
On Sharing, Memoization, and Polynomial TimeI

Martin Avanzinia, Ugo Dal Lagoa

aUniversità di Bologna & INRIA, Sophia Antipolis

Abstract

We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class
of functions which can be computed in polynomial time. We first show how a natural cost model in which
lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the
most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem
in implicit computational complexity.

Keywords: Implicit Computational Complexity, Data-tiering, Polynomial Time

1. Introduction

Traditionally, complexity classes are defined by giving bounds on the amount of resources algorithms
are allowed to use while solving problems. This, in principle, leaves open the task of understanding the
structure of complexity classes. As an example, a given class of functions is not necessarily closed under
composition or, more interestingly, under various forms of recursion. When the class under consideration is
not too large, say close enough to the class of polytime computable functions, closure under recursion does
not hold: iterating over an efficiently computable function is not necessarily efficiently computable, e.g. when
the iterated function grows more than linearly. In other words, characterizing complexity classes by purely
recursion-theoretical means is non-trivial.

In the past twenty years, this challenge has been successfully tackled, by giving restricted forms of
recursion for which not only certain complexity classes are closed, but which precisely generate the class. This
has been proved for classes like PTime, PSpace, the polynomial hierarchy PH, or even smaller ones like NC.
A particularly fruitful direction has been the one initiated by Bellantoni and Cook, and independently by
Leivant, which consists in restricting the primitive recursive scheme by making it predicative, thus forbidding
those nested recursive definitions which lead outside the classes cited above. Once this is settled, one can
tune the obtained scheme by either adding features (e.g. parameter substitutions) or further restricting the
scheme (e.g. by way of linearization).

Something a bit disappointing in this field is that the expressive power of the simplest (and most general)
form of predicative recurrence, namely simultaneous recurrence on generic algebras is unknown. If algebras are
restricted to be word algebras, or if recursion is not simultaneous, soundness for polynomial time computation
is known to hold [1, 2]. The two soundness results are obtained by quite different means, however: in presence
of trees, one is forced to handle sharing [2] of common sub-expressions, while simultaneous definitions by
recursion requires a form of memoization [1].

In this paper, we show that sharing and memoization can indeed be reconciled, and we exploit both to
give a new invariant time cost model for the evaluation of rewrite systems. This paves the way towards
polytime soundness for simultaneous predicative recursion on generic algebras, thus solving the open problem
we were mentioning. More precisely, with the present paper we make the following contributions:

IThis work was partially supported by FWF project number J 3563 and by French ANR project Elica ANR-14-CE25-0005.
Email addresses: martin.avanzini@uibk.ac.at (Martin Avanzini), dallago@cs.unibo.it (Ugo Dal Lago)

Preprint submitted to Information and Computation December 15, 2015

1. We define a simple functional programming language. The domain of the defined functions is a free
algebra formed from constructors. Hence we can deal with functions over words, lists, but also trees
(see Section 3). We then extend the underlying rewriting based semantics with memoization, i.e.
intermediate results are automatically tabulated to avoid expensive re-computation (Section 4). As
standard for functional programming languages such as Haskell or OCaml, data is stored in a heap,
facilitating sharing of common sub-expression. To measure the runtime of such programs, we employ
a novel cost model, called memoized runtime complexity, where each function application counts one
time unit, but lookups of tabulated calls do not have to be accounted.

2. Our invariance theorem (see Theorem 4.15) relates, within a polynomial overhead, the memoized
runtime complexity of programs to the cost of implementing the defined functions on a classical model
of computation, e.g. Turing or random access machines. The invariance theorem thus confirms that
our cost model truthfully represents the computational complexity of the defined function, see also Van
Emde Boas [3].

3. We extend upon Leivant’s notion of ramified recursive functions [4] by allowing definitions by generalised
ramified simultaneous recurrence (GRSR for short). We show that the resulting class of functions,
defined over arbitrary free algebras have, when implemented as programs, polynomial memoized runtime
complexity (see Theorem 5.5). By our invariance theorem, the function algebra is sound for polynomial
time, and consequently GRSR characterizes the class of polytime computable functions.

1.1. Related Work

That predicative recursion on words is sound for polynomial time, even in presence of simultaneous
recursive definitions, is known for a long time [5]. Variations of predicative recursion have been later
considered and proved to characterize classes like PH [6], PSpace [7], ExpTime [8] or NC [9]. Predicative
recursion on trees has been claimed to be sound for polynomial time in the original paper by Leivant [4],
the long version of which only deals with words [1]. After fifteen years, the non-simultaneous case has been
settled by the second author with Martini and Zorzi [2]; their proof, however, relies on an ad-hoc, infinitary,
notion of graph rewriting. Recently, ramification has been studied in the context of a simply-typed λ-calculus
in an unpublished manuscript [10]; the authors claim that a form of ramified recurrence on trees captures
polynomial time; this, again, does not take simultaneous recursion into account.

The formalism presented here is partly inspired by the work of Hoffmann [11], where sharing and
memoization are shown to work well together in the realm of term graph rewriting. The proposed machinery,
although powerful, is unnecessarily complicated for our purposes. Speaking in Hoffmann’s terms, our results
require a form of full memoization, which is definable in Hoffmann’s system. However, most crucially for our
concerns, it is unclear how the overall system incorporating full memoization can be implemented efficiently,
if at all.

This is a revised and extended version of the conference paper [12].

2. The Need for Sharing and Memoization

This Section is an informal, example-driven, introduction to ramified recursive definitions and their
complexity. Our objective is to convince the reader that those definitions do not give rise to polynomial time
computations if naively evaluated, and that sharing and memoization are both necessary to avoid exponential
blowups.

Let us start with a brief introduction to ramified recurrence, for the most simple case where functions are
defined over the algebra W of binary words, build from a constant ε, denoting the empty word, and two
unary constructors a and b. We can define the class of primitive recursive functions, by closing a small set
of basic functions, containing the word constructors, projections and a conditional, under composition and
primitive recurrence. Here, a function f is defined by primitive recurrence (or primitive recursion) from

2

bin

bin

bin

bin

nil nil

bin

nil nil

bin

bin

nil nil

bin

nil nil

bin

bin

bin

nil nil

bin

nil nil

bin

bin

nil nil

bin

nil nil

(a) Explicit tree representation.

bin

bin

bin

bin

nil

(b) Compact DAG.

Figure 1: Complete binary tree of height four, as computed by tree(S4(0)).

functions g, ha and hb if it is defined by

f(ε, ~y) = g(~y)

f(i(x), ~y) = hi(x, ~y, f(x, ~y)) i ∈ {a,b} .

The central idea underlying predicative systems, such as the one of Bellantoni and Cook [13] and Leivant [1]
for PTime, is to rule out impredicative definitions. In the presence of recursion, impredicativity arises when
one of the stepping cases is itself defined by recurrence on the value f(x, ~y), which is about to be defined. In
Leivant’s system, predicativity is imposed by equipping functions and variables with tiers, tiers then permit
one to control the recursion nesting. For each tier m ∈ N, a copy Wm of the word algebra W is singled out.
Composition and recursive definitions must preserve tiers. This can be easily expressed as a formal system,
in which judgments have the form

f .Wp1 × . . .×Wpk →Wm ,

where the naturals p1, . . . , pk give the tiers of the inputs, and m the output tier. Thus if f is defined by
primitive recurrence as above, in particular we also have

hi .Wp1 × . . .×Wpk ×Wm →Wm ,

for the two stepping functions hi. The introduction of tiers alone does not limit the expressive power of
primitive recurrence. Rather, predicativity is imposed by additionally requiring that the tier p1 of the
recurrence parameter of f is strictly greater than the output tier m. Hence, any recursion involved in the
definition of the stepping function hi cannot proceed along the last input, the one of tier m where the
recursively computed result is substituted. This form of ramification of functions effectively tames primitive
recurrence, resulting in a characterisation of the class of polytime computable functions.

Of course, ramification also controls the growth rate of functions. However, as soon as we switch from
words to a domain where tree structures are definable, this control is apparently lost. For illustration, let T
denote the algebra of binary trees formed from a constant nil and a binary constructor bin. Consider the
following definition of a function tree : N→ T, taking a Peano numeral as input.

tree(0) = nil tree(S(n)) = br(tree(n)) br(t) = bin(t, t) .

The function tree is defined by primitive recurrence, essentially from basic functions. It is easily seen to
be ramified in the sense of Leivant, e.g. tree . N1 → T0 and br . T0 → T0. Even though the number of
recursive steps is linear in the input under a standard reduction order, e.g. call-by-need or call-by-value, the
result of tree(Sn(0)) is the complete binary tree of height n. As thus the length of the output is exponential
in the one of its input, there is, at least apparently, little hope to prove tree a polytime function. The way

3

out is sharing : the complete binary tree of height n can be compactly represented as a directed acyclic graph
(DAG for short) of size n (see Figure 1). Indeed, using the compact DAG representation it is easy to see
that the function tree is computable in polynomial time. This is the starting point of [2], in which general
ramified recurrence is proved sound for polynomial time. A crucial observation here is that not only the
output’s size, but also the total amount of work can be kept under control, thanks to the fact that evaluating
a primitive recursive definition on a compactly represented input can be done by constructing an isomorphic
DAG of recursive calls.

This does not scale up to simultaneous ramified recurrence. Here, we allow a sequence of functions
~f = f1, . . . , fk to be defined by recurrence in such a way that each function fi can make use of all the
functions ~f in the step case. For the sake of brevity, let us consider the special case where two ternary
functions f1 and f2 are defined by simultaneous recurrence, over the algebra T of binary trees. Then the
functions f1, f2 are defined by simultaneous recurrence via the equations

fi(nil, x, y) = gi(x, y) ;
fi(bin(z, w), x, y) = hi(z, w, x, y, f1(z, x, y), f1(w, x, y), f2(z, x, y), f2(w, x, y)) ,

(†)

for some functions g1, g2, h1 and h2. Tiering is naturally extended to the setting of simultaneous recurrence,
i.e. f1, f2 . To × Tp × Tq → Tm1 for natural numbers o, p, q and m with o > m, provided

g1, g2 . Tp × Tq → Tm and h1, h2 . To × To × Tp × Tq × Tm × Tm × Tm × Tm → Tm .

For a concrete example, the function which computes the genealogical tree associated with Fibonacci’s
rabbit problem (for n ∈ N generations) can be defined via simultaneous ramified recurrence as follows. Let
us shortly explain this problem. Rabbits always come in pairs. A baby rabbit pair (B) matures after one
generation, whereas an adult rabbit pair (A) bears one additional pair of babies at each generation. The
problem then asks that starting from a newborn pair of rabbits, how many rabbits will there be after n
generations? The following function rabbits computes the genealogical tree for a number of generations,
given as a Peano number.

rabbits(0) = BL adult(0) = AL baby(0) = BL

rabbits(S(n)) = baby(n) adult(S(n)) = A(adult(n), baby(n)) baby(S(n)) = B(adult(n)) .

The function rabbits is defined by case analysis from two recursive functions adult and baby. These two
function compute the genealogical tree from the perspective of a single adult and baby rabbit pair, respectively.
It is not difficult to see that the two functions adult and baby can be defined by simultaneous recursion,
and furthermore, the definition can be easily ramified. Note that in the output of rabbits(Sn(0)), which is
a tree of depth n, the ith layer corresponds to the rabbit pairs present at the ith generation. Fibonacci’s
rabbit problem can thus be answered by counting leafs in the output of rabbits(Sn(0)). The tree is also
tightly related to the sequence of Fibonacci numbers: the number of nodes at depth i is given by the ith

Fibonacci number. Hence the output tree has exponential size in n but, again, can be represented compactly
(see Figure 2). This does not suffice for our purposes, however. In presence of simultaneous definitions over
tree structures, indeed, avoiding re-computation of previously computed values becomes more difficult, the
trick described above for the case of non-simultaneous definitions does not work, and the key idea towards
that is the use of memoization.

What we prove in this paper is precisely that sharing and memoization can indeed be made to work
together, and that they together allow to prove polytime soundness for all ramified recursive functions, also
in presence of tree algebras and simultaneous definitions.

1 Here and throughout the following, we use the notation ~f .Tp1 × · · ·×Tpk → Tm to denote that fi .Tp1 × · · ·×Tpk → Tm

holds for all functions fi occurring in the sequence ~f.

4

B

A

A

A

A

AL BL

B

AL

B

A

AL BL

B

A

A

AL BL

B

AL

(a) Explicit tree representation.

B

A

A

A

A

AL BL

B

B

B

(b) Compact DAG.

Figure 2: Genealogical rabbit tree up to the sixth generation, as computed by rabbits(S6(0)).

3. Preliminaries

3.1. General Ramified Simultaneous Recurrence

Let A denote a (finite and untyped) signature of constructors c1, . . . , ck, each equipped with an arity
ar(ci) ∈ N. In the following, the set of terms T (A) over the signature A, defined as usual, is also denoted by
A. We are interested in total functions from An = A× . . .× A︸ ︷︷ ︸

n times

to A.

Definition 3.1. The following are so-called basic functions:

• For each constructor c, the constructor function fc : Aar(c) → A for c, defined as follows:

fc(x1, . . . , xar(c)) = c(x1, . . . , xar(c)) .

• For each 1 ≤ n ≤ m, the (m,n)-projection function Πm
n : Am → A defined as follows:

Πm
n (x1 . . . , xm) = xn .

Definition 3.2. We define the class SimRec(A) of simultaneous recursive functions over A as the least
class of functions that contains the basic functions from Definition 3.1 and that is closed under the following
schemes:

• Given a function f : An → A and n functions g1, . . . , gn, all of them from Am to A, the composition
h = f ◦ (g1, . . . , gn) is a function from Am to A defined as follows:

h(~x) = f(g1(~x), . . . , gn(~x)) .

• Suppose given functions fi where 1 ≤ i ≤ k such that for some n, fi : Aar(ci) × An → A. Then the
function g = case((fi)1≤i≤k) defined by case distinction from (fi)1≤i≤k is a function from A×An to A
defined as follows:

g(ci(~x), ~y) = fi(~x, ~y) .

• Suppose given functions fi,j , where 1 ≤ i ≤ k and 1 ≤ j ≤ n, such that for some m, fi,j : Aar(ci)×Am×
An·ar(ci) → A. The functions (gj)1≤j≤n = simrec((fi,j)1≤i≤k,1≤j≤n) defined by simultaneous primitive
recursion from (fi,j)1≤i≤k,1≤j≤n are all functions from A× Am to A such that for ~x = x1, . . . , xar(ci),

gj(ci(~x), ~y) = fi,j(~x, ~y, g1(x1, ~y), . . . , g1(xar(ci), ~y), . . . , gn(x1, ~y), . . . , gn(xar(ci), ~y)) .

We denote by simrec((fi,j)1≤i≤k,1≤j≤n)j the jth function gj defined by simultaneous primitive recursion.

5

fc . Aar(c)
n → An Πn

m . Ap1 × . . .× Apm → Apn

fi . Aar(ci)
p ×A→ Am

case((fi)1≤i≤k) . Ap ×A→ Am

f . Ap1 × . . .× Apn → Am gi .A→ Api
f ◦ (g1, . . . , gn) .A→ Am

fi,j . Aar(ci)
p ×A× An·ar(ci)

m → Am p > m

simrec((fi,j)1≤i≤k,1≤j≤n)l . Ap ×A→ Am

Figure 3: Tiering as a Formal System.

Remark 1. In examples below, we will be slightly more liberal and allow functions whose domain and
codomain vary. This could be easily accommodated in the definition of SimRec(A), however, at the expense
of a more complicated presentation.

Tiering, the central notion underlying Leivant’s definition of ramified recurrence, consists in attributing
tiers to inputs and outputs of some functions among the ones constructed as above, with the goal of isolating
the polytime computable ones. Roughly speaking, the role of tiers is to single out “a copy” of the signature
by a level: this level permits to control the recursion nesting. Tiering can be given as a formal system,
in which judgments have the form f . Ap1 × . . . × Apar(f) → Am for p1, . . . , par(f),m natural numbers and
f ∈ SimRec(A). The system is defined in Figure 3, where A denotes the expression Aq1 × . . .×Aqk for some
q1, . . . , qk ∈ N. Notice that composition preserves tiers. Moreover, recursion is allowed only on inputs of tier
higher than the tier of the function (in the case f = simrec((fi,j)1≤i≤k,1≤j≤n)l, we require p > m).

Definition 3.3. We call a function f ∈ SimRec(A) definable by general ramified simultaneous recurrence
(GRSR for short) if f . Ap1 × . . .× Apar(f) → Am holds for some tiers p1, . . . , par(f) and m.

Remark 2. Consider the word algebra W that was used before, and which is in bijective correspondence to
the set of binary words. Then the functions definable by ramified simultaneous recurrence over W includes
the ramified recursive functions from Leivant [1], and consequently all polytime computable functions.

Example 3.4.

1. Consider N := {0,S} with ar(0) = 0 and ar(S) = 1, which is in bijective correspondence to the set of
natural numbers. We can define addition add . Ni × Nj → Nj for i > j, by

add(0, y) = Π1
1(y) = y add(S(x), y) = (fS ◦Π3

3)(x, y, add(x, y)) = S(add(x, y)) ,

using general simultaneous ramified recursion, i.e. add = simrec((Π1
1, fS ◦Π3

3))1.

2. Let F := {BL,AL,B,A}, where ar(BL) = ar(AL) = 0, ar(B) = 1 and ar(A) = 2. Then we can define
the functions rabbits . Ni → Fj for all i and j with i > j from Section 2 by case analysis from the
functions adult and baby, defined by simultaneous ramified recurrence as follows.

adult(0) = fAL
= AL adult(S(n)) = (fA ◦ (Π3

2,Π
3
3)) (n, adult(n), baby(n)) = A(adult(n), baby(n))

baby(0) = fBL
= BL baby(S(n)) = (fB ◦Π3

3) (n, adult(n), baby(n)) = B(adult(n)) .

3. We can define a function #leafs from F to N by simultaneous primitive recursion, which counts the
number of leafs in trees as follows.

#leafs(BL) = S(0) #leafs(AL) = S(0)

#leafs(B(t)) = #leafs(t) #leafs(A(l, r)) = add(#leafs(l),#leafs(r)) .

However, this function cannot be ramified, since add in the last equation requires different tiers. Indeed,
having a ramified recursive function #leafs . Fi → N0 (for some i > 0) defined as above would allow
us to ramify fib = #leafs ◦ rabbits which on input n computes the nth Fibonacci number, and is
thus an exponential function.

6

ti ↓ vi f(p1, . . . , pk)→ r ∈ R piσ = vi rσ ↓ v
f(t1, . . . , tk) ↓ v

(operator)

c ∈ C ti ↓ vi
c(t1, . . . , tk) ↓ c(v1, . . . , vk)

(constructor)

Figure 4: Operational Semantics for Program (F , C,R).

3.2. Computational Model, Syntax and Semantics

We assume modest familiarity with rewriting, see the book of Baader and Nipkow [14] for a gentle
introduction. We now introduce a simple, rewriting based, notion of program for computing functions over
term algebras. Let V denote a set of variables. Terms over a signature F that include variables from V are
denoted by T (F ,V). A term t ∈ T (F ,V) is called linear if each variable occurs at most once in t. The set
of subterms STs(t) of a term t is defined by STs(t) := {t} if t ∈ V and STs(t) :=

⋃
1≤i≤ar(f) STs(ti) ∪ {t} if

t = f(t1, . . . , tar(f)). A position is a finite sequence of positive natural numbers. We denote by ε the empty
position, and by p·q the concatenation of positions p and q. The subterm t|p ∈ STs(t) of t at position p is
defined as follows: t|ε := t and if t = f(t1, . . . , tar(f)) and 1 ≤ i ≤ ar(f) then t|i·p = ti|p. We say that position
p is a position in t if t|p is well-defined. A substitution is a finite mapping σ from variables to terms. By tσ
we denote the term obtained by replacing in t all variables x in the domain of σ by σ(x).

Definition 3.5. A program P is given as a triple (F , C,R) consisting of two disjoint signatures F and C of
operation symbols f1, . . . , fm and constructors c1, . . . , cn respectively, and a finite set R of rules l→ r over
terms l, r ∈ T (F ∪ C,V), satisfying:

• the left-hand side l is of the form f(p1, . . . , pk) with f ∈ F and all arguments pj are patterns, i.e. terms
formed from the constructors of C and variables; and

• all variables occurring in the right-hand side r also occur in the left-hand side l.

Furthermore, we require that the set of rules R is orthogonal, that is, the following two requirements are met:

• left-linearity: the left-hand side l of each rule l→ r ∈ R is linear ; and

• non-ambiguity: there are no two rules with overlapping left-hand sides in R.

We keep the program P = (F , C,R) fixed throughout the following. Our notion of programs corresponds
to the one of orthogonal constructor rewrite systems, which define a class of deterministic first-order functional
programs, see e.g. [14]. The domain of the defined functions is the constructor algebra T (C). Correspondingly,
elements of T (C) are called values, which we denote by v, u, . . . below.

In Figure 4 we present the operational semantics, realizing standard call-by-value evaluation order. The
statement t ↓ v means that the term t reduces to the value v. We say that P computes the function
f : T (C)k → T (C) if there exists an operation symbol f ∈ F such that f(v1, . . . , vk) = v if and only if
f(v1, . . . , vk) ↓ v holds for all inputs vi ∈ T (C).

Example 3.6 (Continued from Example 3.4). The definition of rabbits from Section 2 can be turned into a
program Prabbits, by orienting the underlying equations from left to right, replacing applications of functions
f with corresponding operation symbols f. More precisely:

• the set of operation symbols underlying Prabbits consists of (i) ternary symbols P3
2 and P3

3 implementing
the projections Π3

2 and Π3
3; (ii) constant operation symbols fAL

, fBL
, a binary operation symbol fA and

a unary operation symbol fB, all implementing the constructor functions associated with F; (iii) two

7

d

e

pc o

e

c q

e

(a) A term graph T with [o]T =
[q]T = c(e) and [p]T = d(e, e).

f

c d

e e

(b) The rooted term
graph f(T �o, T �p).

f ε

c 1

x 1·1

y 2

(c) The rooted term
graph 4(f(c(x), y)).

f

c

x

y

f

c d

e e

m

m

m

m

(d) A morphism 4(f(c(x), y)) ·>m f(T �o, T �p).

Figure 5: Term graphs and morphisms.

operation symbols comp[fA; P3
2, P

3
3] and comp[fB, P

3
3](x1, x2, x3) implementing the composition of the

mentioned operations; (iv) two operation symbols

a := simrec[fAL
, comp[fA, P

3
2, P

3
3], fBL

, comp[fB, P
3
3]]1 ;

b := simrec[fAL
, comp[fA, P

3
2, P

3
3], fBL

, comp[fB, P
3
3]]2 ,

implementing the recursively defined functions adult and baby; and (v) an operation symbol r :=
case[fBL

, b] implementing the function rabbits;

• the set of constructors underlying Prabbits consists of the constructors from F ∪ N;

• the set of rules underlying Prabbits is given as follows, where ~x := x1, x2, x3.

P3
2(~x)→ x2 fAL

→ AL fA(x1, x2)→ A(x1, x2)

P3
3(~x)→ x3 fBL

→ BL fB(x1)→ BL(x1)

a(0)→ fAL
a(S(n))→ comp[fA, P

3
2, P

3
3](n, a(n), b(n)) comp[fA, P

3
2, P

3
3](~x)→ fA(P3

2(~x), P3
3(~x))

b(0)→ fBL
b(S(n))→ comp[fB, P

3
3](n, a(n), b(n)) comp[fB, P

3
3](~x)→ fB(P3

3(~x))

r(0)→ fBL
r(S(n))→ b(n) .

It is not difficult to see that by construction, Prabbits computes the function rabbits from Section 2.

The construction is straight-forward to generalize to arbitrary functions in SimRec(A), see e.g. the work
on term rewriting characterizations by Cichon and Weiermann [15] for a more formal treatment.

Definition 3.7. Let f ∈ SimRec(A). We define the program Pf associated with f as (Ff, Cf,Rf), where:

• the set of operations Ff contains for each function g underlying the definition of f a fresh operation
symbol g;

• the set of constructors Cf contains the constructors of A;

• the set of rules Rf contains for each equation l = r underlying the definition of a function g associated
with g ∈ Ff the orientation 〈l〉 → 〈r〉, where the terms 〈l〉 and 〈r〉 are obtained by replacing applications
of functions with the corresponding operation symbols in l and r, respectively.

Notice that due to the inductive definition of the class SimRec(A), the program Pf is finite.

Proposition 3.8. For each f ∈ SimRec(A), the program Pf associated with f computes the function f.

8

3.3. Term Graphs

We borrow key concepts from term graph rewriting (see e.g. the survey of Plump [16] for an overview)
and follow the presentation of Barendregt et al. [17]. A term graph T over a signature F is a directed acyclic
graph whose nodes are labeled by symbols in F ∪ V, and where outgoing edges are ordered. Formally, T
is a triple (N, suc, lab) consisting of nodes N, a successors function suc : N → N∗ and a labeling function
lab : N → F ∪ V . We require that term graphs are compatible with F , in the sense that for each node o ∈ N,
if lab(o) = f ∈ F then suc(o) = [o1, . . . , oar(f)] and otherwise, if lab(o) = x ∈ V, suc(o) = []. In the former
case, we also write T (o) = f(o1, . . . , oar(f)), the latter case is denoted by T (o) = x. We define the successor

relation ⇀T on nodes in T such that o ⇀T p holds iff p occurs in suc(o), if p occurs at the ith position we

also write o
i−⇀T p. Throughout the following, we consider only acyclic term graphs, that is, when ⇀T is

acyclic. Hence the unfolding [o]T of T at node o, defined as follows, results in a finite term.

[o]T :=

{
x if T (o) = x is a variable,

f([o1]T , . . . , [ok]T) if T (o) = f(o1, . . . , ok).

We called the term graph T rooted if there exists a unique node o, the root of T , with o ⇀∗T p for every p ∈ N.
We denote by T �o the sub-graph of T rooted at o. For a symbol f ∈ F and nodes {o1, . . . , oar(f)} ⊆ N, we
write f(T �o1, . . . , T �oar(f)) for the term graph S�of , where S is defined as the extension of T by a fresh node
of 6∈ N with S(of) = f(o1, . . . , oar(f)).

Every (linear) term t is representable as a canonical tree 4(t) = (N, suc, lab) unfolding to t as follows.
The nodes N are precisely the positions in t. The successors function is defined by suc(p) := [] if t|p is a
variable, otherwise t|p = f(t1, . . . , tar(f)) and suc(p) := [p·1, . . . , p· ar(f)]. Compare Figure 5a, b and, c, which
illustrate key concepts.

For two rooted term graphs T = (NT , sucT , labT) and S = (NS , sucS , labS), a mapping m : NT → NS

is called morphic in o ∈ NT if (i) labT (o) = labS(m(o)) and (ii) o
i−⇀T p implies m(o)

i−⇀S m(p) for all
appropriate i. A homomorphism from T to S is a mapping m : NT → NS that (i) maps the root of T to
the root of S and that (ii) is morphic in all nodes o ∈ NT not labeled by a variable. We write T ·>m S to
indicate that m is a homomorphism from T to S. See also Figure 5d for an example.

The following proposition relates matching on terms and homomorphisms on graphs. The proposition
essentially relies on the imposed linearity condition. Note that for a linear term t, to each variable x in t we
can associate a unique node in 4(t) labeled by x, which we denote by px below.

Proposition 3.9 (Matching on Graphs). Let t be a linear term, let T be a term graph and let o be a node
of T .

1. If 4(t) ·>m T �o then there exists a substitution σ such that tσ = [o]T .

2. Vice versa, if tσ = [o]T holds for some substitution σ then there exists a homomorphism 4(t) ·>m T �o.

Here, the substitution σ and homomorphism m satisfy σ(x) = [m(px)]T for all variables x in t.

Proof. The proof of both properties is by structural induction on t. We first prove the direction (1).
Assume 4(t) ·>m T �o. When t is a variable, the substitution σ := {t 7→ [o]T } satisfies tσ = [o]T . Since
m(ε) = o by definition, we conclude the base case. For the inductive step, assume t = f(t1, . . . , tk). The
assumption 4(t) ·>m T �o yields T (o) = f(o1, . . . , ok) for some nodes oi in T . For i = 1, . . . , k, define
mi by mi(p) := m(i·p) for each position i·p in t. By case analysis on the nodes of 4(ti) one verifies
4(ti) ·>mi

[oi]T . Thus the induction hypothesis (IH) yields substitutions σi for i = 1, . . . , k, such that
tiσi = [oi]T . Without loss of generality, suppose σi is restricted to variables in ti. By linearity of t, the

domains of the substitutions σi are pairwise disjoint. Thus the union σ :=
⋃k
i=1 σi gives a well-defined

substitution. As we have tσ = f(t1σ1, . . . , tkσk) = f([o1]T , . . . , [ok]T) = [o]T , the inductive step follows.
For the direction (2), suppose tσ = [o]T . If t is a variable and thus 4(t) consists of a single node labeled

by t, trivially 4(t) ·>m T �o holds for m the homomorphism which maps the root node ε of 4(t) to o. For
the inductive step suppose t = f(t1, . . . , tk), hence T (o) = f(o1, . . . , ok), tiσ = [oi]T (i = 1, . . . , k) and thus

9

f ∈ F (Ci−1, ti) ⇓ni (Ci, vi) (Ck, f(v1, . . . , vk)) ⇓n (Ck+1, v) m = n+
∑k
i=1 ni

(C0, f(t1, . . . , tk)) ⇓m (Ck+1, v)
(F-context)

c ∈ C (Ci−1, ti) ⇓ni
(Ci, vi) m =

∑k
i=1 ni

(C0, c(t1, . . . , tk)) ⇓m (Ck, c(v1, . . . , vk))
(C-context)

(f(v1, . . . , vk), v) ∈ C
(C, f(v1, . . . , vk)) ⇓0 (C, v)

(read)

(f(v1, . . . , vk), v) 6∈ C f(p1, . . . , pk)→ r ∈ R ∀i. piσ = vi (C, rσ) ⇓m (D, v)

(C, f(v1, . . . , vk)) ⇓m+1 (D ∪ {(f(v1, . . . , vk), v)}, v)
(update)

Figure 6: Cost annotated operational semantics with memoization for program (F , C,R).

by IH 4(ti) ·>mi
[oi]T for homomorphisms mi. Define the function m by m(ε) := o and m(i·p) := mi(p) for

all i = 1, . . . , k and positions i·p of t. Observe that m is defined on all nodes of 4(t). By definition of m one
finally concludes the lemma, using the IH together with the equalities 4(t)(i·p) = 4(ti)(p) for positions i·p
(i = 1, . . . , k) of 4(t).

4. Memoization and Sharing, Formally

In the following, we first extend our simple computational model with memoization. Memoization is
applied pervasively. During evaluation, the result of each function call is tabulated in a cache, i.e. a lookup
table, repetitive function calls are replaced by lookups to the cache. The extension with memoization,
expressed in an operational semantics style, is standard, see e.g. [18, 19]. These semantics give rise to a
natural, unitary cost model for programs, the memoized runtime complexity. Essentially, the memoized
runtime complexity of a program accounts for the number of evaluation steps, but memoized calls are free.

In the second part of this section, we then show that this cost model does not underestimate the complexity
of programs too much. To this end, in Section 4.1 we provide a small-step semantics, itself an implementation
of the operational semantics, that also takes sharing into account. This in turn, allows us to prove in
Section 4.2 that the memoized runtime complexity is a reasonable cost model for programs, i.e. each program
admits an implementation such that the runtime of this implementation can be bounded by a polynomial in
the memoized runtime complexity.

Throughout the following, we fix a program P = (F , C,R). To integrate memoization, we make use
of a cache C to store results of intermediate functions calls. Caches are modeled as a sets of tuples
(f(v1, . . . , var(f)), u), with f ∈ F and v1, . . . , var(f) as well as u are values. We require that caches C are proper
with respect to the program P, i.e. C associates function calls f(v1, . . . , vk) with their corresponding result u.
Formally, a cache C is called proper if (f(v1, . . . , vk), u) ∈ C implies f(v1, . . . , vk) ↓ u.

Figure 6 collects the memoizing operational semantics of the program P. Here, a statement (C, t) ⇓m (D, v)
means that starting with a cache C, the term t reduces to the value v with updated cache D. The natural
number m indicates the cost of this reduction. The definition is along the lines of the standard semantics
(Figure 4), carrying the cache throughout the reduction of the given term. The rule (operator) from Figure 4
is split into the three rules (F-context), (read) and (update). With rule (F-context) the arguments are
first evaluated to values. Once evaluated, depending on whether the corresponding function call is already
tabulated, either with rule (read) the result is loaded from the cache, or with rule (update) the reduction is
performed and the cache accordingly updated. Notice that in the semantics, a read is attributed zero cost,
whereas an update is accounted with a cost of one. Consequently, the cost m in (C, t) ⇓m (D, v) refers to
the number of non-tabulated function applications. The following lemma confirms that the call-by-value
semantics of Section 3 is correctly implemented by the memoizing semantics.

10

Lemma 4.1. We have (C, t) ⇓m (D, v) for some m ∈ N and proper cache C if and only if t ↓ v.

Proof. We consider the direction from right to left first. The proof is by induction on the deduction Π of the
statement t ↓ v, showing additionally that the cache D is proper.

• Suppose that the last rule in Π has the form

ti ↓ vi f(p1, . . . , pk)→ r ∈ R piσ = vi rσ ↓ v
f(t1, . . . , tk) ↓ v

(operator)
.

By IH, we obtain proper caches D0, . . . , Dk with D0 = C and (Di−1, ti) ⇓mi
(Di, vi). By the rule

(F-context), it suffices to show (Dk, f(v1, . . . , vk)) ⇓n (D, v) for D a proper cache. We distinguish two
cases. Consider the case (f(v1, . . . , vk), u) ∈ Dk for some u. Since Dk is proper, we have f(v1, . . . , vk) ↓ u.
Since the program R is orthogonal and thus confluent, it is not difficult to see that v = u. We conclude
the case by one application of rule (read). Otherwise, when f(v1, . . . , vk), is not cashed, we conclude
by rule (update) using the IH on rσ ↓ v. Note that the resulting cache is also in this case proper.

• The second and final case, where the last rule applied in Π is rule (constructor), follows directly from
IH and rule (C-context).

For the direction from left to right we proceed by induction on the deduction Π of (C, t) ⇓m (D, v).

• Suppose first that the last rule in Π is of the form:

(Ci−1, ti) ⇓mi
(Ci, vi) (Ck, f(v1, . . . , vk)) ⇓n (Ck+1, v)

(C0, f(t1, . . . , tk)) ⇓m (Ck+1, v)
(F-context)

.

Observe that as in the previous direction, all involved caches are proper. Thus by IH, we see that
ti ↓ vi and f(v1, . . . , vk) ↓ v holds, where the latter statement is due to rule (operator). Collecting all
the pre-conditions, it is not difficult to derive f(t1, . . . , tk) ↓ v by one application of rule (operator).

• The remaining cases, where the last rule in Π is (C-context), (read) or (update), follow either from
the assumption that C is proper, or directly from IH.

The revised operational semantics account for memoization, but do not overcome the size explosion
problem observed in Section 2. To tame growth rates in value sizes, we now define small-step semantics
corresponding to the memoizing semantics, facilitating sharing of common sub-expressions.

4.1. Small-Step Semantics with Memoization and Sharing

To incorporate sharing, we extend the pair (C, t) by a heap, and allow references to the heap both in
terms and in caches. Let Loc denote a countably infinite set of locations. We overload the notion of value v,
and define expressions e and (evaluation) contexts E according to the following grammar:

v := ` | c(v1, . . . , vk) ;

e := ` | 〈f(`1, . . . , `k), e〉 | f(e1, . . . , ek) | c(e1, . . . , ek) ;

E := 2 | 〈f(`1, . . . , `k), E〉 | f(`1, . . . , `i−1, E, ei+1, . . . , ek) |c(`1, . . . , `i−1, E, ei+1, . . . , ek) .

Here, `1, . . . , `k, ` ∈ Loc, f ∈ F and c ∈ C are k-ary symbols. An expression is a term including references to
values that will be stored on the heap. The additional construct 〈f(`1, . . . , `k), e〉 indicates that the partially
evaluated expression e descends from a call f(v1, . . . , vk), with arguments vi stored at location `i on the
heap. A context E is an expression with a unique hole, denoted as 2, where all sub-expression to the left
of the hole are references pointing to values. This syntactic restriction is used to implement a left-to-right,
call-by-value evaluation order. We denote by E[e] the expression obtained by replacing the hole in E by e.

A configuration is a triple (D,H, e) consisting of a cache D, a heap H and an expression e. Unlike
before, the cache D consists of pairs of the form (f(`1, . . . , `k), `) where, instead of values, we store references

11

(f(`1, . . . , `k), `) 6∈ D f(p1, . . . , pk)→ r ∈ R
4(f(p1, . . . , pk)) ·>m f(H�`1, . . . ,H�`k) σm := {x 7→ m(`x) | `x ∈ Loc, T (`x) = x ∈ V}

(D,H,E[f(`1, . . . , `k)]) −→R (D,H,E[〈f(`1, . . . , `k), rσm〉])
(apply)

(f(`1, . . . , `k), `) ∈ D
(D,H,E[f(`1, . . . , `k)]) −→r (D,H,E[`])

(read)

(D,H,E[〈f(`1, . . . , `k), `〉]) −→s (D ∪ {(f(`1, . . . , `k), `)}, H,E[`])
(store)

(H ′, `) = merge(H, c(`1, . . . , `k))

(D,H,E[c(`1, . . . , `k)]) −→m (D,H ′, E[`])
(merge)

Figure 7: Small-step semantics with memoization and sharing for program (F , C,R).

`1, . . . , `k, ` pointing to the heap. The heap H is represented as a (multi-rooted) term graph H with nodes
in Loc and constructors C as labels. By definition thus, heaps are always acyclic. If ` is a node of H, then we
say that H stores at location ` the value [`]H obtained by unfolding H starting from location `. We keep the
heap in a maximally shared form, that is, H(`a) = c(`1, . . . , `k) = H(`b) implies `a = `b for any two locations
`a, `b of H. The operation merge(H, c(`1, . . . , `k)), defined as follows, is used to extend the heap H with a
constructor c whose arguments point to `1, . . . , `k, retaining maximal sharing. For `1, . . . , `k ∈ N we define

merge(H, c(`1, . . . , `k)) :=

{
(H, `) if H(`) = c(`1, . . . , `k),

(H ∪ {`f 7→ c(`1, . . . , `k)}, `f) otherwise, for `f a fresh location.

Observe that the first clause is unambiguous on maximally shared heaps.
Figure 7 defines small-step semantics for the program P as the composition of four relations −→R, −→r, −→s

and −→m, which are defined by the rules (apply), (read), (store) and (merge), respectively. The relation
−→R, defining rule application, is used to implement the rule (F-context) from the memoizing operational
semantics. Matching is performed in accordance to Proposition 3.9, and variables are instantiated by the
corresponding locations of values on the heap. Once the reduct is evaluated to a value stored at a location `
on the heap, the relation −→s removes this marker and adds a corresponding entry to the heap. Finally, the
relation −→r implements memoization as in the operational semantics, the relation −→m ensures that values
are internalized in the heap.

It is now time to show that the model of computation we have just introduced fits our needs, namely
that it faithfully simulates big-step semantics as in Figure 6 (itself a correct implementation of call-by-value
evaluation from Section 3). This is proven by first showing how big-step semantics can be simulated by
small-step semantics, later proving that the latter is in fact deterministic. Throughout the following, we
abbreviate with −→rsm the relation −→r ∪−→s ∪−→m, likewise we abbreviate −→R ∪−→rsm by −→Rrsm. Furthermore,
we define −→R/rsm := −→∗rsm ·−→R ·−→∗rsm. Hence the m-fold composition −→m

R/rsm corresponds to a −→Rrsm-reduction
with precisely m applications of −→R. We are interested in reductions over well-formed configurations.

Definition 4.2. A configuration (D,H, e) is well-formed if the following conditions hold.

1. The heap H is maximally shared.

2. The cache D is a function and compatible with e. Here, compatibility means that if 〈f(`1, . . . , `k), e′〉
occurs as a sub-expression in e, then (f(`1, . . . , `k), `) 6∈ D for any `.

3. The configuration contains no dangling references, i.e. H(`) is defined for each location ` occurring in
D and e.

12

The following lemma confirms that well-formed configurations are preserved by reductions.

Lemma 4.3.

1. If (D,H,E[e]) is well-formed then so is (D,H, e).

2. If (D1, H1, e1) −→Rrsm (D2, H2, e2) and (D1, H1, e1) is well-formed then so is (D2, H2, e2).

Proof. It is not difficult to see that Assertion 1 holds. To see that Assertion 2 holds, fix a well-formed
configuration (D1, H1, e1) and suppose (D1, H1, e1) −→Rrsm (D2, H2, e2). We check that (D2, H2, e2) is well-
formed by case analysis on −→Rrsm.

1. The heap H2 is maximally shared : As only the relation −→m modifies the heap, it suffices to consider
the case (D1, H1, e1) −→m (D2, H2, e2). Then (H2, `) = merge(H1, c(`1, . . . , `k)) for some location `, and
the property follows as merge preserves maximal sharing.

2. The cache D2 is a function and compatible with e2: Only the relation −→s updates the cache. By
compatibility of D1 with e1 it follows then that D2 is a function. Concerning compatibility, only the
rules −→R and −→s potentially contradict compatibility. In the former case, the side conditions ensure
that e2 and D2 are compatible, in the latter case compatibility follows trivially from compatibility of
D1 with e1.

3. No dangling references: Observe that only rule −→m introduces a fresh location. The merge operations
guarantees that this location occurs in the heap H2.

From now on, we assume that configurations are well-formed, tacitly employing Lemma 4.3. In the
following, we denote by [e]H the term obtained from e by following pointers to the heap, ignoring the
annotations 〈f(`1, . . . , `k), ·〉. Formally, we define

[e]H :=

{
f([e1]H , . . . , [ek]H) if e = f(e1, . . . , ek),

[e′]H if e = 〈f(`1, . . . , `k), e′〉.

Likewise, we set [D]H :=
{

([e]H , [`]H) | (e, `) ∈ D
}

. Observe that [e]H is well-defined as long as H contains
all locations occurring in e, similar for [D]H .

Our simulation result relies on a couple of auxiliary lemmata concerning heaps. The first lemma states
that in a maximally shared heap, values are stored only once.

Lemma 4.4. Let H be a maximally shared heap with locations `1, `2. If [`1]H = [`2]H then `1 = `2.

Proof. For a proof by contradiction, suppose [`1]H = [`2]H but `1 6= `2. Hence without loss of generality,
there exist two ⇀∗H -minimal nodes `′1, `

′
2 in H with `′1 6= `′2 and [`′1]H = [`′2]H . By minimality, the latter

implies that H(`′1) = H(`′2) and this contradicts that H is maximally shared.

The next lemma is based on the observation that the heap is monotonically increasing.

Lemma 4.5. If (D1, H1, e1) −→Rrsm (D2, H2, e2) then the following properties hold:

1. [`]H2
= [`]H1

for every location ` of H1;

2. [D1]H2
= [D1]H1

and [e1]H2
= [e1]H1

.

Proof. As for any other step the heap remains untouched, the only non-trivial case is

(D1, H1, E[c(`1, . . . , `k)]) −→m (D1, H2, E[`]) ,

with (H2, `) = merge(H1, c(`1, . . . , `k)). Observe that by definition of merge, H2(`) = H1(`) for every ` ∈ NH1
.

From this, Assertion 1 is easy to establish. Assertion 2 follows then by standard inductions on D1 and E,
respectively.

13

The final lemma concerning heaps, stating that values are correctly internalized into the heap, follows
essentially by definition of −→m.

Lemma 4.6. Let (D,H,E[v]) be a configuration for a value v. Then (D,H,E[v]) −→∗m (D,H ′, E[`]) with
[`]H′ = [v]H .

Proof. We proof the lemma by induction on the number of constructor symbols in v. In the base case v = `
the lemma trivially holds. For the inductive step, observe that v = E′[c(`1, . . . , `k)] for some evaluation
context E′, and hence (D,H,E[v]) −→m (D,H ′, E[E′[`]]), where (H ′, `) = merge(H, c(`1, . . . , `k)). Using that
[`]H′ = [c(`1, . . . , `k)]H′ by definition of merge and Lemma 4.5(2) we conclude [E[E′[`]]]H′ = [E[v]]H . We
complete this derivation to the desired form, by IH.

The last auxiliary lemma shows that our small-step semantics are closed under evaluation contexts.

Lemma 4.7. Suppose (D1, H1, e1) −→ (D2, H2, e2) holds for configurations (D1, H1, e1) and (D2, H2, e2),
where −→ ∈ {−→R,−→r,−→s,−→m}. Then (D1, H1, E[e1]) −→ (D2, H2, E[e2]) holds for every evaluation context E
such that (D1, H1, E[e1]) is a well-formed configuration.

Proof. The lemma can be shown by a standard induction on the context E.

An initial configuration is a well-formed configuration of the form (∅, H, e) with H a maximally shared
heap and e = f(v1, . . . , vk) an expression unfolding to a function call. Notice that the arguments v1, . . . , vk
are allowed to contain references to the heap H. We arrive at the first crucial step in the correctness proof of
the small-step semantics, with respect to the memoized operational semantics.

Lemma 4.8 (Simulation). Let (∅, H, e) be an initial configuration. If (∅, [e]H) ⇓m (C, v) holds for m ≥ 1
then there exists a cache D, heap G and location ` in G such that (∅, H, e) −→m

R/rsm (D,G, `) with [`]G = v.

Proof. Call a configuration (D,H, e) proper if it is well-formed and e does not contain a sub-expression
〈f(v1, . . . , vk), e′〉. We show the following claim:

Claim. For every proper configuration (D,H, e), ([D]H , [e]H) ⇓m (C, v) implies (D,H, e) −→∗rsm · −→m
R/rsm

(D′, H ′, `) with ([D′]H′ , [`]H′) = (C, v).

Observe that −→∗rsm · −→m
R/rsm = −→m

R/rsm whenever m > 0. Since an initial configuration is trivially proper,
the lemma follows from the claim. To prove the claim, abbreviate the relation −→∗rsm · −→m

R/rsm by −→m for all

m ∈ N. Below, we tacitly employ −→m1 · −→m2 = −→m1+m2 for all m1,m2 ∈ N. The proof is by induction on
the deduction Π of the statement ([D]H , [e]H) ⇓m (C, v).

• Suppose that the last rule in Π has the form:

c ∈ C (Ci−1, ti) ⇓mi
(Ci, vi) m =

∑k
i=1mi

(C0, c(t1, . . . , tk)) ⇓m (Ck, c(v1, . . . , vk))
(C-context)

.

Fix a proper configuration (D0, H0, e0) unfolding to (C0, c(t1, . . . , tk)). Under these assumptions, either
e0 is a location or e0 = c(e1, . . . , ek). The former case is trivial, as then t is a value and thus m = 0.
Hence suppose e0 = c(e1, . . . , ek). We first show that for all i ≤ k,

(D0, H0, c(e1, . . . , ek)) −→
∑i

j=1mj (Di, Hi, c(`1, . . . , `i, ei+1, . . . , ek)) , (‡)

for a configuration (Di, Hi, c(`1, . . . , `i, ei+1, . . . , ek)) unfolding to (Ci, c(v1, . . . , vi, ti+1, . . . , tk)). The
proof is by induction on i, we consider the step from i to i+1. The IH yields a well-formed configuration
(Di, Hi, E[ei+1]) for E = c(`1, . . . , `i,2, ei+2, . . . , ek) reachable by a Derivation (‡). As the configuration
(Di, Hi, ei+1) unfolds to (Ci, ti+1), the IH of the claim on the assumption (Ci, ti+1) ⇓mi+1

(Ci+1, vi+1)
yields (Di, Hi, ei+1) −→mi+1 (Di+i, Hi+1, `i+1) where the resulting configuration unfolds to (Ci+1, vi+1).
Iterated application of Lemma 4.7 lifts this reduction to the evaluation context E, i.e.,

(Di, Hi, E[ei+1]) −→mi+1 (Di+1, Hi+1, E[`i+1]) .

14

Note that, with the help of Lemma 4.5(2), we can also lift the equality [`i+1]Hi+1 = vi+1 to

[E[`i+1]]Hi = c(v1, . . . , vi, vi+1, ti+2, . . . , tk) .

As we already observed [Di+1]Hi+1 = Ci+1, we conclude (‡).

In total, we thus obtain a reduction (D0, H0, c(e1, . . . , ek)) −→m (Dk, Hk, c(`1, . . . , `k)) where m =∑k
i=1mi and (Dk, Hk, c(`1, . . . , `k)) is a well-formed, in fact proper, configuration which unfolds to

(Ck, c(v1, . . . , vk)). Employing −→m · −→∗m = −→m we conclude the case with Lemma 4.6.

• Suppose that the last rule in Π has the form:

(Ci−1, ti) ⇓mi
(Ci, vi) (Ck, f(v1, . . . , vk)) ⇓n (Ck+1, v) m = n+

∑k
i=1mi

(C0, f(t1, . . . , tk)) ⇓m (Ck+1, v)
(F-context)

.

Fix a proper configuration (D0, H0, e0) unfolding to (C0, f(t1, . . . , tk)). By induction on k, exactly as
in the previous case, we obtain a proper configuration (Dk, Hk, f(`1, . . . , `k)) which unfolds to the pair
(Ck, f(v1, . . . , vk)) with

(D0, H0, e0) −→
∑k

i=1mi (Dk, Hk, f(`1, . . . , `k)) .

The IH also yields configuration (Dk+1, Hk+1, `) unfolding to (Ck+1, v) with

(Dk, Hk, f(`1, . . . , `k)) −→n (Dk+1, Hk+1, `) .

Summing up we conclude the case.

• Suppose that the last rule in Π has the form:

(f(v1, . . . , vk), u) ∈ C
(C, f(v1, . . . , vk)) ⇓0 (C, v)

(read)
.

Consider a proper configuration (D,H, e) that unfolds to (C, f(v1, . . . , vk)). Then e = f(e1, . . . , ek),
and using k applications of Lemma 4.6 we construct a reduction

(D,H, f(e1, . . . , ek)) −→∗m (D,H1, f(`1, e2, . . . , ek)) −→∗m · · · −→∗m (D,Hk, f(`1, . . . , `k)) ,

with (D,Hk, f(`1, . . . , `k)) unfolding to (C, f(v1, . . . , vk)). Lemma 4.4 and the assumption on C = [D]Hk

implies that there exists a unique pair (f(`1, . . . , `k), `) ∈ D with [f(`1, . . . , `k)]Hk
= f(v1, . . . , vk) and

[`]Hk
= v. Thus overall

(D,H, e) = (D,H, f(e1, . . . , ek)) −→∗m (D,Hk, f(`1, . . . , `k)) −→r (D,Hk, `) ,

where (D,Hk, `) unfolds to (C, v). Using −→∗m · −→r ⊆ −→0 we conclude the case.

• Finally, suppose that the last rule in Π has the form:

(f(v1, . . . , vk), v) 6∈ C f(p1, . . . , pk)→ r ∈ R ∀i. piσ = vi (C, rσ) ⇓m (C ′, v)

(C, f(v1, . . . , vk)) ⇓m+1 (C ′ ∪ {(f(v1, . . . , vk), v)}, v)
(update)

.

Fix a proper configuration (D,H, e) that unfolds to (C, f(v1, . . . , vk)), in particular e = f(v1, . . . , vk).
As above, we see (D,H, e) −→∗m (D,Hk, f(`1, . . . , `k)) for a configuration (D,Hk, f(`1, . . . , `k)) also
unfolding to (C, f(v1, . . . , vk)). Suppose that the cache D maps f(`1, . . . , `k) to some location
`. But then f(v1, . . . , vk) would be cached in C, contradicting our assumption. Thus we con-
clude (f(`1, . . . , `k), `) 6∈ D, for all locations `. Since Proposition 3.9 on the assumption yields
4(f(l1, . . . , lk)) ·>m f(H�`1, . . . ,H�`k) for a matching morphism m, in total we obtain

(D,H, e) −→∗m (D,H, f(`1, . . . , `k)) −→R (D,Hk, 〈f(`1, . . . , `k), rσm〉) .

15

Note that by Proposition 3.9 the substitution σ and induced substitution σm satisfy σ(x) = [σm(x)]Hk

for all variables x in r. Hence by a standard induction on r, [rσm]Hk
= rσ follows. We conclude that

(D,Hk, 〈f(`1, . . . , `k), rσm〉) unfolds to (C, rσ). The IH yields a well-formed configuration (D′, G, `)
unfolding to (C ′, v) with (D,Hk, rσm) −→m (D′, G, `). Thus

(D,Hk, 〈f(`1, . . . , `k), rσm〉) −→m(D′, G, 〈f(`1, . . . , `k), `〉)
−→s (D′ ∪ {(f(`1, . . . , `k), `)}, G, `) .

Using that [`]G = v and [f(`1, . . . , `k)]Hk
= f(v1, . . . , vk), Lemma 4.5 yields

[D′ ∪ {(f(`1, . . . , `k), `)}]G = C ′ ∪ {(f(v1, . . . , vk), v)} .

Putting things together, employing −→∗m · −→R ⊆ −→1 and −→m · −→s = −→m we obtain

(D,H, e) −→m+1 (D′ ∪ {(f(`1, . . . , `k), `)}, G, `) ,

and conclude this final case.

The following lemma completes the proof of correctness of −→Rrsm. Here, a binary relation −→ is called
deterministic on a set A if b1 ←− a −→ b2 implies b1 = b2 for all a ∈ A.

Lemma 4.9 (Determinism).

1. The relations −→R, −→r, −→s and −→m are deterministic on well-formed configurations.

2. The relation −→Rrsm is deterministic on well-formed configurations.

Proof. We first consider Assertion 1. Fix a well-formed configuration (D,H, e). We show that for
−→ ∈ {−→R,−→r,−→s,−→m}, any peak (D1, H1, e1) ←− (D,H, e) −→ (D2, H2, e2) is trivial, i.e. (D1, H1, e1) =
(D2, H2, e2). Notice that the expression e is uniquely decomposed into an evaluation context E and redex
e′ with e = E[e′]. By definition it is thus immediate that the relations −→s and −→m are deterministic.
Similar, determinism of the relation −→r follows from the assumption that the configuration (D,H, e) is
wellformed, in particular, that the cache D is a function. Finally, consider a peak with the relation −→R.
Again this case follows from the unique decomposition of e into evaluation context and redex, together with
the non-overlapping condition imposed on rules in R, tacitly employing Proposition 3.9.

Finally, to prove Assertion 2 we consider a peak (D1, H1, e1) a←− (D,H, e) −→b (D2, H2, e2) for two relations
−→a,−→b ∈ {−→R,−→r,−→s,−→m}. We show that the considered peak is trivial. Due to the first assertion, it
suffices to consider only the cases where −→a 6= −→b. The proof is by induction on the expression e. There are
three base cases to consider: (i) e = f(`1, . . . , `k), (ii) e = 〈f(`1, . . . , `k), `〉 and (iii) e = c(`1, . . . , `k). The
only potential peak can occur in case (i) with relations −→R and −→r. However, any peak is excluded in this
case with the pre-conditions put on the heap H. We conclude the base cases. For the inductive step, we
consider a peak

(D1, H1, E[e′1]) a←− (D,H,E[e′]) −→b (D2, H2, E[e′2]) ,

where e = E[e′] for a context E. We thus have a peak (D1, H1, e
′
1) a←− (D,H, e′) −→b (D2, H2, e

′
2), which by

IH is trivial. We conclude the inductive step.

Theorem 4.10. Suppose (∅, f(v1, . . . , vk)) ⇓m (C, v) holds for a reducible term f(v1, . . . , vk). Then for
each initial configuration (∅, H, e) with [e]H = f(v1, . . . , vk), there exists a unique sequence (∅, H, e) −→m

R/rsm

(D,G, `) for a location ` in G with [`]G = v.

Proof. As f(v1, . . . , vk) is reducible, it follows that m ≥ 1. Hence the theorem follows from Lemma 4.8 and
Lemma 4.9.

16

4.2. Invariance

Theorem 4.10 tells us that a term-based semantics (in which sharing is not exploited) can be simulated
step-by-step by another, more sophisticated, graph-based semantics. The latter’s advantage is that each
computation step does not require copying, and thus does not increase the size of the underlying configuration
too much. This is the key observation towards invariance: the number of reduction steps is a sensible cost
model from a complexity-theoretic perspective. Precisely this will be proved in the remaining of the section.

Define the size |e| of an expression e recursively by |`| := 1, |f(e1, . . . , ek)| := 1 +
∑k
i=1|ei| and

|〈f(`1, . . . , `k), e〉| := 1 + |e|. In correspondence, the weight wt(e) is defined by ignoring locations, i.e.
wt(`) := 0. Recall that a reduction (D1, H1, e1) −→m

R/rsm (D2, H2, e2) consists of m applications of −→R, all
possibly interleaved by −→rsm-reductions. As a first step, we thus estimate the overall length of the reduction
(D1, H1, e1) −→m

R/rsm (D2, H2, e2) in m and the size of e1. Set ∆ := max{|r| | l → r ∈ R}. The following
serves as an intermediate lemma.

Lemma 4.11. The following properties hold:

1. If (D1, H1, e1) −→rsm (D2, H2, e2) then wt(e2) < wt(e1).

2. If (D1, H1, e1) −→R (D2, H2, e2) then wt(e2) ≤ wt(e1) + ∆.

Proof. The first assertion follows by case analysis on −→rsm. For the second, suppose (D1, H1, e1) −→R

(D2, H2, e2) where e1 = E[f(`1, . . . , `k)] and e2 = E[〈f(`1, . . . , `k), rσm〉] for a rule f(l1, . . . , lk) → r ∈ R.
Observe that since the substitution σm replaces variables by locations, ∆ ≥ |r| = |rσm| ≥ wt(rσm) holds.
Consequently,

wt(f(`1, . . . , `k)) + ∆ ≥ 1 + wt(rσm) = wt(〈f(`1, . . . , `k), rσm〉) .

From this, the assertion follows by a standard induction on E.

Then essentially an application of the weight gap principle [20], a form of amortized cost analysis, binds
the overall length of an −→m

R/rsm-reduction suitably.

Lemma 4.12. If (D1, H1, e1) −→m
R/rsm (D2, H2, e2) then (D1, H1, e1) −→n

Rrsm (D2, H2, e2) for n ≤ (1 + ∆) ·m+
wt(e) and ∆ ∈ N a constant depending only on P.

Proof. For a configuration c = (D,H, e) define wt(c) := wt(e) and let ∆ be defined as in Lemma 4.11.
Consider (D1, H1, e1) −→m

R/rsm (D2, H2, e2), which can be written as a reduction

(D1, H1, e1) = c0 −→n0
rsm d0 −→R c1 −→n1

rsm d1 −→R · · · −→nm
rsm dm , (‡)

of length n := m+
∑k
i=0 ni. Lemma 4.11 yields (i) ni ≤ wt(ci)−wt(di) for all 0 ≤ i ≤ m; and (ii) wt(ci+1)−

wt(di) ≤ ∆ for all 0 ≤ i < m. Hence overall, the Reduction (‡) is of length

n ≤ m+ (wt(c0)− wt(d0)) + · · ·+ (wt(cm)− wt(dm))

= m+ wt(c0) + (wt(c1)− wt(d0)) + · · ·+ (wt(cm)− wt(dm−1))− wt(dm)

≤ m+ wt(c0) +m ·∆
= (1 + ∆) ·m+ wt(e) .

The lemma follows.

Define the size of a configuration |(D,H, e)| as the sum of the sizes of its components. Here, the size
|D| of a cache D is defined as its cardinality, similarly, the size |H| of a heap is defined as the cardinality of
its set of nodes. Notice that a configuration (D,H, e) can be straightforwardly encoded within logarithmic
space-overhead as a string d(D,H, e)e, i.e. the length of the string d(D,H, e)e is bounded by a function in

O(log(n) · n) in |(D,H, e)|, using constants to encode symbols and an encoding of locations logarithmic in
|H|. Crucially, a step in the small-step semantics increases the size of a configuration only by a constant.

17

Lemma 4.13. If (D1, H1, e1) −→Rrsm (D2, H2, e2) then |(D2, H2, e2)| ≤ |(D1, H1, e1)| + ∆.

Proof. The lemma follows by case analysis on the rule applied in (D1, H1, e1) −→Rrsm (D2, H2, e2), using
1 ≤ ∆.

Theorem 4.14. There exists a polynomial p : N×N→ N such that for every initial configuration (∅, H1, e1),
a configuration (D2, H2, e2) with (∅, H1, e1) −→m

R/rsm (D2, H2, e2) is computable from (∅, H1, e1) in time
p(|H1| + |e1|,m).

Proof. It is tedious, but not difficult to show that the function which implements a step c −→Rrsm d, i.e. which
maps dce to dde, is computable in polynomial time in dce, and thus in the size |c| of the configuration c.
Iterating this function at most n := (1 + ∆) ·m+ |(∅, H1, e1)| times on input d(∅, H1, e1)e, yields the desired
result d(D2, H2, e2)e by Lemma 4.12. Since each iteration increases the size of a configuration by at most the
constant ∆ (Lemma 4.13), in particular the size of each intermediate configuration is bounded by a linear
function in |(∅, H1, e1)| = |H1| + |e1| and n, the theorem follows.

Combining Theorem 4.10 and Theorem 4.14 we thus obtain the desired invariance result.

Theorem 4.15 (Invariance of Memoized Runtime Complexity). There exists a polynomial p : N× N→ N
such that for (∅, f(v1, . . . , vk)) ⇓m (C, v), the value v represented as a graph is computable from v1, . . . , vk in

time p(
∑k
i=1|vi|,m).

Theorem 4.15 thus confirms that the cost m of a reduction (∅, f(v1, . . . , vk)) ⇓m (C, v) is a suitable cost
measure. In other words, the memoized runtime complexity of a function f, relating input size n ∈ N to the
maximal cost m of evaluating f on arguments v1, . . . , vk of size up to n, i.e. (∅, f(v1, . . . , vk)) ⇓m (C, v) with∑k
i=1|vi| ≤ n, is an invariant cost model.

Example 4.16 (Continued from Example 3.6). Reconsider the program Prabbits and the evaluation of a
call r(Sn(0)) which results in the genealogical tree vn of height n ∈ N associated with Fibonacci’s rabbit
problem. Then one can show that r(Sn(0)) ⇓m vn with m ≤ 2 · n+ 1. Crucially here, the two intermediate
functions a and b defined by simultaneous recursion are called only on proper subterms of the input Sn(0),
hence in particular the rules defining a and b, respectively, are unfolded at most n times. As a consequence
of the bound on m and Theorem 4.15 we obtain that the function rabbits from the introduction is polytime
computable.

Remark 3. Strictly speaking, our graph representation of a value v, viz the part of the final heap reachable
from a corresponding location `, is not an encoding in the classical, complexity theoretic setting. Different
computations resulting in the same value v can produce different DAG representations of v. However, these
representations differ only in the naming of locations. Even though our encoding can be exponentially more
compact than a linear representation without sharing, it is not exponentially more succinct than a reasonable
encoding for graphs (e.g. representations as circuits). In such succinct encodings not even equality can be
decided in polynomial time. Our form of representation does clearly not fall into this category. In particular,
in our setting it can be easily checked in polynomial time that two DAGs represent the same value, in the
size of the given DAGs. A very simple algorithm that compares two term graphs for equality and that runs
in time linear in the number of nodes of the two DAGs is given e.g. in [21, Proposition 4]. Exploiting that
the graphs under consideration are rooted, the algorithm realizes the comparison through a node traversal
inverse to the topological order, employing dynamic programming techniques to get to the sharp complexity
bound.

5. GRSR is Sound for Polynomial Time

Sometimes (e.g., in [13]), the first step towards a proof of soundness for ramified recursive systems consists
in giving a proper bound precisely relating the size of the result and the size of the inputs. More specifically,
if the result has tier n, then the size of it depends polynomially on the size of the inputs of tier higher than

18

n, but only linearly, and in a very restricted way, on the size of inputs of tier n. Here, a similar result holds,
but size is replaced by minimal shared size.

The minimal shared size ‖ v1, . . . , vk ‖ for a sequence of elements v1, . . . , vk ∈ A is defined as the number
of subterms in v1, . . . , vk, i.e. the cardinality of the set STs(v1, . . . , vk) :=

⋃
1≤i≤k STs(vi). Note that

‖ v1, . . . , vk ‖ corresponds to the number of locations necessary to store the values v1, . . . , vk on a heap
(compare Lemma 4.4). If A is the expression Ap1 × . . .× Apk , n is a natural number, and ~t is a sequence
of k terms, then ~t �>nA is defined to be ti1 , . . . , til , where i1, . . . , il are precisely those indices such that
pi1 , . . . , pil > p. Similarly ~t �=nA , and expressions like ‖~t ‖>nA and ‖~t ‖=nA , are defined. For a function
f . A → An and term f(~t), the arguments ~t �>nA thus precisely correspond to the arguments in ~t of tier
higher than the output tier n of f, i.e. those that are substituted in potential recurrence positions of f.
Likewise, ~t �=nA singles out those arguments in ~t that potentially contribute to the output of f(~t), but which
are not in recurrence position. The expressions ‖~t ‖>nA and ‖~t ‖=nA refer then to the minimal shared size of
the arguments ~t �>nA and ~t �=nA , respectively.

Lemma 5.1 (Max-Poly). If f . A → An, then there is a polynomial pf : N → N such that ‖ f(~v) ‖ ≤
‖~v ‖=nA + pf(‖~v ‖>nA) holds for all ~v.

Proof. Recall that for a sequence of functions ~f = f1, . . . , fk we denote by ~f .A→ An that fi .A→ An is
derivable for all i ∈ {1, . . . , k}. Let us abbreviate with ~f(~t) the sequence of terms f1(~t), . . . , fk(~t). We prove
the following strengthening of the statement: for every sequence of functions ~f with ~f .A→ An, there is a
monotone polynomial p~f such that for all terms ~t there exists a set C~f

~t�>n
A

such that

STs(~f(~t)) ⊆ STs(~t �=nA) ∪ C
~f
~t�>n

A
and |C~f

~t�>n
A
| ≤ p~f(‖~t ‖

>n
A) . (‡)

The set STs(~t �=nA) accounts for those subterms of the results that are copies of the input, whereas C~f
~t�>n

A

accounts for those subterms that are created. The proof is by induction on the maximum of depths of the
individual derivations in ~f .A→ An.

Observe that if the claim (‡) holds for two sequences of functions ~f and ~g, then the claim (‡) also

holds for the concatenated sequence ~f,~g. To see this, fix arguments ~t, define C
~f,~g
~t�>n

A

:= C~f
~t�>n

A

∪ C
~g
~t�>n

A

and

p~f,~g(~x) := p~f(~x) + p~g(~x). Then

STs(~f(~t),~g(~t)) = STs(~f(~t)) ∪ STs(~g(~t)) ⊆ STs(~t �=nA) ∪ C
~f
~t�>n

A
∪ STs(~t �=nA) ∪ C~g

~t�>n
A

= STs(~t �=nA) ∪ C
~f,~g
~t�>n

A

,

and likewise

|C~f,~g
~t�>n

A

| = |C~f
~t�>n

A
∪ C~g

~t�>n
A

| ≤ p~f(‖~t ‖
>n
A) + p~g(‖~t ‖>nA) = p~f,~g(‖~t ‖

>n
A) .

Indeed, it is thus justified to consider elements f of ~f individually, and combine the resulting sets C f
~t�>n

A

and

polynomials pf according to the above recipe. We continue with the proof of (‡) by case analysis on the
functions f occurring in the sequence ~f.

• If f is a constructor function fc, where fc .Aar(c)
n → An, ~t �>nA is the empty sequence ε and ~t �=nA = ~t, we

define C fc
ε := {c(~t)} and pfc := 1. Using that STs(fc(~t)) = {c(~t)} ∪ STs(~t) we conclude the claim (‡)

for this case. In a similar spirit, we handle the case where f is a projection function Πk
l .

• If f is defined by case distinction, we conclude directly from the induction hypothesis.

• Suppose f is defined by composition. For the sake of readability, let us consider the special case
f = g ◦ (h1, h2) with f .A → An and g . Am × An → An where m > n, and thus h1 .A → Am and
h2 .A→ An. Note that the IH is applicable to g, h1 and h2, which yields appropriate polynomials pg,

ph1 and ph2 together with sets C g
t , C h1

~t�>n
A

and C h2
~t�>n

A

for all terms t,~t �>nA . Let us then define

C f
~t�>n

A
:= C h2

~t�>n
A

∪ C g

h1(~t)
and pf(x) := ph2(x) + pf(x+ ph1(x)) .

19

Then we have:

|C f
~t�>n

A
| ≤ |C h2

~t�>n
A

| + |C g

h1(~t)
| ≤ ph2(‖~t ‖>nA) + pg(‖ h1(~t) ‖)

≤ ph2(‖~t ‖>nA) + pg(‖~t ‖=mA + ph1(‖~t ‖>mA))

≤ ph2(‖~t ‖>nA) + pg(‖~t ‖>nA + ph1(‖~t ‖>nA))

= pf(‖~t ‖>nA) .

Note that for the last inequality, we use the assumption m > n. As moreover:

STs(~f(~t)) = STs(g(h1(~t), h2(~t))) ⊆ STs(h2(~t)) ∪ C g

h1(~t)

⊆ STs(~t �=nA) ∪ C h2
~t�>n

A

∪ C g

h1(~t)

= STs(~t �=nA) ∪ C f
~t�>n

A
,

the case follows.

• The interesting case is the one in which the function f in ~f is obtained through a single instance of
simultaneous primitive recursion. For the sake of readability, let us consider the case where f = f1 and
f2 are defined by general ramified simultaneous recurrence over binary trees as in (†) on page 4, and
where A = T1 × T1 × T0 and n = 0, i.e.

f1, f2 . T1 × T1 × T0 → T0 g1, g2 . T1 × T0 → T0 h1, h2 . T3
1 × T5

0 → T0 .

Generalization of this case is straight forward. Let us abbreviate ~g = g1, g2 and ~h = h1, h2. Note that
the height of the tiering derivations of ~g and ~h is strictly smaller than the one of the considered function
f1. Thus the IH is applicable to both ~g and ~h, from which we obtain appropriate polynomials p~g and

p~h as well as sets C~g
t and C~h

r,s,t for all terms r, s, t. Let us then define

C f1,f2
s,t := C~g

t ∪
⋃

bin(r,q)∈STs(s)

C
~h
r,q,t and pf1,f2(x) := p~g(x) + x · p~h(x) .

First of all, one easily realizes that:

|C f1,f2
s,t | ≤ |C

~g
t |+ |

⋃
bin(r,q)∈STs(s)

C
~h
r,q,t| ≤ p~g(‖ t ‖) +

∑
bin(r,q)∈STs(s)

p~h(‖ r, q, t ‖) ≤ p~g(‖ t ‖) +
∑

bin(r,q)∈STs(s)

p~h(‖bin(r, q), t ‖)

≤ p~g(‖ t ‖) +
∑

bin(r,q)∈STs(s)

p~h(‖ s, t ‖) ≤ p~g(‖ t ‖) + ‖ s ‖ · p~h(‖ s, t ‖)

≤ pf1,f2(‖ s, t ‖) .

Moreover, by induction on terms, also the other requirement is satisfied:

STs(fi(nil, s, t)) = STs(gi(s, t)) ⊆ STs(t) ∪ C~g
s = STs(t) ∪ C f1,f2

nil,s ;

STs(fi(bin(r, q), s, t)) = STs(hi(r, q, s, t, f1(r, s, t), f1(q, s, t), f2(r, s, t), f2(q, s, t)))

⊆ STs(t) ∪ STs(f1(r, s, t), f2(r, s, t)) ∪ STs(f1(q, s, t), f2(q, s, t)) ∪ C
~h
r,q,s

⊆ STs(t) ∪ STs(t) ∪ C f1,f2
r,s ∪ STs(t) ∪ C f1,f2

q,s ∪ C
~h
r,q,s

= STs(t) ∪ C f1,f2
r,s ∪ C f1,f2

q,s ∪ C
~h
r,q,s

= STs(t) ∪ C~g
s ∪

(⋃
bin(p,o)∈STs(r)

C
~h
p,o,s

)
∪ C~g

s ∪
(⋃

bin(p,o)∈STs(q)

C
~h
p,o,s

)
∪ C

~h
r,q,s

⊆ STs(t) ∪ C~g
s ∪

⋃
bin(p,o)∈STs(bin(r,q))

C
~h
p,o,s

= STs(t) ∪ C f1,f2
bin(r,q),s .

20

This concludes the proof.

Once we know that ramified recursive definitions are not too fast-growing with respect to the minimal
shared size, we know that all terms around do not have a too-big minimal shared size. There is still some
work to be done to get to our goal. It is convenient to introduce another auxiliary concept before proceeding.
If f is a function on n arguments in SimRec(A) and v1, . . . , vn are elements of A, we define the set FC f

v1,...,vn

as follows. The set FC f
v1,...,vn captures function calls that arise in the computation of f(v1, . . . , vn). The

definition is by induction on the definition of f.

FC fc
v1,...,vn = {(fc, v1, . . . , vn)} ;

FC Πm
n

v1,...,vn = {(Πm
n , v1, . . . , vn)} ;

FC f◦(g1,...,gm)
v1,...,vn =

m⋃
i=1

FC gi
v1,...,vn ∪ FC f

g1(~v),...,gn(~v) ∪ {(f ◦ (g1, . . . , gm), v1, . . . , vn)} ;

FC
case((fi)1≤i≤k)

ci(u1,...,uar(ci)
),v2,...,vn

= FC fi
u1,...,uar(ci)

,v2,...,vn ∪ {(case((fi)1≤i≤k), ci(u1, . . . , uar(ci)), v2, . . . , vn)} ;

FC
gj
ci(u1,...,uar(ci)

),v2,...,vn
=

ar(ci)⋃
i=1

m⋃
j=1

FC gj
ui,v2,...,vn ∪ FC

fi,j
u1,...,uar(ci)

,v2,...,vn,g1(u1,v2,...,vn),...,gm(uar(ci)
,v2,...,vn)

∪ {(gj , ci(u1, . . . , uar(ci)), v2, . . . , vn)}
where gj = simrec((fi,j)1≤i≤k,1≤j≤m)j .

Please observe how subsets of FC f
~v are in natural correspondence to (proper) caches for the program Pf.

Justified by this observation, we identify sets FC f
~v with caches {(g(~v), u) | (g, ~v) ∈ FC f

~v and f(~v) ↓ u}. The
parameter we have just introduced is all that is needed to estimate the memoized runtime complexity.

Lemma 5.2. If f is a function on k arguments in SimRec(A), then for every v1, . . . , vk ∈ A and for every
proper cache C, there exists a cache D, value u and natural number m ≤ |FC f

~v| such that (C, f(v1, . . . , vk)) ⇓m
(D,u) with respect to the program Pf associated with f.

Proof. We prove the lemma by induction on the proof that f is in SimRec(A). We show the stronger claim
that m 6 |FC f

~v \ C| holds and that D := C ∪ FC f
~v. We consider the most interesting case where f is defined

by general ramified simultaneous recurrence. As before, for brevity we treat only the special case where two
ternary functions ~f = f1, f2 over binary trees are defined simultaneously, as in (†) on page 4. Generalization
of this case is straight forward. Let C be a proper cache. The case itself is proven by structural induction on
the recursion parameter.

• In the base case, we consider the statement (C, fi(nil, ~v)) ⇓m (D,u). Note that the program Pf contains
the rule fi(nil, ~x)→ gi(~x), with operation symbol gi corresponding to the function gi. There are two
cases. If fi(nil, ~v) is cached, i.e. (fi(nil, ~v), u) ∈ C, then m = 0 and the case follows trivially. For the
case that fi(nil, ~v) is not cached, by one application of the hypothesis of the outer induction we see

...
(C, gi(~v)) ⇓m (C ∪ FC gi

~v , u)
(IH)

(C, fi(nil, ~v)) ⇓m+1 (C ∪ FC gi
~v ∪ {(fi(nil, ~v), u)}, u)

(update)

where the IH gives additionally m 6 |FC
gi
~v \ C|. Combining this with the definition FC fi

nil,~v =

FC
gi
~v] {fi(nil, ~v)} and the assumption that fi(nil, ~v) is not cached, the case follows.

• For the inductive step, we consider the statement (C, fi(bin(v1, v2), ~v)) ⇓m (D,u). It suffices to
consider the case where the call fi(bin(v1, v2), ~v) is not cached. Note that by construction, the program
Pf contains a rule

fi(bin(z, w), ~x)→ hi(z, w, ~x, f1(z, ~x), f1(w, ~x), f2(z, ~x), f2(w, ~x)) ,

21

where the operation symbol f1 computes the function f1, and so on. Abbreviate the sequence of values
v1, v2, ~v, u1, u2, u3, u4 by ~w. Furthermore, we introduce following abbreviations for caches that arise
during the computation of fi(bin(v1, v2), ~v):

C1 := C ∪ FC f1
v1,~v

C2 := C1 ∪ FC f1
v2,~v

C3 := C2 ∪ FC f2
v1,~v

C4 := C3 ∪ FC f2
v2,~v

C5 := C4 ∪ FC hi
~w .

Using the IH on the recursive calls as well as the IH on hi, and tacitly employing Lemma 4.1, we see

...
(C, f1(v1, ~v)) ⇓n1 (C1, u1)

(IH) · · ·
...

(C3, f2(v2, ~v)) ⇓n4 (C4, u4)
(IH)

...
(C4, hi(~w)) ⇓n5 (C5, u)

(IH)

(C, hi(v1, v2, ~v, f1(v1, ~v), f1(v2, ~v), f2(v1, ~v), f2(v2, ~v))) ⇓∑5
i=1 ni

(C5, u)
(F-context)

(C, fi(bin(v1, v2), ~v)) ⇓1+
∑5

i=1 ni
(D,u)

(update)

where D = C5 ∪ {(fi(bin(v1, v2), ~v), u)}. Let C0 = C. Note that the sets Ci \ Ci−1 (i = 1, . . . , 5)

and C are all pairwise disjoint, and thus we can write C5 \ C =
⊎5
i=1(Ci \ Ci−1). Since the IH gives

ni 6 |Ci \ Ci−1|, we conclude ∑5
i=1 ni 6

∑5
i=1|Ci \ Ci−1| = |C5 \ C| .

As by definition we have

FC fi
bin(v1,v2),~v = FC f1

v1,~v
∪ FC f1

v2,~v
∪ FC f2

v1,~v
∪ FC f2

v2,~v
∪ FC hi

~w ∪ {(fi,bin(v1, v2), ~v} ;

C5 = FC f1
v1,~v
∪ FC f1

v2,~v
∪ FC f2

v1,~v
∪ FC f2

v2,~v
∪ FC hi

~w ∪ C ,

and using the assumption that the call fi(bin(v1, v2), ~v) is not cached in C, we conclude

1 +
∑5
i=1 ni 6 1 + |C5 \ C| = |FC fi

bin(v1,v2),~v \ C| .

The only missing link, then, is bounding the cardinality of FC f
~v whenever f is ramified. This is the

purpose of the following result:

Lemma 5.3. If f.A→ An, then there is polynomial pf such that for every ~v, it holds that |FC f
~v| ≤ pf(‖~v ‖).

Proof. The proof is by induction on the structure of the proof of f .A→ An. We again consider the most
interesting case f = f1 with the two ternary functions f1, f2 . A1 × A1 × A0 → A0 defined by simultaneous
ramified recurrence based on functions ~g = g1, g1 and ~h = h1, h2 over binary trees as in (†) on page 4. From
the IH, we know that there exist appropriate polynomials pgi and phi . Please observe that

FC
~f
u,v,w = FC~g

v,w ∪
⋃

bin(y,z)∈STs(u)

FC
~h
y,z,v,w,f1(y,v,w),f1(z,v,w),f2(y,v,w),f2(z,v,w) ,

where expressions like FC~e
~t

stand for the union FC e1
~t
∪ FC e2

~t
. This can be easily proved by induction on u,

and is a consequence of the way FC is defined. Now, define

p~f(x) = p~g(x) + x · p~h(x+ 2 · q~f(x)) ,

where expressions like p~e stand for pe1 + pe2 and q~f is the polynomial from Lemma 5.1. Let us prove that

22

this is, indeed, a correct bound:

|FC
~f
u,v,w| ≤ |FC~g

v,w|+ |
⋃

bin(y,z)∈STs(u)

FC
~h
y,z,v,w,f1(y,v,w),f1(z,v,w),f2(y,v,w),f2(z,v,w)|

≤ p~g(‖ v, w ‖) +
∑

bin(y,z)∈STs(u)

|FC
~h
y,z,v,w,f1(y,v,w),f1(z,v,w),f2(y,v,w),f2(z,v,w)|

≤ p~g(‖ v, w ‖) +
∑

bin(y,z)∈STs(u)

p~h(‖ y, z, v, w, f1(y, v, w), f1(z, v, w), f2(y, v, w), f2(z, v, w) ‖)

≤ p~g(‖ v, w ‖) +
∑

bin(y,z)∈STs(u)

p~h(‖u, v, w, f1(y, v, w), f1(z, v, w), f2(y, v, w), f2(z, v, w) ‖)

≤ p~g(‖ v, w ‖) +
∑

bin(y,z)∈STs(u)

p~h(‖u, v, w ‖+ ‖ f1(y, v, w), f2(y, v, w) ‖+ ‖ f1(z, v, w), f2(z, v, w) ‖)

≤ p~g(‖ v, w ‖) +
∑

bin(y,z)∈STs(u)

p~h(‖u, v, w ‖+ q~f(‖ y, v, w ‖) + q~f(‖ z, v, w ‖))

≤ p~g(‖u, v, w ‖) +
∑

bin(y,z)∈STs(u)

p~h(‖u, v, w ‖+ q~f(‖u, v, w ‖) + q~f(‖u, v, w ‖))

≤ p~g(‖u, v, w ‖) + ‖u ‖ · p~h(‖u, v, w ‖+ 2 · q~f(‖u, v, w ‖))
≤ p~g(‖u, v, w ‖) + ‖u, v, w ‖ · p~h(‖u, v, w ‖+ 2 · q~f(‖u, v, w ‖))
= p~f(‖u, v, w ‖).

This concludes the proof.

The following, then, is just a corollary of Lemma 5.2 and Lemma 5.3.

Lemma 5.4. If f.A→ An, then there is a polynomial pf : N→ N such that for every ~v, (∅, f(~v)) ⇓m (C, u),
with m ≤ pf(‖~v ‖).

Using this final lemma and invariance (Theorem 4.15) we arrive at our main result.

Theorem 5.5. Let f : Ap1×. . .×Apk → Am be a function defined by general ramified simultaneous recursion.
There exists then a polynomial pf : Nk → N such that for all inputs v1, . . . , vk, a DAG representation of
f(v1, . . . , vk) is computable in time pf(|v1|, . . . , |vn|).

Example 5.6 (Continued from Example 4.16). In Example 3.4 we already indicated that the function
rabbits : N→ F from Section 2 is definable by GRSR. As a consequence of Theorem 5.5, it is computable in
polynomial time, e.g. on a Turing machine. Similar, we can prove the function tree from Section 2 polytime
computable.

6. Conclusion

In this work we have shown that simultaneous ramified recurrence on generic algebras is sound for
polynomial time, resolving a long-lasting open problem in implicit computational complexity theory. We
believe that with this work we have reached the end of a quest. Slight extensions, e.g. the inclusion
of parameter substitution, lead outside polynomial time as soon as simultaneous recursion over trees is
permissible.

Towards our main result, we introduced the notion of memoized runtime complexity, and we have shown
that this cost model is invariant under polynomial time. Crucially, we use a compact DAG representation
of values to control duplication, and tabulation to avoid expensive re-computations. To the authors best
knowledge, our work is the first where sharing and memoization are reconciled, in the context of implicit
computational complexity theory. Both techniques have been extensively employed, however separately.

23

Essentially relying on sharing, the invariance of the unitary cost model in various rewriting based models
of computation, e.g. the λ-calculus [22–24] and term rewrite systems [21, 25] could be proved. Several
works (e.g. [18, 19, 26]) rely on memoization, employing a measure close to our notion of memoized runtime
complexity. None of these works integrate sharing, instead, inputs are either restricted to strings or dedicated
bounds on the size of intermediate values have to be imposed. We are confident that our second result is
readily applicable to resolve such restrictions.

References

[1] D. Leivant, Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time, in: Feasible Mathe-
matics II, Progress in Computer Science and Applied Logic, vol. 13, Birkhäuser Science, 320–343, 1995.

[2] U. Dal Lago, S. Martini, M. Zorzi, General Ramified Recurrence is Sound for Polynomial Time, in: Proc. of 1st International
Workshop on Developments in Implicit Complexity, vol. 23 of Electronic Proceedings in Theoretical Computer Science,
47–62, 2010.

[3] P. Van Emde Boas, Machine Models and Simulation, in: Handbook of Theoretical Computer Science, Volume A: Algorithms
and Complexity (A), The MIT Press, 1–66, 1990.

[4] D. Leivant, Stratified Functional Programs and Computational Complexity, in: Proc. of 20th Annual Symposium on
Principles of Programming Languages, Association for Computing Machinery, 325–333, 1993.

[5] S. Bellantoni, Predicative Recursion and Computational Complexity, Ph.D. thesis, University of Toronto, 1992.
[6] S. Bellantoni, Predicative Recursion and the Polytime Hierarchy, in: Feasible Mathematics II, Progress in Computer

Science and Applied Logic, Birkhäuser Science, 15–29, 1994.
[7] I. Oitavem, Implicit Characterizations of Pspace., in: Proof Theory in Computer Science, 170–190, 2001.
[8] T. Arai, N. Eguchi, A New Function Algebra of EXPTIME Functions by Safe Nested Recursion, ACM Transactions on

Computational Logic 10 (4).
[9] G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem, Recursion Schemata for NCk, in: Proc. of 22nd European Association for

Computer Science Logic, vol. 5213 of Lecture Notes in Computer Science, Springer Verlag Heidelberg, 49–63, 2008.
[10] N. Danner, J. S. Royer, Ramified Structural Recursion and Corecursion, CoRR abs/1201.4567.
[11] B. Hoffmann, Term Rewriting with Sharing and Memoization, in: Proc. of 3rd Algebraic and Logic Programming, vol. 632

of Lecture Notes in Computer Science, Springer Verlag Heidelberg, 128–142, 1992.
[12] M. Avanzini, U. Dal Lago, On Sharing, Memoization, and Polynomial Time, in: Proc. of 32nd International Symposium on

Theoretical Aspects of Computer Science, vol. 30 of Leibniz International Proceedings in Informatics, Leibniz-Zentrum für
Informatik, 62–75, 2015.

[13] S. Bellantoni, S. Cook, A new Recursion-Theoretic Characterization of the Polytime Functions, Computational Complexity
2 (2) (1992) 97–110.

[14] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[15] E. A. Cichon, A. Weiermann, Term Rewriting Theory for the Primitive Recursive Functions, Annals of Pure and Applied

Logic 83 (3) (1997) 199–223.
[16] D. Plump, Essentials of Term Graph Rewriting, Electronic Notes in Theoretical Computer Science 51 (2001) 277–289.
[17] H. P. Barendregt, M. v. Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J. Plasmeijer, M. R. Sleep, Term Graph Rewriting,

in: Volume II: Parallel Languages on PARLE: Parallel Architectures and Languages Europe, vol. 259 of Lecture Notes in
Computer Science, Springer Verlag Heidelberg, 141–158, 1987.

[18] J.-Y. Marion, Analysing the Implicit Complexity of Programs, Information and Computation 183 (2003) 2–18.
[19] G. Bonfante, J.-Y. Marion, J.-Y. Moyen, Quasi-interpretations: A Way to Control Resources, Theoretical Computer Science

412 (25) (2011) 2776–2796.
[20] N. Hirokawa, G. Moser, Automated Complexity Analysis Based on the Dependency Pair Method, in: Proc. of 4th

International Joint Conference on Automated Reasoning, vol. 5195 of Lecture Notes in Artificial Intelligence, Springer
Verlag Heidelberg, 364–380, 2008.

[21] U. Dal Lago, S. Martini, Derivational Complexity is an Invariant Cost Model, in: Proc. of 1st International Workshop on
Foundational and Practical Aspects of Resource Analysis, vol. 6324 of Lecture Notes in Computer Science, Springer Verlag
Heidelberg, 100–113, 2009.

[22] B. Accattoli, U. Dal Lago, On the Invariance of the Unitary Cost Model for Head Reduction, in: Proc. of 23rd International
Conference on Rewriting Techniques and Applications, vol. 15 of Leibniz International Proceedings in Informatics,
Leibniz-Zentrum für Informatik, 22–37, 2012.

[23] U. Dal Lago, S. Martini, On Constructor Rewrite Systems and the Lambda Calculus, Logical Methods in Computer Science
8 (3) (2012) 1–27.

[24] B. Accattoli, U. Dal Lago, Beta Reduction is Invariant, Indeed, in: Proc. of 23rd European Association for Computer
Science Logic, Association for Computing Machinery, 8:1–8:10, 2014.

[25] M. Avanzini, G. Moser, Closing the Gap Between Runtime Complexity and Polytime Computability, in: Proc. of
21st International Conference on Rewriting Techniques and Applications, vol. 6 of Leibniz International Proceedings in
Informatics, Leibniz-Zentrum für Informatik, 33–48, 2010.

[26] P. Baillot, U. Dal Lago, J. Moyen, On Quasi-interpretations, Blind Abstractions and Implicit Complexity, Mathematical
Structures in Computer Science 22 (4) (2012) 549–580.

24

	Introduction
	Related Work

	The Need for Sharing and Memoization
	Preliminaries
	General Ramified Simultaneous Recurrence
	Computational Model, Syntax and Semantics
	Term Graphs

	Memoization and Sharing, Formally
	Small-Step Semantics with Memoization and Sharing
	Invariance

	GRSR is Sound for Polynomial Time
	Conclusion

