Automated Complexity Analysis of Term Rewrite Systems

Martin Avanzini (martin.avanzini@inria.fr)

Today's Lecture

From Theory to Automation

- 1. complexity pairs and relative rewriting
- 2. dependency pairs for complexity analysis
- 3. case study: TcT, its complexity framework

Applications to Program Analysis

4. case study: higher-order functional programs

Experimental Evaluation

Input	#rules	orders	Тст
appendAll	12	$O(n^2)$	O(n)
bfs	57	?	O(n)
bft mmult	59	?	$O(n^3)$
bitonic	78	?	$O(n^4)$
bitvectors	148	?	$O(n^2)$
clevermmult	39	?	$O(n^2)$
duplicates	37	?	$O(n^2)$
dyade	31	?	$O(n^2)$
eratosthenes	74	?	$O(n^2)$
flatten	31	?	$O(n^2)$
insertionsort	36	?	$O(n^2)$
listsort	56	?	$O(n^2)$
lcs	87	?	$O(n^2)$
matrix	74	?	$O(n^3)$
mergesort	35	?	$O(n^3)$
minsort	26	?	$O(n^2)$
queue	35	?	$O(n^5)$
quicksort	46	?	$O(n^2)$
rationalPotential	14	O(n)	O(n)
splitandsort	70	?	$O(n^3)$
subtrees	8	?	$O(n^2)$
tuples	33	?	?

Figure: Analysis of translated resource aware ML programs.

Towards a Modular Analysis

- ★ complexity pairs and relative rewriting
- ★ weak dependency pairs/dependency tuples
- ★ safe reduction pairs

Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

 \star for to ARSs \rightarrow and \rightsquigarrow over carrier A, define

$$\to / \leadsto \triangleq \leadsto^* \cdot \to \cdot \leadsto^*.$$

 \star for two TRSs \mathcal{R} and \mathcal{S} ,

$$\rightarrow_{\mathcal{R}/\mathcal{S}} \triangleq \rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}} \qquad \qquad \stackrel{\mathsf{i}}{\rightarrow}_{\mathcal{R}/\mathcal{S}} \triangleq \frac{\mathcal{R} \cup \mathcal{S}}{\mathcal{R}}/\frac{\mathcal{R} \cup \mathcal{S}}{\mathcal{S}}$$

$$- C[f(l_1\sigma, \dots, l_k\sigma)] \xrightarrow{Q}_{\mathcal{R}} C[r\sigma] \text{ if } f(l_1, \dots, l_k) \to r \in \mathcal{R} \text{ and } l_i\sigma \in \mathsf{NF}(\to_Q).$$

Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

 \star for to ARSs \rightarrow and \rightsquigarrow over carrier A, define

$$\rightarrow/\rightsquigarrow \triangleq \rightsquigarrow^* \cdot \rightarrow \cdot \rightsquigarrow^*$$
.

 \star for two TRSs $\mathcal R$ and $\mathcal S$,

$$\rightarrow_{\mathcal{R}/S} \triangleq \rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}} \qquad \qquad \stackrel{\mathsf{i}}{\rightarrow}_{\mathcal{R}/S} \triangleq \xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{R}}/\xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{S}}$$

$$- C[f(l_1\sigma, \dots, l_k\sigma)] \xrightarrow{\mathcal{Q}}_{\mathcal{R}} C[r\sigma] \text{ if } f(l_1, \dots, l_k) \rightarrow r \in \mathcal{R} \text{ and } l_i\sigma \in \mathsf{NF}(\rightarrow_{\mathcal{Q}}).$$

Theorem

$$dc_{\rightarrow \cup \sim, S} \leq dc_{\rightarrow /\sim, S} + dc_{\sim /\rightarrow, S}$$
.

Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

 \star for to ARSs \rightarrow and \rightsquigarrow over carrier A, define

$$\rightarrow/\sim \triangleq \sim^* \cdot \rightarrow \cdot \sim^*$$
.

 \star for two TRSs $\mathcal R$ and $\mathcal S$,

$$\rightarrow_{\mathcal{R}/S} \triangleq \rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}} \qquad \qquad \stackrel{\mathsf{i}}{\rightarrow}_{\mathcal{R}/S} \triangleq \xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{R}}/\xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{S}}$$
$$- C[f(l_1\sigma, \dots, l_k\sigma)] \xrightarrow{\mathcal{Q}}_{\mathcal{R}} C[r\sigma] \text{ if } f(l_1, \dots, l_k) \rightarrow r \in \mathcal{R} \text{ and } l_i\sigma \in \mathsf{NF}(\rightarrow_{\mathcal{Q}}).$$

Theorem

$$dc_{\rightarrow \cup \sim, S} \leq dc_{\rightarrow /\sim, S} + dc_{\sim >/\rightarrow, S}$$
.

Example

For a \rightarrow b and a \rightsquigarrow c, $\mathsf{dh}_{\rightarrow \cup \rightsquigarrow}(a) = 1 < 2 = \mathsf{dh}_{\rightarrow / \rightsquigarrow}(a) + \mathsf{dh}_{\rightsquigarrow / \rightarrow}(a).$

Definition (Zankl & Korp, LMCS'14)

- **★** Complexity pair (CP) is pair $(>, \geq)$ of rewrite orders s.t. $\geq \cdot > \cdot \geq \subseteq >$.
- **★** Compatibility with relative TRS \mathcal{R}/\mathcal{S} if $\mathcal{R} \subseteq \succ$ and $\mathcal{S} \subseteq \succeq$.

Definition (Zankl & Korp, LMCS'14)

- **★** Complexity pair (CP) is pair $(>, \geq)$ of rewrite orders s.t. $\geq \cdot > \cdot \geq \subseteq >$.
- **★** Compatibility with relative TRS \mathcal{R}/\mathcal{S} if $\mathcal{R} \subseteq \succ$ and $\mathcal{S} \subseteq \succeq$.

Theorem (Soundness)

If $CP(>, \geq)$ compatible with \mathcal{R}/\mathcal{S} then

$$\mathsf{dc}_{\to_{\mathcal{R}/\mathcal{S}},T}(n) \leq \mathsf{dc}_{\succ,T}(n)$$
.

Definition (Zankl & Korp, LMCS'14)

- **★** Complexity pair (CP) is pair $(>, \geq)$ of rewrite orders s.t. $\geq \cdot > \cdot \geq \subseteq >$.
- **★** Compatibility with relative TRS \mathcal{R}/\mathcal{S} if $\mathcal{R} \subseteq >$ and $\mathcal{S} \subseteq \geq$.

Theorem (Soundness)

If CP $(>, \gtrsim)$ compatible with \mathcal{R}/\mathcal{S} then

$$\mathsf{dc}_{\to_{\mathcal{R}/\mathcal{S}},T}(n) \leq \mathsf{dc}_{>,T}(n)$$
.

Theorem (Iterative Complexity Analysis)

If CP $(>, \geq)$ compatible with $\mathcal{R}_1/\mathcal{R}_2 \cup \mathcal{S}$ then

$$\mathsf{dc}_{\longrightarrow_{\mathfrak{K}_1 \cup \mathfrak{K}_2/\mathcal{S}, T}}(n) \leq \mathsf{dc}_{\succ, T}(n) + \mathsf{dc}_{\longrightarrow_{\mathfrak{K}_2/\mathfrak{K}_1 \cup \mathcal{S}, T}}(n) \ .$$

Definition (Zankl & Korp, LMCS'14)

- **★ Complexity pair (CP)** is pair $(>, \geq)$ of rewrite orders s.t. $\geq \cdot > \cdot \geq \subseteq >$.
- **★** Compatibility with relative TRS \mathcal{R}/\mathcal{S} if $\mathcal{R} \subseteq >$ and $\mathcal{S} \subseteq \geq$.

Theorem (Soundness)

If $CP(>, \geq)$ compatible with \mathcal{R}/\mathcal{S} then

$$\mathsf{dc}_{\to_{\mathcal{R}/\mathcal{S}},T}(n) \leq \mathsf{dc}_{\succ,T}(n)$$
.

Theorem (Iterative Complexity Analysis)

If CP $(>, \geq)$ compatible with $\Re_1/\Re_2 \cup S$ then

$$\mathsf{dc}_{\longrightarrow_{\mathcal{R}_1 \cup \mathcal{R}_2 / \mathcal{S}}, T}(n) \leq \mathsf{dc}_{\succ, T}(n) + \mathsf{dc}_{\longrightarrow_{\mathcal{R}_2 / \mathcal{R}_1 \cup \mathcal{S}}, T}(n)$$
.

Note: remains valid for rewriting under strategies nventeurs du monde numérique

Experimental Evaluation

Input	#rules	orders	iterative	T _C T
appendAll	12	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
bfs	57	?	?	O(n)
bft mmult	59	?	?	$O(n^3)$
bitonic	78	?	?	$O(n^4)$
bitvectors	148	?	?	$O(n^2)$
clevermmult	39	?	?	$O(n^2)$
duplicates	37	?	$O(n^2)$	$O(n^2)$
dyade	31	?	?	$O(n^2)$
eratosthenes	74	?	$O(n^3)$	$O(n^2)$
flatten	31	?	?	$O(n^2)$
insertionsort	36	?	$O(n^3)$	$O(n^2)$
listsort	56	?	?	$O(n^2)$
lcs	87	?	?	$O(n^2)$
matrix	74	?	?	$O(n^3)$
mergesort	35	?	?	$O(n^3)$
minsort	26	?	$O(n^3)$	$O(n_z^2)$
queue	35	?	?	$O(n^5)$
quicksort	46	?	?	$O(n^2)$
rationalPotential	14	<i>O</i> (<i>n</i>)	O(n)	O(n)
splitandsort	70	?	?	$O(n^3)$
subtrees	8	?	$O(n^2)$	$O(n^2)$
tuples	33	?	?	

Figure: Analysis of translated resource aware ML programs.

Theorem

TRS R is terminating iff there is no infinite and minimal chain

$$\mathtt{f}^{\#}(s_1,\ldots,s_m) \! o_{\mathtt{DP}(\mathcal{R})/\mathcal{R}} \mathtt{g}^{\#}(t_1,\ldots,t_n) \! o_{\mathtt{DP}(\mathcal{R})/\mathcal{R}} \ldots$$

Theorem

TRS $\mathcal R$ is terminating iff there is no infinite and minimal chain

$$f^{\#}(s_1,\ldots,s_m) \rightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}} g^{\#}(t_1,\ldots,t_n) \rightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}} \ldots$$

Corollary

TRS \mathcal{R} is terminating on \mathcal{B} iff

$$\forall n \in \mathbb{N}. \ \mathsf{rc}_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}^{\#}(n) \triangleq \mathsf{dc}_{\longrightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}, \underline{\mathscr{B}}^{\#}}(n) \in \mathbb{N}.$$

Theorem

TRS $\mathcal R$ is terminating iff there is no infinite and minimal chain

$$f^{\#}(s_1,\ldots,s_m) \rightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}} g^{\#}(t_1,\ldots,t_n) \rightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}} \ldots$$

Corollary

TRS \mathcal{R} is terminating on \mathcal{B} iff

$$\forall n \in \mathbb{N}. \ \mathsf{rc}^\#_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}(n) \triangleq \mathsf{dc}_{\to_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}, \mathscr{B}^\#}(n) \in \mathbb{N}.$$

Pros:

- 1. gets rid of nasty monotonicity requirements
- 2. DP framework enables true modular analysis

Theorem

TRS $\mathcal R$ is terminating iff there is no infinite and minimal chain

$$f^{\#}(s_1,\ldots,s_m) \rightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}} g^{\#}(t_1,\ldots,t_n) \rightarrow_{\mathsf{DP}(\mathcal{R})/\mathcal{R}} \ldots$$

Corollary

TRS \mathcal{R} is terminating on \mathcal{B} iff

$$\forall n \in \mathbb{N}. \ \mathsf{rc}^\#_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}(n) \triangleq \mathsf{dc}_{\to_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}, \mathscr{B}^\#}(n) \in \mathbb{N}.$$

Pros:

- 1. gets rid of nasty monotonicity requirements
- 2. DP framework enables true modular analysis

Questions:

- 1. is there a "small" $f: \mathbb{N} \to \mathbb{N}$ s.t. $rc_{\mathcal{R}}(n) \leq f(rc_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}^{\#}(n))$?
- 2. what about techniques from the DP framework?

Example

Consider R

$$f(s(x)) \to s(f(f(x)))$$
 $f(x) \to dup(x, x)$,

with $\mathrm{DP}(\mathcal{R})$

$$f^{\#}(s(x)) \rightarrow f^{\#}(f(x))$$
 $f^{\#}(s(x)) \rightarrow f^{\#}(x)$.

Then $rc_{DP(\mathcal{R})/\mathcal{R}}^{\#}$ is linear whereas $rc_{\mathcal{R}}(n)$ grows double-exponential.

Example

Consider R

$$f(s(x)) \to s(f(f(x)))$$
 $f(x) \to dup(x, x)$,

with $\mathsf{DP}(\mathcal{R})$

$$f^{\#}(s(x)) \rightarrow f^{\#}(f(x))$$
 $f^{\#}(s(x)) \rightarrow f^{\#}(x)$.

Then $rc_{DP(\mathcal{R})/\mathcal{R}}^{\#}$ is linear whereas $rc_{\mathcal{R}}(n)$ grows double-exponential.

Question: Reasons that cause this blow-up?

Example

Consider R

$$f(s(x)) \rightarrow s(f(f(x)))$$
 $f(x) \rightarrow dup(x, x)$,

with $DP(\mathcal{R})$

$$\mathtt{f}^{\#}(\mathtt{s}(x)) \to \mathtt{f}^{\#}(\mathtt{f}(x)) \qquad \qquad \mathtt{f}^{\#}(\mathtt{s}(x)) \to \mathtt{f}^{\#}(x) \; .$$

Then $rc_{\mathsf{DP}(\mathcal{R})/\mathcal{R}}^{\#}$ is linear whereas $rc_{\mathcal{R}}(n)$ grows double-exponential.

Question: Reasons that cause this blow-up?

- 1. DPs track single path in "calls graph"
- 2. DPs do not account for duplication

Weak Dependency Pairs and Dependency Tuples

- ★ Weak Dependency Pairs WDP(R) [Hirokawa & Moser, IJCAR'08]
 - 1. bundle outermost function calls in weak dependency pair

$$\mathtt{f}^\#(l_1,\ldots,l_k) \to \mathsf{c}_n(r_1^\#,\ldots,r_n^\#) \quad \text{for each } \mathtt{f}(l_1,\ldots,l_k) \to \mathsf{C}[r_1,\ldots,r_n] \in \mathcal{R}$$

where C maximal constructor-context

2. impose non-duplication & weight-gap condition

N. Hirokawa and G. Moser. "Automated Complexity Analysis Based on the Dependency Pair Method". In Proc. of 4th IJCAR, pp. 364–380, 2008.

Weak Dependency Pairs and Dependency Tuples

- ★ Weak Dependency Pairs WDP(R) [Hirokawa & Moser, IJCAR'08]
 - 1. bundle outermost function calls in weak dependency pair

$$f^{\#}(l_1,\ldots,l_k) \to c_n(r_1^{\#},\ldots,r_n^{\#}) \quad \text{for each } f(l_1,\ldots,l_k) \to C[r_1,\ldots,r_n] \in \mathcal{R}$$

where C maximal constructor-context

- 2. impose non-duplication & weight-gap condition
- ★ Dependency Pair Tuples DT(R) [Noschinksi et al., CADE'11]
 - 1. bundle all function calls in dependency tuple
 - 2. restricted to innermost rewriting

- N. Hirokawa and G. Moser. "Automated Complexity Analysis Based on the Dependency Pair Method". In Proc. of 4th IJCAR, pp. 364–380, 2008.
- L. Noschinski, F. Emmes, and J. Giesl. "A Dependency Pair Framework for Innermost Complexity Analysis of Term Rewrite Systems". In Proc. of 23rd CADE, pp. 422–438, 2011.

Dependency Tuples

Definition (dependency tuples, Noschinski et. al, CADE'11)

★ dependency tuple of $f(l_1, ..., l_m) \rightarrow r$ is

$$f^{\#}(l_1,\ldots,l_m) \to c_k(g_1^{\#}(\vec{t}_1),\ldots,g_k^{\#}(\vec{t}_k))$$
 ,

where $g_1(\vec{t}_1), \dots, g_k(\vec{t}_k)$ are all subterms of r with defined root;

★ DT(R) collects DTs of rules in R

Dependency Tuples

Definition (dependency tuples, Noschinski et. al, CADE'11)

 \star dependency tuple of $f(l_1, ..., l_m) \rightarrow r$ is

$$\mathtt{f}^\#(l_1,\ldots,l_m) o \mathtt{c}_\mathtt{k}(\mathtt{g}_1^\#(\vec{t}_1),\ldots,\mathtt{g}_\mathtt{k}^\#(\vec{t}_k))$$
 ,

where $g_1(\vec{t}_1), \dots, g_k(\vec{t}_k)$ are all subterms of r with defined root;

 \star DT(\mathcal{R}) collects DTs of rules in \mathcal{R}

```
Example \mathcal{R} DT(\mathcal{R})
[] + ys \rightarrow ys \qquad [] + ^{\#} \rightarrow c_0
(x :: xs) + ys \rightarrow x :: (xs + ys) \quad (x :: xs) + ^{\#} ys \rightarrow c_1(xs + ^{\#} ys)
rev([]) \rightarrow [] \qquad rev^{\#}([]) \rightarrow c_0
rev(x :: xs) \rightarrow rev(xs) + [x] \qquad rev^{\#}(x :: xs) \rightarrow c_2(rev(xs) + ^{\#} [x], rev^{\#}(xs))
```

Lemma

Reduction sequence

$$f(v_1,...,v_k) \stackrel{i}{\rightarrow}_{\mathcal{R}} t_1 \stackrel{i}{\rightarrow}_{\mathcal{R}} t_2 \stackrel{i}{\rightarrow}_{\mathcal{R}} ...,$$

simulated step-wise by reduction

$$f^{\#}(v_1,\ldots,v_k) \xrightarrow{i}_{\mathsf{DT}(\mathcal{R})/\mathcal{R}} \mathsf{C}_1[\vec{\mathsf{s}}_1] \xrightarrow{i}_{\mathsf{DT}(\mathcal{R})/\mathcal{R}} \mathsf{C}_2[\vec{\mathsf{s}}_2] \xrightarrow{i}_{\mathsf{DT}(\mathcal{R})/\mathcal{R}} \ldots$$
,

with \vec{s}_i marked innermost redexes in t_i .

Example

Sequence

$$\text{rev}([1,2]) \xrightarrow{\textbf{i}}_{\mathcal{R}_{\text{rev}}} \underline{\text{rev}([3])} +\!\!\!+ [1] \xrightarrow{\textbf{j}}_{\mathcal{R}_{\text{rev}}} (\text{rev}([]) +\!\!\!+ [2]) +\!\!\!+ [1] \xrightarrow{\textbf{j}}_{\mathcal{R}_{\text{rev}}} \dots \text{,}$$

translates to

$$\begin{split} \operatorname{rev}^{\#}([1,2]) & \xrightarrow{\overset{i}{\to}}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} C_1[\underline{\operatorname{rev}([3])} + +^{\#} [1], \underline{\operatorname{rev}^{\#}([3])}] \\ & \xrightarrow{\overset{i}{\to}}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} C_2[(\operatorname{rev}([]) + + [2]) + +^{\#} [1], \operatorname{rev}([]) + +^{\#} [2], \operatorname{rev}^{\#}([])] \\ & \xrightarrow{\overset{i}{\to}}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} \cdots \end{split}$$

Example

Sequence

$$\text{rev}([1,2]) \xrightarrow{\textbf{i}}_{\mathcal{R}_{\text{rev}}} \underline{\text{rev}([3])} +\!\!\!+ [1] \xrightarrow{\textbf{j}}_{\mathcal{R}_{\text{rev}}} (\text{rev}([]) +\!\!\!+ [2]) +\!\!\!+ [1] \xrightarrow{\textbf{j}}_{\mathcal{R}_{\text{rev}}} \dots \text{,}$$

translates to

Theorem (Soundness of DTs (Noschinski et. al, CADE'11))

$$rc_{\mathcal{R}}(n) \leq rc_{DT(\mathcal{R})/\mathcal{R}}^{\#}(n)$$
.

Example

Sequence

$$\text{rev}([1,2]) \xrightarrow{\textbf{i}}_{\mathcal{R}_{\text{rev}}} \underline{\text{rev}([3])} +\!\!\!+ [1] \xrightarrow{\textbf{i}}_{\mathcal{R}_{\text{rev}}} (\text{rev}([]) +\!\!\!+ [2]) +\!\!\!+ [1] \xrightarrow{\textbf{i}}_{\mathcal{R}_{\text{rev}}} \dots \text{,}$$

translates to

$$\begin{split} \operatorname{rev}^{\#}([1,2]) &\xrightarrow{i}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} C_1[\underline{\operatorname{rev}([3])} \; +^{\#} [1],\underline{\operatorname{rev}^{\#}([3])}] \\ &\xrightarrow{i}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} C_2[(\operatorname{rev}([]) \; +\! [2]) \; +^{\#} [1],\operatorname{rev}([]) \; +^{\#} [2],\operatorname{rev}^{\#}([])] \\ &\xrightarrow{i}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} \; \cdots \end{split}$$

Theorem (Soundness of DTs (Noschinski et. al, CADE'11))

$$rc_{\mathcal{R}}(n) \leq rc_{DT(\mathcal{R})/\mathcal{R}}^{\#}(n)$$
.

Question: What about inverse, i.e., completeness?

Example

Sequence

$$\texttt{rev}([1,2]) \xrightarrow{\textbf{i}}_{\mathcal{R}_{\texttt{rev}}} \underline{\texttt{rev}([3])} +\!\!\!+ [1] \xrightarrow{\textbf{i}}_{\mathcal{R}_{\texttt{rev}}} (\texttt{rev}([]) +\!\!\!+ [2]) +\!\!\!+ [1] \xrightarrow{\textbf{i}}_{\mathcal{R}_{\texttt{rev}}} \dots \textbf{,}$$

translates to

$$\begin{split} \operatorname{rev}^{\#}([1,2]) &\xrightarrow{i}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} C_1[\underline{\operatorname{rev}([3])} + ^{\#} [1], \underline{\operatorname{rev}^{\#}([3])}] \\ &\xrightarrow{i}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} C_2[(\operatorname{rev}([]) + [2]) + ^{\#} [1], \operatorname{rev}([]) + ^{\#} [2], \operatorname{rev}^{\#}([])] \\ &\xrightarrow{i}_{\operatorname{DT}(\mathcal{R}_{\operatorname{rev}})/\mathcal{R}_{\operatorname{rev}}} \cdots \end{split}$$

Theorem (Soundness of DTs (Noschinski et. al, CADE'11))

$$rc_{\mathcal{R}}(n) \leq rc_{\mathsf{DT}(\mathcal{R})/\mathcal{R}}^{\#}(n)$$
.

Question: What about inverse, i.e., completeness?

 $\star \operatorname{rc}_{\mathcal{R}}(n) = \operatorname{rc}_{\operatorname{DT}(\mathcal{R})/\mathcal{R}}^{\#}(n)$ if \mathcal{R} is confluent

Safe Reduction Pairs

Definition (Hirokawa & Moser, IJCAR'08)

- * Safe reduction pair is pair $(>, \geq)$ of orders on terms s.t.
 - > is closed under substitutions and monotone on compound symbols c_i introduced by WDPs/DTs
 - ≥ is a rewrite order
 - $\geq \cdot > \cdot \geq \subseteq >$
- \star compatible with \mathcal{P}/\mathcal{R} if $\mathcal{P} \subseteq \mathsf{>}$ and $\mathcal{R} \subseteq \mathsf{>}$.

Safe Reduction Pairs

Definition (Hirokawa & Moser, IJCAR'08)

- ★ Safe reduction pair is pair $(>, \geq)$ of orders on terms s.t.
 - > is closed under substitutions and monotone on compound symbols c_i introduced by WDPs/DTs
 - ≥ is a rewrite order
 - $\geq \cdot > \cdot \geq \subseteq >$
- **★** compatible with \mathcal{P}/\mathcal{R} if $\mathcal{P} \subseteq \mathcal{P}$ and $\mathcal{R} \subseteq \mathcal{P}$.

Theorem

If $(>, \geq)$ compatible with \mathcal{P}/\mathcal{R} then

$$\operatorname{rc}_{\mathscr{P}/\mathscr{R}}^{\#}(n) \leq \operatorname{dc}_{\succ,\mathscr{B}^{\#}}$$
 .

Note: As for complexity pairs, can be applied in iterative way

Experimental Evaluation

appendAll 12 $O(n^2)$ $O(n^2)$ $O(n^2)$ $O(n^2)$ $O(n)$ bfs 57 ? ? $O(n^1)$ $O(n)$ bft mmult 59 ? ? ? $O(n^3)$ bitonic 78 ? ? $O(n^4)$ bitvectors 148 ? ? ? $O(n^2)$ clevermmult 39 ? ? ? $O(n^2)$ duplicates 37 ? $O(n^2)$ $O(n^2)$ $O(n^2)$ dyade 31 ? ? $O(n^2)$ $O(n^2)$ dyade 31 ? ? $O(n^2)$ $O(n^2)$ eratosthenes 74 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ flatten 31 ? ? ? $O(n^2)$ insertionsort 36 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ lcs 87 ? ? ? $O(n^2)$ lcs	put	#rules	orders	iterative	DT+iterative+simps	T _C T
bfs 57 ? ? $O(n^1)$ $O(n)$ bft mmult 59 ? ? ? $O(n^3)$ bitonic 78 ? ? ? $O(n^4)$ bitvectors 148 ? ? ? $O(n^2)$ clevermmult 39 ? ? $O(n^2)$ $O(n^2)$ duplicates 37 ? $O(n^2)$ $O(n^2)$ $O(n^2)$ dyade 31 ? ? $O(n^2)$ $O(n^2)$ eratosthenes 74 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ flatten 31 ? ? $O(n^2)$ $O(n^2)$ insertionsort 36 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ lcs 87 ? ? $O(n^2)$ matrix 74 ? ? $O(n^3)$ mergesort 35 ? ? $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$ $O(n^2)$	pendAll	12	$O(n^2)$	$O(n^2)$	$O(n^2)$	<i>O</i> (<i>n</i>)
bft mmult 59 ? ? ? $O(n^3)$ bitonic 78 ? ? ? $O(n^4)$ bitvectors 148 ? ? ? $O(n^2)$	S	57	?	?	$O(n^1)$	O(n)
bitvectors 148 ? ? ? $O(n^2)$ clevermmult 39 ? ? $O(n^2)$ $O(n^2)$ $O(n^2)$ duplicates 37 ? $O(n^2)$ $O(n^2)$ $O(n^2)$ dyade 31 ? ? $O(n^2)$ $O(n^2)$ eratosthenes 74 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ flatten 31 ? ? ? $O(n^2)$ insertionsort 36 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ listsort 56 ? ? ? $O(n^2)$ lcs 87 ? ? $O(n^2)$ matrix 74 ? ? $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$ $O(n^2)$	t mmult	59	?	?	?	
clevermmult 39 ? ? $O(n^2)$ $O(n^2)$ duplicates 37 ? $O(n^2)$ $O(n^2)$ $O(n^2)$ dyade 31 ? ? $O(n^2)$ $O(n^2)$ eratosthenes 74 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ flatten 31 ? ? ? $O(n^2)$ insertionsort 36 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ listsort 56 ? ? ? $O(n^2)$ lcs 87 ? ? $O(n^2)$ matrix 74 ? ? $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$ $O(n^2)$	tonic	78	?	?	?	$O(n^4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	tvectors	148	?	?	?	$O(n^2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	evermmult	39	?	?	?	$O(n^2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ıplicates	37	?	$O(n^2)$		$O(n^2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ade	31	?	?	$O(n^2)$	$O(n^2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atosthenes	74	?	$O(n^3)$	$O(n^2)$	$O(n^2)$
listsort 56 ? ? ? $O(n^2)$ lcs 87 ? ? $O(n^2)$ matrix 74 ? ? ? $O(n^3)$ mergesort 35 ? ? ? $O(n^3)$ $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$	atten	31	?	?	?	
listsort 56 ? ? ? $O(n^2)$ lcs 87 ? ? $O(n^2)$ matrix 74 ? ? ? $O(n^3)$ mergesort 35 ? ? ? $O(n^3)$ $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$	sertionsort	36	?	$O(n^3)$	$O(n^2)$	$O(n^2)$
matrix 74 ? ? ? $O(n^3)$ mergesort 35 ? ? $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$ $O(n^2)$	tsort	56	?	?	?	
mergesort 35 ? ? ? $O(n^3)$ minsort 26 ? $O(n^3)$ $O(n^2)$	5	87	?	?	?	$O(n^2)$
minsort 26 ? $O(n^3)$ $O(n^2)$	atrix	74	?	?	?	$O(n^3)$
minsort 26 ? $O(n^3)$ $O(n^2)$ $O(n^2)$ aueue 35 ? ? ? $O(n^5)$		35	?	?	?	$O(n^3)$
queue 35 ? ? ? $O(n^5)$	insort	26	?	$O(n^3)$	$O(n^2)$	$O(n^2)$
		35	?	?	?	$O(n^5)$
quicksort 46 ? ? $O(n^2)$		46	?	?	?	$O(n^2)$
rational Potential 14 $O(n)$ $O(n)$ $O(n^1)$	tionalPotential	14	O(n)	O(n)	$O(n^1)$	
splitandsort 70 ? ? $O(n^3)$		70	?	?	?	
subtrees 8 ? $O(n^2)$ $O(n^2)$		8	?	$O(n^2)$	$O(n^2)$	$O(n^2)$
tuples 33 ? ? ?	ples	33	?	?	?	?

Figure: Analysis of translated resource aware ML programs.

Case Study: TcT

- ★ complexity problems and processors
- ★ complexity processors
 - dependency graph decomposition
 - usable rules
 - complexity pairs & relative rewriting

Tyrolean Complexity Tool _____

2008	version 1.0 extension to termination prover T₁ 4 ★ 4 dedicated complexity techniques (POP*, WDPs, safe reduction pairs, usable rules)
2009	version 1.5 first dedicated implementation ★ 9 methods implemented
2013	version 2.0 Gödel award at FLOC Olympic Games ★ 23 methods implemented ★ modular complexity framework
2015	version 3.3 current version ★ certification support through CeTA ★ frontends for functional and imperative programs

Complexity Framework Underlying TCT

- 1. complexity problem is tuple $\mathcal{P} = \langle S, W, Q, \mathcal{T} \rangle$
 - S, W and Q define rewrite relation $\xrightarrow{Q}_{S \cup W}$ of \mathcal{P}
 - \mathcal{T} is set of starting terms

Complexity Framework Underlying TCT

- 1. complexity problem is tuple $\mathcal{P} = \langle S, W, Q, \mathcal{T} \rangle$
 - S, W and Q define rewrite relation $\xrightarrow{Q}_{S \cup W}$ of P
 - \mathcal{T} is set of starting terms
- 2. complexity function of \mathcal{P} is

$$\operatorname{cp}_{\mathscr{P}}(n) \triangleq \operatorname{dc}_{\underline{\mathscr{O}}_{\mathcal{S}/W},\mathcal{T}}(n)$$
,

Complexity Framework Underlying TCT

- 1. complexity problem is tuple $\mathcal{P} = \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$
 - S, W and Q define rewrite relation $\xrightarrow{Q}_{S \cup W}$ of P
 - $\mathcal T$ is set of starting terms
- 2. complexity function of \mathcal{P} is

$$\operatorname{cp}_{\mathscr{P}}(n) \triangleq \operatorname{dc}_{\underline{\mathscr{O}}_{\mathcal{S}/W},\mathcal{T}}(n)$$
,

3. complexity processor is inference rule

$$\frac{\vdash \mathcal{P}_1 \colon f_1 \quad \cdots \quad \vdash \mathcal{P}_n \colon f_n}{\vdash \mathcal{P} \colon f}$$

- judgement + \mathcal{P} : f valid if $cp_{\mathcal{P}}(n) \in O(f(n))$
- processor sound if validity of judgements preserved

Complexity Framework Underlying TCT

- 1. complexity problem is tuple $\mathcal{P} = \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$
 - S, W and Q define rewrite relation $\xrightarrow{Q}_{S \cup W}$ of P
 - \mathcal{T} is set of starting terms
- 2. complexity function of \mathcal{P} is

$$\operatorname{cp}_{\mathscr{P}}(n) \triangleq \operatorname{dc}_{\underline{\mathscr{Q}}_{S/W},\mathcal{T}}(n)$$
,

3. complexity processor is inference rule

$$\frac{\vdash \mathcal{P}_1 \colon f_1 \quad \cdots \quad \vdash \mathcal{P}_n \colon f_n}{\vdash \mathcal{P} \colon f}$$

- judgement $\vdash \mathcal{P}$: f valid if cp_P(n) ∈ O(f(n))
- processor sound if validity of judgements preserved
- 4. complexity proof is deduction using sound processors and axiom

$$\vdash \langle \emptyset, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle : f$$

Runtime Complexity Proof Search in TCT

Runtime Complexity Proof Search in TCT

Canonical Complexity Problems

Definition (canonical complexity problem)

Let ${\mathcal R}$ be a TRS over terms ${\mathcal T}$ and basic terms ${\mathcal B}$

	full	innermost
derivational	$\langle {\color{red} {\cal R}}, {\color{olive} {\it \varnothing}}, {\color{olive} {\it \varnothing}}, {\color{olive} {\it T}} angle$	$\langle \mathcal{R}, \varnothing, \mathcal{R}, \mathcal{T} \rangle$
runtime	$\langle \mathcal{R}, \varnothing, \varnothing, \mathcal{B} \rangle$	$\langle \mathcal{R}, \varnothing, \mathcal{R}, \mathcal{B} \rangle$

Runtime Complexity Proof Search in TCT

Dependency Tuples in TCT

Theorem (Dependency Tuple Transformation)

The following processor is sound

$$\frac{\vdash \langle \mathsf{DT}(\mathcal{S}), \mathsf{DT}(\mathcal{W}) \cup \mathcal{S} \cup \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f \quad \mathsf{NF}(\mathcal{Q}) \subseteq \mathsf{NF}(\mathcal{S} \cup \mathcal{W})}{\vdash \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{B} \rangle \colon f} \quad \mathsf{DT}$$

Example: Initial IRC Problem

current: $\langle S, W, Q, \mathcal{B} \rangle$

$$\mathcal{S} \qquad \qquad [] + ys \to ys \qquad \qquad \mathbf{rev}([]) \to []$$

$$(x :: xs) + ys \to x :: (xs + ys) \qquad \qquad \mathbf{rev}(x :: xs) \to \mathbf{rev}(xs) + [x]$$

W \emptyset

Example: DT Transformation

current: $\langle S, W, Q, \mathcal{B}^{\#} \rangle$

$$\mathcal{S}$$
 [] $+^{\#} ys \to c_0$ $\text{rev}^{\#}([]) \to c_0$ $(x :: xs) +^{\#} ys \to c_1(xs +^{\#} ys)$ $\text{rev}^{\#}(x :: xs) \to c_2(\text{rev}(xs) +^{\#} [x], \text{rev}^{\#}(xs))$

$$\mathcal{W}$$
 $[] \# ys \rightarrow ys$ $\operatorname{rev}([]) \rightarrow []$ $(x :: xs) \# ys \rightarrow x :: (xs \# ys)$ $\operatorname{rev}(x :: xs) \rightarrow \operatorname{rev}(xs) \# [x]$

Runtime Complexity Proof Search in TCT

Complexity Pairs & Relative Rewriting

Theorem (Relative Decomposition Processor)

The following processor is sound:

$$\frac{\vdash \langle \mathcal{S}_1, \mathcal{S}_2 \cup \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon f \quad \vdash \langle \mathcal{S}_2, \mathcal{S}_1 \cup \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon g}{\vdash \langle \mathcal{S}_1 \cup \mathcal{S}_2, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon f + g} \text{ RD}$$

Theorem (Complexity Pair Processor)

The following processor is sound:

$$\frac{\mathcal{W} \subseteq \mathbb{R} \quad \mathcal{S} \subseteq \mathcal{F}}{\vdash \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon \mathsf{dc}_{\mathbb{R}, \mathcal{T}}} \mathsf{CP}$$

where (\geq, \succ) is (ν, μ) -monotone complexity pair with

$$\overset{\underline{Q}}{\longrightarrow} ^*_{S \cup \mathcal{W}}(\mathcal{T}) \subseteq \mathcal{T}_{\nu}(\overset{\underline{Q}}{\longrightarrow}_{\mathcal{W}}) \qquad \qquad \overset{\underline{Q}}{\longrightarrow} ^*_{S \cup \mathcal{W}}(\mathcal{T}) \subseteq \mathcal{T}_{\mu}(\overset{\underline{Q}}{\longrightarrow}_{S}) \; .$$

★ CP-processor encompasses safe reduction pairs Question: why?

Runtime Complexity Proof Search in TCT

Dependency Graphs

Definition (dependency graph (DG))

dependency graph of (DP) problem $\mathcal{P} = \langle S, W, Q, T \rangle$ is graph where

- \star nodes are dependency pairs of ${\cal P}$
- * there is an edge labeled i from $s \to c_k(t_1, \ldots, t_k)$ to $u \to c_l(v_1, \ldots, v_l)$ if $t_i \sigma \xrightarrow{Q}_{S \cup W}^* u \tau$ holds for some substitutions σ, τ

Dependency Graphs

Definition (dependency graph (DG))

dependency graph of (DP) problem $\mathcal{P} = \langle S, W, Q, T \rangle$ is graph where

- \star nodes are dependency pairs of ${\cal P}$
- * there is an edge labeled i from $s \to c_k(t_1, \ldots, t_k)$ to $u \to c_l(v_1, \ldots, v_l)$ if $t_i \sigma \xrightarrow{Q}_{S \cup W}^* u \tau$ holds for some substitutions σ, τ
- ★ DG reflects order of dependency pair application
- ★ not computable in general ⇒ over-approximations exist

Example: Dependency Graph

current: $\langle S, W, Q, \mathcal{B}^{\#} \rangle$

```
S (1) [] \# ys \to c_0
                                    (3) rev^{\#}([]) \rightarrow c_0
(2) (x::xs) + \# ys \to c_1(xs + \# ys)(4) rev^{\#}(x::xs) \to c_2(rev(xs) + \# [x], rev^{\#}(xs))
 W
                                                             rev([]) \rightarrow []
           [] + ys \rightarrow ys
          (x::xs) + ys \rightarrow x::(xs + ys) rev(x::xs) \rightarrow rev(xs) + [x]
               [] + ys \rightarrow ys
          (x::xs) + ys \rightarrow x:(xs + ys)
                                                          ev(x::xs) \rightarrow rev(xs) + [x]
```

DG Decomposition: Intuitions

$$\frac{\vdash \langle \{ \circlearrowleft, @ \}, \{ \circlearrowleft, \emptyset \} \cup \mathcal{W}, \textcolor{red}{Q}, \mathcal{B}^{\#} \rangle \colon f \quad \vdash \langle \{ \circlearrowleft, \emptyset \}, \{ \circlearrowleft, @ \} \cup \mathcal{W}, \textcolor{red}{Q}, \mathcal{B}^{\#} \rangle \colon g}{\vdash \langle \{ \circlearrowleft, \emptyset \} \cup \{ \circlearrowleft, \emptyset \}, \mathcal{W}, \textcolor{red}{Q}, \mathcal{B}^{\#} \rangle \colon f + g} \; \mathsf{RD}$$

Invitation inventeurs du monde numérique

DG Decomposition: Intuitions

$$\frac{\vdash \langle \{\textcircled{0}, \textcircled{2}\}, \textcolor{red}{C} \cup \textcolor{blue}{W, \textcolor{red}{Q}, \mathcal{B}^{\#}} \rangle \colon f \quad \vdash \langle \{\textcircled{3}, \textcircled{4}\}, \textcolor{blue}{W, \textcolor{red}{Q}, \mathcal{B}^{\#}} \rangle \colon g}{\vdash \langle \{\textcircled{3}, \textcircled{4}\} \cup \{\textcircled{0}, \textcircled{2}\}, \textcolor{blue}{W, \textcolor{red}{Q}, \mathcal{B}^{\#}} \rangle \colon f \times g} \ \mathsf{DGD}$$

$$\frac{\vdash \langle \{\textcircled{0}, \textcircled{2}\}, \textcolor{red}{\mathcal{C}} \cup \textcolor{blue}{\mathcal{W}, \textcolor{red}{\mathcal{Q}}, \mathcal{B}^{\#}} \rangle \colon f \quad \vdash \langle \{\textcircled{3}, \textcircled{4}\}, \textcolor{blue}{\mathcal{W}, \textcolor{red}{\mathcal{Q}}, \mathcal{B}^{\#}} \rangle \colon g}{\vdash \langle \{\textcircled{3}, \textcircled{4}\} \cup \{\textcircled{0}, \textcircled{2}\}, \textcolor{blue}{\mathcal{W}, \textcolor{red}{\mathcal{Q}}, \mathcal{B}^{\#}} \rangle \colon f \times g} \ \mathsf{DGD}$$

$$C_{(4 \xrightarrow{1} 2)} \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + +^{\#}[x] \qquad (4 \xrightarrow{2} 4) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}^{\#}(xs)$$

Example: DG Decomposition

current: $\langle S_{\parallel}, C \cup W, Q, \mathcal{B}^{\#} \rangle$ and $\langle S_{\uparrow}, W, Q, \mathcal{B}^{\#} \rangle$

$$S_{\parallel}$$
(1) []++# $ys \rightarrow c_0$
(2) $(x :: xs)$ ++# $ys \rightarrow c_1(xs++#ys)$

(1)
$$[]+\# ys \to c_0$$
 (3) $rev^\#([]) \to c_0$ (2) $(x:: xs)+\# ys \to c_1(xs+\# ys)$ (4) $rev^\#(x:: xs) \to c_2(rev(xs)+\# [x], rev^\#(xs))$

$$C \xrightarrow{\text{rev}^{\#}(x :: xs) \to \text{rev}(xs) + \#[x]} \leftarrow$$

$$\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs) \leftarrow$$

W

$$[] + ys \rightarrow ys$$

$$\mathtt{rev}([\,]) \to [\,]$$

$$(x::xs) + ys \rightarrow x::(xs + ys)$$

$$\mathtt{rev}(x :: xs) \to \mathtt{rev}(xs) \, +\!\!\!+ \, [x]$$

$$Q \qquad [] + ys \rightarrow ys$$
$$(x :: xs) + ys \rightarrow x :: (xs + ys)$$

$$rev([]) \to []$$

$$rev(x:: xs) \to rev(xs) + [x]$$

DG Decomposition

Theorem (DG Decomposition)

The following processor is sound:

$$\frac{\vdash \langle \mathcal{S}_{\Downarrow}, \mathsf{sep}(\mathcal{S}_{\Uparrow} \cup \mathcal{W}_{\Uparrow}) \cup \mathcal{W}_{\Downarrow} \cup \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f \quad \vdash \langle \mathcal{S}_{\Uparrow}, \mathcal{W}_{\Uparrow} \cup \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon g}{\vdash \langle \mathcal{S}_{\Downarrow} \cup \mathcal{S}_{\Uparrow}, \mathcal{W}_{\Downarrow} \uplus \mathcal{W}_{\Uparrow} \cup \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f \times g}$$

where

- \star $S_{\parallel}, S_{\uparrow}, W_{\parallel}, W_{\uparrow}$ are DPs:
 - 1. $S_{\parallel} \cup W_{\parallel}$ is forward closed set of DPs in the DG
 - 2. DG-predecessors of $S_{\parallel} \cup W_{\parallel}$ are in $S_{\uparrow\uparrow}$
- ★ $sep(\mathcal{R}) \triangleq \{l \rightarrow r_i \mid l \rightarrow c_k(r_1, ..., r_k) \in \mathcal{R}\}$

Runtime Complexity Proof Search in TCT

Simplifications: Guided by DG

Theorem (simplify RHSs, remove weak suffix, predecessor estimation)

The following processors are sound:

★ Simplify RHSs:

$$\frac{\vdash \langle \mathsf{simp}(\mathcal{S}), \mathsf{simp}(\mathcal{W}), \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f}{\vdash \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f} \mathsf{SIMP-RHS}$$

where simp drops r_i if DP $l \to c_k(r_1, ..., r_i, ..., r_k)$ has no outgoing edge labeled by i

* Remove weak suffix:

$$\frac{\mathcal{W}_{\Downarrow} \text{ forward-closed DPs} \qquad \vdash \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f}{\vdash \langle \mathcal{S}, \mathcal{W} \uplus \mathcal{W}_{\Downarrow}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f} \text{ RWS}$$

* Predecessor estimation:

$$\frac{\textit{DG-predecessors of } \mathcal{S}_1 \subseteq \mathcal{S}_2 + \langle \mathcal{S}_2, \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f}{+ \langle \mathcal{S}_1 \cup \mathcal{S}_2, \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle \colon f} \text{ PE}$$

Simplifications: Usable Rules

Theorem (Usable Rules Processor, Semantic Version)

Usable rules $\mathcal{U}_{\mathcal{P}}(\mathcal{R}) \subseteq \mathcal{R}$ of TRS \mathcal{R} wrt. $\mathcal{P} = \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$ are those that can be applied in \mathcal{P} -derivation from \mathcal{T} . The following processor is sound:

$$\frac{\vdash \langle \mathcal{U}_{\mathcal{P}}(\mathcal{S}), \mathcal{U}_{\mathcal{P}}(\mathcal{W}), \mathcal{Q}, \mathcal{T} \rangle \colon f}{\vdash \langle \mathcal{S}, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon f} \text{ UR}$$

Notes:

- ★ non-usable rules ≈ dead code
- ★ usable rules not computable in general
- ★ over-approximated, e.g. using tree automata or via usable symbols
 - $f \triangleright g \text{ iff } f(\vec{l}) \rightarrow r \in \mathcal{P} \text{ and } g \in \mathcal{D}(r)$
 - usable symbols of terms \mathcal{T} are $\mathcal{US}_{\mathcal{P}}(\mathcal{T}) \triangleq \{g \mid \exists f \in \mathcal{D}(\mathcal{T}). f \triangleright^* g\}$
 - approximated usable rules are $\mathcal{U}_{\mathcal{P}}(\mathcal{R}) \triangleq \{f(\vec{l}) \rightarrow r \in \mathcal{R} \mid f \in \mathcal{US}_{\mathcal{P}}(\mathcal{T})\}$

current: $\langle S_{\parallel}, C \cup W, Q, \mathcal{B}^{\#} \rangle$ and $\langle S_{\uparrow}, W, Q, \mathcal{B}^{\#} \rangle$

 $\mathcal{S}_{\mathbb{L}}$ (1) $[]++^{\#}ys \to c_0$

(2) $(x :: xs) + \# ys \to c_1(xs + \# ys)$ (4) $rev^{\#}(x :: xs) \to c_1(rev(xs) + \# [x], rev^{\#}(xs))$

(3) $rev^{\#}([]) \rightarrow c_0$

 $(4a) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + \#[x]$

(4b) $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$

W $[] + ys \rightarrow ys$ $(x::xs) + ys \rightarrow x::(xs + ys)$

 $rev([]) \rightarrow []$ $rev(x::xs) \rightarrow rev(xs) + [x]$

 $rev([]) \rightarrow []$

Q $[] + ys \rightarrow ys$ $(x::xs) + ys \rightarrow x::(xs + ys)$

 $rev(x::xs) \rightarrow rev(xs) + [x]$

current: $\langle S_{\parallel}, C \cup W, Q, \mathcal{B}^{\#} \rangle$ and $\langle S_{\uparrow}, W, Q, \mathcal{B}^{\#} \rangle$

 $\mathcal{S}_{\mathbb{L}}$

(2) $(x :: xs) + \# ys \to c_1(xs + \# ys)$ (4) $rev^{\#}(x :: xs) \to c_1(rev(xs) + \# [x], rev^{\#}(xs))$

(1) $[]++^{\#}ys \to c_0$

 $(4a) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + \#[x]$

(4b) $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$

W $[] + ys \rightarrow ys$

 $(x::xs) + ys \rightarrow x::(xs + ys)$

 $[] + ys \rightarrow ys$ $rev([]) \rightarrow []$ (x::xs) + y

(3) $rev^{\#}([]) \rightarrow c_0$

 $rev([]) \rightarrow []$ $rev(x::xs) \rightarrow rev(xs) ++ [x]$

 $\mathbf{v}(xs) + [x]$ predecessor estimation

current: $\langle S_{\parallel}, C \cup W, Q, \mathcal{B}^{\#} \rangle$ and $\langle S_{\uparrow}, W, Q, \mathcal{B}^{\#} \rangle$

 \mathcal{S}_{II}

(2) $(x::xs) + \# ys \to c_1(xs + \# ys)$ (4) $rev^{\#}(x::xs) \to c_2(rev(xs) + \# [x], rev^{\#}(xs))$

 $(4a) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + \#[x]$

(4b) $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$

W $[] + ys \rightarrow ys$

 $(x::xs) + ys \rightarrow x::(xs + ys)$

 $rev([]) \rightarrow []$ $rev(x::xs) \rightarrow rev(xs) ++ [x]$

 $[] + ys \rightarrow ys$ $rev([]) \rightarrow []$ (x::xs) + y

v(xs) + [x]simplify RHSs

current: $\langle \mathcal{S}_{\parallel}, \mathcal{C} \cup \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle$ and $\langle \mathcal{S}_{\Uparrow}, \mathcal{W}, \mathcal{Q}, \mathcal{B}^{\#} \rangle$

 $\mathcal{S}_{\mathbb{H}}$ $\mathcal{S}_{\mathbb{H}}$

(2) $(x :: xs) + \# ys \to c_1(xs + \# ys)$

C(4a) $\operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + \#[x]$

(4b) $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$

 $W \qquad [] + ys \rightarrow ys$ $(x :: xs) + ys \rightarrow x :: (xs + ys)$

 $Q \qquad [] + ys \rightarrow ys$

rev([]) → []

(x::xs) + y usable rules

 $(4) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{C}_{1}(\operatorname{rev}^{\#}(xs))$

 $\mathtt{rev}([]) \rightarrow []$ $\mathtt{rev}(x :: xs) \rightarrow \mathtt{rev}(xs) +++ [x]$

v(xs) + [x]

current: $\langle S_{\parallel}, C \cup W, Q, \mathcal{B}^{\#} \rangle$ and $\langle S_{\uparrow}, \emptyset, Q, \mathcal{B}^{\#} \rangle$

4b 2

 \mathcal{S}_{\Downarrow}

 \mathcal{S}_{\Uparrow}

(2) $(x :: xs) + \# ys \to c_1(xs + \# ys)$

 $(4) \operatorname{rev}^{\#}(x :: xs) \to \mathsf{c}_1(\operatorname{rev}^{\#}(xs))$

(

 $\text{(4a) } \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + \!\!\!\!+^{\#}[x]$

(4b) $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$

W

 $[] + ys \rightarrow ys$ $(x :: xs) + ys \rightarrow x :: (xs + ys)$

 $\mathtt{rev}([]) \to []$ $\mathtt{rev}(x :: xs) \to \mathtt{rev}(xs) + [x]$

rev([]) → []

Q

 $[] + ys \rightarrow ys$ $(x :: xs) + ys \rightarrow x :: (xs + ys)$

 $rev(x::xs) \rightarrow rev(xs) ++ [x]$

$$\frac{\vdash \langle \textit{(2)}, \textit{C} \cup \textit{R}_{\text{rev}}, \textit{R}_{\text{rev}}, \textit{B}^{\#} \rangle : ?}{\vdash \langle \textit{S}_{\Downarrow}, \textit{C} \cup \textit{R}_{\text{rev}}, \textit{R}_{\text{rev}}, \textit{B}^{\#} \rangle : ?} \text{SIMPS} \quad \frac{\vdash \langle \textit{(4)}, \textit{\emptyset}, \textit{R}_{\text{rev}}, \textit{B}^{\#} \rangle : ?}{\vdash \langle \textit{S}_{\Uparrow}, \textit{R}_{\text{rev}}, \textit{R}_{\text{rev}}, \textit{B}^{\#} \rangle : ?} \text{DGD} \\ \frac{\vdash \langle \textit{DT}(\textit{R}_{\text{rev}}), \textit{R}_{\text{rev}}, \textit{R}_{\text{rev}}, \textit{B}^{\#} \rangle : ?}{\vdash \langle \textit{R}_{\text{rev}}, \textit{\emptyset}, \textit{R}_{\text{rev}}, \textit{B} \rangle : ?} \text{DT}$$

(2)
$$(x :: xs) + \# ys \to c_1(xs + \# ys)$$
 (4) $rev^{\#}(x :: xs) \to c_1(rev^{\#}(xs))$

C

(4a) $rev^{\#}(x :: xs) \to rev(xs) + \# [x]$

(4b) $rev^{\#}(x :: xs) \to rev^{\#}(xs)$

$$\begin{array}{lll} \mathcal{R}_{\text{rev}} & & [\,] \, +\!\!\!\!+ \, ys \to ys & & \text{rev}([\,]) \to [\,] \\ & (x :: xs) \, +\!\!\!\!\!+ \, ys \to x :: (xs +\!\!\!\!\!+ \, ys) & & \text{rev}(x :: xs) \to \text{rev}(xs) \, +\!\!\!\!\!+ \, [x] \end{array}$$

```
[]_{\mathcal{A}} \triangleq 0
            (2) \subseteq >_{\mathcal{A}} \mathcal{R}_{rev} \subseteq \geq_{\mathcal{A}}
                                                                                                                                                                    x ::_{\mathcal{A}} xs \triangleq 1 + xs
  \frac{\Gamma \setminus \langle (2), C \cup \mathcal{R}_{rev}, \mathcal{R}_{rev}, \mathcal{B}^{\#} \rangle : n}{\Gamma \setminus \langle \mathcal{S}_{\parallel}, C \cup \mathcal{R}_{rev}, \mathcal{R}_{rev}, \mathcal{B}^{\#} \rangle : n} PI \longrightarrow SIMPS
                                                                                                                                                              rev_{\mathcal{A}}(xs) \triangleq xs
                                                                                                                                                             xs +_{\mathcal{A}} ys \triangleq xs + ys
                                                                                                                                                          rev^{\#}_{\mathcal{A}}(xs) \triangleq xs
                                                         \vdash \langle \mathsf{DT}(\mathcal{R}_{\mathsf{rev}}), \mathcal{R}_{\mathsf{rev}}, \mathcal{R}_{\mathsf{rev}}, \mathcal{B} \rangle
                                                                                                                                                         xs + \#_{\mathcal{A}} ys \triangleq xs
                                                                       \vdash \langle \mathcal{R}_{rev}, \varnothing, \mathcal{R}_{rev}, \mathcal{B} \rangle:
                                                                                                                                                                            c_1(t) \triangleq t
 (2) (x :: xs) + \# ys \to c_1(xs + \# ys)
                                                                                                                        (4) rev^{\#}(x :: xs) \to c_1(rev^{\#}(xs))
(4a) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}(xs) + \#[x]
```

$$\mathcal{R}_{\mathsf{rev}}$$
 [] $\#\ ys \to ys$
 $(x :: xs) \ \#\ ys \to x :: (xs \ \#\ ys)$

(4b) $\operatorname{rev}^{\#}(x::xs) \to \operatorname{rev}^{\#}(xs)$

$$rev([]) \rightarrow []$$

 $rev(x::xs) \rightarrow rev(xs) ++ [x]$

- \star normal($rev^{\#}$) $\triangleq \{1\}$
- $\star \text{ rev}^{\#} > C_1$
- ★ recursion depth 1

$$\vdash \overline{(\red{(4)}, \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon \mathsf{n}} \mathsf{S}$$

DGD

IMPS
$$\frac{\frac{(4), \emptyset, \mathcal{R}_{rev}, \mathcal{B}^{\#}): n}{\vdash \langle \mathcal{S}_{\uparrow}, \mathcal{R}_{rev}, \mathcal{R}_{rev}, \mathcal{B}^{\#} \rangle: n}} SPOP^{*}$$

$$\frac{\vdash \langle \mathsf{DT}(\mathcal{R}_{\mathsf{rev}}), \mathcal{R}_{\mathsf{rev}}, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon ?}{\vdash \langle \mathcal{R}_{\mathsf{rev}}, \emptyset, \mathcal{R}_{\mathsf{rev}}, \mathcal{B} \rangle \colon ?}$$

$$\vdash \langle \mathcal{R}_{rev}, \varnothing, \mathcal{R}_{rev}, \mathcal{B} \rangle$$
: ?

(2)
$$(x :: xs) + \# ys \to c_1(xs + \# ys)$$

$$(4) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{c}_1(\operatorname{rev}^{\#}(xs))$$

(4a)
$$rev^{\#}(x :: xs) \to rev(xs) ++ {\#}[x]$$

$$(4b) \operatorname{rev}^{\#}(x :: xs) \to \operatorname{rev}^{\#}(xs)$$

$$\mathcal{R}_{\mathsf{rev}}$$
 [] $\# ys \to ys$
 $(x :: xs) \# ys \to x :: (xs \# ys)$

$$\mathsf{rev}([]) \to []$$

$$rev(x::xs) \rightarrow rev(xs) ++ [x]$$

 $\mathcal{R}_{\mathsf{rev}}$ [] $+\!\!\!+ ys \rightarrow ys$

 $(x::xs) + ys \rightarrow x::(xs + ys)$

```
 \frac{ (2) \subseteq >_{\mathcal{A}} \quad \mathcal{R}_{\mathsf{rev}} \subseteq \geq_{\mathcal{A}} }{ \vdash \langle (2), C \cup \mathcal{R}_{\mathsf{rev}}, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} \underbrace{ \mathsf{PI} \atop \vdash \langle (4), \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} }_{ \vdash \langle (4), \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} \underbrace{ \mathsf{SPOP}^{*} \atop \vdash \langle (4), \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} }_{ \vdash \langle (4), \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} \underbrace{ \mathsf{SPOP}^{*} \atop \vdash \langle (4), \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} }_{\mathsf{DGD}} \underbrace{ \mathsf{DGD}}_{ \vdash \langle \mathcal{R}_{\mathsf{rev}}, \varnothing, \mathcal{R}_{\mathsf{rev}}, \mathcal{R}_{\mathsf{rev}}, \mathcal{B}^{\#} \rangle \colon n} }_{\mathsf{DGD}} \underbrace{ \mathsf{DGD}}_{ \mathsf{DGD}}
```

(2)
$$(x :: xs) + \# ys \to c_1(xs + \# ys)$$
 (4) $rev^{\#}(x :: xs) \to c_1(rev^{\#}(xs))$

C

(4a) $rev^{\#}(x :: xs) \to rev(xs) + \# [x]$

(4b) $rev^{\#}(x :: xs) \to rev^{\#}(xs)$

 $rev([]) \rightarrow []$

 $rev(x::xs) \rightarrow rev(xs) + [x]$

Implementation notes

★ implementing complexity pairs

Complexity Pairs in TCT

★ polynomial, matrix, arctic interpretations and (small) polynomial path orders (modulo argument filtering) implemented in TCT

Complexity Pairs in TCT

- polynomial, matrix, arctic interpretations and (small) polynomial path orders (modulo argument filtering) implemented in TcT
- ⋆ RD-processor, CP-processor and UR-processor combined in one

$$\frac{\mathcal{U}_{\mathcal{P},>}(\mathcal{S}_1) \subseteq \succ \quad \mathcal{U}_{\mathcal{P},>}(\mathcal{S}_2 \cup \mathcal{W}) \subseteq \succsim \quad \vdash \langle \mathcal{S}_2, \mathcal{S}_1 \cup \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon g}{\vdash \langle \mathcal{S}_1 \cup \mathcal{S}_2, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon \mathsf{dc}_{\succ,\mathcal{T}} + g}$$

- usable rules $\mathcal{U}_{\mathcal{P},>}$ take problem \mathcal{P} and order > into account
- "function usable" only if occurs in right-hand-side "inspected by" (\succ,\gtrsim)
- specific definition depends on kind of order

Complexity Pairs in TCT

- ⋆ polynomial, matrix, arctic interpretations and (small) polynomial path orders (modulo argument filtering) implemented in TcT
- ⋆ RD-processor, CP-processor and UR-processor combined in one

$$\frac{\mathcal{U}_{\mathcal{P},>}(\mathcal{S}_1) \subseteq \succ \quad \mathcal{U}_{\mathcal{P},>}(\mathcal{S}_2 \cup \mathcal{W}) \subseteq \succsim \quad \vdash \langle \mathcal{S}_2, \mathcal{S}_1 \cup \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon g}{\vdash \langle \mathcal{S}_1 \cup \mathcal{S}_2, \mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle \colon \mathsf{dc}_{\succ,\mathcal{T}} + g}$$

- usable rules $\mathcal{U}_{\mathcal{P},>}$ take problem \mathcal{P} and order > into account
- "function usable" only if occurs in right-hand-side "inspected by" (\succ, \gtrsim)
- specific definition depends on kind of order
- ★ search via encoding to SAT modulo theories (SMT)

Example: Synthesis PI

fix abstract shape of interpretations...

$$\mathbf{f}_{\mathcal{A}}(x) = \mathbf{c}_{\mathbf{f}}^{x} \cdot x + \mathbf{c}_{\mathbf{f}} \qquad \mathbf{g}_{\mathcal{A}}(x,y) = \mathbf{c}_{\mathbf{g}}^{xy} \cdot x \cdot y + \mathbf{c}_{\mathbf{g}}^{x} \cdot x + \mathbf{c}_{\mathbf{g}}^{y} \cdot y + \mathbf{c}_{\mathbf{g}}$$

...and lift algebraic operations and interpretation of terms:

$$\begin{split} & \llbracket \mathbf{f}(\mathbf{g}(x,y)) \rrbracket = \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^{xy} \cdot x \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^x \cdot x + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^y \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}} + \mathbf{c}_{\mathbf{f}} \\ & \llbracket \mathbf{f}(\mathbf{g}(x,y)) \rrbracket - \llbracket \mathbf{f}(x) \rrbracket = \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^{xy} \cdot x \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot (\mathbf{c}_{\mathbf{g}}^x - 1) \cdot x + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^y \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}} \end{split}$$

Example: Synthesis PI

fix abstract shape of interpretations...

$$\mathbf{f}_{\mathcal{A}}(x) = \mathbf{c}_{\mathbf{f}}^x \cdot x + \mathbf{c}_{\mathbf{f}} \qquad \mathbf{g}_{\mathcal{A}}(x,y) = \mathbf{c}_{\mathbf{g}}^{xy} \cdot x \cdot y + \mathbf{c}_{\mathbf{g}}^x \cdot x + \mathbf{c}_{\mathbf{g}}^y \cdot y + \mathbf{c}_{\mathbf{g}}$$

...and lift algebraic operations and interpretation of terms:

$$\begin{aligned} & [\![\mathbf{f}(\mathbf{g}(x,y))]\!] = \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^{xy} \cdot x \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^x \cdot x + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^y \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}} + \mathbf{c}_{\mathbf{f}} \\ & [\![\mathbf{f}(\mathbf{g}(x,y))]\!] - [\![\mathbf{f}(x)]\!] = \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^{xy} \cdot x \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot (\mathbf{c}_{\mathbf{g}}^x - 1) \cdot x + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^y \cdot y + \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}} \end{aligned}$$

 \star (weak) orientation of rule $f(l_1,\ldots,l_k) \to r$ expressible as

$$f(l_1,\ldots,l_k)\bowtie_{\mathcal{A}} r \triangleq \llbracket f(l_1,\ldots,l_k) \rrbracket_{\mathcal{A}} - \llbracket r \rrbracket_{\mathcal{A}} \bowtie 0$$

where $(\bowtie \in \{>_{\mathbb{N}}, \geq_{\mathbb{N}}\})$

approximated via absolute positiveness condition on coefficients

$$\begin{split} \llbracket \mathbf{f}(\mathbf{g}(x,y)) \rrbracket >_{\mathcal{A}} \llbracket \mathbf{f}(x) \rrbracket &= \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^{xy} \geq_{\mathbb{N}} 0 \land \mathbf{c}_{\mathbf{f}}^x \cdot (\mathbf{c}_{\mathbf{g}}^x - 1) \geq_{\mathbb{N}} 0 \land \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}}^y \geq_{\mathbb{N}} 0 \\ &\land \mathbf{c}_{\mathbf{f}}^x \cdot \mathbf{c}_{\mathbf{g}} \geq_{\mathbb{N}} 1 \end{split}$$

Example: Synthesis PI (II)

 \star μ -monotonicity of $f_{\mathcal{A}}$ encoded via

$$\mathsf{mono}(\mathtt{f}_{\mathcal{A}}, \boldsymbol{\mu}) \triangleq \bigwedge_{\substack{\mathbf{c}_{\mathtt{f}}^{\overline{x}} \in \mathsf{coeff}(\mathtt{f})}} \mathbf{c}_{\mathtt{f}}^{\overline{x}} \geq_{\mathbb{N}} 0 \land \bigwedge_{\substack{i \in \boldsymbol{\mu}(\mathtt{f})}} \mathbf{c}_{\mathtt{f}}^{x_{i}} \geq_{\mathbb{N}} 1$$

where
$$f_{\mathcal{A}}(x_1,\ldots,x_k) = \sum_{\overline{x} \subseteq \{x_1,\ldots,x_k\}} c_{\mathbf{f}}^{\overline{x}} \cdot \overline{x}$$

Example: Synthesis PI (II)

 \star μ -monotonicity of $f_{\mathcal{A}}$ encoded via

$$\mathsf{mono}(\mathtt{f}_{\mathcal{A}}, \boldsymbol{\mu}) \triangleq \bigwedge_{\substack{\mathbf{c}_{\mathtt{f}}^{\overline{x}} \in \mathsf{coeff}(\mathtt{f})}} \mathbf{c}_{\mathtt{f}}^{\overline{x}} \geq_{\mathbb{N}} 0 \land \bigwedge_{\substack{i \in \boldsymbol{\mu}(\mathtt{f})}} \mathbf{c}_{\mathtt{f}}^{x_{i}} \geq_{\mathbb{N}} 1$$

where
$$f_{\mathcal{A}}(x_1,\ldots,x_k)=\sum_{\overline{x}\subseteq\{x_1,\ldots,x_k\}} \mathsf{c}_{\mathbf{f}}^{\overline{x}}\cdot\overline{x}$$

 \star usable rules of $\mathcal R$ wrt. start terms $\mathcal T$ encoded with atoms $u_{l\to r}$ via

$$\mathsf{URs}(\mathcal{R},\mathcal{T}) \triangleq \bigwedge_{\substack{l \to r \in \mathcal{R} \\ \mathsf{rt}(l) \in \mathsf{Fun}(\mathcal{T})}} \mathsf{u}_{l \to r} \land \bigwedge_{\substack{l \to r \in \mathcal{R}}} (\mathsf{u}_{l \to r} \to \phi(r))$$

where

$$\phi(x) \triangleq \top$$

$$\phi(f(t_1, ..., t_k)) \triangleq \bigwedge_{l \to r \in \mathcal{R}, rt(l) = f} u_{l \to i} \land \bigwedge_{1 \le i \le k} (\pi(f, i) \to \phi(t_i)) \quad \pi(f, i) \triangleq \bigvee_{c_f^{\overline{x}} \in coeff(f), x_i \in \overline{x}} u_{l \to r} \land \int_{1 \le i \le k} u_{l \to r} \land \int_{1$$

Example: Synthesis PI (III)

 \star weak orientation of TRS $\mathcal R$ via

$$\operatorname{orient}(\mathcal{R}) \triangleq \bigwedge_{l \to r \in \mathcal{R}} \mathsf{u}_{l \to r} \to \llbracket l \rrbracket_{\mathcal{A}} - \llbracket r \rrbracket_{\mathcal{A}} \geq_{\mathbb{N}} m_{l \to r}$$

with fresh integer variables $m_{l \to r} \ge 0$ for each $l \to r \in \mathcal{R}$

Example: Synthesis PI (III)

 \star weak orientation of TRS $\mathcal R$ via

$$\operatorname{orient}(\mathcal{R}) \triangleq \bigwedge_{l \to r \in \mathcal{R}} \mathsf{u}_{l \to r} \to \llbracket l \rrbracket_{\mathcal{A}} - \llbracket r \rrbracket_{\mathcal{A}} \geq_{\mathbb{N}} \mathsf{m}_{l \to r}$$

with fresh integer variables $m_{l \to r} \ge 0$ for each $l \to r \in \mathcal{R}$

 \star extended RP processor for $\langle S, W, Q, T \rangle$ implementable as

$$\bigwedge_{\mathtt{f} \in \mathcal{F}} \mathsf{mono}(\mathtt{f}_{\mathcal{A}}, \mu \cup \nu) \wedge \mathsf{URs}(\underline{\mathcal{S}} \cup \mathcal{W}, \mathcal{T}) \wedge \mathsf{orient}(\underline{\mathcal{S}} \cup \mathcal{W}) \wedge \underline{\Phi}$$

– formula Φ enforces which rules in $\mathcal{R}\subseteq\mathcal{S}$ should be oriented strictly, e.g.,

$$\Phi \triangleq \bigwedge_{l \to r \in \mathcal{S}} m_{l \to r} \geq_{\mathbb{N}} 1 \quad \text{or} \quad \Phi \triangleq \bigvee_{l \to r \in \mathcal{S}} m_{l \to r} \geq_{\mathbb{N}} 1$$

- open sub-problem: $\langle S \setminus R, W \cup R, Q, T \rangle$ where R determined from assignment of variables $m_{l \to r}$

inventeurs du monde numérique

* TcT build on top of a modular framework for complexity analysis

- ⋆ TcT build on top of a modular framework for complexity analysis
- ★ decomposition techniques such as DG decomposition key to strength of analysis
- ultimately, analysis boils down to synthesising a "ranking function" (reduction orders) via SMT

- ⋆ TcT build on top of a modular framework for complexity analysis
- decomposition techniques such as DG decomposition key to strength of analysis
- ultimately, analysis boils down to synthesising a "ranking function" (reduction orders) via SMT
- currently, tools give asymptotic bounds, but more precise bounds could be extracted

- ★ TcT build on top of a modular framework for complexity analysis
- decomposition techniques such as DG decomposition key to strength of analysis
- ultimately, analysis boils down to synthesising a "ranking function" (reduction orders) via SMT
- ★ currently, tools give asymptotic bounds, but more precise bounds could be extracted
- * automated tools can treat non-trivial examples, fully automatically
- proofs requiring semantic arguments are beyond reach for fully automated analysis

inventeurs du monde numérique

Applications to Program Analysis

★ Case study: higher-order functional programs

Motivation

```
1 let (o) f g = fun z \rightarrow f (g z);;

2 let rec walk = function

3 | [] \rightarrow id

4 | x::xs \rightarrow walk xs \circ (fun ys \rightarrow x::ys);;

5 let rev l = walk l [];;
```

Goal: Runtime Complexity Analysis of Higher-Order Programs

Main Challenge: applied functions not statically known

Direct Approaches: Rewriting Techniques

★ Higher-Order Polynomial Interpretations

$$[\![\mathtt{map}]\!] = \lambda \phi. \lambda \mathsf{n}. \mathsf{n} \times (\phi \; \mathsf{n}) : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \to \mathbb{N}$$

P. Baillot and U. Dal Lago. "Higher-Order Interpretations and Program Complexity". In Proc. of 26th CSL, pp. 62–76, 2012.

Direct Approaches: Type Systems

★ Amortized Resource Analysis

$$\Gamma \vdash^k \mathtt{map} : (\mathbb{N}^p \xrightarrow{1} \mathbb{N}^q) \xrightarrow{0} \mathbb{L}^s \xrightarrow{c} \mathbb{L}^t$$

- S. Jost et al. "Static Determination of Quantitative Resource Usage for Higher-order Programs". In Proc. of 37th POPL, pp. 223–236, 2010.
- J. Hoffmann, A. Das, and S-C. Weng. "Towards Automatic Resource Bound Analysis for OCaml". In Proc. of 44th POPL, pp. 359–373, 2017.
- ★ Sized types and instrumentation with clock

$$\Gamma \vdash \mathtt{map} : \forall \textit{lk}. \ (\forall \textit{i}. \mathbb{N}_{\textit{i}} \xrightarrow{\textit{f(i)}} \mathbb{N}_{\textit{g(i)}}) \xrightarrow{0} \mathbb{L}_{\textit{l}}(\mathbb{N}_{\textit{k}}) \xrightarrow{\textit{(f(k)+1)} \cdot \textit{l}} \mathbb{L}_{\textit{g}}(\mathbb{N}_{\textit{f(k)}})$$

M. Avanzini and U. Dal Lago. "Automating Sized-Type Inference for Complexity Analysis". In Proc. of 22nd ICFP, 2017.

Constraints on Transformation T:

- 1. certificate can be relayed back to input program P
 - complexity reflecting: runtime of P ≤ runtime of T(P)
 - ideally, complexity preserving: runtime of T(P) ≤ runtime of P

Constraints on Transformation T:

- certificate can be relayed back to input program P
 - complexity reflecting: runtime of P ≤ runtime of T(P)
 - ideally, complexity preserving: runtime of $T(P) \le runtime$ of P
- 2. transformed program [P] suitable for analysis by existing tools

Constraints on Transformation T:

- certificate can be relayed back to input program P
 - complexity reflecting: runtime of P ≤ runtime of T(P)
 - ideally, complexity preserving: runtime of $T(P) \le runtime$ of P
- 2. transformed program [P] suitable for analysis by existing tools

Natural Candidate: Reynold's defunctionalization

inventeurs du monde numérique

Input:

★ "PCF + constructors"

$$\begin{split} \textit{M}, \textit{N} ::= \textit{x} \mid \textit{M} \; \textit{N} \mid \lambda \textit{x}. \textit{M} \mid \mathsf{fix}(\textit{x}. \textit{M}) \mid \mathtt{C}(\textit{M}_1, \ldots, \textit{M}_k) \\ \mid \mathsf{match} \; \textit{M} \; \mathsf{with} \; \{\mathtt{C}_1(\vec{x_1}) \mapsto \textit{M}_1 \mid \cdots \mid \mathtt{C}_n(\vec{x_n}) \mapsto \textit{M}_n\} \end{split}$$

★ usual call-by-value reduction semantics

Output: applicative term rewrite system (ATRS)

Definition (defunctionalization to ATRS)

- $\star \langle x \rangle \triangleq x$
- $\star \langle M N \rangle \triangleq \langle M \rangle \otimes \langle N \rangle$
- $\star \langle C(M_1, \ldots, M_k) \rangle \triangleq C(\langle M_1 \rangle, \ldots, \langle M_k \rangle)$
- * $\langle \lambda x.M \rangle \triangleq \operatorname{Lam}_{x.M}(\vec{y}) \text{ where } \vec{y} = \operatorname{FVar}(\lambda x.M)$ $\operatorname{Lam}_{x.M}(\vec{y}) @ x \rightarrow \langle M \rangle$

Definition (defunctionalization to ATRS)

- $\star \langle x \rangle \triangleq x$
- $\star \langle M N \rangle \triangleq \langle M \rangle \otimes \langle N \rangle$
- $\star \langle C(M_1, \ldots, M_k) \rangle \triangleq C(\langle M_1 \rangle, \ldots, \langle M_k \rangle)$
- $\star \langle \lambda x.M \rangle \triangleq \text{Lam}_{x.M}(\vec{y}) \text{ where } \vec{y} = \text{FVar}(\lambda x.M)$
 - $Lam_{x.M}(\vec{y}) \otimes x \rightarrow \langle M \rangle$
- $\star \langle \mathsf{fix}(x.M) \rangle \triangleq \mathsf{Fix}_{\mathsf{X}.M}(\vec{y}) \ \mathsf{where} \ \vec{y} = \mathsf{FVar}(\mathsf{fix}(x.M))$
 - $\operatorname{Fix}_{x,M}(\vec{y}) \otimes z \to \langle M \rangle \{\operatorname{Fix}_{x,M}(\vec{y})/x\} \otimes z$

U. Dal Lago and S. Martini. "On Constructor Rewrite Systems and the Lambda-Calculus". In Proc. of 36th ICALP, pp. 163–174, 2009.

Definition (defunctionalization to ATRS)

- $\star \langle x \rangle \triangleq x$
- $\star \langle M N \rangle \triangleq \langle M \rangle \otimes \langle N \rangle$
- $\star \langle C(M_1, \ldots, M_k) \rangle \triangleq C(\langle M_1 \rangle, \ldots, \langle M_k \rangle)$
- * $\langle \lambda x.M \rangle \triangleq \operatorname{Lam}_{x.M}(\vec{y}) \text{ where } \vec{y} = \operatorname{FVar}(\lambda x.M)$ $\operatorname{Lam}_{x.M}(\vec{y}) @ x \rightarrow \langle M \rangle$
- * $\langle fix(x.M) \rangle \triangleq Fix_{x.M}(\vec{y}) \text{ where } \vec{y} = FVar(fix(x.M))$
 - $\operatorname{Fix}_{x.M}(\vec{y}) \ @ \ z \to \langle M \rangle \{\operatorname{Fix}_{x.M}(\vec{y})/x\} \ @ \ z$
- * $\langle \mathsf{match} \ M \ \mathsf{with} \ \mathsf{cs} \rangle = \mathsf{Match}_{\mathsf{cs}}(\vec{y}) \ @ \ \langle M \rangle \ \mathsf{where} \ \vec{y} = \mathsf{FVar}(\mathsf{cs})$ $\mathsf{Match}_{\mathsf{cs}}(\vec{y}) \ @ \ \mathsf{C}_{\mathtt{i}}(\vec{x_i}) \to \langle M_i \rangle \qquad (1 \leq i \leq n, \mathsf{cs} = \{\cdots \mid \mathsf{C}_{\mathtt{i}}(\vec{x_i}) \mapsto M_i \mid \ldots \})$
- U. Dal Lago and S. Martini. "On Constructor Rewrite Systems and the Lambda-Calculus". In Proc. of 36th ICALP, pp. 163–174, 2009.

Theorem

Let \mathcal{A}_{PCF} collect all rules defined synchronous to $\langle \cdot \rangle$.

- 1. \mathcal{A}_{PCF} implements PCF in a step-by-step manner (call-by-value)
- 2. on first-order inputs, finite restriction $\mathcal{A}_P \subsetneq \mathcal{A}_{PCF}$ sufficient to implement $P = \lambda \vec{x}.M$.

ATRS \mathcal{A}_{rev}

```
1 let (o) f q = \text{fun } z \rightarrow f (q z);
2 let rec walk = function
3 \mid \prod \rightarrow id
4 | x::xs \rightarrow \text{walk } xs \circ (\text{fun } ys \rightarrow x::ys) ;;
5 let rev l = walk l \Pi ::

    ↓ desugar + defunctionalize

                                                                            (6)  (\circ) @ \mathbf{f} \rightarrow (\circ)_1(\mathbf{f}) 
(1)
                 Rev @l \rightarrow Fix_w @l@[]
                                                                            (7) (\circ)_1(f) \otimes g \rightarrow \text{Lam}_3(f,g)
              Fix_w @ l \rightarrow Lam_1 @ l
(3)
            Lam_1 @ l \rightarrow Match_{tr} @ l
                                                                            (8) Lam<sub>3</sub>(f, q) @ z \rightarrow f @ (q @ z)
(4)
         Match_{tr} @ [] \rightarrow Id
                                                                            (9) Id @ vs \rightarrow vs
(5) Match_w @ (x::xs) \rightarrow (\circ) @ (Fix_w @ xs) @ Lam_2(x) (10) Lam_2(x) @ ys \rightarrow x::ys
```


ATRS \mathcal{A}_{rev}

```
1 let (o) f g = \text{fum } z \to f (g z);;

2 let rec walk = function

3 | [] \to \text{id}

4 | x::xs \to \text{walk } xs \circ (\text{fun } ys \to x::ys);;

5 let rev l = \text{walk } l [] ;;

Under the definition of the second of t
```

```
(1) \qquad \text{Rev } @ \ l \rightarrow \text{Fix}_{\text{W}} @ \ l @ \ [] \qquad \qquad (6) \qquad (\circ) @ \ f \rightarrow (\circ)_{1}(f)
(2) \qquad \text{Fix}_{\text{W}} @ \ l \rightarrow \text{Lam}_{1} @ \ l \qquad \qquad (7) \qquad (\circ)_{1}(f) @ \ g \rightarrow \text{Lam}_{3}(f,g)
(3) \qquad \text{Lam}_{1} @ \ l \rightarrow \text{Match}_{\text{W}} @ \ l \qquad \qquad (8) \qquad \text{Lam}_{3}(f,g) @ \ z \rightarrow f @ \ (g @ \ z)
(4) \qquad \text{Match}_{\text{W}} @ \ [] \rightarrow \text{Id} \qquad \qquad (9) \qquad \text{Id} @ \ ys \rightarrow ys
(5) \quad \text{Match}_{\text{W}} @ \ (x::xs) \rightarrow (\circ) @ \ (\text{Fix}_{\text{W}} @ \ xs) @ \text{Lam}_{2}(x) \qquad (10) \qquad \text{Lam}_{2}(x) @ \ ys \rightarrow x::ys
```

in suitable format for analysis by first-order tools

Experimental Evaluation

- ★ Implementation: http://cbr.uibk.ac.at/tools/hoca/
- ★ FOP: TcTv2 for complexity, T-T2 for termination (SN)
- ★ Testbed: 25 higher-order functions from literature on FP
 - higher-order sorting functions, list & tree traversals (maps, folds, ...),
 Okasaki's parser combinators, ...

		constant	linear	quadratic	poly	SN
RaML	# systems	2	4	8	_	_
	avg. ET (secs)	2.79	0.32	1.55	_	_
Defunctionalize# systems FOP avg. ET (secs)		2 1.71	5 4.82	5 4.82	5 4.82	8 1.38

Table: Experimental evaluation on 25 higher-order examples. Defunctionalize: Amortized, type-based analysis with RaML prototoype (http://raml.co/). Simplify: FOP on defunctionalized ATRS.

ATRS \mathcal{A}_{rev}

```
1 let (o) f g = fun z \rightarrow f (g z) ;;
```

- 2 let rec walk = function
- $3 \mid \prod \rightarrow id$
- $4 \mid x::xs \rightarrow \text{walk } xs \circ (\text{fun } ys \rightarrow x::ys) ;$
- 5 let rev l = walk l Π ::

↓ desugar + defunctionalize

(1) Rev
$$@l \rightarrow Fix_w @l @[]$$

Fix
$$\emptyset l \to Lam_1 \emptyset l$$

(3)
$$\operatorname{Lam}_1 @ l \to \operatorname{Match}_w @ l$$

$$(4) \qquad \texttt{Match}_{w} @ [] \to \texttt{Id}$$

$$(5) \ \mathsf{Match}_{\mathtt{W}} \ \mathtt{O} \ (\mathtt{X}:: \mathtt{XS}) \to (\circ) \ \mathtt{O} \ (\mathtt{Fix}_{\mathtt{W}} \ \mathtt{O} \ \mathtt{XS}) \ \mathtt{O} \ \mathsf{Lam}_{2}(\mathtt{X})$$

(6)
$$(\circ) \otimes \mathbf{f} \to (\circ)_1(\mathbf{f})$$

(7)
$$(\circ)_1(f) \otimes g \rightarrow \text{Lam}_3(f,g)$$

(8) Lam₃(f, q) @
$$z \rightarrow f$$
 @ (q @ z)

(9) Id
$$@ys \rightarrow ys$$

$$(9) \qquad 1d \otimes ys \to ys$$

(10)
$$Lam_2(x) @ ys \to x :: ys$$

- ★ recursive structure of translated ATRSs apparently too complicated
 - 1. defines one global function @
 - 2. computation entirely driving by data

Governing the Chaos

program transformations can remedy the situations

- 1. inlining
 - remove unnecessary indirections introduced by rigid transformation
- 2. dead code elimination
 - eliminate inlined functions
- 3. instantiation
 - specialize "higher-order variables" via control/data flow analysis
- 4. uncurrying
 - effectively replaces global apply function with specialized ones

Inlining & Dead Code Elimination

- ★ inlining is optimization that replaces function calls by bodies
- * dead code elimination removes non-reachable code

```
(2) Fix<sub>w</sub> @ l → Lam<sub>1</sub> @ l
(3) Lam<sub>1</sub> @ l → Match<sub>w</sub> @ l
(4) Match<sub>w</sub> @ [] → Id
(5) Match<sub>w</sub> @ (x::xs) → (∘) @ (Fix<sub>w</sub> @ xs) @ Lam<sub>2</sub>(x)
```

(2)
$$\operatorname{Fix}_{W} @ \operatorname{l} \to \operatorname{Match}_{W} @ \operatorname{l}$$
(4)
$$\operatorname{Match}_{W} @ \operatorname{l} \to \operatorname{Id}$$

(5) $Match_w @ (x::xs) \rightarrow (\circ) @ (Fix_w @ xs) @ Lam_2(x)$

(2a)
$$\operatorname{Fix}_{W} @ [] \to \operatorname{Id}$$

(2b) $\operatorname{Fix}_{W} @ (x::xs) \to (\circ) @ (\operatorname{Fix}_{W} @ xs) @ \operatorname{Lam}_{2}(x)$

Inlining

Definition (inlining + narrowing)

replaces a rule
$$l o extstyle ex$$

$$\{(l \to \mathsf{C}[r]) \underset{\boldsymbol{\mu}}{\boldsymbol{\mu}} \mid \exists \mathtt{f}(l_1, \dots, l_k) \to r \in \mathcal{A}, \mathtt{f}(t_1, \dots, t_k) \approx_{\boldsymbol{\mu}} \mathtt{f}(l_1, \dots, l_k)\} \;.$$

Inlining

Definition (inlining + narrowing)

replaces a rule $l \to C[f(t_1, ..., t_k)] \in \mathcal{A}$ by

$$\{(l \to C[r])\mu \mid \exists f(l_1, \ldots, l_k) \to r \in \mathcal{A}, f(t_1, \ldots, t_k) \approx_{\mu} f(l_1, \ldots, l_k)\}.$$

Traps

- 1. mixes evaluation-order
- 2. not cost-neutral in general, even asymptotically
 - inline $f(n) \to 0$ in $g(m) \to f(g(m))$
- 3. narrowing cause subtle issue when inlined function partially defined
 - inline $f(n, 0) \rightarrow n$ in $g(S(m)) \rightarrow f(g(m), m)$

Inlining

Definition (inlining + narrowing)

replaces a rule $l o \mathcal{C}[\mathbf{f}(t_1,\ldots,t_k)] \in \mathcal{A}$ by

```
\{(l \to C[r])\mu \mid \exists \mathtt{f}(l_1, \ldots, l_k) \to r \in \mathcal{A}, \mathtt{f}(t_1, \ldots, t_k) \approx_{\mu} \mathtt{f}(l_1, \ldots, l_k)\}.
```

Traps

- 1. mixes evaluation-order
- 2. not cost-neutral in general, even asymptotically
 - inline $f(n) \to 0$ in $g(m) \to f(g(m))$
- 3. narrowing cause subtle issue when inlined function partially defined inline $f(n,0) \rightarrow n$ in $\pi(S(m)) \rightarrow f(\pi(m),m)$
 - inline $f(n, 0) \to n$ in $g(S(m)) \to f(g(m), m)$

Theorem

For non-ambiguous A, redex-preserving inlining of sufficiently defined function f is asymptotic complexity-reflecting.

- (1) Rev $@l \rightarrow Fix_w @l@[]$
- (2) $\operatorname{Fix}_{\mathbf{W}} @ \mathbf{l} \to \operatorname{Lam}_{\mathbf{1}} @ \mathbf{l}$
- (3) $\operatorname{Lam}_1 @ l \to \operatorname{Match}_w @ l$
- $(4) \qquad \texttt{Match}_{\mathtt{W}} \; \mathtt{0} \; [] \; \to \; \mathtt{Id}$
- (5) $Match_w @ (x::xs) \rightarrow (\circ) @ (Fix_w @ xs) @ Lam_2(x)$

- (6) (o) $(f \rightarrow (o)_1 (f)$
- $(7) \qquad (\circ)_1(\mathbf{f}) \ \mathbf{0} \ \mathbf{g} \to \mathrm{Lam}_3(\mathbf{f},\mathbf{g})$
- (8) $Lam_3(f,g) @ z \rightarrow f @ (g @ z)$
- (9) Id $@ys \rightarrow ys$
- (10) $\operatorname{Lam}_2(x) \otimes ys \to x :: ys$

(1) Rev
$$@l \rightarrow Fix_w @l@[]$$

- (2a) $Fix_w @ [] \rightarrow Id$
- (2b) $\operatorname{Fix}_{W} @ (x::xs) \rightarrow \operatorname{Lam}_{3}(\operatorname{Fix}_{W} @ xs, \operatorname{Lam}_{2}(x))$

- (8) $Lam_3(f,g) @ z \rightarrow f @ (g @ z)$
- (9) Id $@ys \rightarrow ys$
- (10) $\operatorname{Lam}_2(x) \otimes ys \to x :: ys$

inventeurs du monde numérique

(1) Rev $Q \downarrow \rightarrow Fix_{tr} Q \downarrow Q \mid \uparrow \uparrow$ (6) $(\circ) @ f \rightarrow (\circ)_1(f)$ $Fix_w @ l \rightarrow Lam_1 @ l$ $(7) \qquad (\circ)_1(f) \otimes g \to \operatorname{Lam}_3(f,g)$ $Lam_1 @ l \rightarrow Match_w @ l$ (8) Lam₃(f, g) @ $z \rightarrow f$ @ (g @ z) (9) Id $@ys \rightarrow ys$ (4) $Match_w @ [] \rightarrow Id$ (5) Match_w @ $(x::xs) \rightarrow (\circ)$ @ $(Fix_w @ xs)$ @ Lam₂(x)(10) $Lam_2(x) @ ys \rightarrow x::ys$

(1) Rev
$$@l \rightarrow Fix_w @l@[]$$
 (8) Lam₃(f,g) $@z \rightarrow f@(g@z)$ (2a) Fix_w $@[] \rightarrow Id$ (9) Id $@ys \rightarrow ys$

 $Fix_w @ [] \rightarrow Id$ (2a)

- $Fix_w @ (x::xs) \rightarrow Lam_3(Fix_w @ xs, Lam_2(x))$
- (10) Lam₂(x) @ ys \rightarrow x::ys

★ runtime of Rev coincide, up to constant speed-up

- - \Downarrow

$$(1) \qquad \text{Rev @ $l \to \text{Fix}_w @ $l @ [] } \qquad \qquad (8) \text{ Lam}_3 \big(f,g\big) @ $z \to f @ \big(g @ z\big)$$

$$(2a) \qquad \text{Fix}_w @ \big[] \to \text{Id} \qquad \qquad (9) \qquad \text{Id @ $ys \to ys$}$$

- $\text{Pix}_{\mathbb{W}} @ (x::xs) \rightarrow \text{Lam}_{3}(\text{Fix}_{\mathbb{W}} @ xs, \text{Lam}_{2}(x))$ (10) $\text{Lam}_{2}(x) @ ys \rightarrow x::ys$
- * runtime of Rev coincide, up to constant speed-up
- * Implementation Trap: inlining blows up program size/diverge
 - inline conservatively (calls to Lam*, Match*, and constants)

```
(1)
                   Rev 0 l \rightarrow Fix_w 0 l 0 
                                                                                        (6)  (\circ) @ f \rightarrow (\circ)_1(f) 
                 Fix_w @ l \rightarrow Lam_1 @ l
                                                                                        (7) (\circ)_1(f) \otimes g \rightarrow \operatorname{Lam}_3(f,g)
                Lam_1 @ l \rightarrow Match_w @ l
                                                                                        (8) Lam<sub>3</sub>(f, g) @ z \rightarrow f @ (g @ z)
(3)
(4)
           Match_w @ [] \rightarrow Id
                                                                                        (9) Id @ ys \rightarrow ys
(5) Match<sub>w</sub> @ (x::xs) \rightarrow (\circ) @ (Fix_w @ xs) @ Lam<sub>2</sub>(x)
                                                                                       (10) Lam_2(x) @ ys \rightarrow x::ys
```


(1) Rev @
$$l \rightarrow \text{Fix}_{w}$$
 @ l @ $[]$ (8) Lam₃(f , g) @ $z \rightarrow f$ @ (g @ z)

(2a) Fix_w @ $[] \rightarrow \text{Id}$ (9) Id @ $ys \rightarrow ys$

(2b) Fix_w @ ($x::xs$) $\rightarrow \text{Lam}_{3}(\text{Fix}_{w}$ @ xs , Lam₂(x)) (10) Lam₂(x) @ $ys \rightarrow x::ys$

- ★ runtime of Rev coincide, up to constant speed-up
- ★ Implementation Trap: inlining blows up program size/diverge
 - inline conservatively (calls to Lam*, Match*, and constants)
- ★ troublesome rule (8) still present

Instantiation of Higher-Order Variables

Central Observation:

- \star seen in isolation, variables f and g can be instantiated arbitrarily
- \star not so when considering only calls to ${\tt Rev}$

Instantiation of Higher-Order Variables

```
(1) \qquad \text{Rev @ } l \rightarrow \text{Fix}_{\text{W}} @ l @ [] \qquad \qquad (8) \text{ Lam}_{3}(f,g) @ z \rightarrow f @ (g @ z)
(2a) \qquad \text{Fix}_{\text{W}} @ [] \rightarrow \text{Id} \qquad \qquad (9) \qquad \text{Id @ } ys \rightarrow ys
(2b) \quad \text{Fix}_{\text{W}} @ (x::xs) \rightarrow \text{Lam}_{3}(\text{Fix}_{\text{W}} @ xs, \text{Lam}_{2}(x)) \qquad \qquad (10) \quad \text{Lam}_{2}(x) @ ys \rightarrow x::ys
```

Central Observation:

- \star seen in isolation, variables f and g can be instantiated arbitrarily
- ★ not so when considering only calls to Rev
- ★ determining precise set of instances undecidable
- but can be efficiently approximated, e.g., with tree automata techniques
 - N. D. Jones. "Flow Analysis of Lazy Higher-order Functional Programs". TCS, Vol. 375, pp. 120–136, 2007.
 - J. Kochems and L. Ong. "Improved Functional Flow and Reachability Analyses Using Indexed Linear Tree Grammars". In Proc. of 22nd RTA, pp. 187–202, 2011.

Instantiation of Higher-Order Variables

```
Rev @l \rightarrow Fix_w @l@[]
                                                                                                       (8) Lam<sub>3</sub>(f, q) @ z \rightarrow f @ (q @ z)
  (1)
(2a) Fix_{xx} @ \Pi \rightarrow Id
                                                                                                        (9) Id @ ys \rightarrow ys
(2b) \operatorname{Fix}_{\mathbb{W}} @ (x::xs) \to \operatorname{Lam}_{3}(\operatorname{Fix}_{\mathbb{W}} @ xs, \operatorname{Lam}_{2}(x)) (10) \operatorname{Lam}_{2}(x) @ ys \to x::ys
            S \rightarrow \text{Rev } @ \star
                                                                      ★ → [] | ★::★
  (1) R_1 \rightarrow R_8 \mid R_9
                                                                     L_1 \rightarrow \star
(2a) R_{2a} \rightarrow Id
(2b) R_{2h} \rightarrow \text{Lam}_3(R_{2a}, \text{Lam}_2(X_{2h})) \qquad X_{2h} \rightarrow \star
                                                                                               XS_{2h} \rightarrow \star
                    | \operatorname{Lam}_3(R_{2h}, \operatorname{Lam}_2(X_{2h})) |
 (8) R_8 \to R_8 \mid R_{10}
                                                                   F_8 \rightarrow R_{2a} \mid R_{2h} \quad G_8 \rightarrow \text{Lam}_2(X_{2h}) \quad Z_8 \rightarrow [] \mid R_{10}
 (9) \quad R_9 \rightarrow [] \mid X_{10} \mid YS_{10} \qquad YS_9 \rightarrow [] \mid R_{10}
(10) R_{10} \rightarrow [] \mid X_{10} \mid YS_{10} \qquad X_{10} \rightarrow X_{2h} \qquad YS_{10} \rightarrow [] \mid R_{10}
```

Tree automaton over-approximating collecting semantics.

inventeurs du monde numérique

Instantiation of Higher-Order Variables

 $(9) \quad R_9 \rightarrow [] \mid X_{10} \mid YS_{10} \qquad YS_9 \rightarrow [] \mid R_{10}$

(10) $R_{10} \rightarrow [] \mid X_{10} \mid YS_{10} \qquad X_{10} \rightarrow X_{2h} \qquad YS_{10} \rightarrow [] \mid R_{10}$

(8) $R_8 \to R_8 \mid R_{10}$

```
(1) Rev @ l \rightarrow \text{Fix}_{w} @ l @ [] (8) Lam<sub>3</sub>(f, g) @ z \rightarrow f @ (g @ z) (2a) Fix<sub>w</sub> @ [] \rightarrow \text{Id} (9) Id @ ys \rightarrow ys (2b) Fix<sub>w</sub> @ (x::xs) \rightarrow \text{Lam}_{3}(\text{Fix}_{w} @ xs, Lam<sub>2</sub>(x)) (10) Lam<sub>2</sub>(x) @ ys \rightarrow x::ys (1) R_{1} \rightarrow R_{8} \mid R_{9} L_{1} \rightarrow * (2a) R_{2a} \rightarrow \text{Id} (2b) R_{2b} \rightarrow \text{Lam}_{3}(R_{2a}, \text{Lam}_{2}(X_{2b})) X_{2b} \rightarrow * XS_{2b} \rightarrow * Lam_{3}(R_{2b}, \text{Lam}_{2}(X_{2b}))
```

Tree automaton over-approximating collecting semantics.

$$f \mapsto \text{Id} \mid \text{Lam}_3(f, g)$$
 $g \mapsto \text{Lam}_2(x)$

Variable bindings extracted from tree automatons du monde numérique

 $F_8 \rightarrow R_{2a} \mid R_{2h} \quad G_8 \rightarrow \text{Lam}_2(X_{2h}) \mid Z_8 \rightarrow [] \mid R_{10}$

Instantiation of Higher-Order Variables (II)

```
Rev @l \rightarrow Fix_w @l@ []
                                                                                (8) Lam<sub>3</sub>(f, g) @ z \rightarrow f @ (g @ z)
 (1)
             Fix<sub>17</sub> @ □ → Id
(2a)
                                                                                              Id @ ys \rightarrow ys
       Fix_w @ (x::xs) \rightarrow Lam_3(Fix_w @ xs, Lam_2(x))
                                                                               (10) Lam_2(x) @ ys \rightarrow x::ys
                          f \mapsto \mathrm{Id} \mid \mathrm{Lam}_3(f, q)
                                                                                q \mapsto \text{Lam}_2(x)
                                                            👢 instantiate (8)
                   (1)
                                                       Rev @l \rightarrow Fix_{tr} @l@ []
                 (2a)
                                                   Fix_w @ [] \rightarrow Id
                                            Fix_{\psi} @ (x::xs) \rightarrow Lam_3(Fix_{\psi} @ xs, Lam_2(x))
                 (2b)
                                  Lam_3(Id, Lam_2(x)) @ z \rightarrow Id @ (Lam_2(x) @ z)
                 (8a)
                 (8b) Lam_3(Lam_3(f,g), Lam_2(x)) @ z \rightarrow Lam_3(f,g) @ (Lam_2(x) @ z)
                  (9)
                                                       Id @ ys \rightarrow ys
                                               Lam_2(x) @ ys \rightarrow x::ys
                 (10)
```

nventeurs du monde numérique

Instantiation of Higher-Order Variables (II)

```
Rev @l \rightarrow Fix_w @l@ []
                                                                                       (8) Lam<sub>3</sub>(f, g) @ z \rightarrow f @ (g @ z)
 (1)
              Fix<sub>17</sub> @ □ → Id
(2a)
                                                                                                       Id @ ys \rightarrow ys
        Fix_w @ (x::xs) \rightarrow Lam_3(Fix_w @ xs, Lam_2(x))
                                                                                       (10) Lam_2(x) @ ys \rightarrow x::ys
                            f \mapsto \mathrm{Id} \mid \mathrm{Lam}_3(f, q)
                                                                                       q \mapsto \text{Lam}_2(x)

↓ instantiate (8), simplify

                     (1)
                                                            Rev @l \rightarrow Fix_{tr} @l@ []
                   (2a)
                                                        Fix_w @ [] \rightarrow Id
                                                Fix_w @ (x::xs) \rightarrow Lam_3(Fix_w @ xs, Lam_2(x))
                   (2b)
                                     Lam_3(Id, Lam_2(x)) @ z \rightarrow x :: z
                   (8a)
                   (8b) \operatorname{Lam}_3(\operatorname{Lam}_3(f,g),\operatorname{Lam}_2(x)) \otimes z \to \operatorname{Lam}_3(f,g) \otimes (x::z)
                    (9)
                                                            Id @ ys \rightarrow ys
```

inventeurs du monde numérique

Instantiation of Higher-Order Variables (II)

```
Rev @l \rightarrow Fix_w @l@ []
                                                                                       (8) Lam<sub>3</sub>(f, q) @ z \rightarrow f @ (q @ z)
 (1)
              Fix_{\pi} @ \Pi \rightarrow Id
                                                                                                       Id @ ys \rightarrow ys
(2a)
(2b)
        Fix_w @ (x::xs) \rightarrow Lam_3(Fix_w @ xs, Lam_2(x))
                                                                                       (10) Lam_2(x) @ ys \rightarrow x::ys
                            f \mapsto \mathrm{Id} \mid \mathrm{Lam}_3(f, q)
                                                                                        q \mapsto \text{Lam}_2(x)

↓ instantiate (8), simplify

                     (1)
                                                             Rev @l \rightarrow Fix_{tr} @l@ []
                   (2a)
                                                        Fix_w @ [] \rightarrow Id
                                                 Fix_{\psi} @ (x::xs) \rightarrow Lam_3(Fix_{\psi} @ xs, Lam_2(x))
                   (2b)
                                      Lam_3(Id, Lam_2(x)) @ z \rightarrow x :: z
                   (8a)
                   (8b) \operatorname{Lam}_3(\operatorname{Lam}_3(f,g),\operatorname{Lam}_2(x)) \otimes z \to \operatorname{Lam}_3(f,g) \otimes (x::z)
                    (9)
                                                            Id @ ys \rightarrow ys
```

resulting ATRS head-variable free; applied functions statically known

Uncurrying

$$C(\vec{s}) @ t_1 @ \cdots @ t_n \Longrightarrow C_n(\vec{s}, t_1, \dots, t_n)$$

Uncurrying

$$C(\vec{s}) @ t_1 @ \cdots @ t_n \Longrightarrow C_n(\vec{s}, t_1, \dots, t_n)$$

(1) Rev
$$@l \rightarrow Fix_w @l @[]$$

(2a) $Fix_w @[] \rightarrow Id$
(2b) $Fix_w @(x::xs) \rightarrow Lam_3(...)$
 \vdots

(1) $Rev_1(l) \rightarrow Fix_w^2(l, [])$
(2a) $Fix_w^1([]) \rightarrow Id$
(2b) $Fix_w^1(x::xs) \rightarrow Lam_3(...)$

Uncurrying

$$C(\vec{s}) @ t_1 @ \cdots @ t_n \Longrightarrow C_n(\vec{s}, t_1, \dots, t_n)$$

$$(1) \quad \operatorname{Rev} @ l \to \operatorname{Fix}_{w} @ l @ []$$

$$(2a) \quad \operatorname{Fix}_{w} @ [] \to \operatorname{Id}$$

$$(2b) \quad \operatorname{Fix}_{w} @ (x::xs) \to \operatorname{Lam}_{3}(...)$$

$$\vdots \qquad (1) \quad \operatorname{Rev}_{1}(l) \to \operatorname{Fix}_{w}^{2}(l, [])$$

$$(2a) \quad \operatorname{Fix}_{w}^{1}([]) \to \operatorname{Id}$$

$$(2b) \quad \operatorname{Fix}_{w}^{1}(x::xs) \to \operatorname{Lam}_{3}(...)$$

$+ \eta$ -saturate

$$(2a') \quad \operatorname{Fix}_{\operatorname{W}} @ \ [] @ z \to \operatorname{Id} @ z \\ (2b') \quad \operatorname{Fix}_{\operatorname{W}} @ \ (x::xs) @ z \to \operatorname{Lam}_3(\dots) @ z \\ & \qquad \qquad (2a') \quad \operatorname{Fix}_{\operatorname{W}}^2([],z) \to \operatorname{Id}(z) \\ (2b') \quad \operatorname{Fix}_{\operatorname{W}}^2(x::xs,z) \to \operatorname{Lam}_3^1(\dots,z)$$

N. Hirokawa, A. Middeldorp, and H. Zankl. "Uncurrying for Termination". In Proc. of 15th LPAR, 2008.

Uncurrying (II)

Definition (η -saturation)

- \star application arity aa(C) is maximal number of arguments applied to C
- \star ATRS \mathcal{A} is η -saturated if

$$\mathbb{C}(\vec{s}) @ t_1 @ \cdots @ t_n \rightarrow r \in \mathcal{A} \implies \mathbb{C}(\vec{s}) @ t_1 @ \cdots @ t_n @ \mathbf{z} \rightarrow r @ \mathbf{z} \in \mathcal{A}$$

whenever n < aa(C), with z fresh variable

 \star η -saturation of \mathcal{A} is least η -saturated extension of \mathcal{A}

Uncurrying (II)

Definition (η -saturation)

- \star application arity $aa({\tt C})$ is maximal number of arguments applied to ${\tt C}$
- \star ATRS \mathcal{A} is η -saturated if

$$\mathbb{C}(\vec{s}) @ t_1 @ \cdots @ t_n \rightarrow r \in \mathcal{A} \implies \mathbb{C}(\vec{s}) @ t_1 @ \cdots @ t_n @ \mathbf{z} \rightarrow r @ \mathbf{z} \in \mathcal{A}$$

whenever n < aa(C), with z fresh variable

 $\star \eta$ -saturation of \mathcal{A} is least η -saturated extension of \mathcal{A}

Theorem (η -Saturation & Uncurrying)

- 1. η -saturation finite if \mathcal{A} "well-typed"
- 2. η -saturation is complexity preserving & reflecting
- 3. uncurrying head-variable free, η -saturated ATRS is complexity preserving & reflecting

Uncurry (III)

```
Rev_1(l) \rightarrow Fix_{ij}^2(l, [])
   (1)
                                         Fix_{w}^{1}([]) \rightarrow Id
 (2a)
                                     Fix_{ij}^1(x::xs) \rightarrow Lam_3(Fix_{ij}^1(xs), Lam_2(x))
 (2b)
                                      \operatorname{Fix}_{v}^{2}([],z) \to \operatorname{Id}_{1}(z)
(2a')
                                 \operatorname{Fix}_{u}^{2}(x::xs,z) \to \operatorname{Lam}_{2}^{1}(\operatorname{Fix}_{u}^{1}(xs), \operatorname{Lam}_{2}(x),z)
(2b')
                       \text{Lam}_{3}^{1}(\text{Id}, \text{Lam}_{2}(x), z) \rightarrow x::z
(8a)
          \operatorname{Lam}_{3}^{1}(\operatorname{Lam}_{3}(f,q),\operatorname{Lam}_{2}(x),z) \to \operatorname{Lam}_{3}^{1}(f,q,\operatorname{Lam}_{2}^{1}(x,z))
  (9)
                                            Id_1(ys) \rightarrow ys
                                                    simplify & rename
                                           rev([]) \rightarrow []
   (1a)
  (1b)
                                       rev(x::xs) \rightarrow eval(walk(xs), Cons(x), [])
  (2a)
                                          walk([]) \rightarrow Id
  (2b)
                                     walk(x::xs) \rightarrow Comp(walk(xs), Cons(x))
                       eval(Id, Cons(x), z) \rightarrow x::z
  (8a)
  (8b) eval(Comp(f, g), Cons(x), z) \rightarrow eval(f, g, x::z)
```


(9) $Id_1(ys) \rightarrow ys$

 $\operatorname{Lam}_{3}^{1}(\operatorname{Lam}_{3}(f,q),\operatorname{Lam}_{2}(x),z) \to \operatorname{Lam}_{3}^{1}(f,q,\operatorname{Lam}_{2}^{1}(x,z))$

simplify & rename

(1a)
$$rev([]) \rightarrow []$$

(1b) $rev(x::xs) \rightarrow eval(walk(xs), Cons(x), [])$

(2a)
$$\operatorname{walk}([]) \to \operatorname{Id}$$

(2b) $\operatorname{walk}(x::xs) \to \operatorname{Comp}(\operatorname{walk}(xs), \operatorname{Cons}(x))$

(8a)
$$\operatorname{eval}(\operatorname{Id},\operatorname{Cons}(x),z) \to x::z$$

(8b) $\operatorname{eval}(\operatorname{Comp}(f,g),\operatorname{Cons}(x),z) \to \operatorname{eval}(f,g,x::z)$

8b)

Experimental Evaluation

- ★ Implementation: http://cbr.uibk.ac.at/tools/hoca/
- ★ FOP: TcTv2 for complexity, T_tT₂ for termination (SN)
- ★ Testbed: 25 higher-order functions from literature on FP
 - higher-order sorting functions, list & tree traversals (maps, folds, ...),
 Okasaki's parser combinators, ...

		constant	linear	quadratic	poly	SN
RaML	# systems	2	4	8	_	_
	avg. ET (secs)	2.79	0.32	1.55	_	_
Defunctionalize# systems		2	5	5	5	8
FOP avg. ET (secs)		1.71	4.82	4.82	4.82	1.38
Simplify	# systems	2	14	18	20	25
HoCA avg. ET (secs)		2.28	0.54	0.43	0.42	0.87
FOP avg. ET (secs)		0.51	2.53	6.30	10.94	1.43

Table: Experimental evaluation on 25 higher-order examples. Defunctionalize: Amortized, type-based analysis with RaML prototoype (http://raml.co/). Simplify: FOP on defunctionalized ATRS. RaML: FOP on defunctionalized &

Some Relevant Cases

- * standard examples from literature on functional programming
 - the presented reverse function
 - insert sort defined by fold; comparison passed as argument
 - DFS tree flattening via difference lists
 - maximum sequence sum defined via scanr
 - .
 - ⇒ optimal asymptotic bound could be inferred for all examples

Some Relevant Cases

- * standard examples from literature on functional programming
 - the presented reverse function
 - insert sort defined by fold; comparison passed as argument
 - DFS tree flattening via difference lists
 - maximum sequence sum defined via scanr
 - .
 - ⇒ optimal asymptotic bound could be inferred for all examples
- examples where we can only show termination
 - merge sort
 - instantiation of higher-order divide and conquer combinator [Bird'89]
 - Okasaki's parsing combinators [Okasaki'98]
 - o combinators reach order 7
 - lazy/memoized computation of Fibonacci numbers

higher-order functional programs can be effectively analysed with first order tools

higher-order functional programs can be effectively analysed with first order tools

Pros:

- * fully automatic analysis; no user annotation required
- ★ to date, most expressive runtime complexity analysis for higher-order programs

higher-order functional programs can be effectively analysed with first order tools

Pros:

- * fully automatic analysis; no user annotation required
- to date, most expressive runtime complexity analysis for higher-order programs

Cons:

- ★ defunctionalisation and CFA analysis ⇒ translation non-modular
 - nowadays, no problem even for compilers (e.g., MLton)
 - modularity within the back-end
- * fully automatic analysis; no user annotation possible

inventeurs du monde numérique

higher-order functional programs can be effectively analysed with first order tools

Pros:

- * fully automatic analysis; no user annotation required
- to date, most expressive runtime complexity analysis for higher-order programs

Cons:

- ★ defunctionalisation and CFA analysis ⇒ translation non-modular
 - nowadays, no problem even for compilers (e.g., MLton)
 - modularity within the back-end
- ★ fully automatic analysis; no user annotation possible
- * same applies to other approaches (e.g. for JBC or Prolog) monde numerique

Thank You!

⋆ HoCA

http://cbr.uibk.ac.at/tools/hoca

★ TcT

http://cl-informatik.uibk.ac.at/software/tct

