
On Probabilistic Term Rewriting

Martin Avanzinia, Ugo Dal Lagoa,b, Akihisa Yamadac

aINRIA Sophia Antipolis, France
bUniversity of Bologna, Italy

cNational Institute of Informatics, Japan

Abstract

We study the termination problem for probabilistic term rewrite systems. We
prove that the interpretation method is sound and complete for a strengthening
of positive almost sure termination, when abstract reduction systems and term
rewrite systems are considered. Two instances of the interpretation method—
polynomial and matrix interpretations—are analyzed and shown to capture in-
teresting and nontrivial examples when automated. We capture probabilistic
computation in a novel way by means of multidistribution reduction sequences,
thus accounting for both the nondeterminism in the choice of the redex and the
probabilism intrinsic in firing each rule.

1. Introduction

Interactions between computer science and probability theory are pervasive
and extremely useful to the first discipline. Probability theory indeed offers
models that enable abstraction, but it also suggests a new model of computation,
like in randomized algorithmics [32] or cryptography [19]. All this has stimulated
the study of probabilistic computational models and programming languages:
probabilistic variations on well-known models like automata [12, 35], Turing
machines [37, 17], and the λ-calculus [36, 23] are known from the early days of
theoretical computer science.

The simplest way probabilistic choice can be made available in program-
ming languages consists in endowing the language of programs with an operator
modeling sampling from (one or many) distributions. Fair, binary, probabilistic
choice is for example perfectly sufficient to get universality if the underlying
programming language is itself universal (e.g., see [11]).

Term rewriting [38] is a well-studied model of computation where no proba-
bilistic behavior is involved. It provides a faithful abstraction of pure functional
programming which is, up to a certain extent, also adequate for modeling higher-
order parameter passing [27]. What is peculiar in term rewriting is that, in
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principle, rule selection turns reduction into a potentially nondeterministic pro-
cess. The following question is then a natural one: is there a way to generalize
term rewriting to a fully-fledged probabilistic model of computation? Actually,
not much is known about probabilistic term rewriting: we are only aware of
the definitions due to Agha et al. [1] and Bournez and Garnier [6]. We base
our work on the latter, where probabilistic rewriting is captured as a Markov
decision process; rule selection remains nondeterministic, but each rule can have
one of many possible outcomes, each with its own probability. Rewriting thus
becomes a process in which both nondeterministic and probabilistic aspects are
present and intermingled. When firing a rule, the reduction process implicitly
samples from a distribution, much in the same way as when performing binary
probabilistic choice in one of the models mentioned above.

In this paper, we first define a new, simple framework for discrete probabilis-
tic reduction systems, which properly generalizes standard abstract reduction
systems [38] (Section 3). In particular, what plays the role of a reduction se-
quence, usually a (possibly infinite) sequence a1 → a2 → . . . of states, is a
sequence µ1 −→M µ2 −→M . . . of (multi)distributions over the set of states. A
multidistribution is not merely a distribution, and this is crucial to appropriately
account for both the probabilistic behavior of each rule and the nondetermin-
ism in rule selection. Such a correspondence does not exist in Bournez and
Garnier’s framework, as nondeterminism has to be resolved by a strategy, in
order to define reduction sequences. Consequently, our framework is not only
conceptually simpler, it is closer to ordinary rewriting. Indeed, our reduction
relation is simply a reduction system over multidistributions, and can be stud-
ied without particular knowledge of probability theory. Nevertheless, the two
frameworks turn out to be equiexpressive (Section 3.4).

On top of this framework, we then introduce abstract embeddings and more
concrete probabilistic ranking functions, sound and complete methods for prov-
ing strong almost sure termination, a strengthening of positive almost sure ter-
mination [6]. We moreover show that ranking functions provide bounds on
expected runtimes (Section 3.3).

This paper’s main contribution, then, is the definition of a simple framework
for probabilistic term rewrite systems as an example of this abstract framework
(Section 4). Our main aim is studying whether any of the well-known techniques
for termination of term rewrite systems can be generalized to the probabilistic
setting, and whether they can be automated. We give positive answers to these
two questions, by describing how polynomial and matrix interpretations can
indeed be turned into instances of probabilistic ranking functions, thus gener-
alizing them to the more general context of probabilistic term rewriting. We
moreover implement these new techniques into the termination tool NaTT [39]
(Section 5).

This paper is revised version of the conference paper [3]. Apart from giving
all missing proofs and more detailed examples and explanations, we generalized
the definition of probabilistic reduction systems so that reducts may be sampled
from infinite distributions. Another notable change lies in the reformulation of
probabilistic ranking functions in terms of embeddings, leading also to a more
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elegant formulation of barycentric algebras.

2. Related Work

Termination is a crucial property of programs, and has been widely studied
in term rewriting. Tools checking and certifying termination of term rewrite
systems are nowadays capable of implementing tens of different techniques, and
can prove termination of a wide class of term rewrite systems, although the
underlying verification problem is well known to be undecidable [38].

Termination remains an interesting and desirable property in a probabilis-
tic setting, e.g., in probabilistic programming [20] where inference algorithms
often rely on the underlying program to terminate. But what does termination
mean when systems become probabilistic? If one wants to stick to a qualitative
definition, almost-sure termination is a well-known answer: a probabilistic com-
putation is said to almost surely terminate iff non-termination occurs with null
probability. One could even require positive almost-sure termination, which asks
the expected time to termination to be finite. Recursion-theoretically, checking
(positive) almost-sure termination is harder than checking termination of non-
probabilistic programs, where termination is at least recursively enumerable,
although undecidable: in a universal probabilistic imperative programming lan-
guage, the termination questions for almost-sure and positive almost-sure ter-
mination on a single input are already Π0

2 and Σ0
2 complete, respectively [24].

Many sound verification methodologies for probabilistic termination have
recently been introduced (see, e.g., [6, 7, 18, 14, 10]). In particular, the use of
ranking martingales has turned out to be quite successful when the analyzed
program is imperative, and thus does not have an intricate recursive structure.
When the latter holds, techniques akin to sized types have been shown to be
applicable [26]. More recently, Ngo et al. [33] implemented the ert-calculus
of Kaminski et al. [25] for reasoning about the expected runtime of imperative
integer programs, showing promising results.1

Finally, as already mentioned, the current work can be seen as stemming
from the work by Bournez et al. [8, 6, 7]. The added value compared to their
work are first of all the notion of multidistribution as a way to give an instan-
taneous description of the state of the underlying system which exhibits both
nondeterministic and probabilistic features. Our completeness result can be seen
as a correction to their claim [6, Theorem 3], which was already refuted [14].
In fact, incompleteness claims in [14] also contradict our result, but their coun-
terexample is invalid as part of the reduction steps are not counted.2 Moreover,
an interpretation method inspired by ranking functions is made more general
here, this way accommodating not only interpretations over the real numbers,

1While it is possible to translate such programs into probabilistic term rewrite systems [4],
our method will not capture typical termination arguments on probabilistic integer programs,
since properties of integers will be unavailable after the encoding.

2We thank Luis Maŕıa Ferrer Fioriti for this analysis.
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but also interpretations over vectors, in the spirit of matrix interpretations.
Finally, we provide an automation of polynomial and matrix interpretation in-
ference, whereas nothing about implementation was presented in Bournez and
Garnier’s work.

Some of our results have been independently obtained by Fu and Chatterjee
[15], most notably, Theorem 2. Their notion of bounded termination is what
we call strong almost-sure termination in this work. The main peculiarity of
our work is that we focus on probabilistic term rewriting, while their focus is
on procedural programs with probabilistic sampling. Besides, the authors also
investigate lower bounds on expected runtimes and tail-probabilities, topics not
covered in our work.

3. Probabilistic Abstract Reduction Systems

An abstract reduction system (ARS) on a set A is a binary relation → ⊆
A× A. Having a → b means that a reduces to b in one step, or b is a one-step
reduct of a. Bournez and Garnier [6] extended the ARS formalism to prob-
abilistic computations by allowing reducts to be sampled from a (probability)
distribution. Throughout the paper, we denote by R≥0 the set of non-negative
reals.

Definition 1 (Distribution). A distribution on a (countable) set A is a map-
ping d : A → R≥0 assigning to each a ∈ A a probability d(a), such that∑
a∈A d(a) = 1. We write D(A) for the set of distributions over A. The support

of a distribution d is the set Supp(d) := {a ∈ A | d(a) > 0}. We may denote a
distribution d by {d(a) : a | a ∈ Supp(d)}, or {d(a1) : a1, . . . , d(an) : an} when
Supp(d) is the finite set {a1, . . . , an}.

A probabilistic ARS (PARS) in terms of Bournez and Garnier [6] is defined
as a relation −→ ⊆ A×D(A), and having a −→ d means that d is the distribution
of the one-step reducts of a, or a reduces to b with probability p = d(b), in
notation p : a −→ b. We extend this notation to sequences, also called runs
below. For instance, if further q : b −→ c, we write p · q : a −→ b −→ c. Notice that
since −→ is a relation, the PARS may indeed specify more than one distribution
of one-step reductions for a ∈ A, i.e., a −→ d1 and a −→ d2 with d1 6= d2. The
distribution of one-step reducts of a is nondeterministically chosen from d1 and
d2 in this case, and −→ is called nondeterministic.

Example 1 (Random walk). A random walk over N with bias probability p is
modeled by the probabilistic ARS −−→

Wp
such that

n+ 1 −−→
Wp
{p : n, 1− p : n+ 2} for all n ∈ N.

For a PARS →, we aim at defining a reduction relation −→D, as an ARS on
distributions. Taking Example 1, we would like to have

{1 : 1} −−→
W 1

2

D { 12 : 0, 1
2 : 2} ,
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meaning that the distribution of the one-step reducts of 1, or more precisely the
singleton distribution assigning probability one to 1, is { 12 : 0, 1

2 : 2}. Contin-
uing the reduction, what should the distribution of two-step reducts of 1 be?
Actually, it cannot be a distribution (on A): since 0 cannot be reduced, by prob-
ability 1

2 we have no two-step reduct of 1. Hence we consider subdistributions,
i.e., generalizations of distributions where probabilities may sum up to less than
one, allowing

{1 : 1} −−→
W 1

2

D { 12 : 0, 1
2 : 2} −−→

W 1
2

D { 14 : 1, 1
4 : 3} .

Further continuing the reduction, one would expect { 18 : 0, 1
4 : 2, 1

8 : 4} as the
next step, but note that a half of the probability 1

4 of 2 is due to the run
1
8 : 1 → 2 → 1 → 2, and the other half is due to the run 1

8 : 1 → 2 → 3 → 2.
It turns out that, in the presence of nondeterminism, we should distinguish the
two possibilities.

Example 2. Consider the PARS −→
N

such that

a −→
N
{ 12 : b1,

1
2 : b2} b1 −→N {1 : c} c −→

N
{1 : d1}

b2 −→N {1 : c} c −→
N
{1 : d2} .

Reducing a twice always yields c, so the two-step reduct of a seen as a dis-
tribution is {1 : c}. More precisely, there are two runs from a to c, namely,
1
2 : a −→ b1 −→ c and 1

2 : a −→ b2 −→ c. Each of them can be nondeterministi-
cally continued to d1 and d2, so the distribution of three-step reducts of a is the
nondeterministic choice among {1 : d1},

{
1
2 : d1,

1
2 : d2

}
, {1 : d2}. On the other

hand, whereas it is obvious that {1 : c} should reduce to {1 : d1} or {1 : d2},
obtaining the third choice

{
1
2 : d1,

1
2 : d2

}
would require the reduction relation

−→
N
D to be defined in a non-local manner.

To overcome this problem, we refine subdistributions to multidistributions,
where a single element can be associated with more than one probability. With
respect to the nondeterministic PARS −→

N
, this allows us to model that a reduces

in two steps to c on two distinct runs, each with probability 1
2 , and continuing

this reduction may yield any of the above three-step reducts.

3.1. Probabilistic ARSs and Multidistribution Reductions

We model multidistribution by a special form of (possibly infinite) multisets.

Definition 2 (Multiset). A multiset over a set A is a mapping M : A → N.
The union

⊎
i∈IMi of countably many multisets Mi is defined by(⊎

i∈I
Mi

)
(a) :=

∑
i∈I

Mi(a) ,

5



which forms a multiset if and only if
∑
i∈IMi(a) is finite for every a ∈ A. The

sum of a multiset M with respect to f : A→ R is defined by∑
a∈M

f(a) :=
∑
a∈A

M(a) · f(a) .

The submultiset relation is defined by M ⊆ N :⇐⇒ ∀a ∈ A. M(a) ≤ N(a).

We use set-like notations for multisets: ∅ denotes the empty multiset ∅(a) := 0,
{{ai | i ∈ I}} is the multiset M with M(a) = |{i ∈ I | ai = a}|, and {{a1, . . . , an}}
is its special case where I = {1, . . . , n} is finite. The following lemma is an easy
consequence of the definition.

Lemma 1. For a family ({{ai,j | j ∈ Ji}})i∈I of multisets we have⊎
i∈I
{{ai,j | j ∈ Ji}} = {{ai,j | i ∈ I, j ∈ Ji}} .

Definition 3 (Multidistributions). A (sub)multidistribution on a set A is a
multiset µ of pairs of a ∈ A and 0 < p ≤ 1, written p : a, satisfying

|µ| :=
∑
p:a∈µ

p ≤ 1 .

We call µ a proper multidistribution if |µ| = 1. We denote the set of multidis-
tributions on A by M≤1(A), and proper ones by M(A).

By an abuse of notation, we identify a subdistribution {pi : ai | i ∈ I} with
the multidistribution {{pi : ai | i ∈ I}}. We often lift a function f : A → B to
f :M≤1(A)→M≤1(B) as follows:

f
(
{{pi : ai | i ∈ I}}

)
:= {{pi : f(ai) | i ∈ I}} .

Definition 4 (PARS). A probabilistic ARS (PARS) over a set A is a (typically
infinite) set −→ ⊆ A ×M(A). An object a ∈ A is called terminal, or a normal
form in →, if there is no µ with a→ µ. With NF→ we denote the set of normal
forms in →.

We remark that in contrast to [3, 6], we allow proper multidistributions rather
than distributions as right-hand sides, e.g., a →

{{
1
2 : a, 12 : a

}}
is permitted in

our setting.
Now we lift a PARS −→ ⊆ A × M(A) to the reduction relation −→M ⊆

M≤1(A) × M≤1(A), an ARS over multidistributions. To this end, we need
some basic operations on multidistributions. The scalar multiplication of a
multidistribution is defined by

p · {{qi : ai | i ∈ I}} := {{p · qi : ai | i ∈ I}} ,

which is also a multidistribution if 0 < p ≤ 1. More generally, multidistributions
are closed under subconvex combinations:
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Lemma 2. For families (µi)i∈I of multidistributions and (pi)i∈I of positive real
numbers,

⊎
i∈I pi · µi is also a multidistribution if

∑
i∈I pi ≤ 1. More precisely,∣∣⊎

i∈I pi · µi
∣∣ =

∑
i∈I pi · |µi| ≤ 1.

Proof. Let µi = {{qi,j : ai,j | j ∈ Ji}} for each i ∈ I. Using Lemma 1 we have∣∣∣ ⊎
i∈I

pi · µi
∣∣∣ = |{{pi · qi,j : ai,j | i ∈ I, j ∈ Ji}}|

=
∑
i∈I

∑
j∈Ji

pi · qi,j

=
∑
i∈I

pi ·
∑
j∈Ji

qi,j =
∑
i∈I

pi · |µi| .

Since |µi| ≤ 1, the claim then follows from the assumption
∑
i∈I pi ≤ 1.

Definition 5 (Probabilistic Reduction). Given a PARS → ⊆ A ×M(A),
we define the probabilistic reduction relation −→M ⊆ M≤1(A) × M≤1(A) as
follows:

a ∈ NF→

{{1 : a}} −→M ∅
a→ µ

{{1 : a}} −→M µ

∀i ∈ I. µi −→M νi⊎
i∈I pi · µi −→M

⊎
i∈I pi · νi

In the last rule, I is an arbitrary (possibly empty) countable set, pi > 0 for every
i ∈ I, and

∑
i∈I pi ≤ 1. We denote by red→(µ) the set of all possible reduction

sequences from µ, i.e., (µn)n∈N ∈ red→(µ) iff µ0 = µ and µn −→M µn+1 for any
n ∈ N. We overload this notation for a ∈ A and denote by red→(a) the set of
all possible reduction sequences from {{1 : a}}.

In essence, the reduction relation −→M induced by a PARS → is given by a
pointwise extension of → to multidistributions, removing normal forms along
reductions. We abbreviate −→M by → when it is clear from the context.

Let us illustrate the definition on the two examples from above.

Example 3 (Example 1, Revisited). The informal reduction of the PARS −−→
W 1

2

on distributions as outlined above is given by the following reduction sequence
on multidistributions:

{{1 : 1}} −−→
W 1

2

{{
1
2 : 0, 1

2 : 2
}}
−−→
W 1

2

{{
1
4 : 1, 1

4 : 3
}}

−−→
W 1

2

{{
1
8 : 0, 1

8 : 2, 1
8 : 2, 1

8 : 4
}}
−−→
W 1

2

. . .

Here, the first step follows from the second rule of Definition 5. The second is
obtained by a combination of all three rules:

0 ∈ NF−−→
W 1

2

{{1 : 0}} −−→
W 1

2

∅

2 −−→
W 1

2

{{
1
2 : 1, 1

2 : 3
}}

{{1 : 2}} −−→
W 1

2

{{
1
2 : 1, 1

2 : 3
}}

{{
1
2 : 0, 1

2 : 2
}}
−−→
W 1

2

{{
1
4 : 1, 1

4 : 3
}}
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The third step is derived similarly.

In Example 3, the third reduct
{{

1
8 : 0, 1

8 : 2, 1
8 : 2, 1

8 : 4
}}

records that 2
derives from 1 via two distinct paths. In consequence, this resolves the issues
indicated in Example 2 when dealing with nondeterministic systems.

Example 4 (Example 2, Revisited). Consider again the nondeterministic PARS
−→
N

. Besides the two reductions yielding d1 and d2 outlined above, we have the
reduction

{{1 : a}} −→
N

{{
1
2 : b1,

1
2 : b2

}}
−→
N

{{
1
2 : c, 12 : c

}}
−→
N

{{
1
2 : d1,

1
2 : d2

}}
.

The final step is possible because
{{

1
2 : c, 12 : c

}}
is not collapsed to {{1 : c}}.

The definition of the reduction relation −→M has several consequences. First,
any multidistribution µ is “reducible” in −→M, even if µ consists only of terminal
objects. Second, if µ is the subconvex combination of multidistributions νi (i ∈
I), then any reduct of µ is given by the subconvex combination of some reducts
of νi. Further, this observation carries over to reduction sequences. Let us
extend subconvex combination pointwise to sequences of multidistributions, i.e.,
~µ =

⊎
i∈I pi · (~νi)i∈I if µn =

⊎
i∈I pi · (νi,n)i∈I for all n ∈ N, where ~µ = (µn)n∈N

and ~νi = (νi,n)n∈N for all i ∈ I.

Lemma 3. ~µ ∈ red→
(⊎

i∈I pi · νi
)

if and only if there exists ~ρi ∈ red→(νi) for
each i ∈ I such that ~µ =

⊎
i∈I pi · ~ρi.

Proof. The “if” direction is obvious. For the “only if” direction, consider
an arbitrary ~µ ∈ red→

(⊎
i∈I pi · νi

)
. We inductively construct ρi,n so that

(ρi,n)n∈N ∈ red→(νi). For the base case we define ρi,0 = νi. For the induc-
tive case, assume by induction hypothesis that µn =

⊎
i∈I pi · ρi,n → µn+1. An

induction on the derivation of this step yields ρi,n+1 such that ρi,n → ρi,n+1 for
every i ∈ I. This concludes the proof.

Finally, we remark that PARSs constitute a generalization of ARSs: an ARS
can be seen as a PARS whose right-hand sides are singleton distributions, i.e.,
{{1 : b}} for some b, and the non-probabilistic reduction is simulated via the
relation {{1 : ·}} → {{1 : ·}}. Only a little care is needed as {{1 : a}} reduces to ∅
when a is terminal.

Proposition 1. Let → be an ARS and define ↪→ as the smallest PARS such
that a ↪→ {{1 : b}} if a→ b. Then {{1 : a}} ↪→ µ iff either a→ b and µ = {{1 : b}}
for some b, or a is a normal form in → and µ = ∅.

Proof. For {{1 : a}} ↪→ µ only the first two rules of Definition 5 are effective.
Then the claim directly follows.
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3.2. Notions of Probabilistic Termination

An ARS→ is called terminating if it does not give rise to an infinite sequence
a1 → a2 → . . . . In a probabilistic setting, our interest is whether infinite
sequences occur with non-zero probability or not. This notion is defined using
our notation as follows.

Definition 6 (Almost Sure Termination; AST). A PARS → is said to be
almost surely terminating (AST ) if for any reduction sequence (µn)n∈N ∈ red→(a),
it holds that limn→∞ |µn| = 0.

Intuitively, |µn| is the probability of having a reduct in the nth step, so its
tendency towards zero indicates that infinite runs occur with zero probability.

Example 5 (Example 1, Revisited). The PARS −−→
Wp

is AST for p ≥ 1
2 , whereas

it is not for p < 1
2 (cf. [31]). Note that although −−→

W 1
2

is AST, the expected

number of steps needed to reach a terminal is infinite.

As motivated by Bournez and Garnier [6], it is also interesting and important
to further ensure that the expected length of runs is finite. We define the notion
by means of the following concise definitions. In Section 3.4 we show that
our definition is equivalent to the corresponding notion defined via stochastic
processes.

Definition 7 (Expected Derivation Length). Let → be a PARS and ~µ =
(µn)n∈N ∈ red→(µ). We define the expected derivation length edl(~µ) ∈ R≥0 ∪ {∞}
in this multidistribution reduction sequence ~µ by

edl(~µ) :=
∑
n≥1

|µn| .

Bournez and Garnier [6] introduced the notion of positive almost sure ter-
mination (PAST), which can be formulated as follows.

Definition 8 (Positive AST; PAST). A PARS → is said to be positively
almost surely terminating (PAST) iff for any reduction ~µ ∈ red→(a) starting
from any a ∈ A, edl(~µ) is finite.

One should be careful to notice that the above definition does not ensure a
bound on the expected length of all runs starting from a given a ∈ A. This
phenomenon is already visible in the non-probabilistic setting.

Example 6. Consider the ARS −→ω over N ∪ {a} given by

a −→ω n n+ 1 −→ω n

for all n ∈ N. Every reduction in −→ω is finite, thus −→ω seen as a PARS is PAST.
However, there is no upper bound on the length of reductions starting from a.
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In this example, although −→ω is terminating, it is not finitely branching :
a admits infinitely many one-step reducts. In the non-probabilistic setting, a
finitely branching terminating ARS admits a bound on the length of derivation
for each starting element. In the probabilistic setting, however, PAST does not
ensure such bounds even if the system is finitely branching:3

Example 7. Consider the PARS −→∞ over N ∪ {an | n ∈ N} defined by

an −→∞
{{

1
2 : an+1,

1
2 : 0

}}
an −→∞ {{1 : 2n · n}} n+ 1 −→∞ {{1 : n}}

for all n ∈ N. Obviously −→∞ is finitely branching. We show that −→∞ is PAST

as follows. Observe that every sequence ~µ ∈ red−→∞ (an) has one of the following

two forms:

1. The first rule is fired infinitely often:

~µ = {{1 : an}} −→∞
{{

1
2 : an+1,

1
2 : 0

}}
−→∞

{{
1
4 : an+2,

1
4 : 0

}}
−→∞ · · ·

In this case, edl(~µ) = 1 + 1
2 + 1

4 + · · · =
∑
n∈N

1
2n = 2.

2. The second rule is fired after m applications of the first:

~µ = {{1 : an}} −→∞ m
{{

1
2m : an+m,

1
2m : 0

}}
−→∞

{{
1
2m : k

}}
−→∞ k

{{
1
2m : 0

}}
,

where k = 2n+m·(n+m). In this case, edl(~µ) = 1+ 1
2+· · ·+ 1

2m + 1
2m ·k ≥ m.

The second class of derivations witnesses that, given an, there is no bound bn <
∞ such that edl(~µ) ≤ bn for any ~µ ∈ red→(an).

Therefore we introduce a stronger notion, which ensures a bound on the
expected derivation length for each starting element. The definition is based on
a natural extension of derivation height [22] from complexity analysis of term
rewriting.

Definition 9 (Strong AST; SAST). For a PARS → ⊆ A ×M(A), the ex-
pected derivation height edh→(µ) ∈ R≥0 ∪ {∞} of µ ∈M≤1(A) is defined by

edh→(µ) := sup {edl(~ν) | ~ν ∈ red→(µ)} .

For a ∈ A, we write edh→(a) for edh→({1 : a}). We say → is strongly almost
surely terminating (SAST ) iff edh→(a) of every a ∈ A is finite.

Notice that on the class of deterministic PARSs, i.e., when a → µ1 and
a → µ2 implies µ1 = µ2, SAST coincides with PAST. In the nondeterministic
case, on the other hand, the notions of PAST and SAST do not coincide. SAST
guarantees that the expected length of reductions is bounded, taking a demonic
view on nondeterminism. As highlighted in Example 7 such a bound does not
necessarily exist for systems that are PAST. This holds even for non-probabilistic
ARSs, as Example 6 demonstrates.

3We are grateful to the anonymous reviewer of an earlier version of this work [3] who
pointed us to this example.
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Proposition 2. For every PARS →, the following implications hold:

→ is SAST =⇒ → is PAST =⇒ → is AST

We conclude the section with the following natural property of expected
derivation height. For a (multi)distribution µ over real numbers, the expected
value of µ is defined by E(µ) :=

∑
p:a∈µ p · a. As a function f : A → R is

naturally generalized to f : M≤1(A) → M≤1(R), for µ ∈ M≤1(A) we have
E(f(µ)) =

∑
p:a∈µ p · f(a).

Lemma 4. For every PARS →, edh→(µ) = E(edh→(µ)).

Proof. More generally, we have

edh→
(⊎
i∈I

pi · µi
)

= sup
{∑
n∈N
|νn|

∣∣∣ (νn)n∈N ∈ red→
(⊎
i∈I

pi · µi
)}

(Lemma 3)

= sup
{∑
n∈N

∣∣⊎
i∈I pi · νn,i

∣∣ ∣∣∣ ∀i ∈ I. (νn,i)n∈N ∈ red→(µi)
}

(Lemma 2)

= sup
{∑
i∈I

pi ·
∑
n∈N
|νn,i|

∣∣∣ ∀i ∈ I. (νn,i)n∈N ∈ red→(µi)
}

=
∑
i∈I

pi · sup
{∑
n∈N
|νn|

∣∣∣ (νn)n∈N ∈ red→(µi)
}

=
∑
i∈I

pi · edh→(µi) .

The main claim then follows, since

µ =
⊎
p:a∈µ

p · {{1 : a}} and
∑
p:a∈µ

p · edh→({{1 : a}}) = E(edh→(µ)) .

3.3. Proving Probabilistic Termination

A popular way of proving termination of non-probabilistic systems is via
embedding reductions into a well-founded set (B,>) [29]. The latter can be
seen also as a terminating ARS, giving rise to the following general statement.

Proposition 3. An ARS → ⊆ A×A is terminating if and only if there exists
a mapping f : A → B and a terminating ARS � ⊆ B × B such that a → b
implies f(a) � f(b).

The function f is often called a ranking function, typically B is N, and �
is the standard order on N. Notice that the “only if” direction is trivial by
taking the identity as f and → as �. We give an analog of Proposition 3 for
probabilistic systems.

11



Definition 10 (Embedding). Let → ⊆ A ×M(A) and A ⊆ B ×M(B) be
two PARSs. We say that a mapping f : A → B is an embedding of → into A,
if a→ µ implies f(a) A f(µ).

With Theorem 1 we will show that such embeddings give a sound and com-
plete method for proving SAST. The proof of this theorem is based on the
following simulation result.

Lemma 5. Let f : A → B be an embedding of a PARS → into a PARS A. If
µ→ ν then f(µ) A f(ν) ] ξ for some multidistribution ξ.

Proof. We proceed by induction on the derivation of µ→ ν.

• If µ = {{1 : a}} → ∅ = ν with a ∈ NF→, then the claim is satisfied by
any ξ with f(µ) A ξ. Note that by the definition of →M, such a ξ always
exists.

• If µ = {{1 : a}} → ν with a → ν, then the assumption gives f(a) A f(ν)
and thus f(µ) = {{1 : f(a)}} A f(ν).

• Finally, if µ =
⊎
i∈I pi · µi →

⊎
i∈I pi · νi = ν with µi → νi, then the claim

is an easy consequence of the induction hypothesis.

Lemma 6. Let f : A→ B be an embedding of a PARS → into a PARS A. For
every reduction sequence (µn)n∈N ∈ red→(µ) there exists a reduction sequence
(νn)n∈N ∈ redA(f(µ)) such that f(µn) ⊆ νn for all n ∈ N. In particular,

edl
(
(µn)n∈N

)
≤ edl

(
(νn)n∈N

)
.

Proof. Given (µn)n∈N ∈ red→(µ), we inductively construct the desired ν0, ν1, ν2, . . .
as follows. We set ν0 = f(µ0). Suppose f(µn) ⊆ νn, and thus νn = f(µn) ] ξ
for some multidistribution ξ. Lemma 5 yields f(µn) A f(µn+1) ] ρ for some ρ.
Take an arbitrary ξ′ with ξ A ξ′ and define νn+1 = f(µn+1) ] ρ ] ξ′. We have

νn = f(µn) ] ξ A f(µn+1) ] ρ ] ξ′ = νn+1

as desired. From this, edl
(
(µn)n∈N

)
≤ edl

(
(νn)n∈N

)
follows as we have |µn| ≤

|νn| for every n ∈ N.

Theorem 1. A PARS → ⊆ A ×M(A) is SAST if and only if there exists an
embedding f : A→ B into a PARS A ⊆ B ×M(B) which is SAST. Moreover,
in this case edh→(a) ≤ edhA(f(a)) for any a ∈ A.

Proof. The “only if” direction is trivial by taking → as A and the identity
as f . Concerning the “if” direction, suppose that f is an embedding of →
into A and A is SAST. Consider an arbitrary a ∈ A. By Lemma 6, for every
~µ ∈ red→(a) there is a “longer” reduction ~ν ∈ redA(f(a)) in the sense edl(~µ) ≤
edl(~ν). Consequently,

edh→(a) = sup{edl(~µ) | ~µ ∈ red→(a)}
≤ sup{edl(~ν) | ~ν ∈ redA(f(a))}
= edhA(f(a)) <∞ .

12



Probabilistic ranking functions [6] or ranking supermartingales [9, 14] are
instances of Theorem 1. To demonstrate this, we introduce the following PARS
over R≥0, which is canonically SAST.

Definition 11 (Probabilistic Ranking Function). Let ε > 0. We define
the ARS [≥ ε+] ⊆ R≥0 × R≥0 by

a [≥ ε+] b :⇐⇒ a ≥ ε+ b ,

and the PARS [≥ ε+ E] ⊆ R≥0 ×M(R≥0) by

a [≥ ε+ E] µ :⇐⇒ a ≥ ε+ E(µ) .

We call an embedding f : A → R≥0 of a PARS → ⊆ A×M(A) into [≥ ε+ E]
a probabilistic ranking function for →.

Intuitively, a mapping f is a probabilistic ranking function for→ if the value
of f decreases by ε in expectation whenever there is a reduction in→. Lemma 9
will confirm that [≥ ε+ E] is SAST, and hence, probabilistic ranking functions
are sound for proving SAST, by Theorem 1. Moreover, we will also see that they
are complete. Towards the soundness result, we analyze reductions of [≥ ε+ E],
in particular, how they evolve in expectation. We start with the analysis of a
single reduction.

Lemma 7. If µ [≥ ε+ E]
M
ν, then E(µ) ≥ ε · |ν|+ E(ν).

Proof. We prove the claim by induction on the derivation of µ [≥ ε+ E]
M
ν.

• Suppose µ = {{1 : a}} and a ∈ NF[≥ε+E], that is, a < ε. Then ν = ∅ and
E(µ) ≥ 0 = ε · |ν|+ E(ν) since E(∅) = |∅| = 0.

• Suppose µ = {{1 : a}} and a [≥ ε+ E] ν, that is, a ≥ ε+ E(ν). As |ν| = 1
we have E(µ) = a ≥ ε · |ν|+ E(ν).

• Suppose µ =
⊎
i∈I pi · µi, ν =

⊎
i∈I pi · νi, and µi [≥ ε+ E]

M
νi for every

i ∈ I. The induction hypothesis gives E(µi) ≥ ε · |νi|+ E(νi). Thus,

E(µ) =
∑
i∈I

pi · E(µi) ≥
∑
i∈I

pi · (ε · |νi|+ E(νi))

= ε ·
∑
i∈I

pi · |νi|+
∑
i∈I

pi · E(νi) = ε · |ν|+ E(ν) .

Lemma 8. For every ~µ = (µn)n∈N ∈ red[≥ε+E](µ0), E(µ0) ≥ ε · edl(~µ).

Proof. We first show E(µm) ≥ ε ·
∑n
i=m+1 |µi| for every n ≥ m, by induction

on n − m. The base case is trivial, so let us consider the inductive step. By
Lemma 7 and the induction hypothesis we get

E(µm) ≥ ε · |µm+1|+ E(µm+1)

≥ ε · |µm+1|+ ε ·
n∑

i=m+2

|µi| = ε ·
n∑

i=m+1

|µi| .

13



By fixing m = 0, we conclude that the sequence
(
ε ·
∑n
i=1 |µi|

)
n≥1 is bounded

by E(µ0), and so is its limit ε ·
∑
i≥1 |µi| = ε · edl(~µ).

Lemma 9. If ε > 0 then edh[≥ε+E](a) ≤ a
ε for every a ∈ R≥0, and thus the

PARS [≥ ε+ E] is SAST.

Proof. By Lemma 8, we have edl(~µ) ≤ E({1:a})
ε = a

ε for every ~µ ∈ red[≥ε+E](a).
Hence, edh[≥ε+E](a) ≤ a

ε , concluding that [≥ ε+ E] is SAST.

Theorem 2. A PARS → is SAST if and only if there is a probabilistic ranking
function f for →, i.e., f embeds → into [≥ ε+ E] for some ε > 0. Moreover,

in this case edh→(a) ≤ f(a)
ε for any a ∈ A.

Proof. The “if” direction follows from Theorem 1 and Lemma 9. Concerning the
“only if” direction, suppose that → is SAST. Thus, we have edh→ : A → R≥0.
Consider a→ µ. Then we have |µ| = 1 and

edh→(a) = sup {edl(~µ) | ~µ ∈ red→(a)}
≥ sup {|µ|+ edl(~µ) | ~µ ∈ red→(µ)}
= |µ|+ sup {edl(~µ) | ~µ ∈ red→(µ)}
= |µ|+ edh→(µ) (Lemma 4)

= |µ|+ E(edh→(µ)) ,

concluding edh→(a) [≥ 1 + E] edh→(µ). Thus edh→ is an embedding of → into
[≥ 1 + E], i.e., a ranking function.

3.4. Relation to Formulation by Bournez and Garnier

The dynamics of probabilistic systems are commonly defined as stochastic
processes, so that the nth random variable represents the nth reduct. Bournez
and Garnier [6] follow this approach. In this section, we establish a precise
correspondence between their formulation and ours. In particular, we show
that the corresponding notions of AST and PAST coincide.

We assume familiarity with stochastic processes, see e.g. [34]. We briefly fix
central notions and notations. A measurable space is a tuple (Ω,Σ) consisting
of a set Ω and a sigma-algebra Σ on it, i.e., Σ is a collection of subsets of Ω that
contains the empty set and is closed under complement and countable unions.
A probability space is a triple (Ω,Σ,P) with (Ω,Σ) a measurable space and
P : Σ→ R≥0 a countable additive function such that P(Ω) = 1. Given A,B ∈ Σ
with P(B) > 0, the conditional probability P(A|B) is defined as P(A∩B)/P(B).
The law of total probability states that P(A) =

∑
i P(A ∩ Bi) for any A ∈ Σ

and finite or countable partition (Bi)i∈N ∈ Σ of Ω.
A random variable X over a countable set A in a probability space (Ω,Σ,P)

is a measurable function X : Ω → A, that is, X−1(a) := {ω | X(ω) = a} ∈ Σ
for all a ∈ A. We follow the usual conventions concerning random variables, in
particular, with P(X = a) we denote the probability P(X−1(a)). The probability
distribution of X is the probability distribution over A that assigns to every
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a ∈ A the probability P(X = a). The expected value of a random variable X
over N ∪ {∞} is defined by E(X) :=

∑
n∈N∪{∞} P(X = n) · n, where 0 · ∞ = 0

and p · ∞ =∞ for p > 0.
A stochastic process on A is an infinite sequence ~X = (Xn)n∈N of random

variables over A all defined on some probability space (Ω,Σ,P). A stopping time

with respect to ~X is a random variable S, taking values in N ∪ {∞}, with the
property that for each n ∈ N ∪ {∞}, the occurrence or non-occurrence of the
event S = n depends only on the values of X0, . . . , Xn. Every stopping time S
satisfies

E(S) :=

∞∑
n=1

n · P(S = n) =

∞∑
n=1

P(S ≥ n) . (1)

An instance of a stopping time is the first hitting time with respect to a set
H ⊆ A, which is defined as τH(ω) := min{n | Xn(ω) ∈ H} for all ω ∈ Ω, where
min∅ =∞.

For the remaining of the section, we fix a PARS → on A such that all right-
hand sides in → are distributions. In order to define reduction sequences of →
as stochastic processes, first, all nondeterministic choices are resolved by fixing
a strategy, also called policy.

Definition 12 ([6]). An n-step history is a nonempty finite sequence a0..n =
(a0, . . . , an) ∈ A+. We say a0..n is (non)terminal iff an is. A strategy is a map-
ping φ : A+ → D(A) that satisfies an → φ(a0..n) whenever an is nonterminal.
We say a0..n is realizable under φ iff φ(a0..i)(ai+1) > 0 for every 0 ≤ i < n.

Given an initial element or distribution, a strategy completely defines a
stochastic process that corresponds to a particular reduction in the PARS. As
[6] does not allow subdistributions, in the following we fix a special symbol
⊥ /∈ A to denote termination.

Definition 13 (Stochastic Reduction, [6]). A stochastic reduction under a

strategy φ is a sequence ~X = (Xn)n∈N of random variables over A ] {⊥} such
that

P(Xn+1 = ⊥ | Xn = ⊥) = 1 ;

P(Xn+1 = ⊥ | Xn = a) = 1 if a ∈ NF→;

P(Xn+1 = ⊥ | Xn = a) = 0 if a /∈ NF→;

P(Xn+1 = a | Xn = an, . . . , X0 = a0) = φ(a0..n)(a) ,

whenever a0..n is a nonterminal realizable history under φ. The initial distribu-
tion of ~X is given by the probability distribution of X0.

As an immediate consequence of the law of total probability, by Definition 13
any stochastic reduction ~X = (Xn)n∈N satisfies

P(Xn = an) =
∑
a0..n∈An+1 P(X0 = a0, . . . , Xn = an) . (2)
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Notice that ai ranges over A in this equality, i.e., ai 6= ⊥. As ⊥ signals termina-
tion, the derivation length of a stochastic reduction is given by the first hitting
time to ⊥.

Definition 14 (AST and PAST of [6]). For ~X = (Xn)n∈N define the ran-
dom variable T := min{n ∈ N | Xn = ⊥} where min∅ =∞ by convention. The

random variable T is called the stopping time of ~X. A PARS→ is stochastically
AST if for every stochastic reduction ~X in →, P(T = ∞) = 0. We say → is

stocastically PAST if for every stochastic reduction ~X in→ starting from a ∈ A,
E(T) <∞.

We will now see that stochastic (P)AST coincides with (P)AST. To this end,
we first clarify the correspondence of stochastic reductions and multidistribution
reduction sequences. Given a stochastic reduction ~X = (Xn)n∈N, for each n ∈ N
we define the random variable X0..n ranging over (A ∪ {⊥})n+1

by

P(X0..n = a0..n) = P(X0 = a0, . . . , Xn = an) ,

where a0, . . . , an range over A∪{⊥}. Now consider projecting to the last element
in X0..n. We define the following multidistribution over A:

XMn := {{p : an | p = P(X0..n = a0..n) > 0}} .

The following two lemmas state the one-to-one correspondence between multi-
distribution reduction sequences and stochastic reductions in each direction.

Lemma 10 (Stochastic Reductions to Reductions). Let ~X = (Xn)n∈N be the
stochastic reduction in → under strategy φ. Then XMn −→M XMn+1 for every
n ∈ N, i.e.,

(
XMn

)
n∈N ∈ red→(X0).

Proof.

XMn = {{p : an | p = P(X0..n = a0..n) > 0}}

−→M
⊎
{p · φ(a0..n) | p = P(X0..n = a0..n) > 0, an /∈ NF→}

= {{q : an+1 | q = P(X0..n = a0..n) · φ(a0..n)(an+1) > 0, an /∈ NF→}}
= {{q : an+1 | q = P(X0..n = a0..n, Xn+1 = an+1) > 0}}
= {{q : an+1 | q = P(X0..n+1 = a0..n+1) > 0}}
= XMn+1 .

Lemma 11 (Reduction to Stochastic Reductions). Let ~µ = (µn)n∈N ∈ red→(d)
for some distribution d. There exists a strategy φ which induces a stochastic
reduction (Xn)n∈N such that µn = XMn for all n ∈ N.

Proof. First, we inductively define φn : An → A→ R≥0 such that

µn = {{φn(a0..n−1)(an) : an | φn(a0..n−1)(an) > 0}} . (3)
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Then by defining φ(a0..n) = φn+1(a0..n) we obtain the desired strategy. Since
d = µ0 is a distribution, we define φ0()(a) := d(a). To obtain φn+1 from φn,
suppose by induction hypothesis that (3) holds. Let

I := {a0..n | φn(a0..n−1)(an) > 0, an /∈ NF→} .

As µn −→M µn+1, for each a0..n ∈ I there is an → da0..n such that

µn+1 =
⊎

a0..n∈I
φn(a0..n−1)(an) · da0..n

= {{φn(a0..n−1)(an) · da0..n(a) : a | φn+1(a0..n)(a) > 0}} .

Hence, defining

φn+1(a0..n) :=

{
φn(a0..n−1)(an) · da0..n if (a0..n) ∈ I ,

0 otherwise,

yields the desired φn+1.

Now we relate the expected derivation length of multidistribution reduc-
tion sequences and the expected stopping time of stochastic reductions. For a
multidistribution µ ∈ M≤1(A), we define the distribution µ ∈ D(A ∪ {⊥}) by
µ(a) :=

∑
p:a∈µ p for a ∈ A and µ(⊥) := 1− |µ|. We have the following natural

correspondence between XMn and Xn.

Lemma 12. XMn (a) = P(Xn = a).

Proof. The lemma follows from the definition of (·) and Equation (2).

Lemma 13. Let ~X = (Xn)n∈N be the stochastic derivation in → under strat-
egy φ from the initial distribution d and let T denote its stopping time. The
following two properties hold:

1. P(T ≥ n) =
∣∣XMn ∣∣ for every n ∈ N.

2. P(T =∞) = limn→∞
∣∣XMn ∣∣.

Proof. Concerning the first property, we have

P(T ≥ n) = P(Xn ∈ A) =
∑
a∈A

P(Xn = a) =
∑
a∈A

XMn (a) =
∣∣XMn ∣∣ ,

for all n ∈ N , where the penultimate equation follows from Lemma 12. As we
have

P(T =∞) = lim
n→∞

P(T ≥ n) ,

the second property follows from the first.

Now we arrive at the main theorem of this section.

Theorem 3. A PARS → is (P)AST if and only if it is stochastically (P)AST.
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Proof. We consider the “if” direction first. Suppose → is AST. Lemma 10
translates an arbitrary stochastic derivation ~X = (Xn)n∈N in → to a reduction(
XMn

)
n∈N ∈ red→(a), for which we have P(T = ∞) = limn→∞ |µn| = 0 by

Lemma 13(2). Hence, → is stochastically AST. If → is moreover PAST, using
Lemma 13(1) and (1) we get

∞ > edl
((
XMn

)
n∈N

)
=
∑
n≥1

∣∣XMn ∣∣ =
∑
n≥1

P(T ≥ n) = E(T) ,

where we tacitly employ P(T = ∞) = 0. The “only if” direction is proven
dually, using Lemma 11.

Finally, we relate our probabilistic ranking functions (Theorem 2) to the
following formulation by Bournez and Garnier [6].

Proposition 4 ([6]). A PARS → over A is PAST if there exists a function
V : A → R, with infa∈A V (a) > −∞, and ε > 0 such that for all a ∈ A, for all
µ with a→ µ, the drift in a according to µ defined by

∆µV (a) :=
∑
p:b∈µ

p · V (b)− V (a) ,

satisfies
∆µV (a) ≤ −ε . (4)

Formulated differently, condition (4) states that V (a) ≥ ε + E(V (µ)) holds
whenever a → µ. Further, infa∈A V (a) > −∞ means that f(a) := V (a) −
infa∈A V (a) gives a mapping f : A → R≥0. Hence, f is a probabilistic ranking
function in the sense of Theorem 2.

Proposition 5. Let → be a PARS. There exists V : A → R satisfying Propo-
sition 4 if and only if there is a probabilistic ranking function for →.

As a consequence, Proposition 4 can be strengthened from PAST to SAST.
Moreover, the method is not only sound but also complete for SAST. Bournez
and Garnier claimed with [6, Theorem 3] that Proposition 4 is complete for
proving finitely branching PARSs to be PAST. Example 7 is a counterexample
to this claim, depicting a finitely branching system that is PAST but not SAST.

4. Probabilistic Term Rewriting

We now formulate probabilistic term rewriting, and then lift the interpreta-
tion method for term rewriting to the probabilistic case.

We briefly recap notions from term rewriting; see [5] for more details. A
signature F is a set of function symbols, each associated with a natural number
called arity. The set T (F, V ) of terms over a signature F and a set V of
variables (disjoint with F ) is the least set such that x ∈ T (F, V ) if x ∈ V and
f(t1, . . . , tn) ∈ T (F, V ) whenever f ∈ F is of arity n and t1, . . . , tn ∈ T (F, V ). A
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substitution is a mapping σ : V → T (F, V ), which is extended homomorphically
to terms. We write tσ instead of σ(t). A context is a term C ∈ T (F, V ∪ {2})
containing exactly one occurrence of a special variable 2. With C[t] we denote
the term obtained by replacing 2 in C with t.

We extend substitutions and contexts to multidistributions over terms as fol-
lows: µσ := {{pi : tiσ | i ∈ I}} and C[µ] := {{pi : C[ti] | i ∈ I}} for µ = {{pi : ti | i ∈ I}}.

Definition 15 (Probabilistic Term Rewriting). A probabilistic rewrite rule
is a pair of l ∈ T (F, V ) and µ ∈ M(T (F, V )), written l → µ. A probabilistic
term rewrite system (PTRS) R is a (typically finite) set of probabilistic rewrite
rules. We write −→

R
for the least PARS such that C[lσ] −→

R
C[µσ] for every

probabilistic rewrite rule l → µ ∈ R, context C, and substitution σ. We say a
PTRS R is AST/PAST/SAST if −→

R
is.

Note here that we deviate from [6]: there −→
R

is defined by C[lσ] −→
R

C[µσ]
for each l→ µ ∈ R in our notation, where µσ is the distribution corresponding
to the multidistribution µσ. Notice that even if µ is a distribution over terms,
µσ is in general a (proper) multidistribution; e.g., consider { 12 : x, 1

2 : y}σ with
xσ = yσ. On the other hand, Bournez and Garnier [6] demand that right-
hand sides of PARSs to be distributions. Consequently, the extra operation · is
necessary, in order for −→

R
to be a PARS of their definition. One consequence of

this difference is that we allow strategies to know which rule was applied even
if the resulting term was identical, while in the setting of Bournez and Garnier
[6] strategies can be defined only in terms of the resulting term.

Example 8. The random walk of Example 1 can be modeled by a PTRS con-
sisting of a single rule s(x)→ {{p : x, 1− p : s(s(x))}}.

To rewrite a term, there are typically multiple choices of a subterm to reduce
(i.e., redexes). For instance, s(f(s(0))) has two redexes in the above PTRS, and
consequently two possible reducts:

{{p : f(s(0)), 1− p : s(s(f(s(0))))}} and {{p : s(f(0)), 1− p : s(f(s(s(0))))}} .

4.1. Interpretation Methods for Proving SAST

We now generalize the interpretation method for term rewrite systems to the
probabilistic setting. The following notion is standard.

Definition 16 (F -Algebra, cf. [38]). An F -algebra X on a non-empty car-
rier set X specifies the interpretation fX : Xn → X of each function symbol
f ∈ F of arity n. We say X is monotone with respect to a binary relation (an
ARS) � ⊆ X × X if x � y implies fX (. . . , x, . . . ) � fX (. . . , y, . . . ) for every
f ∈ F . Given an assignment α : V → X, the interpretation of a term is defined
as follows:

JtKαX :=

{
α(t) if t ∈ V ,

fX (Jt1K
α
X , . . . , JtnK

α
X ) if t = f(t1, . . . , tn).

We write s �X t iff JsKαX � JtKαX for every assignment α.
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Proposition 6 (cf. [38]). A TRS R is terminating if and only if there exists
an F -algebra X which is monotone with respect to a terminating relation � and
satisfies R ⊆ �X .

In essence, this proposition is a consequence of Proposition 3: the imposed
conditions witness that the interpretation embeds the ARS−→

R
underlyingR into

the well-founded order �. Conversely, completeness can be proven by taking
−→
R

as the well-founded order and for X the term algebra T , an F -algebra on

terms such that fT (t1, . . . , tn) := f(t1, . . . , tn). Note that in the term algebra,
assignments are substitutions, and JtKσT = tσ.

We now generalize Proposition 6 for probabilistic TRSs via Theorem 1. For
an F -algebra X , we lift the interpretation of terms to multidistributions as
follows:

J{{pi : ti | i ∈ I}}KαX := {{pi : JtiK
α
X | i ∈ I}} .

Definition 17 (Probabilistic Monotone F -Algebra). A probabilistic mono-
tone F -algebra (X ,A) is an F -algebra X equipped with a relation A ⊆ X ×
M(X), such that x A µ implies fX (. . . , x, . . . ) A fX (. . . , µ, . . . ) for every f ∈ F ,
where

fX (. . . , µ, . . . ) := {{p : fX (. . . , t, . . . ) | p : t ∈ µ}} .

We write t AX µ iff JtKαX A JµKαX for every assignment α : V → X.

Notice that A is a PARS over X . As in the non-probabilistic case, it is closed
under substitutions and contexts:

Lemma 14. Let (X ,A) be a probabilistic monotone F -algebra. If s AX µ then
JsσKαX A JµσKαX and JC[s]KαX A JC[µ]KαX for arbitrary α, σ, and C.

Proof. Let µ = {{pi : ti | i ∈ I}}. Concerning the first property, define the as-
signment β by β(x) = JxσKαX for every x ∈ V . By structural induction on t, one

can verify JtKβX = JtσKαX for any term t. Thus, from the assumption we get

JsσKαX = JsKβX A JµKβX =
{{
pi : JtiK

β
X
∣∣ i ∈ I}}

=
{{
pi : JtiσKαX

∣∣ i ∈ I}} = JµσKαX .

The second property is proven by induction on C, where the base case follows
directly from the assumption, and the inductive step from monotonicity.

Theorem 4. A PTRS R is SAST if and only if there exists a probabilistic
monotone F -algebra (X ,A) such that A is SAST and R ⊆ AX .

Proof. For the “if” direction, let α : V → X be an arbitrary assignment, which
exists as X is non-empty. We show that J·KαX is an embedding of −→

R
into A,

so that the claim follows from Theorem 1. Consider s −→
R

µ. Then we have

s = C[lσ] and µ = C[νσ] for some σ, C, and l → ν ∈ R. By assumption we
have l AX ν, and thus JsKαX A JµKαX by Lemma 14.

For the “only if” direction, it suffices to show that (T ,−→
R

) forms a proba-
bilistic monotone F -algebra, which easily follows from Lemma 14.
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4.2. Barycentric Algebras

As probabilistic F -algebras are defined so generally, it is not yet clear how to
search for ones for proving that a given PARS is SAST. Now we make one step
towards finding probabilistic algebras, by imposing some conditions on (non-
probabilistic) F -algebras, so that the relation A can be defined from orderings
which we are more familiar with. The following generalizes the PARS [≥ ε+ E]
from Definition 11.

Definition 18 (Barycentric Domain). A barycentric domain is a setX where
the barycentric operation E :M(X)→ X is defined. From a binary relation �
on X we define the PARS [� E] ⊆ X ×M(X) by

x [� E] µ :⇐⇒ x � E(µ) .

Of particular interest in this work will be the barycentric domains R≥0 and
Rm≥0 with barycentric operations E({{pi : ai | i ∈ I}}) =

∑
i∈I pi · ai. We may

write EX when we would like to clarify the domain X. The following generalizes
standard notions from mathematics.

Definition 19 (Concavity, Affinity). Let f : X → Y be a function from and
to barycentric domains. We say f is concave with respect to an order � on Y if
f(EX(µ)) < EY (f(µ)) where < is the reflexive closure of �. We say f is affine
if it satisfies f(EX(µ)) = EY (f(µ)).

Clearly, every affine function is concave.

Definition 20 (Barycentric F -Algebra). A barycentric F -algebra is a pair
(X ,�) of an F -algebra X on a barycentric domain X and an order � on X,
such that for every f ∈ F , fX is monotone and concave with respect to � in
every argument.

Note that the following theorem claims soundness but not completeness, in
contrast to Theorem 4.

Theorem 5. A PTRS R is SAST if there exists a barycentric F -algebra (X ,�)
such that R ⊆ [� E]X and [� E] is SAST.

Proof. Due to Theorem 4, it suffices to show that (X , [� E]) is a probabilistic
monotone F -algebra. To this end, suppose that x � EX(µ), and let f ∈ F .
Since fX is monotone and concave with respect to �, we have

fX (. . . , x, . . . ) � fX (. . . ,EX(µ), . . . ) < EX(fX (. . . , µ, . . . )) .

Extending a notion from Hirokawa and Moser [21], we say a relation � ⊆
X × X on a barycentric domain is collapsible if there is a concave function
f : X → R≥0 that embeds � into [≥ ε+].

Lemma 15. If � ⊆ X ×X is collapsible then [� E] is SAST.
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Proof. Suppose x [� E] µ, i.e., x � EX(µ). This implies

f(x) ≥ ε+ f(EX(µ)) ≥ ε+ E(f(µ)) ,

for some f : X → R≥0. Thus f(x) [≥ ε+ E] f(µ), i.e., f is a probabilistic
ranking function, and hence the lemma follows from Theorem 2.

The following is thus an immediate consequence of Theorem 1.

Corollary 1. A PTRS R is SAST if there exists a barycentric F -algebra (X ,�)
such that R ⊆ [� E]X for a collapsible order �.

In the rest of this section we recast two popular interpretation methods, poly-
nomial and matrix interpretations (over the reals), as barycentric F -algebras.

4.3. Polynomial Interpretations

Polynomial interpretations were introduced (on natural numbers [28] and
real numbers [30]) for the termination analysis of non-probabilistic rewrite sys-
tems. Various techniques for synthesizing polynomial interpretations (e.g., [16])
exist, and these techniques are easily applicable in our setting.

Definition 21 (Polynomial Interpretation). A polynomial interpretation is
an F -algebra X on R≥0 such that fX is a polynomial for every f ∈ F . We say
X is multilinear if every fX is of the following form with cV ∈ R≥0:

fX (x1, . . . , xn) =
∑

V⊆{x1,...,xn}

cV ·
∏
xi∈V

xi .

In order to use polynomial interpretations for probabilistic termination, mul-
tilinearity is necessary for satisfying the concavity condition.

Proposition 7. A PTRS R is SAST if there exist ε > 0 and a monotone
multilinear polynomial interpretation X such that R ⊆ [≥ ε+ E]X .

Proof. We show that (X , [≥ ε+]) forms a collapsible barycentric F -algebra, and
thus Theorem 5 shows that R is SAST. Collapsibility is trivial with G(x) = x
and monotonicity is by assumption. Further, every multilinear polynomial is
affine and thus concave in all variables.

An observation by Lucas [30] also holds in probabilistic case: To prove a
finite PTRS R SAST with polynomial interpretations, we do not have to find ε,
but it is sufficient to check l [> E]X µ for all rules l → µ ∈ R. Define εl→µ :=

JlKαX − E(JµKαX ) for such α that α(x) = 0. Then for any other α, we can show
JlKαX − E(JµKαX ) ≥ εl→µ > 0. As R is finite, we take ε := min{εl→µ | l → µ ∈
R} > 0.

Corollary 2. A finite PTRS R is SAST if there exists a monotone multilinear
polynomial interpretation X such that R ⊆ [> E]X .

22



Example 9 (Example 8 Revisited). Consider again the PTRS consisting of the
single rule s(x)→ {p :x, 1−p :s(s(x))}. Define the polynomial interpretation X
by 0X := 0 and sX (x) := x+ 1. Then whenever p > 1

2 we have

Js(x)KαX = x+ 1 > p · x+ (1− p) · (x+ 2) = E(J{p : x, 1− p : s(s(x))}KαX ) .

Thus, when p > 1
2 the PTRS is SAST by Corollary 2.

Corollary 2 constitutes a generalization of [6, Theorem 5]. The latter does
not cover linear interpretations, since context decrease [6, Definition 8] demands
e.g. Jf(t)KαX − Jf(t′)KαX ≤ JtKαX − Jt′KαX and thus excludes interpretations such as
fX (x) = 2x.

4.4. Matrix Interpretations

Matrix interpretations are introduced for the termination analysis of term
rewriting [13]. Now we extend them for probabilistic term rewriting.

Definition 22 (Matrix Interpretation). A (real) matrix interpretation is
an F -algebra X on Rm≥0 such that for every f ∈ F , fX is of the form

fX (~x1, . . . , ~xn) =

n∑
i=1

Ci · ~xi + ~c , (5)

where ~c ∈ Rm≥0, and Ci ∈ Rm×m≥0 . The order �ε ⊆ Rm≥0 × Rm≥0 is defined byx1...
xm

�ε

 y1...
ym

 :⇐⇒ x1 ≥ ε+ y1 and xi ≥ yi for all i = 2, . . . ,m.

Monotonicity of matrix interpretations can be ensured by requiring (5) to
satisfy (Ci)1,1 ≥ 1 for all i, cf. [13]. It is easy to derive the following from
Theorem 5:

Proposition 8. A PTRS R is SAST if there exist ε > 0 and a monotone matrix
interpretation X such that R ⊆ [�ε E]X .

Proof. The order�ε is collapsible with f((x1, . . . , xm)T ) = x1. It is well known
that (5) is affine and thus concave.

As for polynomial interpretations, for finite systems we do not have to find ε.
Below � is defined in the same manner as �ε but replacing “≥ ε+” by >.

Corollary 3. A finite PTRS R is SAST if there exists a monotone matrix
interpretation X such that R ⊆ [� E]X .
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Example 10. Consider the PTRS consisting of the single probabilistic rule

a(a(x))→ {p : a(a(a(x))), 1− p : a(b(a(x)))} .

Consider the two-dimensional matrix interpretation

aX (~x) =

[
1 1
0 0

]
· ~x+

[
0
1

]
, bX (~x) =

[
1 0
0 0

]
· ~x .

Then we have

Ja(a(x))KαX =

[
x1 + x2 + 1

1

]
�1−2p

[
x1 + x2 + 2p

1

]
= p · Ja(a(a(x)))KαX + (1− p) · Ja(b(a(x)))KαX

where α(x) =

[
x1
x2

]
. Hence this PARS is SAST if p < 1

2 , by Corollary 3.

Note that the above example cannot be handled with polynomial interpreta-
tions, intuitively because monotonicity enforces the interpretation of the prob-
able reducts a(a(a(x))) and a(b(a(x))) to be greater than that of the left-hand
side a(a(x)). Generally, polynomial and matrix interpretations are incompara-
ble in strength, since multilinear polynomials are not expressible in the form
of (5), although linear ones are.

5. Implementation

We extended the termination prover NaTT [39] with a syntax for probabilis-
tic rules, and implemented the probabilistic versions of polynomial and matrix
interpretations as NaTT version 1.9.

The input format extends the WST format.4 A probabilistic rewrite rule is
specified by

l -> w1 : r1 || . . . || wn : rn

indicating the probabilistic rewrite rule

l→
{{
w1

w : r1, . . . ,
wn

w : rn
}}

with w =
∑n
j=1 wj . (6)

The problem of finding interpretations is encoded as a satisfiability modulo
theory (SMT) problem and solved by an SMT solver. We already have an
implementation to encode that JlKαX > JrKαX holds for arbitrary α, so we only
need a little extension to encode

w · JlKαX > w1 · Jr1KαX + · · ·+ wn · JrnKαX

which expresses the desired orientation condition of a probabilistic rule (6).

4https://www.lri.fr/~marche/tpdb/format.html, accessed November 14, 2017.
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Example 11. The bound depicted in Example 10 is found by our implementa-
tion in NaTT.

The following example deserves some attention.

Example 12. Consider the following encoding of [14, Figure 1]:

?(x)→
{{

1
2 : ?(s(x)), 1

2 : $(g(x))
}}

$(0)→ {{1 : 0}}
?(x)→ {{1 : $(f(x))}} $(s(x))→ {{1 : $(x)}}

describing a game where the player (strategy) can choose either to quit the game
and ensure prize $(f(x)), or to try a coin-toss which on success increments the
score and on failure ends the game with consolation prize $(g(x)).

When f and g can be bounded by linear polynomials, it is possible to auto-
matically prove that the system is SAST. For instance, with rules for f(x) = 2x
and g(x) = bx2 c, NaTT (combined with the SMT solver z3 version 4.4.1) found
the following polynomial interpretation proving SAST:

?X (x) = 7x+ 11 sX (x) = x+ 1 0X = 1

fX (x) = 3x+ 1 gX (x) = 2x+ 1 $X (x) = 2x+ 1 .

While the above example is merely an encoding of a procedural probabilistic
program, PTRSs are well-suited to model probabilistic functional programs
featuring datatypes such as list, trees, etc.

Example 13. The following PTRS encodes a probabilistic function rlist that
samples a list over naturals, where elements and the length of the list follow a
geometric distribution.

rlist(xs)→
{{

1
2 : xs, 12 : cons(rnat(0), rlist(xs))

}}
rnat(x)→

{{
1
2 : x, 12 : rnat(s(x))

}}
The system is SAST, as NaTT finds the following polynomial interpretation:

0X () = 1 sX (x) = x consX (x, xs) = x+ xs

rnatX (x) = x+ 1 rlistX (xs) = x+ 3 .

Finally, we also remark that our methods cannot handle the case where the
expected derivation length is not bounded by multilinear polynomials.

Example 14. Consider Example 12 with rules f(x) → mul(x, x) and other
rules that demand mul(x, x) to take reduction length x2. For any (multi)linear
polynomial fX , it is impossible to have fX (x) > x2. Hence we cannot prove the
PTRS to be SAST by the multilinear polynomial interpretation method. The
same holds for the matrix interpretation.
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6. Conclusion

This is a study on how much of the classic interpretation-based techniques
well known in term rewriting can be extended to probabilistic term rewriting,
and to what extent they remain automatable. The obtained results are quite
encouraging, although finding ways to combine techniques is crucial if one wants
to capture a reasonably large class of systems, similarly to what happens in
ordinary term rewriting [2]. Another future work includes clarifying the place
of SAST in the arithmetical hierarchy, and extending our result for proving
AST, not only SAST.
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