Automated Complexity Analysis of Term Rewrite Systems

Martin Avanzini (martin.avanzini@inria.fr)

ISR 2019, July 5-6, 2019

Today's Lecture

From Theory to Automation

1. complexity pairs and relative rewriting
2. dependency pairs for complexity analysis
3. case study: TCT, its complexity framework

Applications to Program Analysis
4. case study: higher-order functional programs

Experimental Evaluation

Input	\#rules	orders	TCT
appendAll	12	$O\left(n^{2}\right)$	$O(n)$
bfs	57	?	$O(n)$
bft mmult	59	?	$O\left(n^{3}\right)$
bitonic	78	?	$O\left(n^{4}\right)$
bitvectors	148	?	$O\left(n^{2}\right)$
clevermmult	39	?	$O\left(n^{2}\right)$
duplicates	37	?	$O\left(n^{2}\right)$
dyade	31	?	$O\left(n^{2}\right)$
eratosthenes	74	?	$O\left(n^{2}\right)$
flatten	31	?	$O\left(n^{2}\right)$
insertionsort	36	?	$O\left(n^{2}\right)$
listsort	56	?	$O\left(n^{2}\right)$
lcs	87	?	$O\left(n^{2}\right)$
matrix	74	?	$O\left(n^{3}\right)$
mergesort	35	?	$O\left(n^{3}\right)$
minsort	26	?	$O\left(n^{2}\right)$
queue	35	?	$O\left(n^{5}\right)$
quicksort	46	?	$O\left(n^{2}\right)$
rationalPotential	14	$O(n)$	$O(n)$
splitandsort	70	?	$O\left(n^{3}\right)$
subtrees	8	?	$O\left(n^{2}\right)$
tuples	33	?	?

Figure: Analysis of translated resource aware ML programs.

Towards a Modular Analysis

* complexity pairs and relative rewriting
* weak dependency pairs/dependency tuples
\star safe reduction pairs

Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)
\star for to ARSs \rightarrow and \rightsquigarrow over carrier A, define

$$
\rightarrow / \leadsto \triangleq \leadsto \leadsto^{*} \cdot \rightarrow \cdot n *^{*} .
$$

\star for two TRSs \mathcal{R} and \mathcal{S},

$$
\begin{gathered}
\rightarrow_{\mathcal{R} / \mathcal{S}} \triangleq \rightarrow_{\mathcal{R}} / \rightarrow_{\mathcal{S}} \quad \stackrel{i}{\mathcal{R} / \mathcal{S}} \xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{R}} / \xrightarrow{\mathcal{R} \cup \mathcal{S}} \mathcal{S} \\
-C\left[f\left(l_{1} \sigma, \ldots, l_{k} \sigma\right)\right]{\underset{\rightarrow}{\mathcal{R}}}^{C}[r \sigma] \text { if } f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r \in \mathcal{R} \text { and } l_{i} \sigma \in \operatorname{NF}\left(\rightarrow_{Q}\right) .
\end{gathered}
$$

Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)
\star for to ARSs \rightarrow and \rightsquigarrow over carrier A, define

$$
\rightarrow / \leadsto \triangleq \leadsto \leadsto^{*} \cdot \rightarrow \cdot n *^{*} .
$$

\star for two TRSs \mathcal{R} and \mathcal{S},

$$
\begin{gathered}
\rightarrow_{\mathcal{R} / \mathcal{S}} \triangleq \rightarrow_{\mathcal{R}} / \rightarrow_{\mathcal{S}} \quad \stackrel{i}{\mathcal{R} / \mathcal{S}} \xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{R}} / \xrightarrow{\mathcal{R} \cup \mathcal{S}} \mathcal{S} \\
-C\left[f\left(l_{1} \sigma, \ldots, l_{k} \sigma\right)\right] \xrightarrow{Q}_{\mathcal{R}} C[r \sigma] \text { if } f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r \in \mathcal{R} \text { and } l_{i} \sigma \in \operatorname{NF}\left(\rightarrow_{Q}\right) .
\end{gathered}
$$

Theorem

$$
\mathrm{dc}_{\rightarrow \cup m, S} \leqslant \mathrm{dc}_{\rightarrow / m, S}+\mathrm{dc}_{\rightsquigarrow / \rightarrow, \mathrm{S}} .
$$

Complexity Analysis via Relative Rewriting

Definition (relative reduction relation)

\star for to ARSs \rightarrow and \rightsquigarrow over carrier A, define

$$
\rightarrow / \leadsto \triangleq \leadsto \leadsto^{*} \cdot \rightarrow \cdot n *^{*} .
$$

\star for two TRSs \mathcal{R} and \mathcal{S},

$$
\begin{gathered}
\rightarrow_{\mathcal{R} / \mathcal{S}} \triangleq \rightarrow_{\mathcal{R}} / \rightarrow_{\mathcal{S}} \quad \stackrel{i}{\rightarrow}_{\mathcal{R} / \mathcal{S}} \triangleq \xrightarrow{\mathcal{R} \cup \mathcal{S}} \underset{\mathcal{R}}{ } / \xrightarrow{\mathcal{R} \cup \mathcal{S}}_{\mathcal{S}} \\
-C\left[f\left(l_{1} \sigma, \ldots, l_{k} \sigma\right)\right] \stackrel{Q}{\mathcal{R}}^{C[r \sigma] \text { if } f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r \in \mathcal{R} \text { and } l_{i} \sigma \in \operatorname{NF}\left(\rightarrow_{Q}\right) .}
\end{gathered}
$$

Theorem

$$
\mathrm{dc}_{\rightarrow \cup m, S} \leqslant \mathrm{dc}_{\rightarrow / m, S}+\mathrm{dc}_{\rightsquigarrow / \rightarrow, \mathrm{S}} .
$$

Example

For $\mathrm{a} \rightarrow \mathrm{b}$ and $\mathrm{a} \rightsquigarrow \mathrm{c}, \mathrm{dh}_{\rightarrow \mathrm{U} \leadsto}(\mathrm{a})=1<2=\mathrm{dh}_{\rightarrow / \rightsquigarrow}(\mathrm{a})+\mathrm{dh}_{m / \rightarrow / \rightarrow}(a)$.

Complexity Pairs

Definition (Zankl \& Korp, LMCS'14)
\star Complexity pair (CP) is pair $(>, \gtrsim)$ of rewrite orders s.t. $\gtrsim \cdot>\cdot \gtrsim \subseteq>$.
\star Compatibility with relative $\operatorname{TRS} \mathcal{R} / \mathcal{S}$ if $\mathcal{R} \subseteq>$ and $\mathcal{S} \subseteq \gtrsim$.

Complexity Pairs

Definition (Zankl \& Korp, LMCS'14)
\star Complexity pair (CP) is pair ($>, \gtrsim$) of rewrite orders s.t. $\gtrsim \cdot>\cdot \gtrsim \subseteq>$.
\star Compatibility with relative $\operatorname{TRS} \mathcal{R} / \mathcal{S}$ if $\mathcal{R} \subseteq>$ and $\mathcal{S} \subseteq \gtrsim$.

Theorem (Soundness)
If $C P(>, \gtrsim)$ compatible with $\mathcal{R} / \mathcal{S}$ then

$$
\mathrm{dc}_{\rightarrow_{\mathcal{R} / \mathcal{S}}, T}(n) \leq \mathrm{dc}_{>, T}(n) .
$$

Complexity Pairs

Definition (Zankl \& Korp, LMCS'14)

\star Complexity pair (CP) is pair ($>, \gtrsim$) of rewrite orders s.t. $\gtrsim \cdot>\cdot \gtrsim \subseteq>$.
\star Compatibility with relative $\operatorname{TRS} \mathcal{R} / \mathcal{S}$ if $\mathcal{R} \subseteq>$ and $\mathcal{S} \subseteq \gtrsim$.

Theorem (Soundness)
If $C P(>, \gtrsim)$ compatible with $\mathcal{R} / \mathcal{S}$ then

$$
\mathrm{dc}_{\rightarrow_{\mathcal{R} / \mathcal{S}}, T}(n) \leq \mathrm{dc}_{>, T}(n) .
$$

Theorem (Iterative Complexity Analysis)
If $C P(>, \gtrsim)$ compatible with $\mathcal{R}_{1} / \mathcal{R}_{2} \cup \mathcal{S}$ then

$$
\mathrm{dc}_{\mathcal{R}_{1} \cup \mathbb{R}_{2} / S}, T(n) \leq \mathrm{dc}_{>, T}(n)+\mathrm{dc}_{{\underset{R_{2} / \mathcal{R}_{1} \cup \mathcal{S}}{ }, T}(n) ~}
$$

Complexity Pairs

Definition (Zankl \& Korp, LMCS'14)

* Complexity pair (CP) is pair ($>, \gtrsim$) of rewrite orders s.t. $\gtrsim \cdot>\cdot \gtrsim \subseteq>$.
\star Compatibility with relative $\operatorname{TRS} \mathcal{R} / \mathcal{S}$ if $\mathcal{R} \subseteq>$ and $\mathcal{S} \subseteq \gtrsim$.

Theorem (Soundness)
If $C P(>, \gtrsim)$ compatible with $\mathcal{R} / \mathcal{S}$ then

$$
\mathrm{dc}_{\rightarrow_{\mathcal{R} / \mathcal{S}}, T}(n) \leq \mathrm{dc}_{>, T}(n) .
$$

Theorem (Iterative Complexity Analysis)
If $C P(>, \gtrsim)$ compatible with $\mathcal{R}_{1} / \mathcal{R}_{2} \cup \mathcal{S}$ then

$$
\mathrm{dc} \rightarrow_{\mathbb{R}_{1} \cup \mathcal{R}_{2} / S}, T(n) \leq \mathrm{dc}_{>, T}(n)+\mathrm{dc}_{\mathcal{R}_{2} / \mathcal{R}_{1} \cup S}, T(n) .
$$

Note: remains valid for rewriting under strategies

Experimental Evaluation

Input	\#rules	orders	iterative	TCT
appendAll	12	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(n)$
bfs	57	?	?	$O(n)$
bft mmult	59	?	?	$O\left(n^{3}\right)$
bitonic	78	?	?	$O\left(n^{4}\right)$
bitvectors	148	?	?	$O\left(n^{2}\right)$
clevermmult	39	?	?	$O\left(n^{2}\right)$
duplicates	37	?	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
dyade	31	?	?	$O\left(n^{2}\right)$
eratosthenes	74	?	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$
flatten	31	?	?	$O\left(n^{2}\right)$
insertionsort	36	?	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$
listsort	56	?	?	$O\left(n^{2}\right)$
lcs	87	?	?	$O\left(n^{2}\right)$
matrix	74	?	?	$O\left(n^{3}\right)$
mergesort	35	?	?	$O\left(n^{3}\right)$
minsort	26	?	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$
queue	35	?	?	$O\left(n^{5}\right)$
quicksort	46	?	?	$O\left(n^{2}\right)$
rationalPotential	14	$O(n)$	$O(n)$	$O(n)$
splitandsort	70	?	?	$O\left(n^{3}\right)$
subtrees	8	?	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
tuples	33	?	?	?

Figure: Analysis of translated resource aware ML programs.

Dependency Pairs and RC

Theorem
TRS \mathcal{R} is terminating iff there is no infinite and minimal chain

$$
\mathrm{f}^{\#}\left(s_{1}, \ldots, s_{m}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \mathrm{g}^{\#}\left(t_{1}, \ldots, t_{n}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \cdots
$$

Dependency Pairs and RC

Theorem
TRS \mathcal{R} is terminating iff there is no infinite and minimal chain

$$
\mathrm{f}^{\#}\left(s_{1}, \ldots, s_{m}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \mathrm{g}^{\#}\left(t_{1}, \ldots, t_{n}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \cdots
$$

Corollary
TRS \mathcal{R} is terminating on \mathcal{B} iff

$$
\forall n \in \mathbb{N} \cdot \mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}(n) \triangleq \mathrm{dc}_{\mathrm{DP}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}, \mathcal{B} \#}(n) \in \mathbb{N}
$$

Dependency Pairs and RC

Theorem
TRS \mathcal{R} is terminating iff there is no infinite and minimal chain

$$
\mathrm{f}^{\#}\left(s_{1}, \ldots, s_{m}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \mathrm{g}^{\#}\left(t_{1}, \ldots, t_{n}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \ldots
$$

Corollary
TRS \mathcal{R} is terminating on \mathcal{B} iff

$$
\forall n \in \mathbb{N} \cdot \mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}(n) \triangleq \mathrm{dc}_{\mathrm{DPP}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}, \mathcal{B} \#}(n) \in \mathbb{N}
$$

Pros:

1. gets rid of nasty monotonicity requirements
2. DP framework enables true modular analysis

Dependency Pairs and RC

Theorem
TRS \mathcal{R} is terminating iff there is no infinite and minimal chain

$$
\mathrm{f}^{\#}\left(s_{1}, \ldots, s_{m}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \mathrm{g}^{\#}\left(t_{1}, \ldots, t_{n}\right) \rightarrow_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}} \ldots
$$

Corollary
TRS \mathcal{R} is terminating on \mathcal{B} iff

$$
\forall n \in \mathbb{N} \cdot \mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}(n) \triangleq \mathrm{dc}_{\mathrm{DP}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}, \mathcal{B} \#}(n) \in \mathbb{N}
$$

Pros:

1. gets rid of nasty monotonicity requirements
2. DP framework enables true modular analysis

Questions:

1. is there a "small" $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $\mathrm{rc}_{\mathcal{R}}(n) \leq f\left(\mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}(n)\right)$?
2. what about techniques from the DP framework?

Dependency Pairs and RC (II)

Example

Consider \mathcal{R}

$$
\mathrm{f}(\mathrm{~s}(x)) \rightarrow \mathrm{s}(\mathrm{f}(\mathrm{f}(x)))
$$

$$
f(x) \rightarrow \operatorname{dup}(x, x)
$$

with $\operatorname{DP}(\mathcal{R})$

$$
\mathrm{f} \#(\mathrm{~s}(x)) \rightarrow \mathrm{f} \#(\mathrm{f}(x))
$$

$$
\mathrm{f}^{\#}(\mathrm{~s}(x)) \rightarrow \mathrm{f}^{\#}(x) .
$$

Then $\mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}$ is linear whereas $\mathrm{rc}_{\mathcal{R}}(n)$ grows double-exponential.

Dependency Pairs and RC (II)

Example

Consider \mathcal{R}

$$
\mathrm{f}(\mathrm{~s}(x)) \rightarrow \mathrm{s}(\mathrm{f}(\mathrm{f}(x)))
$$

$$
\mathrm{f}(x) \rightarrow \operatorname{dup}(x, x)
$$

with $\operatorname{DP}(\mathcal{R})$

$$
\mathrm{f} \#(\mathrm{~s}(x)) \rightarrow \mathrm{f} \#(\mathrm{f}(x)) \quad \mathrm{f} \#(\mathrm{~s}(x)) \rightarrow \mathrm{f}^{\#}(x) .
$$

Then $\mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}$ is linear whereas $\mathrm{rc}_{\mathcal{R}}(n)$ grows double-exponential.

Question: Reasons that cause this blow-up?

Dependency Pairs and RC (II)

Example

Consider \mathcal{R}

$$
\mathrm{f}(\mathrm{~s}(x)) \rightarrow \mathrm{s}(\mathrm{f}(\mathrm{f}(x))) \quad \mathrm{f}(x) \rightarrow \operatorname{dup}(x, x)
$$

with $\mathrm{DP}(\mathcal{R})$

$$
\mathrm{f} \#(\mathrm{~s}(x)) \rightarrow \mathrm{f}^{\#}(\mathrm{f}(x)) \quad \mathrm{f} \#(\mathrm{~s}(x)) \rightarrow \mathrm{f}^{\#}(x) .
$$

Then $\mathrm{rc}_{\mathrm{DP}(\mathcal{R}) / \mathcal{R}}^{\#}$ is linear whereas $\mathrm{rc}_{\mathcal{R}}(n)$ grows double-exponential.

Question: Reasons that cause this blow-up?

1. DPs track single path in "calls graph"
2. DPs do not account for duplication

Weak Dependency Pairs and Dependency Tuples

* Weak Dependency Pairs WDP (\mathcal{R}) [Hirokawa \& Moser, IJCAR’08]

1. bundle outermost function calls in weak dependency pair
$\mathrm{f}^{\#}\left(l_{1}, \ldots, l_{k}\right) \rightarrow \mathrm{c}_{n}\left(r_{1}^{\#}, \ldots, r_{n}^{\#}\right) \quad$ for each $f\left(l_{1}, \ldots, l_{k}\right) \rightarrow C\left[r_{1}, \ldots, r_{n}\right] \in \mathcal{R}$
where C maximal constructor-context
2. impose non-duplication \& weight-gap condition
[^0]
Weak Dependency Pairs and Dependency Tuples

\star Weak Dependency Pairs $\operatorname{WDP}(\mathcal{R})$ [Hirokawa \& Moser, IJCAR’08]

1. bundle outermost function calls in weak dependency pair

$$
\mathrm{f}^{\#}\left(l_{1}, \ldots, l_{k}\right) \rightarrow \mathrm{c}_{n}\left(r_{1}^{\#}, \ldots, r_{n}^{\#}\right) \quad \text { for each } f\left(l_{1}, \ldots, l_{k}\right) \rightarrow C\left[r_{1}, \ldots, r_{n}\right] \in \mathcal{R}
$$

where C maximal constructor-context
2. impose non-duplication \& weight-gap condition
\star Dependency Pair Tuples $\operatorname{DT}(\mathcal{R})$ [Noschinksi et al., CADE'11]

1. bundle all function calls in dependency tuple
2. restricted to innermost rewriting
[^1]
Dependency Tuples

Definition (dependency tuples, Noschinski et. al, CADE'11)
\star dependency tuple of $f\left(l_{1}, \ldots, l_{m}\right) \rightarrow r$ is

$$
\mathrm{f}^{\#}\left(l_{1}, \ldots, l_{m}\right) \rightarrow \mathrm{c}_{\mathrm{k}}\left(\mathrm{~g}_{1}^{\#}\left(\vec{t}_{1}\right), \ldots, \mathrm{g}_{\mathrm{k}}^{\#}\left(\vec{t}_{\mathrm{k}}\right)\right)
$$

where $g_{1}\left(\vec{t}_{1}\right), \ldots, g_{k}\left(\vec{t}_{k}\right)$ are all subterms of r with defined root;
$\star \mathrm{DT}(\mathcal{R})$ collects DTs of rules in \mathcal{R}
R. Noschinski, F. Emmes, and J. Giesl. "A Dependency Pair Framework for Innermost Complexity Analysis of Term Rewrite Systems". In Proc. of 23rd CADE, pp. 422-438, 2011.

Dependency Tuples

Definition (dependency tuples, Noschinski et. al, CADE'11)
\star dependency tuple of $f\left(l_{1}, \ldots, l_{m}\right) \rightarrow r$ is

$$
\mathrm{f}^{\#}\left(l_{1}, \ldots, l_{\mathrm{m}}\right) \rightarrow \mathrm{c}_{\mathrm{k}}\left(\mathrm{~g}_{1}^{\#}\left(\vec{t}_{1}\right), \ldots, \mathrm{g}_{\mathrm{k}}^{\#}\left(\vec{t}_{k}\right)\right),
$$

where $g_{1}\left(\vec{t}_{1}\right), \ldots, g_{k}\left(\vec{t}_{k}\right)$ are all subterms of r with defined root;
$\star \mathrm{DT}(\mathcal{R})$ collects DTs of rules in \mathcal{R}

Example \mathcal{R}
 DT(R)

$$
\begin{array}{rlrl}
{[]+y s} & \rightarrow y s & {[] \#^{\#}} & \rightarrow \mathrm{c}_{0} \\
(x:: x s)+y s & \rightarrow x::(x s+y s) & (x:: x s) \#^{\#} y s & \rightarrow \mathrm{c}_{1}\left(x s \mathbb{H}^{\#} y s\right) \\
\mathrm{rev}([]) & \rightarrow[] & \operatorname{rev}^{\#}([]) & \rightarrow \mathrm{c}_{0} \\
\mathrm{rev}(x:: x s) & \rightarrow \mathrm{rev}(x s)+[x] \quad \operatorname{rev}^{\#}(x:: x s) & \rightarrow \mathrm{c}_{2}\left(\operatorname{rev}(x s) \mathbb{H}^{\#}[x], \operatorname{rev}^{\#}(x s)\right)
\end{array}
$$

Dependency Tuples (II)

Lemma

Reduction sequence

$$
f\left(v_{1}, \ldots, v_{k}\right) \quad \quad_{\mathcal{i}}^{\mathcal{R}} \quad t_{1} \quad \stackrel{i}{\rightarrow}_{\mathcal{R}} \quad t_{2} \quad \stackrel{i}{\rightarrow}_{\mathcal{R}} \ldots,
$$

simulated step-wise by reduction

$$
\mathrm{f}^{\#}\left(v_{1}, \ldots, v_{k}\right) \xrightarrow[\rightarrow]{\mathrm{i}}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}} C_{1}\left[\overrightarrow{\mathrm{~s}}_{1}\right] \xrightarrow{\mathrm{i}}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}} C_{2}\left[\vec{s}_{2}\right] \xrightarrow{\mathrm{i}}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}} \ldots,
$$

with \vec{s}_{i} marked innermost redexes in t_{i}.

Dependency Tuples (III)

Example

Sequence

$$
\operatorname{rev}([1,2]) \stackrel{i}{\rightarrow}_{\mathcal{R}_{\text {rev }}}^{\operatorname{rev}([3])}+[1] \xrightarrow{i}_{\mathcal{R}_{\text {rev }}}(\operatorname{rev}([])+[2])+[1]{\stackrel{i}{\mathcal{R}_{\text {rev }}}} \ldots,
$$

translates to

$$
\begin{aligned}
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\mathrm{rev}}\right) / \mathcal{R}_{\mathrm{rev}} \mathcal{C}_{2}\left[(\operatorname{rev}([])+[2]) \text { \# }^{\#}[1], \operatorname{rev}([]) \text { \# }^{\#}[2], \operatorname{rev}^{\#}([])\right]} \\
& \stackrel{i}{\rightarrow}_{\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right) / \mathcal{R}_{\text {rev }} \cdots .}
\end{aligned}
$$

Dependency Tuples (III)

Example

Sequence

translates to

$$
\begin{aligned}
& \operatorname{rev}^{\#}([1,2]) \xrightarrow{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\mathrm{rev}}\right) / \mathcal{R}_{\mathrm{rev}}} \mathcal{C}_{1} \underline{\underline{\operatorname{rev}([3]})} \text { \# }^{\#}[1], \underline{\operatorname{rev} \#([3])]} \\
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\mathrm{rev}}\right) / \mathcal{R}_{\mathrm{rev}}} \mathcal{C}_{2}\left[(\operatorname{rev}([])+[2]) \text { \# }^{\#}[1], \operatorname{rev}([]) \text { \# }^{\#}[2], \operatorname{rev}^{\#}([])\right] \\
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right) / \mathcal{R}_{\text {rev }} \ldots .}
\end{aligned}
$$

Theorem (Soundness of DTs (Noschinski et. al, CADE'11))

$$
\mathrm{rc}_{\mathcal{R}}(n) \leq \mathrm{rc}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}}^{\#}(n) .
$$

Dependency Tuples (III)

Example

Sequence

$$
\operatorname{rev}([1,2]) \stackrel{i}{\rightarrow}_{\mathcal{R}_{\text {rev }}}^{\operatorname{rev}([3])}+[1] \xrightarrow{i}_{\mathcal{R}_{\text {rev }}}(\operatorname{rev}([])+[2])+[1]{\stackrel{i}{\mathcal{R}_{\text {rev }}}} \ldots,
$$

translates to

$$
\begin{aligned}
& \operatorname{rev} \#([1,2]) \xrightarrow{i}_{\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right) / \mathcal{R}_{\text {rev }}} \mathcal{C}_{1} \underline{\underline{\mathrm{rev}([3]})} \text { \# }^{\#}[1], \underline{\operatorname{rev} \#([3])]} \\
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\mathrm{rev}}\right) / \mathcal{R}_{\mathrm{rev}} \mathcal{C}_{2}\left[(\operatorname{rev}([])+[2]) \text { \# }^{\#}[1], \operatorname{rev}([]) \text { \# }^{\#}[2], \operatorname{rev}^{\#}([])\right]} \\
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right) / \mathcal{R}_{\text {rev }} \ldots .}
\end{aligned}
$$

Theorem (Soundness of DTs (Noschinski et. al, CADE'11))

$$
\mathrm{rc}_{\mathcal{R}}(n) \leq \mathrm{rc}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}}^{\#}(n) .
$$

Question: What about inverse, i.e., completeness?

Dependency Tuples (III)

Example

Sequence

$$
\operatorname{rev}([1,2]) \stackrel{i}{\rightarrow}_{\mathcal{R}_{\text {rev }}}^{\operatorname{rev}([3])}+[1] \xrightarrow[\rightarrow]{i}_{\mathcal{R}_{\text {rev }}}(\operatorname{rev}([])+[2])+[1] \xrightarrow{i}_{\mathcal{R}_{\text {rev }}} \ldots,
$$

translates to

$$
\begin{aligned}
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\mathrm{rev}}\right) / \mathcal{R}_{\mathrm{rev}}} \mathcal{C}_{2}\left[(\operatorname{rev}([])+[2]) \text { \# }^{\#}[1], \operatorname{rev}([]) \text { \# }^{\#}[2], \operatorname{rev}^{\#}([])\right] \\
& \stackrel{i}{\mathrm{i}}_{\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right) / \mathcal{R}_{\text {rev }} \ldots .}
\end{aligned}
$$

Theorem (Soundness of DTs (Noschinski et. al, CADE'11))

$$
\mathrm{rc}_{\mathcal{R}}(n) \leq \mathrm{rc}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}}^{\#}(n) .
$$

Question: What about inverse, i.e., completeness?
$\star \mathrm{rc}_{\mathcal{R}}(n)=\mathrm{rc}_{\mathrm{DT}(\mathcal{R}) / \mathcal{R}}^{\#}(n)$ if \mathcal{R} is confluent

Safe Reduction Pairs

Definition (Hirokawa \& Moser, IJCAR'08)
\star Safe reduction pair is pair ($>, \gtrsim$) of orders on terms s.t.

- $>$ is closed under substitutions and monotone on compound symbols c_{i} introduced by WDPs/DTs
- \gtrsim is a rewrite order
$-\gtrsim \cdot>\cdot \succsim \subseteq>$
\star compatible with $\mathcal{P} / \mathcal{R}$ if $\mathcal{P} \subseteq>$ and $\mathcal{R} \subseteq \gtrsim$.

Safe Reduction Pairs

Definition (Hirokawa \& Moser, IJCAR'08)
\star Safe reduction pair is pair ($>, \gtrsim$) of orders on terms s.t.
$->$ is closed under substitutions and monotone on compound symbols c_{i} introduced by WDPs/DTs

- \gtrsim is a rewrite order
$-\gtrsim \cdot>\cdot \succsim \subseteq>$
\star compatible with $\mathcal{P} / \mathcal{R}$ if $\mathcal{P} \subseteq>$ and $\mathcal{R} \subseteq \gtrsim$.

Theorem
If $(>, \gtrsim)$ compatible with $\mathcal{P} / \mathcal{R}$ then

$$
\mathrm{rc}_{\mathcal{P} / \mathcal{R}}^{\#}(n) \leq \mathrm{dc}_{>, \mathcal{B}}^{\#} .
$$

Note: As for complexity pairs, can be applied in iterative way

Experimental Evaluation

Input	\#rules	orders	iterative	DT+iterative+simps	TCT
appendAll	12	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(n)$
bfs	57	?	?	$O\left(n^{1}\right)$	$O(n)$
bft mmult	59	?	?	?	$O\left(n^{3}\right)$
bitonic	78	?	?	?	$O\left(n^{4}\right)$
bitvectors	148	?	?	?	$O\left(n^{2}\right)$
clevermmult	39	?	?	?	$O\left(n^{2}\right)$
duplicates	37	?	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
dyade	31	?	?	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
eratosthenes	74	?	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
flatten	31	?	?	?	$O\left(n^{2}\right)$
insertionsort	36	?	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
listsort	56	?	?	?	$O\left(n^{2}\right)$
lcs	87	?	?	?	$O\left(n^{2}\right)$
matrix	74	?	?	?	$O\left(n^{3}\right)$
mergesort	35	?	?	?	$O\left(n^{3}\right)$
minsort	26	?	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
queue	35	?	?	?	$O\left(n^{5}\right)$
quicksort	46	?	?	?	$O\left(n^{2}\right)$
rationalPotential	14	$O(n)$	$O(n)$	$O\left(n^{1}\right)$	$O(n)$
splitandsort	70	?	?	?	$O\left(n^{3}\right)$
subtrees	8	?	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
tuples	33	?	?	?	?

Figure: Analysis of translated resource aware ML programs.

Case Study: TCT

* complexity problems and processors

夫 complexity processors

- dependency graph decomposition
- usable rules
- complexity pairs \& relative rewriting

Tyrolean Complexity Tool History

$2008 \quad$ version $1.0 \quad$ extension to termination prover TT2

2009 version 1.5
first dedicated implementation
夫 9 methods implemented
2013 version 2.0 Gödel award at FLOC Olympic Games
^ 23 methods implemented

* modular complexity framework

2015 version 3.3

* certification support through CeTA
\star frontends for functional and imperative programs

Complexity Framework Underlying TCT

1. complexity problem is tuple $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$

- \mathcal{S}, \mathcal{W} and Q define rewrite relation \xrightarrow{Q} SUW of \mathcal{P}
- \mathcal{T} is set of starting terms

Complexity Framework Underlying TCT

1. complexity problem is tuple $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$

- \mathcal{S}, \mathcal{W} and Q define rewrite relation \xrightarrow{Q} SUW of \mathcal{P}
- \mathcal{T} is set of starting terms

2. complexity function of \mathcal{P} is

$$
\mathrm{cp}_{\mathcal{P}}(n) \triangleq \mathrm{dc} Q_{S / W} \mathcal{T}(n),
$$

Complexity Framework Underlying TCT

1. complexity problem is tuple $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$

- \mathcal{S}, \mathcal{W} and Q define rewrite relation $\xrightarrow{Q} S \cup \mathcal{W}$ of \mathcal{P}
- \mathcal{T} is set of starting terms

2. complexity function of \mathcal{P} is

$$
\mathrm{cp}_{\mathcal{P}}(n) \triangleq \mathrm{dc} Q_{S / \mathcal{W}} \mathcal{T}(n),
$$

3. complexity processor is inference rule

$$
\frac{\vdash \mathcal{P}_{1}: f_{1} \cdots \quad \vdash \mathcal{P}_{n}: f_{n}}{\vdash \mathcal{P}: f}
$$

- processor sound if validity of judgements preserved

Complexity Framework Underlying TCT

1. complexity problem is tuple $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$

- \mathcal{S}, \mathcal{W} and Q define rewrite relation $\xrightarrow{Q} \mathcal{S \cup W}$ of \mathcal{P}
- \mathcal{T} is set of starting terms

2. complexity function of \mathcal{P} is

$$
\mathrm{cp}_{\mathcal{P}}(n) \triangleq \mathrm{dc} \bigotimes_{S / W} \mathcal{T}(n),
$$

3. complexity processor is inference rule

$$
\frac{\vdash \mathcal{P}_{1}: f_{1} \cdots \quad \vdash \mathcal{P}_{n}: f_{n}}{\vdash \mathcal{P}: f}
$$

- processor sound if validity of judgements preserved

4. complexity proof is deduction using sound processors and axiom

$$
\vdash\langle\varnothing, \mathcal{W}, Q, \mathcal{T}\rangle: f
$$

Runtime Complexity Proof Search in TCT

Runtime Complexity Proof Search in TCT

Canonical Complexity Problems

Definition (canonical complexity problem)
Let \mathcal{R} be a TRS over terms \mathcal{T} and basic terms \mathcal{B}

	full	innermost
derivational	$\langle\mathcal{R}, \varnothing, \varnothing, \mathcal{T}\rangle$	$\langle\mathcal{R}, \varnothing, \mathcal{R}, \mathcal{T}\rangle$
runtime	$\langle\mathcal{R}, \varnothing, \varnothing, \mathcal{B}\rangle$	$\langle\mathcal{R}, \varnothing, \mathcal{R}, \mathcal{B}\rangle$

Runtime Complexity Proof Search in TCT

Dependency Tuples in TCT

Theorem (Dependency Tuple Transformation)
The following processor is sound

$$
\frac{\vdash\left\langle\mathrm{DT}(\mathcal{S}), \mathrm{DT}(\mathcal{W}) \cup \mathcal{S} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f \quad \mathrm{NF}(Q) \subseteq \mathrm{NF}(\mathcal{S} \cup \mathcal{W})}{\vdash\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{B}\rangle: f} \mathrm{DT}
$$

Example: Initial IRC Problem

current: $\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{B}\rangle$

$$
\begin{array}{cc}
{[]+y s} & \rightarrow y s \\
& (x:: x s)+y s \rightarrow x::(x s+y s)
\end{array}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

\mathcal{W}
\varnothing
Q

$$
\begin{gathered}
{[]+y s \rightarrow y s} \\
(x:: x s)+y s \rightarrow x::(x s+y s)
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Example: DT Transformation

current: $\left\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$

$$
\left.\begin{array}{rlrl}
\mathcal{S} & {[] \#^{\#} y s} & \rightarrow \mathrm{c}_{0} & \operatorname{rev}^{\#}([])
\end{array}\right) \mathrm{c}_{0} .
$$

\mathcal{W}

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Runtime Complexity Proof Search in TCT

Complexity Pairs \& Relative Rewriting

Theorem (Relative Decomposition Processor)
The following processor is sound:

$$
\frac{\vdash\left\langle\mathcal{S}_{1}, \mathcal{S}_{2} \cup \mathcal{W}, Q, \mathcal{T}\right\rangle: f \quad \vdash\left\langle\mathcal{S}_{2}, \mathcal{S}_{1} \cup \mathcal{W}, Q, \mathcal{T}\right\rangle: g}{\vdash\left\langle\mathcal{S}_{1} \cup \mathcal{S}_{2}, \mathcal{W}, Q, \mathcal{T}\right\rangle: f+g} \operatorname{RD}
$$

Theorem (Complexity Pair Processor)
The following processor is sound:

$$
\frac{\mathcal{W} \subseteq \gtrsim \mathcal{S} \subseteq>}{\vdash\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle: \mathrm{dc}_{>, \mathcal{T}}} \mathrm{CP}
$$

where $(\gtrsim,>)$ is (v, μ)-monotone complexity pair with

$$
\xrightarrow[\rightarrow]{Q}_{\mathcal{S} \cup \mathcal{W}}(\mathcal{T}) \subseteq \mathcal{T}_{v}\left(\xrightarrow{Q}_{\mathcal{W}}\right) \quad \xrightarrow{Q}_{\mathcal{S} \cup \mathcal{W}}^{*}(\mathcal{T}) \subseteq \mathcal{T}_{\mu}\left(\xrightarrow{Q}_{\mathcal{S}}\right) .
$$

^ CP-processor encompasses safe reduction pairs Question: why?

Runtime Complexity Proof Search in TCT

Dependency Graphs

Definition (dependency graph (DG))

dependency graph of (DP) problem $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$ is graph where
\star nodes are dependency pairs of \mathcal{P}
\star there is an edge labeled i from $s \rightarrow \mathrm{c}_{k}\left(t_{1}, \ldots, t_{k}\right)$ to $u \rightarrow \mathrm{c}_{l}\left(v_{1}, \ldots, v_{l}\right)$ if $t_{i} \sigma \xrightarrow{Q}{ }_{S \cup W}^{*} u \tau$ holds for some substitutions σ, τ

Dependency Graphs

Definition (dependency graph (DG))

dependency graph of (DP) problem $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$ is graph where
\star nodes are dependency pairs of \mathcal{P}
\star there is an edge labeled i from $s \rightarrow c_{k}\left(t_{1}, \ldots, t_{k}\right)$ to $u \rightarrow c_{l}\left(v_{1}, \ldots, v_{l}\right)$ if $t_{i} \sigma \xrightarrow{Q}{ }_{S \cup W}^{*} u \tau$ holds for some substitutions σ, τ
^ DG reflects order of dependency pair application
\star not computable in general \Rightarrow over-approximations exist

[^2]
Example: Dependency Graph

current: $\left\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$

S
(1) [] $\#^{\#} y s \rightarrow c_{0}$
(3) $\mathrm{rev}^{\#}([]) \rightarrow \mathrm{c}_{0}$
(2) $(x:: x s) \#^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right)(4) \mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{c}_{2}\left(\operatorname{rev}(x s) \#^{\#}[x], \mathrm{rev}^{\#}(x s)\right)$
\mathcal{W}

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Q

DG Decomposition: Intuitions

rev\# $([1,2,3])$

$\underline{\underline{r e v}([3])}$ \# $^{\#}[2]$

DG Decomposition: Intuitions

DG Decomposition: Intuitions

$[3,2] \#^{\#}[1]$
[2] \# $^{\#}$ [1]
[] $\#^{\text {| }}{ }^{\#}[1]$

$\underline{\operatorname{rev}([3])} \#^{\#}[2]$

$$
\frac{\vdash\left\langle\left\{(1,(2)\}, C \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f \quad \vdash\left\langle\{③,(4)\}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: g\right.}{\vdash\left\langle\{(3),(4)\} \cup\{(1),(2)\}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f \times g} \mathrm{DGD}
$$

$C(4 \xrightarrow{1} 2) \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) \#^{\#}[x] \quad(4 \xrightarrow{2} 4) \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)$

Example: DG Decomposition

current: $\left\langle\mathcal{S}_{\Downarrow}, \mathcal{C} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$ and $\left\langle\mathcal{S}_{\Uparrow}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$
\mathcal{S}_{\Downarrow}

$$
\text { (1) }[] \#^{\#} y s \rightarrow c_{0}
$$

(2) $(x:: x s)$ \# $^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right)$

C

$\operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) H^{\#}[x]$
$\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{rev}^{\#}(x s)$

$$
\mathcal{S}_{\Uparrow}
$$

$$
\text { (3) } \operatorname{rev}^{\#}([]) \rightarrow c_{0}
$$

(4) $\underline{\operatorname{rev}^{\#}(x:: x s)} \rightarrow \mathrm{c}_{2}\left(\underline{\operatorname{rev}(x s)} \mathbb{H}^{\#}[x], \underline{\operatorname{rev}^{\#}(x s)}\right)$
\mathcal{W}

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\operatorname{rev}(x:: x s) \rightarrow \operatorname{rev}(x s) H[x]
$$

Q

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\operatorname{rev}([]) \rightarrow[]
$$

$$
\operatorname{rev}(x:: x s) \rightarrow \operatorname{rev}(x s) H[x]
$$

DG Decomposition

Theorem (DG Decomposition)
The following processor is sound:
$\vdash\left\langle\mathcal{S}_{\Downarrow}, \operatorname{sep}\left(\mathcal{S}_{\Uparrow} \cup \mathcal{W}_{\Uparrow}\right) \cup \mathcal{W}_{\Downarrow} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f \quad \vdash\left\langle\mathcal{S}_{\Uparrow}, \mathcal{W}_{\Uparrow} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: g$
$\vdash\left\langle\mathcal{S}_{\Downarrow} \cup \mathcal{S}_{\Uparrow}, \mathcal{W}_{\Downarrow} \uplus \mathcal{W}_{\Uparrow} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f \times g$
where
$\star \mathcal{S}_{\Downarrow}, \mathcal{S}_{\Uparrow}, \mathcal{W}_{\Downarrow}, \mathcal{W}_{\Uparrow}$ are DPs:

1. $\mathcal{S}_{\Downarrow} \cup \mathcal{W}_{\Downarrow}$ is forward closed set of DPs in the DG
2. DG-predecessors of $\mathcal{S}_{\Downarrow} \cup \mathcal{W}_{\Downarrow}$ are in \mathcal{S}_{\Uparrow}
$\star \operatorname{sep}(\mathcal{R}) \triangleq\left\{l \rightarrow r_{i} \mid l \rightarrow c_{k}\left(r_{1}, \ldots, r_{k}\right) \in \mathcal{R}\right\}$
(R. Mvanzini and G. Moser. "A Combination Framework for Complexity". Information and Computation, Vol. 248, pp. 22-55, 2016.

Runtime Complexity Proof Search in TCT

Simplifications: Guided by DG

Theorem (simplify RHSs, remove weak suffix, predecessor estimation)
The following processors are sound:
夫 Simplify RHSs:

$$
\frac{\vdash\left\langle\operatorname{simp}(\mathcal{S}), \operatorname{simp}(\mathcal{W}), Q, \mathcal{B}^{\#}\right\rangle: f}{\vdash\left\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f} \text { SIMP-RHS }
$$

where simp drops r_{i} if $D P l \rightarrow c_{k}\left(r_{1}, \ldots, r_{i}, \ldots, r_{k}\right)$ has no outgoing edge labeled by i

* Remove weak suffix:

$$
\frac{\mathcal{W}_{\Downarrow} \text { forward-closed } D P s \quad \vdash\left\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f}{\vdash\left\langle\mathcal{S}, \mathcal{W} \uplus \mathcal{W}_{\Downarrow}, Q, \mathcal{B}^{\#}\right\rangle: f} \text { RWS }
$$

^ Predecessor estimation:

$$
\frac{\text { DG-predecessors of } \mathcal{S}_{1} \subseteq \mathcal{S}_{2} \quad \vdash\left\langle\mathcal{S}_{2}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f}{\vdash\left\langle\mathcal{S}_{1} \cup \mathcal{S}_{2}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle: f} \mathrm{PE}
$$

Simplifications: Usable Rules

Theorem (Usable Rules Processor, Semantic Version)
Usable rules $\mathcal{U}_{\mathcal{P}}(\mathcal{R}) \subseteq \mathcal{R}$ of $\operatorname{TRS} \mathcal{R}$ wrt. $\mathcal{P}=\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$ are those that can be applied in \mathcal{P}-derivation from \mathcal{T}.
The following processor is sound:

$$
\frac{\vdash\left\langle\mathcal{U}_{\mathcal{P}}(\mathcal{S}), \mathcal{U}_{\mathcal{P}}(\mathcal{W}), Q, \mathcal{T}\right\rangle: f}{\vdash\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle: f} \text { UR }
$$

Notes:

ћ non-usable rules \approx dead code
\star usable rules not computable in general
\star over-approximated, e.g. using tree automata or via usable symbols

- $\mathrm{f} \triangleright \mathrm{g}$ iff $\mathrm{f}(\vec{l}) \rightarrow r \in \mathcal{P}$ and $\mathrm{g} \in \mathcal{D}(r)$
- usable symbols of terms \mathcal{T} are $\mathcal{U} \mathcal{S}_{\mathcal{P}}(\mathcal{T}) \triangleq\left\{\mathrm{g} \mid \exists \mathrm{f} \in \mathcal{D}(\mathcal{T}) . \mathrm{f} \triangleright^{*} \mathrm{~g}\right\}$
- approximated usable rules are $\mathcal{U}_{\mathcal{P}}(\mathcal{R}) \triangleq\left\{f(\vec{l}) \rightarrow r \in \mathcal{R} \mid f \in \mathcal{U} \mathcal{S}_{\mathcal{P}}(\mathcal{T})\right\}$

Example: Simplifications

current: $\left\langle\mathcal{S}_{\Downarrow}, \mathcal{C} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$ and $\left\langle\mathcal{S}_{\Uparrow}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$

\mathcal{S}_{\Downarrow}

$$
\mathcal{S}_{\Uparrow}
$$

(3) $\operatorname{rev}^{\#}([]) \rightarrow \mathrm{c}_{0}$
(2) $(x:: x s) \mathbb{H}^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s+{ }^{\#} y s\right)$
(4) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \mathrm{c}_{1}\left(\operatorname{rev}(x s) \mathbb{H}^{\#}[x], \operatorname{rev}^{\#}(x s)\right)$

C
(4a) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) \#^{\#}[x]$
(4b) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)$
\mathcal{W}

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

Q

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x] \\
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Example: Simplifications

current: $\left\langle\mathcal{S}_{\Downarrow}, \mathcal{C} \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$ and $\left\langle\mathcal{S}_{\Uparrow}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$
\mathcal{S}_{\Downarrow}

$$
\mathcal{S}_{\Uparrow}
$$

(3) rev \#([]) $\rightarrow \mathrm{c}_{0}$
(4) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \mathrm{C}_{1}\left(\operatorname{rev}(x s)\right.$ \# $\left.^{\#}[x], \operatorname{rev}^{\#}(x s)\right)$

C
(4a) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) H^{\#}[x]$
(4b) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)$
\mathcal{W}

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
[] \# y s \rightarrow y s
$$

$$
(x:: x s) \nmid y
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s) H[x]
\end{aligned}
$$

$$
\operatorname{rev}([]) \rightarrow[]
$$

$$
\text { predecessor estimation }{ }^{\mathrm{v}(x s)+[x]}
$$

Example: Simplifications

current: $\left\langle\mathcal{S}_{\Downarrow}, C \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$ and $\left\langle\mathcal{S}_{\Uparrow}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$
\mathcal{S}_{\Downarrow}
(2) $(x:: x s)$ H $^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s\right.$ \# $\left.^{\#} y s\right)$
(4) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{c}_{2}\left(\operatorname{rev}(x s) \mathrm{H}^{\#}[x], \operatorname{rev}^{\#}(x s)\right)$

C
(4a) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) \mathbb{H}^{\#}[x]$
(4b) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)$
\mathcal{S}_{\Uparrow}

${ }^{2}<4$

Example: Simplifications

current: $\left\langle\mathcal{S}_{\Downarrow}, C \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$ and $\left\langle\mathcal{S}_{\Uparrow}, \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$
\mathcal{S}_{\Downarrow} \mathcal{S}_{\Uparrow}

$$
\begin{aligned}
& 1 \subset(4 b){ }^{2} \subset(4 \\
& \text { (4a) } \\
& { }^{1} \stackrel{1}{C}(2)
\end{aligned}
$$

(2) $(x:: x s)$ \# $^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right)$
(4) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{c}_{1}\left(\operatorname{rev}^{\#}(x s)\right)$

C
(4a) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{rev}(x s)$ \# $^{\#}[x]$
(4b) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)$
W

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Q

$$
\begin{aligned}
{[]+y s \rightarrow y s } & \operatorname{rev}([]) \rightarrow[] \\
(x:: x s)+\sqrt[2]{ } & \text { usable rules } \\
& \mathrm{v}(x s)+[x]
\end{aligned}
$$

Example: Simplifications

current: $\left\langle\mathcal{S}_{\Downarrow}, C \cup \mathcal{W}, Q, \mathcal{B}^{\#}\right\rangle$ and $\left\langle\mathcal{S}_{\Uparrow}, \varnothing, Q, \mathcal{B}^{\#}\right\rangle$

\mathcal{S}_{\Downarrow}

$$
\mathcal{S}_{\Uparrow}
$$

$$
\begin{aligned}
& 1 \subset(4 b){ }^{2} \subset(4) \\
& \text { (4a) } \\
& { }^{1} \stackrel{1}{C}(2)
\end{aligned}
$$

(2) $(x:: x s)$ \# $^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right)$
(4) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{C}_{1}\left(\mathrm{rev}^{\#}(x s)\right)$

C
(4a) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{rev}(x s)$ \# $^{\#}[x]$
(4b) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)$

W

$$
\begin{aligned}
{[]+y s } & \rightarrow y s \\
(x:: x s)+y s & \rightarrow x::(x s+y s)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Q

$$
\begin{gathered}
{[]+y s \rightarrow y s} \\
(x:: x s)+y s \rightarrow x:(x s+y s)
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Example: Finishing the Proof

$$
\begin{aligned}
& \frac{\vdash\left\langle(2), C \cup \mathcal{R}_{\mathrm{rev}}, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: ?}{\vdash\left\langle\mathcal{S}_{\Downarrow}, C \cup \mathcal{R}_{\mathrm{rev}}, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: ?} \text { SIMPS } \frac{\vdash\left\langle(4), \varnothing, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: ?}{\vdash\left\langle\mathcal{S}_{\uparrow}, \mathcal{R}_{\mathrm{rev}} \mathcal{R}_{\mathrm{re}} \mathcal{B}^{\#}\right\rangle: ?} \text { SIMPS } \\
& \vdash\left\langle\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right), \mathcal{R}_{\text {rev }}, \mathcal{R}_{\text {rev }}, \mathcal{B}^{\#}\right\rangle: ? \\
& \text { DT } \\
& \vdash\left\langle\mathcal{R}_{\mathrm{rev}}, \varnothing, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}\right\rangle: ? \\
& \text { (2) }(x:: x s) \text { H }^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \text { H }^{\#} y s\right) \\
& \text { (4) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \mathbf{c}_{1}\left(\operatorname{rev}^{\#}(x s)\right) \\
& \text { C } \\
& \text { (4a) } \operatorname{rev}{ }^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) H^{\#}[x] \\
& \text { (4b) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s) \\
& \mathcal{R}_{\text {rev }} \\
& \text { [] }+y s \rightarrow y s \\
& (x:: x s)+y s \rightarrow x::(x s+y s) \\
& \operatorname{rev}([]) \rightarrow[] \\
& \operatorname{rev}(x:: x s) \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Example: Finishing the Proof

(2) $(x:: x s)$ H $^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right)$
(4) $\operatorname{rev}^{\#}(x:: x s) \rightarrow \mathrm{c}_{1}\left(\operatorname{rev}^{\#}(x s)\right)$

C

$$
\begin{aligned}
& \text { (4a) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) \#^{\#}[x] \\
& \text { (4b) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}_{\mathrm{rev}} \quad[]+y s & \rightarrow y s \\
& (x:: x s)+y s
\end{aligned} \rightarrow x::(x s+y s) .
$$

$$
\begin{aligned}
\operatorname{rev}([]) & \rightarrow[] \\
\operatorname{rev}(x:: x s) & \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Example: Finishing the Proof

\star normal $\left(\operatorname{rev}^{\#}\right) \triangleq\{1\}$
$\star \mathrm{rev}^{\#}>\mathrm{c}_{1}$
\star recursion depth 1

$$
\frac{(4) \subseteq>_{\text {spop* }}}{-\left\langle(4), \varnothing, \mathcal{R}_{\text {rev }}, \mathcal{B}^{\#}\right\rangle: n} \text { SPOP }^{*} \text { IMPS } \frac{+\left\langle\mathcal{S}_{\Uparrow}, \mathcal{R}_{\text {rov }} \mathcal{R}_{\text {rov }} \mathcal{B}^{\#}\right\rangle: n}{} \text { SIMPS }
$$

$\vdash\left\langle\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right), \mathcal{R}_{\text {rev }}, \mathcal{R}_{\text {rev }}, \mathcal{B}^{\#}\right\rangle: ?$
DT
$\vdash\left\langle\mathcal{R}_{\mathrm{rev}}, \varnothing, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}\right\rangle: ?$
(2) $(x:: x s)$ \# $^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right)$
(4) $\mathrm{rev}^{\#}(x:: x s) \rightarrow \mathrm{c}_{1}\left(\mathrm{rev}^{\#}(x s)\right)$

C

$$
\begin{aligned}
& \text { (4a) } \mathrm{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) \text { \# }^{\#}[x] \\
& \text { (4b) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s) \\
& \mathcal{R}_{\text {rev }} \\
& \text { [] }+y s \rightarrow y s \\
& (x:: x s)+y s \rightarrow x::(x s+y s) \\
& \operatorname{rev}([]) \rightarrow[] \\
& \operatorname{rev}(x:: x s) \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Example: Finishing the Proof

$$
\begin{aligned}
& \frac{(2) \subseteq>_{\mathcal{A}} \quad \mathcal{R}_{\mathrm{rev}} \subseteq \geq_{\mathcal{A}}}{\vdash\left\langle(2), C \cup \mathcal{R}_{\mathrm{rev}}, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: n} \mathrm{PI} \quad \frac{(4) \subseteq>_{\text {spop* }}}{\vdash\left\langle(4), \varnothing, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: n} \text { SPOP }^{*} \\
& \vdash\left\langle\mathcal{S}_{\Downarrow}, C \cup \mathcal{R}_{\mathrm{rev}}, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: n \text { SIMPS } \stackrel{-\left\langle\mathcal{S}_{\Uparrow}, \mathcal{R}_{\mathrm{rev}}, \mathcal{R}_{\mathrm{rev}}, \mathcal{B}^{\#}\right\rangle: n}{ } \\
& \vdash\left\langle\mathrm{DT}\left(\mathcal{R}_{\text {rev }}\right), \mathcal{R}_{\text {rev }}, \mathcal{R}_{\text {rev }}, \mathcal{B}^{\#}\right\rangle: n^{2} \\
& \vdash\left\langle\mathcal{R}_{\text {rev }}, \varnothing, \mathcal{R}_{\text {rev }}, \mathcal{B}\right\rangle: n^{2} \text { DT } \\
& \text { (2) }(x:: x s) \text { H }^{\#} y s \rightarrow \mathrm{c}_{1}\left(x s \#^{\#} y s\right) \\
& \text { (4) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \mathbf{c}_{1}\left(\operatorname{rev}^{\#}(x s)\right) \\
& \text { C } \\
& \text { (4a) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}(x s) \#^{\#}[x] \\
& \text { (4b) } \operatorname{rev}^{\#}(x:: x s) \rightarrow \operatorname{rev}^{\#}(x s) \\
& \mathcal{R}_{\text {rev }} \\
& \text { [] }+y s \rightarrow y s \\
& (x:: x s)+y s \rightarrow x::(x s+y s) \\
& \operatorname{rev}([]) \rightarrow[] \\
& \operatorname{rev}(x:: x s) \rightarrow \operatorname{rev}(x s)+[x]
\end{aligned}
$$

Implementation notes

* implementing complexity pairs

Complexity Pairs in TCT

* polynomial, matrix, arctic interpretations and (small) polynomial path orders (modulo argument filtering) implemented in TCT

Complexity Pairs in TCT

* polynomial, matrix, arctic interpretations and (small) polynomial path orders (modulo argument filtering) implemented in TCT
^ RD-processor, CP-processor and UR-processor combined in one

$$
\frac{\left.\mathcal{U}_{\rho_{,>},}\left(\mathcal{S}_{1}\right) \subseteq\right\rangle \mathcal{U}_{\rho,\rangle}\left(\mathcal{S}_{2} \cup \mathcal{W}\right) \subseteq \succsim \quad \vdash\left\langle\mathcal{S}_{2}, \mathcal{S}_{1} \cup \mathcal{W}, Q, \mathcal{T}\right\rangle: g}{\vdash\left\langle\mathcal{S}_{1} \cup \mathcal{S}_{2}, \mathcal{W}, Q, \mathcal{T}\right\rangle: \mathrm{dc}_{>,} \mathcal{T}+g}
$$

- usable rules $\mathcal{U}_{\mathcal{P},>}$ take problem \mathcal{P} and order $>$ into account
- "function usable" only if occurs in right-hand-side "inspected by" (>, $)$
- specific definition depends on kind of order

Complexity Pairs in TCT

^ polynomial, matrix, arctic interpretations and (small) polynomial path orders (modulo argument filtering) implemented in TCT
^ RD-processor, CP-processor and UR-processor combined in one

$$
\frac{\left.\mathcal{U}_{\mathcal{P},\rangle}\left(\mathcal{S}_{1}\right) \subseteq\right\rangle \mathcal{U}_{\mathcal{P},\rangle}\left(\mathcal{S}_{2} \cup \mathcal{W}\right) \subseteq \succsim \quad \vdash\left\langle\mathcal{S}_{2}, \mathcal{S}_{1} \cup \mathcal{W}, Q, \mathcal{T}\right\rangle: g}{\vdash\left\langle\mathcal{S}_{1} \cup \mathcal{S}_{2}, \mathcal{W}, Q, \mathcal{T}\right\rangle: \mathrm{dc}_{>, \mathcal{T}}+g}
$$

- usable rules $\mathcal{U}_{\mathcal{P},>}$ take problem \mathcal{P} and order $>$ into account
- "function usable" only if occurs in right-hand-side "inspected by" (>, ¿)
- specific definition depends on kind of order
* search via encoding to SAT modulo theories (SMT)

Example: Synthesis PI

* fix abstract shape of interpretations...

$$
\mathrm{f}_{\mathcal{A}}(x)=\mathrm{c}_{\mathrm{f}}^{x} \cdot x+\mathrm{c}_{\mathrm{f}} \quad \mathrm{~g}_{\mathcal{A}}(x, y)=\mathrm{c}_{\mathrm{g}}^{x y} \cdot x \cdot y+\mathrm{c}_{\mathrm{g}}^{x} \cdot x+\mathrm{c}_{\mathrm{g}}^{y} \cdot y+\mathrm{c}_{\mathrm{g}}
$$

...and lift algebraic operations and interpretation of terms:

$$
\begin{gathered}
\llbracket \mathrm{f}(\mathrm{~g}(x, y)) \rrbracket=\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x y} \cdot x \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x} \cdot x+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{y} \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}+\mathrm{c}_{\mathrm{f}} \\
\llbracket \mathrm{f}(\mathrm{~g}(x, y)) \rrbracket-\llbracket \mathrm{f}(x) \rrbracket=\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x y} \cdot x \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot\left(\mathrm{c}_{\mathrm{g}}^{x}-1\right) \cdot x+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{y} \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}
\end{gathered}
$$

Example: Synthesis PI

* fix abstract shape of interpretations...

$$
\mathrm{f}_{\mathcal{A}}(x)=\mathrm{c}_{\mathrm{f}}^{x} \cdot x+\mathrm{c}_{\mathrm{f}} \quad \mathrm{~g}_{\mathcal{A}}(x, y)=\mathrm{c}_{\mathrm{g}}^{x y} \cdot x \cdot y+\mathrm{c}_{\mathrm{g}}^{x} \cdot x+\mathrm{c}_{\mathrm{g}}^{y} \cdot y+\mathrm{c}_{\mathrm{g}}
$$

...and lift algebraic operations and interpretation of terms:

$$
\begin{gathered}
\llbracket \mathrm{f}(\mathrm{~g}(x, y)) \rrbracket=\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x y} \cdot x \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x} \cdot x+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{y} \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}+\mathrm{c}_{\mathrm{f}} \\
\llbracket \mathrm{f}(\mathrm{~g}(x, y)) \rrbracket-\llbracket \mathrm{f}(x) \rrbracket=\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x y} \cdot x \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot\left(\mathrm{c}_{\mathrm{g}}^{x}-1\right) \cdot x+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{y} \cdot y+\mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}
\end{gathered}
$$

\star (weak) orientation of rule $f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r$ expressible as

$$
f\left(l_{1}, \ldots, l_{k}\right) \bowtie_{\mathcal{A}} r \triangleq \llbracket f\left(l_{1}, \ldots, l_{k}\right) \rrbracket_{\mathcal{A}}-\llbracket r \rrbracket_{\mathcal{A}} \bowtie 0
$$

where $\left(\bowtie \in\left\{>_{\mathbb{N}}, \geq_{\mathbb{N}}\right\}\right)$

- approximated via absolute positiveness condition on coefficients

$$
\begin{aligned}
\llbracket \mathrm{f}(\mathrm{~g}(x, y)) \rrbracket>_{\mathcal{A}} \llbracket \mathrm{f}(x) \rrbracket= & \mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{x y} \geq_{\mathbb{N}} 0 \wedge \mathrm{c}_{\mathrm{f}}^{x} \cdot\left(\mathrm{c}_{\mathrm{g}}^{x}-1\right) \geq_{\mathbb{N}} 0 \wedge \mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}}^{y} \geq_{\mathbb{N}} 0 \\
& \wedge \mathrm{c}_{\mathrm{f}}^{x} \cdot \mathrm{c}_{\mathrm{g}} \geq_{\mathbb{N}} 1
\end{aligned}
$$

Example: Synthesis PI (II)

$\star \mu$-monotonicity of $f_{\mathcal{A}}$ encoded via

$$
\operatorname{mono}\left(\mathrm{f}_{\mathcal{A}}, \mu\right) \triangleq \bigwedge_{\mathrm{c}_{\mathrm{f}}^{\bar{x}} \in \operatorname{coeff}(\mathrm{f})} \mathrm{c}_{\mathrm{f}}^{\bar{x}} \geq_{\mathbb{N}} 0 \wedge \bigwedge_{i \in \mu(\mathrm{f})} \mathrm{c}_{\mathrm{f}}^{x_{i}} \geq_{\mathbb{N}} 1
$$

where $\mathrm{f}_{\mathcal{A}}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\bar{x} \subseteq\left\{x_{1}, \ldots, x_{k}\right\}} \mathrm{C}_{\mathrm{f}}^{\bar{x}} \cdot \bar{x}$

Example: Synthesis PI (II)

$\star \mu$-monotonicity of $\mathrm{f}_{\mathcal{A}}$ encoded via

$$
\operatorname{mono}\left(\mathrm{f}_{\mathcal{A}}, \mu\right) \triangleq \bigwedge_{\substack{\mathrm{c}_{\mathrm{f}}^{\bar{x}} \in \operatorname{coeff}(\mathrm{f})}} \mathrm{c}_{\mathrm{f}}^{\bar{x}} \geq_{\mathbb{N}} 0 \wedge \bigwedge_{i \in \mu(\mathrm{f})} \mathrm{c}_{\mathrm{f}}^{x_{i}} \geq_{\mathbb{N}} 1
$$

where $\mathrm{f}_{\mathcal{A}}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\bar{x} \subseteq\left\{x_{1}, \ldots, x_{k}\right\}} \mathrm{C}_{\mathrm{f}}^{\bar{x}} \cdot \bar{x}$
\star usable rules of \mathcal{R} wrt. start terms \mathcal{T} encoded with atoms $\mathrm{u}_{l \rightarrow r}$ via

$$
\operatorname{URs}(\mathcal{R}, \mathcal{T}) \triangleq \bigwedge_{\substack{l \rightarrow r \in \mathcal{R} \\ \operatorname{rt}(l) \in \operatorname{Fun}(\mathcal{T})}} \mathrm{u}_{l \rightarrow r} \wedge \bigwedge_{l \rightarrow r \in \mathcal{R}}\left(\mathrm{u}_{l \rightarrow r} \rightarrow \phi(r)\right)
$$

where

$$
\begin{aligned}
\phi(x) & \triangleq \top \\
\phi\left(f\left(t_{1}, \ldots, t_{k}\right)\right) & \triangleq \bigwedge_{l \rightarrow r \in \mathcal{R}, \mathrm{rt}(l)=\mathrm{f}} \mathrm{u}_{l \rightarrow r} \wedge \bigwedge_{1 \leq i \leq k}\left(\pi(\mathrm{f}, i) \rightarrow \phi\left(t_{i}\right)\right) \quad \pi(\mathrm{f}, i) \triangleq \bigvee_{\mathrm{c}_{\mathrm{f}}^{\bar{x}} \in \operatorname{coeff}(\mathrm{f}), x_{i} \in \bar{x}} \mathrm{c}_{\mathrm{f}}^{\bar{x}} \geq \mathbb{N} 1
\end{aligned}
$$

Example: Synthesis PI (III)

\star weak orientation of TRS \mathcal{R} via

$$
\operatorname{orient}(\mathcal{R}) \triangleq \bigwedge_{l \rightarrow r \in \mathcal{R}} \mathrm{u}_{l \rightarrow r} \rightarrow \llbracket l \rrbracket_{\mathcal{A}}-\llbracket r \rrbracket_{\mathcal{A}} \geq_{\mathbb{N}} m_{l \rightarrow r}
$$

with fresh integer variables $m_{l \rightarrow r} \geq 0$ for each $l \rightarrow r \in \mathcal{R}$

Example: Synthesis PI (III)

\star weak orientation of TRS \mathcal{R} via

$$
\operatorname{orient}(\mathcal{R}) \triangleq \bigwedge_{l \rightarrow r \in \mathcal{R}} u_{l \rightarrow r} \rightarrow \llbracket l \rrbracket_{\mathcal{A}}-\llbracket r \rrbracket_{\mathcal{A}} \geq_{\mathbb{N}} m_{l \rightarrow r}
$$

with fresh integer variables $m_{l \rightarrow r} \geq 0$ for each $l \rightarrow r \in \mathcal{R}$
\star extended RP processor for $\langle\mathcal{S}, \mathcal{W}, Q, \mathcal{T}\rangle$ implementable as

$$
\bigwedge_{f \in \mathcal{F}} \operatorname{mono}\left(\mathrm{f}_{\mathcal{A}}, \mu \cup v\right) \wedge U R s(\mathcal{S} \cup \mathcal{W}, \mathcal{T}) \wedge \operatorname{orient}(\mathcal{S} \cup \mathcal{W}) \wedge \Phi
$$

- formula Φ enforces which rules in $\mathcal{R} \subseteq \mathcal{S}$ should be oriented strictly, e.g.,

$$
\Phi \triangleq \bigwedge_{l \rightarrow r \in S} m_{l \rightarrow r} \geq_{\mathbb{N}} 1 \quad \text { or } \quad \Phi \triangleq \bigvee_{l \rightarrow r \in \mathcal{S}} m_{l \rightarrow r} \geq_{\mathbb{N}} 1
$$

- open sub-problem: $\langle\mathcal{S} \backslash \mathcal{R}, \mathcal{W} \cup \mathcal{R}, Q, \mathcal{T}\rangle$ where \mathcal{R} determined from assignment of variables $m_{l \rightarrow r}$

Summary

* TCT build on top of a modular framework for complexity analysis

Summary

* TCT build on top of a modular framework for complexity analysis
\star decomposition techniques such as DG decomposition key to strength of analysis
* ultimately, analysis boils down to synthesising a "ranking function" (reduction orders) via SMT

Summary

* TCT build on top of a modular framework for complexity analysis
\star decomposition techniques such as DG decomposition key to strength of analysis
* ultimately, analysis boils down to synthesising a "ranking function" (reduction orders) via SMT
\star currently, tools give asymptotic bounds, but more precise bounds could be extracted

Summary

* TCT build on top of a modular framework for complexity analysis
\star decomposition techniques such as DG decomposition key to strength of analysis
* ultimately, analysis boils down to synthesising a "ranking function" (reduction orders) via SMT
^ currently, tools give asymptotic bounds, but more precise bounds could be extracted
^ automated tools can treat non-trivial examples, fully automatically
* proofs requiring semantic arguments are beyond reach for fully automated analysis

Applications to Program Analysis

* Case study: higher-order functional programs

Motivation

```
1 let (o) f g= fun z->f(gz) ;;
2 let rec walk = function
3 | [] }->\mathrm{ id
4 | x::xs -> walk xs ○ (fun ys }->\mathrm{ x::ys) ;;
5 let rev l = walk l [] ;;
```

Goal: Runtime Complexity Analysis of Higher-Order Programs Main Challenge: applied functions not statically known

Direct Approaches: Rewriting Techniques

^ Higher-Order Polynomial Interpretations

$$
\llbracket \operatorname{map} \rrbracket=\lambda \phi . \lambda n . n \times(\phi n):(\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \rightarrow \mathbb{N}
$$

图 P. Baillot and U. Dal Lago. "Higher-Order Interpretations and Program Complexity". In Proc. of 26th CSL, pp. 62-76, 2012.

Direct Approaches：Type Systems

＾Amortized Resource Analysis

$$
\Gamma \vdash^{k} \operatorname{map}:\left(\mathbb{N}^{p} \xrightarrow{1} \mathbb{N}^{q}\right) \xrightarrow{0} \mathbb{L}^{s} \xrightarrow{c} \mathbb{L}^{t}
$$

园 S．Jost et al．＂Static Determination of Quantitative Resource Usage for Higher－order Programs＂．In Proc．of 37th POPL，pp．223－236， 2010.

圊 J．Hoffmann，A．Das，and S－C．Weng．＂Towards Automatic Resource Bound Analysis for OCaml＂．In Proc．of 44th POPL，pp．359－373， 2017.
« Sized types and instrumentation with clock

$$
\Gamma \vdash \text { map : } \forall l k .\left(\forall i . \mathbb{N}_{i} \xrightarrow{f(i)} \mathbb{N}_{g(i)}\right) \xrightarrow{0} \mathbb{L}_{l}\left(\mathbb{N}_{k}\right) \xrightarrow{(f(k)+1) \cdot l} \mathbb{L}_{g}\left(\mathbb{N}_{f(k)}\right)
$$

围 M．Avanzini and U．Dal Lago．＂Automating Sized－Type Inference for Complexity Analysis＂．In Proc．of 22nd ICFP， 2017.

Program Transformations for Complexity Analysis

Program Transformations for Complexity Analysis

Constraints on Transformation T :

1. certificate can be relayed back to input program P

- complexity reflecting: runtime of $\mathrm{P} \leq$ runtime of $T(\mathrm{P})$
- ideally, complexity preserving: runtime of $T(P) \leq$ runtime of P

Program Transformations for Complexity Analysis

Constraints on Transformation T :

1. certificate can be relayed back to input program P

- complexity reflecting: runtime of $\mathrm{P} \leq$ runtime of $T(\mathrm{P})$
- ideally, complexity preserving: runtime of $T(\mathrm{P}) \leq$ runtime of P

2. transformed program $\llbracket \mathrm{P} \rrbracket$ suitable for analysis by existing tools

Program Transformations for Complexity Analysis

Constraints on Transformation T :

1. certificate can be relayed back to input program P

- complexity reflecting: runtime of $\mathrm{P} \leq$ runtime of $T(\mathrm{P})$
- ideally, complexity preserving: runtime of $T(\mathrm{P}) \leq$ runtime of P

2. transformed program $\llbracket \mathrm{P} \rrbracket$ suitable for analysis by existing tools

Natural Candidate: Reynold's defunctionalization

From Programs to Rewrite Systems

Input:
夫 "PCF + constructors"

$$
\begin{aligned}
M, N::= & x|M N| \lambda x . M|\operatorname{fix}(x . M)| \mathrm{C}\left(M_{1}, \ldots, M_{k}\right) \\
& \mid \text { match } M \text { with }\left\{\mathrm{C}_{1}\left(\overrightarrow{x_{1}}\right) \mapsto M_{1}|\cdots| \mathrm{C}_{\mathrm{n}}\left(\overrightarrow{x_{n}}\right) \mapsto M_{n}\right\}
\end{aligned}
$$

* usual call-by-value reduction semantics

Output: applicative term rewrite system (ATRS)

From Programs to Rewrite Systems

Definition (defunctionalization to ATRS)
$\star\langle x\rangle \triangleq x$
$\star\langle M N\rangle \triangleq\langle M\rangle @\langle N\rangle$
$\star\left\langle\mathrm{C}\left(M_{1}, \ldots, M_{k}\right)\right\rangle \triangleq \mathrm{C}\left(\left\langle M_{1}\right\rangle, \ldots,\left\langle M_{k}\right\rangle\right)$
$\star\langle\lambda x . M\rangle \triangleq \operatorname{Lam}_{x . M}(\vec{y})$ where $\vec{y}=\mathrm{FVar}(\lambda x . M)$
$\operatorname{Lam}_{X . M}(\vec{y}) @ x \rightarrow\langle M\rangle$
© U. Dal Lago and S. Martini. "On Constructor Rewrite Systems and the Lambda-Calculus". In Proc. of 36th ICALP, pp. 163-174, 2009.

From Programs to Rewrite Systems

Definition (defunctionalization to ATRS)

$$
\begin{aligned}
& \star\langle x\rangle \triangleq x \\
& \star\langle M N\rangle \triangleq\langle M\rangle @\langle N\rangle \\
& \star\left\langle\mathrm{C}\left(M_{1}, \ldots, M_{k}\right)\right\rangle \triangleq \mathrm{C}\left(\left\langle M_{1}\right\rangle, \ldots,\left\langle M_{k}\right\rangle\right) \\
& \star\langle\lambda x \cdot M\rangle \triangleq \operatorname{Lam}_{x . M}(\vec{y}) \text { where } \vec{y}=\operatorname{FVar}(\lambda x \cdot M) \\
& \quad \operatorname{Lam}_{x . M}(\vec{y}) @ x \rightarrow\langle M\rangle \\
& \star\langle\operatorname{fix}(x \cdot M)\rangle \triangleq \operatorname{Fix}_{x . M}(\vec{y}) \text { where } \vec{y}=\operatorname{FVar}(\operatorname{fix}(x . M)) \\
& \quad \operatorname{Fix}_{x . M}(\vec{y}) @ z \rightarrow\langle M\rangle\left\{\operatorname{Fix}_{x . M}(\vec{y}) / x\right\} @ z
\end{aligned}
$$

目 U. Dal Lago and S. Martini. "On Constructor Rewrite Systems and the Lambda-Calculus". In Proc. of 36th ICALP, pp. 163-174, 2009.

From Programs to Rewrite Systems

Definition (defunctionalization to ATRS)
$\star\langle x\rangle \triangleq x$
$\star\langle M N\rangle \triangleq\langle M\rangle @\langle N\rangle$
$\star\left\langle\mathrm{C}\left(M_{1}, \ldots, M_{k}\right)\right\rangle \triangleq \mathrm{C}\left(\left\langle M_{1}\right\rangle, \ldots,\left\langle M_{k}\right\rangle\right)$
$\star\langle\lambda x . M\rangle \triangleq \operatorname{Lam}_{x . M}(\vec{y})$ where $\vec{y}=\mathrm{FVar}(\lambda x . M)$
$\operatorname{Lam}_{X . M}(\vec{y}) @ x \rightarrow\langle M\rangle$
$\star\langle\operatorname{fix}(x . M)\rangle \triangleq \operatorname{Fix}_{x . M}(\vec{y})$ where $\vec{y}=\operatorname{FVar}(\operatorname{fix}(x . M))$
$\operatorname{Fix}_{x . M}(\vec{y}) @ z \rightarrow\langle M\rangle\left\{\right.$ Fix $\left._{x . M}(\vec{y}) / x\right\} @ z$
$\star\langle$ match M with $c s\rangle=\operatorname{Match}_{c s}(\vec{y}) @\langle M\rangle$ where $\vec{y}=\operatorname{FVar}(c s)$ Match $_{c s}(\vec{y}) @ \mathrm{C}_{i}\left(\vec{x}_{i}\right) \rightarrow\left\langle M_{i}\right\rangle \quad\left(1 \leq i \leq n, c s=\left\{\cdots\left|\mathrm{C}_{\mathrm{i}}\left(\vec{x}_{i}\right) \mapsto M_{i}\right| \ldots\right\}\right)$
© U. Dal Lago and S. Martini. "On Constructor Rewrite Systems and the Lambda-Calculus". In Proc. of 36th ICALP, pp. 163-174, 2009.

From Programs to Rewrite Systems (II)

Theorem

Let $\mathcal{A}_{\text {PCF }}$ collect all rules defined synchronous to $\langle\cdot\rangle$.

1. $\mathcal{A}_{\text {PCF }}$ implements PCF in a step-by-step manner (call-by-value)
2. on first-order inputs, finite restriction $\mathcal{A}_{P} \subsetneq \mathcal{A}_{P C F}$ sufficient to implement $P=\lambda \vec{x} . M$.

ATRS $\mathcal{A}_{\text {rev }}$

$$
\begin{aligned}
& 1 \text { let }(\circ) f g=\text { fun } z \rightarrow f(g z) ; ; \\
& 2 \text { let rec walk }=\text { function } \\
& 3 \quad \mid[] \rightarrow \text { id } \\
& 4 \quad \mid x:: x s \rightarrow \text { walk } x s \circ(\text { fun } y s \rightarrow x:: y s) ; ; \\
& 5 \text { let rev } l=\text { walk } l[] ; ;
\end{aligned}
$$

\Downarrow desugar + defunctionalize
(1)
(2)
(3)

$$
\begin{equation*}
\text { Rev © / } \rightarrow \text { Fix }_{\text {W }} \text { © } / @[] \tag{6}
\end{equation*}
$$

(०) © $f \rightarrow(\circ)_{1}(f)$
$\mathrm{Fix}_{\mathrm{W}} @ \mid \rightarrow \operatorname{Lam}_{1}$ @ $/$
(7) $\quad(\circ)_{1}(f) @ g \rightarrow \operatorname{Lam}_{3}(f, g)$
$\operatorname{Lam}_{1} @ \mid \rightarrow$ Match $_{\mathrm{w}} @ \mid$
(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f$ © (g © $)$
(4) $\operatorname{Match}_{W} \propto[] \rightarrow$ Id
(9) Id © ys $\rightarrow y s$
(5) $\operatorname{Match}_{\mathrm{W}} @(x:: x s) \rightarrow(\circ) @\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right) @ \operatorname{Lam}_{2}(x)$
(10) $\operatorname{Lam}_{2}(x)$ © ys $\rightarrow x:: y s$

ATRS $\mathcal{A}_{\text {rev }}$

$$
\begin{aligned}
& 1 \text { let }(o) f g=\text { fun } z \rightarrow f(g z) ; ; \\
& 2 \text { let rec walk }=\text { function } \\
& 3 \quad \mid[] \rightarrow \text { id } \\
& 4 \quad \mid x:: x s \rightarrow \text { walk } x s \circ(\text { fun } y s \rightarrow x:: y s) ; ; \\
& 5 \text { let rev } l=\text { walk } l[] ; ;
\end{aligned}
$$

\Downarrow desugar + defunctionalize
(1) $\quad \operatorname{Rev} @ \mid \rightarrow$ Fix $_{\mathrm{W}}$ @ / © [$]$
(०) © $f \rightarrow(\circ)_{1}(f)$
(2) $\quad \mathrm{Fix}_{\mathrm{W}} @\left|\rightarrow \operatorname{Lam}_{1} @\right|$
$(\circ)_{1}(f) @ g \rightarrow \operatorname{Lam}_{3}(f, g)$
$\operatorname{Lam}_{1} @ l \rightarrow$ Match $_{\mathrm{w}} @$ l
(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f$ © (g @ $\left.z\right)$
(3)
$\begin{aligned} \text { (4) } \quad \operatorname{Match}_{W} @[] & \rightarrow I d \\ \text { (5) } \operatorname{Match}_{W} @(x:: x s) & \rightarrow(\circ) @\left(F_{i x_{W}} @ x s\right) @ \operatorname{Lam}_{2}(x)\end{aligned}$
(9) Id © ys $\rightarrow y s$
(10) $\operatorname{Lam}_{2}(x)$ © ys $\rightarrow x:: y s$
in suitable format for analysis by first-order tools

Experimental Evaluation

\star Implementation: http://cbr.uibk.ac.at/tools/hoca/
\star FOP: TCTv2 for complexity, $T_{T} T_{2}$ for termination (SN)

* Testbed: 25 higher-order functions from literature on FP
- higher-order sorting functions, list \& tree traversals (maps, folds, ...), Okasaki's parser combinators, ...

		constant	linear	quadratic	poly	SN
RaML	\# systems	2	4	8	-	-
	avg. ET (secs)	2.79	0.32	1.55	-	-
Defunctionalize \# systems	2	5	5	5	8	
FOP avg. ET (secs)	1.71	4.82	4.82	4.82	1.38	

Table: Experimental evaluation on 25 higher-order examples. Defunctionalize: Amortized, type-based analysis with RaML prototoype (http://raml.co/). Simplify: FOP on defunctionalized ATRS.

ATRS $\mathcal{A}_{\text {rev }}$

1 let (o) $f g=$ fun $z \rightarrow f(g z)$; ;
2 let rec walk $=$ function
3 | [] \rightarrow id
$4 \quad \mid x:: x s \rightarrow$ walk $x s \circ$ (fun $y s \rightarrow x:: y s)$;
5 let rev $l=$ walk l [] ;;

\Downarrow desugar + defunctionalize
(4) $\quad \mathrm{Match}_{W} @[] \rightarrow$ Id
(5) $\operatorname{Match}_{\mathrm{W}} @(x:: x s) \rightarrow(0)$ @ $\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right)$ © $\operatorname{Lam}_{2}(x)$
$(\circ) @ f \rightarrow(\circ)_{1}(f)$
(7) $\quad(\circ)_{1}(f) @ g \rightarrow \operatorname{Lam}_{3}(f, g)$
(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)$
(9) Id © ys $\rightarrow y s$
(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$
^ recursive structure of translated ATRSs apparently too complicated

1. defines one global function ©
2. computation entirely driving by data

Governing the Chaos

program transformations can remedy the situations

1. inlining

- remove unnecessary indirections introduced by rigid transformation

2. dead code elimination

- eliminate inlined functions

3. instantiation

- specialize "higher-order variables" via control/data flow analysis

4. uncurrying

- effectively replaces global apply function with specialized ones

Inlining \& Dead Code Elimination

* inlining is optimization that replaces function calls by bodies

夫 dead code elimination removes non-reachable code

$$
\begin{align*}
\mathrm{Fix}_{\mathrm{W}} @ l & \rightarrow \operatorname{Lam}_{1} @ l \tag{2}\\
\operatorname{Lam}_{1} @ l & \rightarrow \mathrm{Match}_{\mathrm{W}} @ l \tag{3}\\
\mathrm{Match}_{\mathrm{W}} @[] & \rightarrow \mathrm{Id}
\end{align*}
$$

(4)
(5) $\operatorname{Match}_{W} @(x:: x s) \rightarrow(0) @\left(\mathrm{Fix}_{W} @ x s\right)$ @ $\operatorname{Lam}_{2}(x)$
\Downarrow inline Lam_{1}
(2)
(4) $\quad \mathrm{Match}_{W} @[] \rightarrow$ Id
(5) $\operatorname{Match}_{W} @(x:: x s) \rightarrow(0) @\left(\operatorname{Fix}_{W} @ x s\right) @ \operatorname{Lam}_{2}(x)$
\Downarrow inline Match $_{\text {w }}$
(2a)

$$
\mathrm{Fix}_{\mathrm{W}} @[] \rightarrow \mathrm{Id}
$$

$$
\begin{equation*}
\operatorname{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow(0) @\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right) @ \operatorname{Lam}_{2}(x) \tag{2b}
\end{equation*}
$$

Inlining

Definition (inlining + narrowing) replaces a rule $l \rightarrow C\left[f\left(t_{1}, \ldots, t_{k}\right)\right] \in \mathcal{A}$ by

$$
\left\{(l \rightarrow C[r]) \mu \mid \exists f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r \in \mathcal{A}, f\left(t_{1}, \ldots, t_{k}\right) \approx_{\mu} f\left(l_{1}, \ldots, l_{k}\right)\right\}
$$

Inlining

Definition (inlining + narrowing)
replaces a rule $l \rightarrow C\left[f\left(t_{1}, \ldots, t_{k}\right)\right] \in \mathcal{A}$ by

$$
\left\{(l \rightarrow C[r]) \mu \mid \exists f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r \in \mathcal{A}, f\left(t_{1}, \ldots, t_{k}\right) \approx_{\mu} f\left(l_{1}, \ldots, l_{k}\right)\right\}
$$

Traps

1. mixes evaluation-order
2. not cost-neutral in general, even asymptotically

- inline $\mathrm{f}(n) \rightarrow 0$ in $\mathrm{g}(m) \rightarrow \mathrm{f}(\mathrm{g}(m))$

3. narrowing cause subtle issue when inlined function partially defined

- inline $f(n, 0) \rightarrow n$ in $g(S(m)) \rightarrow f(g(m), m)$

Inlining

Definition (inlining + narrowing)
replaces a rule $l \rightarrow C\left[f\left(t_{1}, \ldots, t_{k}\right)\right] \in \mathcal{A}$ by

$$
\left\{(l \rightarrow C[r]) \mu \mid \exists f\left(l_{1}, \ldots, l_{k}\right) \rightarrow r \in \mathcal{A}, f\left(t_{1}, \ldots, t_{k}\right) \approx_{\mu} f\left(l_{1}, \ldots, l_{k}\right)\right\}
$$

Traps

1. mixes evaluation-order
2. not cost-neutral in general, even asymptotically

- inline $\mathrm{f}(n) \rightarrow 0$ in $\mathrm{g}(m) \rightarrow \mathrm{f}(\mathrm{g}(m))$

3. narrowing cause subtle issue when inlined function partially defined

- inline $f(n, 0) \rightarrow n$ in $g(S(m)) \rightarrow f(g(m), m)$

Theorem
For non-ambiguous \mathcal{A}, redex-preserving inlining of sufficiently defined function f is asymptotic complexity-reflecting.

Overall...

(1)

$$
\begin{equation*}
\text { Rev @ } l \rightarrow \text { Fix }_{\mathrm{W}} @ l @[] \tag{6}
\end{equation*}
$$

$(\circ) @ f \rightarrow(\circ)_{1}(f)$
(2)

$$
\mathrm{Fix}_{\mathrm{W}} @ l \rightarrow \operatorname{Lam}_{1} @ l
$$

$$
\text { (7) } \quad(\circ)_{1}(f) \odot g \rightarrow \operatorname{Lam}_{3}(f, g)
$$

$$
\text { (3) } \quad \operatorname{Lam}_{1} @ l \rightarrow \operatorname{Match}_{W} @ l
$$

$$
\text { (8) } \operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)
$$

$$
\text { (4) } \quad \operatorname{Match}_{w} @[] \rightarrow \text { Id }
$$

(5) $\operatorname{Match}_{\mathrm{W}} @(x:: x s) \rightarrow(0)$ @ $\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right) @ \operatorname{Lam}_{2}(x)$
(9) Id © ys $\rightarrow y s$
(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

$$
\Downarrow
$$

(1)	Rev @ $/ \rightarrow \mathrm{Fix}_{\mathrm{W}}$ @ $/$ @ []	(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)$
(2a)	$\mathrm{Fix}_{\text {W }}$ @ [] \rightarrow Id	(9) Id @ ys \rightarrow ys
(2b)	$\mathrm{Fix}_{\mathrm{W}}$ @ $(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)$	(10) $\operatorname{Lam}_{2}(x)$ @ ys $\rightarrow x:: y s$

Overall...

(1)
(2)
(3)

$$
\begin{equation*}
\text { Rev @ } l \rightarrow \mathrm{Fix}_{\mathrm{W}} @ l @[] \tag{6}
\end{equation*}
$$

$(\circ) @ f \rightarrow(\circ)_{1}(f)$
$\mathrm{Fix}_{\mathrm{W}} @ l \rightarrow \operatorname{Lam}_{1} @ l$
(7) $\quad(\circ)_{1}(f) @ g \rightarrow \operatorname{Lam}_{3}(f, g)$

$$
\operatorname{Lam}_{1} @ l \rightarrow M_{\text {Match }}^{W} \text { @ } l
$$

$$
\text { (8) } \operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)
$$

(4) $\quad \mathrm{Match}_{W} @[] \rightarrow$ Id
(5) $\operatorname{Match}_{\mathrm{W}} @(x:: x s) \rightarrow(0)$ @ $\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right) @ \operatorname{Lam}_{2}(x)$
(9) Id @ys $\rightarrow y s$
(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

$$
\Downarrow
$$

(1)	Rev @ $/ \rightarrow \mathrm{Fix}_{\mathrm{W}}$ @ $/$ @ []	(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f$ © (g@ $)$
(2a)	$\mathrm{Fix}_{\mathrm{W}}$ @ [] \rightarrow Id	(9) Id @ ys \rightarrow ys
(2b)	$\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)$	(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

\star runtime of Rev coincide, up to constant speed-up

Overall...

(1)
(2)
(3)
(4) $\quad \mathrm{Match}_{W} @[] \rightarrow$ Id
(5) $\operatorname{Match}_{\mathrm{W}} @(x:: x s) \rightarrow(0)$ @ $\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right)$ @ $\operatorname{Lam}_{2}(x)$
(6) $\quad(\circ) @ f \rightarrow(\circ)_{1}(f)$
(7) $\quad(\circ)_{1}(f) @ g \rightarrow \operatorname{Lam}_{3}(f, g)$
$\operatorname{Lam}_{1} @ l \rightarrow \operatorname{Match}_{W} @ l$
(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)$
(9) Id © ys $\rightarrow y s$ \Downarrow
(1)
(2b) $\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)$
(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

(1)	Rev © $/ \rightarrow \mathrm{Fix}_{\mathrm{W}}$ @ $/$ © []	(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f$ © (g@ $)$
(2a)	$\mathrm{Fix}_{\mathrm{W}} @[] \rightarrow \mathrm{Id}$	(9) Id @ ys \rightarrow ys
(2b)	@ (x::xs) $\rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}}\right.$ @ x s, $\left.\operatorname{Lam}_{2}(x)\right)$	(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

* runtime of Rev coincide, up to constant speed-up
^ Implementation Trap: inlining blows up program size/diverge
- inline conservatively (calls to Lam_{*}, Match $_{*}$, and constants)

Overall...

(1)
Rev @ $/ \rightarrow \mathrm{Fix}_{\mathrm{w}} @ 1$ @ []
$(\circ) @ f \rightarrow(\circ)_{1}(f)$
$\mathrm{Fix}_{\mathrm{W}} @\left|\rightarrow \operatorname{Lam}_{1} @\right|$
(7) $\quad(\circ)_{1}(f) @ g \rightarrow \operatorname{Lam}_{3}(f, g)$
Lam_{1} @ $\mid \rightarrow$ Match $_{\text {W }}$ @ $/$
(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)$
(4) $\quad \mathrm{Match}_{W} @[] \rightarrow$ Id
(5) $\operatorname{Match}_{\mathrm{W}} @(x:: x s) \rightarrow(0)$ @ $\left(\mathrm{Fix}_{\mathrm{W}} @ x s\right)$ @ $\operatorname{Lam}_{2}(x)$
(9) Id @ ys $\rightarrow y s$
(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

$$
\begin{equation*}
\Downarrow \tag{1}
\end{equation*}
$$

(2b) $\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)$
(8) $\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)$
(9) Id@ys $\rightarrow y s$
(10) $\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s$

```
* runtime of Rev coincide, up to constant speed-up

夫 Implementation Trap: inlining blows up program size/diverge
- inline conservatively (calls to \(\mathrm{Lam}_{*}\), Mat ch \(_{*}\), and constants)
\(\star\) troublesome rule (8) still present

\section*{Instantiation of Higher-Order Variables}
\begin{tabular}{|c|c|c|}
\hline (1) & Rev @ \(/ \rightarrow \mathrm{Fix}_{\mathrm{W}}\) @ \(/\) @ [] & (8) \(\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)\) \\
\hline (2a) & \(\mathrm{Fix}_{\mathrm{W}}\) @ [] \(\rightarrow\) Id & (9) Id @ ys \(\rightarrow\) ys \\
\hline (2b) & \(\mathrm{Fix}_{\mathrm{W}}\) @ \((x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{W} @ x s, \operatorname{Lam}_{2}(x)\right)\) & (10) \(\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s\) \\
\hline
\end{tabular}

Central Observation:
\(\star\) seen in isolation, variables \(f\) and \(g\) can be instantiated arbitrarily
^ not so when considering only calls to Rev

\section*{Instantiation of Higher-Order Variables}
\[
\begin{align*}
\mathrm{Rev} @ l & \rightarrow \mathrm{Fix}_{\mathrm{W}} @ l @[] \\
\mathrm{Fix}_{\mathrm{W}} @[] & \rightarrow \mathrm{Id} \\
\mathrm{Fix}_{\mathrm{W}} @(x:: x \mathrm{~s}) & \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right) \tag{1}
\end{align*}
\]
(8) \(\operatorname{Lam}_{3}(f, g) @ z \rightarrow f\) @ \((g @ z)\)
(9) Id © ys \(\rightarrow y s\)
(10) \(\operatorname{Lam}_{2}(x) @ y s \rightarrow x:: y s\)

\section*{Central Observation:}
\(\star\) seen in isolation, variables \(f\) and \(g\) can be instantiated arbitrarily
« not so when considering only calls to Rev
夫 determining precise set of instances undecidable
\(\star\) but can be efficiently approximated, e.g., with tree automata techniques

R N. D. Jones. "Flow Analysis of Lazy Higher-order Functional Programs". TCS, Vol. 375, pp. 120-136, 2007.

国 J. Kochems and L. Ong. "Improved Functional Flow and Reachability Analyses Using Indexed Linear Tree Grammars". In Proc. of 22nd RTA, pp. 187-202, 2011.

\section*{Instantiation of Higher-Order Variables}
\begin{tabular}{|c|c|c|c|}
\hline (1) & Rev @ \(/ \rightarrow \mathrm{Fix}_{\mathrm{W}}\) @ \(/\) @ & & (8) \(\operatorname{Lam}_{3}(f, g) @ z \rightarrow f @(g @ z)\) \\
\hline (2a) & \(\mathrm{Fix}_{\mathrm{W}} @[] \rightarrow \mathrm{Id}\) & & (9) Id @ ys \(\rightarrow\) ys \\
\hline (2b) & \(\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \mathrm{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}}\right.\) & © \(x\) s, \(\operatorname{Lam}_{2}(x)\) ) & (10) \(\operatorname{Lam}_{2}(x)\) @ \(y s \rightarrow x:: y s\) \\
\hline & \(S \rightarrow \operatorname{Rev}\) @ \({ }^{\text {® }}\) &  & \\
\hline (1) & \(R_{1} \rightarrow R_{8} \mid R_{9}\) & \(L_{1} \rightarrow \star\) & \\
\hline (2a) & \(R_{2 a} \rightarrow I d\) & & \\
\hline (2b) & \[
\begin{aligned}
R_{2 b} \rightarrow & \operatorname{Lam}_{3}\left(R_{2 a}, \operatorname{Lam}_{2}\left(X_{2 b}\right)\right) \\
& \mid \operatorname{Lam}_{3}\left(R_{2 b}, \operatorname{Lam}_{2}\left(X_{2 b}\right)\right)
\end{aligned}
\] & \(\chi_{2 b} \rightarrow \star\) & \(X S_{2 b} \rightarrow \star\) \\
\hline (8) & \(R_{8} \rightarrow R_{8} \mid R_{10}\) & \(F_{8} \rightarrow R_{2 a} \mid R_{2 b}\) & \(\mathrm{G}_{8} \rightarrow \operatorname{Lam}_{2}\left(X_{2 b}\right) \quad Z_{8} \rightarrow[] \mid R_{10}\) \\
\hline (9) & \(R_{9} \rightarrow[]\left|X_{10}\right| Y S_{10}\) & \(Y S_{9} \rightarrow[] \mid R_{10}\) & \\
\hline (10) & \(R_{10} \rightarrow[]\left|X_{10}\right| Y S_{10}\) & \(X_{10} \rightarrow X_{2 b}\) & \(Y S_{10} \rightarrow[] \mid R_{10}\) \\
\hline
\end{tabular}

Tree automaton over-approximating collecting semantics.

\section*{Instantiation of Higher-Order Variables}


Tree automaton over-approximating collecting semantics.
\[
f \mapsto \operatorname{Id} \mid \operatorname{Lam}_{3}(f, g) \quad g \mapsto \operatorname{Lam}_{2}(x)
\]

Variable bindings extracted from tree automaton.

\section*{Instantiation of Higher-Order Variables (II)}
(1)
(2a)
(2b) \(\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)\)
Rev © \(/ \rightarrow \mathrm{Fix}_{\mathrm{W}}\) @ \(/\) @ []
Fix \(_{W} @[] \rightarrow I d\)
\(+\)
\[
f \mapsto \operatorname{Id} \mid \operatorname{Lam}_{3}(f, g) \quad g \mapsto \operatorname{Lam}_{2}(x)
\]
\(\Downarrow\) instantiate (8)
(1)
(2a)
(2b)
\begin{tabular}{|c|c|}
\hline (8a) & \(\operatorname{Lam}_{3}\left(\operatorname{Id}, \operatorname{Lam}_{2}(x)\right)\) @ \(z \rightarrow\) Id @ (Lam \((x)\) @ \(\left.z\right)\) \\
\hline (8b) & \(\operatorname{Lam}_{3}\left(\operatorname{Lam}_{3}(f, g), \operatorname{Lam}_{2}(x)\right)\) @ \(z \rightarrow \operatorname{Lam}_{3}(f, g) @\left(\operatorname{Lam}_{2}(x)\right.\) @ \(\left.z\right)\) \\
\hline (9) & Id @ ys \(\rightarrow\) ys \\
\hline (10) & \(\operatorname{Lam}_{2}(x)\) @ ys \(\rightarrow x:: y s\) \\
\hline
\end{tabular}

\section*{Instantiation of Higher-Order Variables (II)}
(1)
(2b) \(\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)\)
Rev © \(/ \rightarrow \mathrm{Fix}_{\mathrm{W}}\) @ \(/\) @ []
Fix \(_{W} @[] \rightarrow I d\)

\[
f \mapsto \operatorname{Id} \mid \operatorname{Lam}_{3}(f, g)
\]
\[
g \mapsto \operatorname{Lam}_{2}(x)
\]
\(\Downarrow\) instantiate (8), simplify
(2a)
(2b)

\section*{Instantiation of Higher-Order Variables (II)}
(1)
(2a)
(2b) \(\mathrm{Fix}_{\mathrm{W}} @(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}} @ x s, \operatorname{Lam}_{2}(x)\right)\)
Rev @ \(/ \rightarrow \mathrm{Fix}_{\mathrm{W}} @ / @[]\)
Fix \(_{W} @[] \rightarrow I d\)

^ resulting ATRS head-variable free; applied functions statically known

\section*{Uncurrying}
\[
C(\vec{s}) \oplus t_{1} @ \cdots \odot t_{n} \quad \Longrightarrow \quad C_{n}\left(\vec{s}, t_{1}, \ldots, t_{n}\right)
\]

\section*{Uncurrying}
\[
C(\vec{s}) @ t_{1} @ \cdots @ t_{n} \quad \Longrightarrow \quad C_{n}\left(\vec{s}, t_{1}, \ldots, t_{n}\right)
\]

\(\Longrightarrow\)\begin{tabular}{rl}
\((1)\) & \(\operatorname{Rev}_{1}(l)\)
\end{tabular}\(\rightarrow \operatorname{Fix}_{\mathrm{W}}^{2}(l,[])\)

\section*{Uncurrying}
\[
\mathrm{C}(\vec{s}) \oplus t_{1} @ \cdots @ t_{n} \quad \Longrightarrow \quad \mathrm{C}_{n}\left(\vec{s}, t_{1}, \ldots, t_{n}\right)
\]


葍 N. Hirokawa, A. Middeldorp, and H. Zankl. "Uncurrying for Termination". In Proc. of 15th LPAR, 2008.

\section*{Uncurrying (II)}

\section*{Definition ( \(\eta\)-saturation)}
« application arity \(\mathrm{aa}(\mathrm{C})\) is maximal number of arguments applied to C
\(\star\) ATRS \(\mathcal{A}\) is \(\eta\)-saturated if
\(\mathrm{C}(\overrightarrow{\mathbf{s}}) @ t_{1} @ \cdots @ t_{n} \rightarrow r \in \mathcal{A} \Longrightarrow \mathrm{C}(\overrightarrow{\boldsymbol{s}}) @ t_{1} @ \cdots @ t_{n} @ z \rightarrow r @ z \in \mathcal{A}\)
whenever \(n<a a(C)\), with \(z\) fresh variable
\(\star \eta\)-saturation of \(\mathcal{A}\) is least \(\eta\)-saturated extension of \(\mathcal{A}\)

\section*{Uncurrying (II)}

\section*{Definition ( \(\eta\)-saturation)}
« application arity \(\mathrm{aa}(\mathrm{C})\) is maximal number of arguments applied to C
\(\star\) ATRS \(\mathcal{A}\) is \(\eta\)-saturated if
\(\mathrm{C}(\overrightarrow{\mathbf{s}}) @ t_{1} @ \cdots\) @ \(t_{n} \rightarrow r \in \mathcal{A} \Longrightarrow \mathrm{C}(\vec{s}) @ t_{1} @ \cdots @ t_{n} @ z \rightarrow r @ z \in \mathcal{A}\)
whenever \(n<\mathrm{aa}(\mathrm{C})\), with \(z\) fresh variable
\(\star \quad \eta\)-saturation of \(\mathcal{A}\) is least \(\eta\)-saturated extension of \(\mathcal{A}\)

Theorem ( \(\eta\)-Saturation \& Uncurrying)
1. \(\eta\)-saturation finite if \(\mathcal{A}\) "well-typed"
2. \(\eta\)-saturation is complexity preserving \& reflecting
3. uncurrying head-variable free, \(\eta\)-saturated ATRS is complexity preserving \& reflecting

\section*{Uncurry (III)}
(1)
\[
\begin{align*}
& \operatorname{Rev}_{1}(l) \rightarrow \operatorname{Fix}_{\mathrm{W}}^{2}(l,[]) \\
& \operatorname{Fix}_{\mathrm{W}}^{1}([]) \rightarrow \text { Id }  \tag{2a}\\
& \operatorname{Fix}_{\mathrm{W}}^{1}(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\operatorname{Fix}_{\mathrm{W}}^{1}(x s), \operatorname{Lam}_{2}(x)\right)  \tag{2b}\\
& \operatorname{Lam}_{3}^{1}\left(\operatorname{Id}, \operatorname{Lam}_{2}(x), z\right) \rightarrow x:: z  \tag{8a}\\
& \text { (8b) } \operatorname{Lam}_{3}^{1}\left(\operatorname{Lam}_{3}(f, g), \operatorname{Lam}_{2}(x), z\right) \rightarrow \operatorname{Lam}_{3}^{1}\left(f, g, \operatorname{Lam}_{2}^{1}(x, z)\right) \\
& \operatorname{Id}_{1}(y s) \rightarrow y s \tag{9}
\end{align*}
\]
\(\Downarrow\) simplify \& rename
(8b) eval \((\operatorname{Comp}(f, g), \operatorname{Cons}(x), z) \rightarrow \operatorname{eval}(f, g, x:: z)\)

\section*{Uncurry (III)}
(1)
\[
\begin{equation*}
\operatorname{Fix}_{\mathrm{W}}^{1}(x:: x s) \rightarrow \operatorname{Lam}_{3}\left(\mathrm{Fix}_{\mathrm{W}}^{1}\right. \tag{2b}
\end{equation*}
\]
\[
\operatorname{Rev}_{1}(l) \rightarrow \operatorname{Fix}_{\mathrm{W}}^{2}(l,[])
\]
\[
\begin{equation*}
\operatorname{Fix}_{\mathrm{W}}^{1}([]) \rightarrow I d \tag{2a}
\end{equation*}
\]
\[
\operatorname{Fix}_{\mathrm{W}}^{2}([], z) \rightarrow \operatorname{Id}_{1}(z)
\]

\[
\operatorname{Fix}_{\mathrm{W}}^{2}(x:: x \mathrm{~s}, z) \rightarrow \operatorname{Lam}_{3}^{1}\left(\operatorname{Fix}_{\mathrm{W}}^{1}(x \mathrm{~s}), \operatorname{Lam}_{2}(x), z\right)
\]
\[
\begin{equation*}
\operatorname{Lam}_{3}^{1}\left(\operatorname{Id}, \operatorname{Lam}_{2}(x), z\right) \rightarrow x:: z \tag{8a}
\end{equation*}
\]
(8b) \(\operatorname{Lam}_{3}^{1}\left(\operatorname{Lam}_{3}(f, g), \operatorname{Lam}_{2}(x), z\right) \rightarrow \operatorname{Lam}_{3}^{1}\left(f, g, \operatorname{Lam}_{2}^{1}(x, z)\right)\)
\[
\begin{equation*}
\operatorname{Id}_{1}(y s) \rightarrow y s \tag{9}
\end{equation*}
\]
\(\Downarrow\) simplify \& rename
(8b) eval \((\operatorname{Comp}(f, g), \operatorname{Cons}(x), z) \rightarrow \operatorname{eval}(f, g, x:: z)\)


目｜…（ ）
士 III（T）

Tyrolean Complexity Tool

\section*{CBR Home TcT Home Download Experiments TCT Web}

Input（in \(x \mathrm{ml}\) or trs format）
select example ．．．\(\checkmark\) or upload file \(\quad\) Browse．．．No file selected．
```

1 (VAR x xs z f g)
3}\mathrm{ (RULES
(RULES [rev([]) -> [
\operatorname{rev([]) -> [] }
walk([]) -> Id
walk(::(x,xs)) -> Comp(walk(xs),Cons(x))
build(Id,Cons(x),z) -> ::(x,z)
build(Comp(f,g),Cons(x),z) -> build(f,g,::(x,z))
10)

```

Category

Complexity Measure：
Rewriting Strategy：Runtime ComplexityFull Rewriting

Customised by user
Search Strategy
O Automatic
Derivational ComplexityInnermost Rewriting
```

check
with timeout of \square seconds

```

WORST＿CASE \(\left(?, 0\left(n^{\wedge} 1\right)\right)\)

Applied Processor：Bounds \｛initialAutomaton＝minimal，enrichment＝match\}
Proof：
The problem is match－bounded by 2 ．
The enriched problem is compatible with follwoing automaton．
：：0（2，2）－＞ 2
\(:: \_1(2,1) \rightarrow 1\)
\(::-1(2,2) \rightarrow 1\)
\(:: 1(2,2) \quad->3\)

\section*{Experimental Evaluation}
\(\star\) Implementation: http://cbr.uibk.ac.at/tools/hoca/
\(\star\) FOP: TCTv2 for complexity, \(T_{T} T_{2}\) for termination (SN)
* Testbed: 25 higher-order functions from literature on FP
- higher-order sorting functions, list \& tree traversals (maps, folds, ...), Okasaki's parser combinators, ...
\begin{tabular}{rrccccc}
\hline & & constant & linear & quadratic & poly & SN \\
\hline RaML & \# systems & 2 & 4 & 8 & - & - \\
& avg. ET (secs) & 2.79 & 0.32 & 1.55 & - & - \\
Defunctionalize \# systems & 2 & 5 & 5 & 5 & 8 \\
FOP avg. ET (secs) & 1.71 & 4.82 & 4.82 & 4.82 & 1.38 \\
Simplify \(\quad\) \# systems & 2 & 14 & 18 & 20 & 25 \\
HoCA avg. ET (secs) & 2.28 & 0.54 & 0.43 & 0.42 & 0.87 \\
FOP avg. ET (secs) & 0.51 & 2.53 & 6.30 & 10.94 & 1.43 \\
\hline
\end{tabular}

Table: Experimental evaluation on 25 higher-order examples. Defunctionalize: Amortized, type-based analysis with RaML prototoype (http://raml.co/). Simplify: FOP on defunctionalized ATRS. RaML: FOP on defunctionalized \&

\section*{Some Relevant Cases}
« standard examples from literature on functional programming
- the presented reverse function
- insert sort defined by fold; comparison passed as argument
- DFS tree flattening via difference lists
- maximum sequence sum defined via scanr
- ...
\(\Rightarrow\) optimal asymptotic bound could be inferred for all examples

\section*{Some Relevant Cases}
« standard examples from literature on functional programming
- the presented reverse function
- insert sort defined by fold; comparison passed as argument
- DFS tree flattening via difference lists
- maximum sequence sum defined via scanr
- ...
\(\Rightarrow\) optimal asymptotic bound could be inferred for all examples
^ examples where we can only show termination
- merge sort
- instantiation of higher-order divide and conquer combinator [Bird'89]
- Okasaki's parsing combinators [Okasaki'98]
- combinators reach order 7
- lazy/memoized computation of Fibonacci numbers

\section*{Conclusion}
higher-order functional programs can be effectively analysed with first order tools

\section*{Conclusion}

\section*{higher-order functional programs can be effectively analysed with first order tools}

\section*{Pros:}
^ fully automatic analysis; no user annotation required
夫 to date, most expressive runtime complexity analysis for higher-order programs

\section*{Conclusion}

\section*{higher-order functional programs can be effectively analysed with first order tools}

\section*{Pros:}
* fully automatic analysis; no user annotation required
* to date, most expressive runtime complexity analysis for higher-order programs

Cons:
\(\star\) defunctionalisation and CFA analysis \(\Rightarrow\) translation non-modular
- nowadays, no problem even for compilers (e.g., MLton)
- modularity within the back-end
* fully automatic analysis; no user annotation possible

\section*{Conclusion}

\section*{higher-order functional programs can be effectively analysed with first order tools}

\section*{Pros:}
* fully automatic analysis; no user annotation required
* to date, most expressive runtime complexity analysis for higher-order programs

Cons:
\(\star\) defunctionalisation and CFA analysis \(\Rightarrow\) translation non-modular
- nowadays, no problem even for compilers (e.g., MLton)
- modularity within the back-end

夫 fully automatic analysis; no user annotation possible
^ same applies to other approaches (e.g. for JBC or Prolog)

\section*{Thank You!}
\(\star\) HoCA
* TCT
http://cbr.uibk.ac.at/tools/hoca
http://cl-informatik.uibk.ac.at/software/tct```


[^0]:    皿 N. Hirokawa and G. Moser. "Automated Complexity Analysis Based on the Dependency Pair Method". In Proc. of 4th IJCAR, pp. 364-380, 2008.

[^1]:    ( N. Hirokawa and G. Moser. "Automated Complexity Analysis Based on the Dependency Pair Method". In Proc. of 4th IJCAR, pp. 364-380, 2008.

    固 L. Noschinski, F. Emmes, and J. Giesl. "A Dependency Pair Framework for Innermost Complexity Analysis of Term Rewrite Systems". In Proc. of 23rd CADE, pp. 422-438, 2011.

[^2]:    圊 R. Thiemann. "The DP Framework for Proving Termination of Term Rewriting". "The DP Framework for Proving Termination of Term Rewriting", 2007.

