graphs needed in the analysis. Based
on earlier work by Panitz and Schmidt-Schauß [44], Giesl et al.
[25] study termination of Haskell through so-called termination
or symbolic execution graphs, which under the hood corresponds
to a careful study of the control flow in Haskell programs. While
arguable weak dependency pairs [30] or dependency triples [42]
form a weak notion of control flow analysis, our addition of
collecting semantics to complexity analysis is novel.

Type Systems. That the rôle of type systems can go beyond type
safety is well-known. The abstraction type systems implicitly pro-
vide, can enforces properties like termination or bounded complex-
ity. In particular, type systems for the λ-calculus are known which
characterise relatively small classes of functions like the one of
polynomial time computable functions [13]. The principles under-

lying these type systems, which by themselves cannot be taken
as verification methodologies, have been leveraged while defin-
ing type systems for more concrete programming languages and
type inference procedures, some of them being intensionally com-
plete [18, 20]. All these results are of course very similar in spirit to
what we propose in this work. What is lacking in most of the pro-
posed approaches is the presence, at the same time, of higher-order,
automation, and a reasonable expressive power. As an example,
even if in principle type systems coming from light logics [13] in-
deed handle higher-order functions and can be easily implementable,
the class of catched programs is small and full recursion is simply
absent. On the other hand, Jost et al. [35] have successfully encapsu-
lated Tarjan’s amortised cost analysis into a type systems that allows
a fully automatic resource analysis. In contrast to our work, only
linear resource usage can be established. However, their cost metric
is general, while our technique only works for time bounds. Also
in the context of amortised analysis, Danielsson [21] provides a
semiformal verification of the runtime complexity of lazy functional
languages, which allows the derivation of non-linear complexity
bounds on selected examples.

Term Rewriting. Traditionally, a major concern in rewriting has
been the design of sound algorithmic methodologies for checking
termination. This has given rise to many different techniques includ-
ing basic techniques like path orders or interpretations, as well as
sophisticated transformation techniques, c.f. [52, Chapter 6]. Com-
plexity analysis of TRSs can be seen as a natural generalisation of
termination analysis. And, indeed, variations on path orders and the
interpretation methods capable of guaranteeing quantitative proper-
ties have appeared one after the other starting from the beginning
of the nineties [7, 16, 38, 40]. In both termination and complexity
analysis, the rewriting community has always put a strong emphasis
to automation. However, with respect to higher-order rewrite sys-
tems (HRSs) only termination has received steady attention, c.f. [52,
Chapter 11]. Except for very few attempts without any formal results
complexity analysis of HRSs has been lacking [12, 17].

Cost Functions. An alternative strategy for complexity analysis
consists in translating programs into other expressions (which could
be programs themselves) whose purpose is precisely computing
the complexity (also called the cost) of the original program. Com-
plexity analysis is this way reduced to purely extensional reasoning
on the obtained expressions. Many works have investigated this
approach in the context of higher-order functional languages, start-
ing from the pioneering work by Sands [49] down to more recent
contributions, e.g. Vasconcelos et al. [53]. What is common among
most of the cited works is that either automation is not considered
(e.g. cost functions can indeed be produced, but the problem of
putting them in closed form is not [53]), or the time complexity is
not analysed parametrically on the size of the input [27]. A notable
exception is Benzinger’s work [14], which however only applies to
programs extracted from proofs, and thus only works with primitive
recursive definitions.
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