
Higher-Order Complexity Analysis:
Harnessing First-Order Tools.

Martin Avanzinib, Ugo Dal Lagob, Georg Mosera

aUniversity of Innsbruck, Austria
bUniversità di Bologna & INRIA, Sophia Antipolis, Italy

Keywords: Functional Programming, Defunctionalisation, Term Rewriting, Termination and Resource
Analysis

1. Introduction

Termination, and more broadly resource analysis, is important to a number of areas, including embedded
real-time and safety-critical systems. Programs written in a purely functional language, where side effects
are discouraged, are particular well-suited to such a static analysis. Over the last decades, there has been
significant work on the analysis of first-order functional programs. Notably, the rewriting-community has
developed several tools for the automatic termination and resource analysis of term rewrite system, a formal
model of computation that is at the heart of functional programs, e.g. the termination provers AProVE [5]
and TTT2 [9], and our own complexity-analyser TCT [2].

In this note we investigate to which extend such tools can be put into use for the analysis of higher-
order, functional programs. To this end, we essentially rely on defunctionalisation [12], a whole-program
transformation from higher-order to first-order functional programs. The idea behind this transformation is
conceptually simple: function-abstracts are represented as first-order values; calls to abstractions are replaced
by calls to a globally defined apply-function. Consider for instance the following OCaml-program:

l e t comp f g = fun z → f (g z) ; ;
l e t rev l =

(* walk : ’a list → (’a list → ’a list) *)

l e t rec walk = function
[] → (fun ys → ys)

| x :: xs → comp (walk xs) (fun ys → x :: ys)

in walk l [] ; ;

Run on a list of n elements, the function rev first constructs n nested closures, which when further evaluated,
results in the input list reversed. Defunctionalisation of this program consists in first defining a datatype for
representing the three abstractions fun z → f (g z), fun ys → ys and fun ys → x :: ys respectively:

type ’a closure = Lam1 of (’a closure , ’a closure) | Lam2 | Lam3 of ’a ; ;

More precise, an expression of type ’a closure represents a function closure, arguments are used to store
assignments to free variables. An appropriate apply-function can then be defined as follows.

l e t rec apply c a = match c with
Lam1(f,g) → apply f (apply g a) | Lam2 → a | Lam3(x) → x :: a ; ;

IThis work was partially supported by FWF project number J3563, FWF project number P25781 and by French ANR
project Elica ANR-14-CE25-0005.

Email addresses: martin.avanzini@uibk.ac.at (Martin Avanzini), dallago@cs.unibo.it (Ugo Dal Lago),
georg.moser@uibk.ac.at (Georg Moser)

Using apply, we arrive at a first-order version of the original higher-order function:

l e t comp f g = Lam1(f,g) ; ;
l e t rev l =

(* walk : ’a list → ’a list closure *)

l e t rec walk = function
[] → Lam2

| x :: xs → comp (walk xs) Lam3(x)

in apply (walk l) [] ; ;

Observe that now the recursive function walk constructs an explicit representation of the closure computed
by its original definition. The function apply carries out the remaining evaluation. This definition can now
be easily turned into a first-order term rewrite system.

To evaluate defunctionalisation in the context of static analysis with term rewriting tools, we have build
HOCA.1 This tool is able to translate programs written in the pure subset of OCaml, as e.g. the example from
above, into a term rewrite system. Crucially, the transformation steps carried out by our tool are all step
preserving, modulo a constant factor. Thus a successful termination, or runtime-complexity analysis, on the
resulting rewrite system can be relayed back to the initial OCaml-program. In the remaining, we outline the
theory underlying HOCA, specifically:

1. In Section 2 we present a transformation from higher-order programs to applicative term rewrite systems
(ATRSs for short). This program-transformation is a variation of the one found in [4] for λ-calculus
endowed with a weak call-by-value reduction strategy, and essentially an instance of defunctionalisation.

2. To faithfully model the evaluation of OCaml-programs, we have to take care of partial applications
during defunctionalisation. As a consequence, the transformation to ATRSs ends up in a system that
can be seen as an interpreter specialized to the input program, with a single recursive apply-function.
Lacking sufficient structure, all tools outlined above perform poor on the resulting systems. To overcome
this situation, we propose in Section 3 several complexity-preserving transformations on ATRSs.

3. We have compiled so far a small testbed of higher-order programs, including standard higher-order
functions like foldl and map, but also more involved examples such as an implementation of merge-sort
using a higher-order divide-and-conquer combinator as well as a small parsers relying on the monadic
parser-combinator outlined in Okasaki’s functional pearl [10].

2. Complexity Preserving Transformation

In the following, we assume modest familiarity with term rewriting [3] and functional programming [6]. To
model a reasonable rich but pure subset of OCaml, we consider Plotkin’s Programming Computable Functions
(PCF for short) [11]. To seamlessly express programs over algebraic datatypes, we enrich Plotkin’s original
definition with constructors and pattern matching. To this end, let c1, . . . , ck be finitely many constructors,
each equipped with a fixed arity. The syntax of PCF-programs is given by the following grammar:

Exp e, f ::= x | ci(~e) | λx.e | f e | fix(x.e) | match e with {c1(~x1) 7→ e1; · · · ; ck(~xk) 7→ ek} ,

where x ranges over variables. We adopt weak call-by-value semantics, the definition is standard, see e.g. [6].
The one-step weak call-by-value reduction relation is denoted by →v. Elements of the term algebra over
constructors c1, . . . , ck embedded in our language are collected in Data. A PCF-program with n input
arguments xi is a closed expression P = λx1 · · ·λxn.e. We only considered elements of Data as valid input to
a program, in particular, inputs are free of abstractions. This way we ensure that the abstractions reduced
in a run of P are the ones found in P , an essential property for performing defunctionalisation. We assume
that variables in P have been renamed apart, and we impose a total order on variables in P . Therefore, the
free variables FV(e) of e can be defined as an ordered sequence of variables. Note that the variables ~xi in a
match-expression are considered bound in ei.

1Our tool HOCA is open source and available under http://cbr.uibk.ac.at/tools/hoca/.

2

http://cbr.uibk.ac.at/tools/hoca/

In the following, we show that every PCF-program P can be seen as an applicative term rewrite system
(ATRS for short) RP , a system with a dedicated infix symbol (·), the apply-symbol. We define a mapping
[·]Φ from expressions to terms as follows. In the definition of [e]Φ we abbreviate ~x = FV(e).

[x]Φ := x [λx.e]Φ := lam[x.e](~x) [ci(e1, . . . , ek)]Φ := ci([e1]Φ, . . . , [ek]Φ)

[f e]Φ := [e]Φ · [f]Φ [fix(x.e)]Φ := fix[x.e](~x) [match e with {cs}]Φ := match[e, cs]([e]Φ, ~x) .

Each of the introduced function symbols lam[x.e], fix[x.e], and match[e, cs], called closure-constructors
below, is equipped with one or more defining rules:

• lam[x.e] is defined by lam[x.e](~x) · x→ [e]Φ;

• fix[x.e] is defined by fix[x.e](~x) · y → [f]Φ · y for y a fresh variable and f = e{fix(x.e)/x};

• match[e, cs], where cs = c1(~x1) 7→ e1; · · · ; ck(~xk) 7→ ek, is defined by match[e, cs](ci(~xi), ~x) → [ei]Φ
for 1 6 i 6 k.

For a program P = λx1 · · ·λxn.e, the ATRS RP is defined as the least set of rules that (i) contains a rule
main(x1, . . . , xn)→ [e]Φ; and (ii) if l→ r ∈ RP and f is a closure-constructor in r, it contains all defining
rules of f. Note that the size of RP is bounded by the number of distinct sub-expressions of e.

Example 1. The example from the introduction is translated into the following ATRS. Here walk is used to
abbreviate the λ-expression that constitutes the body of walk, similar, abbreviations are used for the two cases
in walk and the sub-expressions of comp.

(a) main(l)→ fix[walk] · l · nil (e) lam2 · ys→ ys

(b) fix[walk] · l→ walk · l (f) lam3(x) · ys→ cons(x, ys)

(c) walk · nil→ lam2 (g) lam10 · f → lam11(f)

(d) walk · cons(x, xs)→ lam10 · (fix[walk] · xs) · lam3(x) (h) lam11(f) · g → lam12(f, g)

(i) lam12(f, g) · z → f · (g · z)

Proposition 1. Every →v-reduction of an expression P d1 · · · dn (dj ∈ Data) is simulated step-wise by an
innermost RP -derivation starting from main(d1, . . . , dn).

Here innermost means that rewriting is performed inside-out. As the inverse direction of this proposition can
also be stated, RP can be seen as a sound and complete, in particular step-preserving, implementation of the
PCF-program P . This simple transformation paves the way to our primary goal. A successful analysis of RP

with rewriting-based termination and runtime-complexity tools can be relayed back to the PCF-program P .

3. Complexity-Preserving Simplifications

Rule-Narrowing. The purpose of our first transformation is to simplify rules by rewriting right-hand sides.
For instance, the two applications in rule (h) of Example 1 could already be performed directly on the rule.
Such a simplification can be seen as a form of inlining. In a similar way, we can inline the calls to walk in rule
(b) by first instantiating the variable l to nil and cons(x, xs), respectively. This process can be formalized
by narrowing [3], consequently we call this transformation rule-narrowing. It involves replacing a rewrite
rule of the form l→ r[f(~r)], where the symbol f is possibly the infix apply-symbol, by the set of rules

{lµi → rµi[riµi] | the sub-term f(~r) unifies with the left-hand side of a rule f(~li)→ ri with mgu µi} .

Here it is supposed that variables are renamed apart during unification. The unifiable rules f(~li)→ ri are
called narrowing-rules for brevity. Notice that the rule lµi → rµi[riµi] corresponds to the specialization of
l→ r[f(~r)] by µi, with f inlined.

3

Example 2 (Continued from Example 1). We can narrow rule (b) with narrowing-rules (c) and (d),
using the unifiers {l 7→ nil} and {l 7→ cons(x, xs)}, resulting in the rules

fix[walk] · nil→ lam2 fix[walk] · cons(x, xs)→ lam10 · (fix[walk] · xs) · lam3(x) .

Applying rule-narrowing on the second rule twice, we obtain the system consisting of the following six rules.

(1) main(l)→ fix[walk] · l · nil (4) lam2 · ys→ ys

(2) fix[walk] · nil→ lam2 (5) lam3(x) · ys→ cons(x, ys)

(3) fix[walk] · cons(x, xs)→ lam12(fix[walk] · xs, lam3(x)) (6) lam12(f, g) · z → f · (g · z) .

Notice that the inlined rules (c),(d),(g) and (h), which are no longer used in a reduction of main, have been
dropped 2.

Rule-narrowing reduces the number of reduction steps, but crucially, only by a constant factor if some
care is taken. Under the following pre-conditions, a successful analysis on the transformed system can be
relayed back to the input system.

First, it has to be guaranteed that a redex with respect to a replaced rule l→ r[f(~r)], reachable from a
call to main, is a redex to a generated rule lµi → rµi[riµi]. On non-overlapping systems such as the ones we
generate, this can be guaranteed by requiring that the symbol f is sufficiently defined : any sub-term f(~t)
occurring in a reduction in any reduction starting from main(d1, . . . , dn) (dj ∈ Data) is reducible. Secondly,
it has to be ensured that inlining does not delete redexes. A sufficient condition for this purpose is to require
that for each narrowing-rule f(~li)→ ri, each variable occurs in the right-hand side ri at least as often as it

occurs in the left-hand side f(~li). We call such rules redex-preserving. Then the following can be shown.

Proposition 2. Let S be obtained from the non-overlapping TRS R by narrowing the rule l → r[f(~r)] as
outline above. If f is sufficiently defined and all narrowing-rules are redex-preserving, then every derivation
wrt. R starting from main(d1, . . . , dn) (dj ∈ Data) of length ` is simulated by a derivation wrt. S from
main(d1, . . . , dn) of length b `2c.

Instantiation. Usually the dependency pair transformation, a form of call-graph analysis, is performed
as a first step by termination or complexity analysers (see [5, 9, 2]). This method is ineffective on the
applicative systems we generate. To overcome this situation, we intend to transform applicative terms
f(t1, . . . , tm) · tm+1 · · · · tm+n to functional form fn(t1, . . . , tm, tm+1, . . . , tm+n). It is well understood how
to bring an ATRS into functional form, in a step preserving manner [7]. In the presence of head-variables,
i.e. variables that occur to the left of the apply-symbol such as in rule (6), the apply-symbol cannot be
eliminated.

To overcome this situation, we instantiate such variables by closure-terms. Call an ATRS S a refinement
of an ATRS R if every rule l′ → r′ ∈ S is an instance of a rule l → r ∈ R, i.e., l′ = lσ and r = r′σ for
some substitution σ. It is a safe refinement if for every term t occurring in a derivation wrt. R from
main(d1, . . . , dn) (dj ∈ Data), every redex in t wrt. R is also a redex wrt. S. The following proposition then
follows by definition.

Proposition 3. If S is a safe refinement of R, then every derivation wrt. R starting from main(d1, . . . , dn)
(dj ∈ Data) is simulated step-wise by an derivation wrt. S, and vice verse.

The question now remains how to construct a suitable, safe refinement of the ATRS under consideration.
To this end, we use a variation of the flow-analysis of Jones [8] tailored to innermost reductions. Jones defines
an over-approximation of the collecting semantics, using regular tree grammars. An initial grammar, which
expresses analysed function calls, is closed under rewriting in a systematic way. In particular, each variable
x occurring in the ith rule is represented as a non-terminal Xi in the closed grammar G, the set of terms
generated from the non-terminal Xi approximates the assignments to x.

2Our tool HOCA reduces the rewrite system automatically to the set of usable rules, an idea that goes back to [1].

4

?→ nil | cons(?, ?) R1 → fix[walk] · L6 · nil | R2 · nil | R3 · nil | R4 | R6

St→ main(?) R2 → Y S4

L1, X3, XS3, X5, Z6 → ? R3 → lam12(fix[walk] · XS3, lam3(X3))

Y S4, Z6 → R4 | nil | lam12(R2, lam3(X3)) | lam12(R3, lam3(X3))

Y S5 → Z6 R4 → lam2

F6 → R2 | R3 R5 → cons(X5, Y S5)

G6 → lam3(X3) R6 → F6 · (G6 · Z6) | F6 · R5 | R4 | R6

Figure 1: Approximation of the Collecting Semantics by a Regular Tree Grammar.

Example 3 (Continued from Example 2). We refine rule (6) to the two head-variable free rules, using
rule-narrowing to simplify the right-hand sides:

(6a) lam12(lam2, lam3(x)) · z → cons(x, z)

(6b) lam12(lam12(f, lam3(y)), lam3(x)) · z → lam12(f, lam3(y)) · cons(x, z) .

The regular tree grammar depicted in Figure 1 is obtained from Jones flow analysis. From the productions
of F6 and G6 it can be seen that assignments to the variables f and g of rule (6) are of the form lam2 or
lam12(f, lam3(y)) and lam3(x), respectively. This confirms that our refinement is sound.

4. Experimental Results

P. 1 P. 1, 2 & 3

O(1) 1 1
O(n) 5 12
O(n2) 5 16
SN 11 20

Failed 10 1

Table 1: Experimental Evaluation
conducted with AProVE, TCT and TTT2.

We have outlined a transformation from higher-order programs to first-
order term rewrite systems, using standard program analysis methods and
rewriting-based simplification techniques. In Table 1 we summarise our
experimental findings on 21 examples, detailed results can be found on
the HOCA homepage. As back-ends we use AProVE and TTT2 for termination,
and TCT for runtime-complexity analysis. The rows indicate the derived
asymptotic upper-bounds, SN denotes that the system could be proven
terminating. The first column shows the effectiveness of the tools on the
applicative term rewrite systems obtained by Proposition 1, in the second
column we integrate the techniques of Section 3 and uncurrying [7].

These preliminary experiment confirm at what we already hinted in
the introduction. Existing rewriting-based static analysis tools perform relatively poor on defunctionalized
programs, but suitable simplifications can massage the analysed ATRS into a form amendable for automatic
analysis. Noteworthy, this way we could show all but one example from our test-suite terminating.

References

[1] T. Arts and J. Giesl. Termination of Term Rewriting using Dependency Pairs. TCS, 236(1–2):133–178, 2000.
[2] M. Avanzini and G. Moser. Tyrolean Complexity Tool: Features and Usage. In Proc. of 24th RTA, volume 21 of LIPIcs,

pages 71–80. Dagstuhl, 2013.
[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[4] U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda Calculus. LMCS, 8(3):1–27, 2012.
[5] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination Proofs in the Dependency Pair

Framework. In Proc. of 3rd IJCAR, volume 4130 of LNAI, pages 281–286. Springer, 2006.
[6] R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, 2012.
[7] N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for Termination and Complexity. JAR, 50(3):279–315, 2013.
[8] N. D. Jones. Flow Analysis of Lazy Higher-order Functional Programs. TCS, 375(1-3):120–136, 2007.
[9] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In Proc. of 20th RTA, volume 5595 of

LNCS, pages 295–304. Springer, 2009.
[10] C. Okasaki. Functional Pearl: Even Higher-Order Functions for Parsing. JFP, 8(2):195–199, 1998.
[11] G. D. Plotkin. LCF Considered as a Programming Language. TCS, 5(3):223–255, 1977.
[12] J. C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages. Higher-Order and Symbolic Computa-

tion, 11(4):363–397, 1998.

5

	Introduction
	Complexity Preserving Transformation
	Complexity-Preserving Simplifications
	Experimental Results

