
Hint-typing, optimistic compilation of Dynamic

Languages

Manuel Serrano

2020-2021

subject Hint-typing, optimistic compilation of Dynamic Languages
supervisor Manuel Serrano
location Inria Sophia-Antipolis
url http://hop.inria.fr

Nowadays, JavaScript is no longer confined to the programming of web
pages. It is also used for programming server-side parts of web applications,
compilers [7], and there is a growing trend for using it for programming
internet-of-things (IoT) applications. All major industrial actors of the field
are looking for, or are already providing, JavaScript based development kits
(IoT.js, Espruino, JerryScript, Kinoma.js, ...). In this application domain,
JavaScript programs execute on small devices that have limited hardware
capacities, for instance only a few kilobytes of memory. Just-in-time (JIT)
compilation, which has proved to be so effective for improving JavaScript
performances [5, 3, 4, 2], is unthinkable in these constrained environments.
There would be just not enough memory nor CPU capacity to execute them
at runtime. Furthermore memory write operations on executable segments
are sometimes impossible on the devices, either because of the type of mem-
ory used (ROM or FLASH) or simply because the operating system forbids
them (iOS for instance). Pure JavaScript interpreters are then used, but
this comes with a strong performance penalty, especially when compared to
assembly or C programs, that limits the possible uses.

When JIT compilation is not an option and when interpretation is too
slow, the alternative is static compilation, also known as ahead-of-time
(AOT) compilation. However, this implementation technique seems not
to fit the JavaScript design whose unique combination of antagonistic fea-
tures such as functional programming support, high mutation rates of ap-
plications, introspection, and dynamicity, makes most known classical AOT
compilation techniques ineffective.

1



Indeed, JavaScript is hard to compile, much harder than languages like
C, Java, and even harder than Scheme and ML two other close functional
languages. This is because a JavaScript source code accepts many more
possible interpretations than other languages do [6]. It forces JavaScript
compilers to adopt a defensive position by generating target codes that can
cope with all the possible, even unlikely, interpretations.

Fortunately, the general principles of JIT compilation that prove to be so
efficient [1] can be accomated to AOT compilation. The static compiler can
generate several versions for each function: a generic version that can cope
with all the possible interpretations, and optimized customized versions,
specialized for specific data representations. The open questions are when
to decide to duplicate functions and how duplicating them.

We have conducted a first experiment that we have implemented in the
hopc compiler for JavaScript [8, 9]. In order to decide which customized
versions to generate, the compiler extracts as much as possible information
from the source code. Modular compilation, a.k.a., separate compilation,
prevents it to always being able to make such deductions. In that case, it
speculates beforehand on the data structures that are likely to be used by
the exported functions. The key principle of the speculation is the following
assumption. The most likely data structure a program will use is the one
for which the compiler is able to produce its best code. This first experiment
shows promising results because it let hopc being competitive with industrial
JIT compiler for JavaScript on many programs.

The subject of this internship is to improve and to formalize the new
typing discipline that we have coined hint typing that let the compiler im-
plements its optimistic code generation.

References

[1] C. Chambers and D. Ungar. Customization: Optimizing compiler tech-
nology for SELF, a dynamically-typed object-oriented programming lan-
guage. In Conference Proceedings on Programming Language Design and
Implementation, PLDI ’89, New York, NY, USA, 1989. ACM.

[2] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer,
B. Eich, and M. Franz. Tracing for web 3.0: trace compilation for the
next generation web applications. In In Proceedings of the International
Conference on Virtual Execution Environments, 2009.

[3] M. Chevalier-Boisvert and M. Feeley. Simple and effective type check
removal through lazy basic block versioning. In 29th European Confer-
ence on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic, 2015.

2



[4] M. Chevalier-Boisvert and M. Feeley. Interprocedural type specialization
of javascript programs without type analysis. In 30th European Confer-
ence on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, 2016.

[5] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based just-
in-time type specialization for dynamic languages. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, 2009.

[6] L. Gong, M. Pradel, and K. Sen. Jitprof: Pinpointing jit-unfriendly
javascript code. Technical Report UCB/EECS-2014-144, Aug. 2014.

[7] Microsoft. TypeSscript, Language Specification, version 0.9.5, Nov. 2013.

[8] M. Serrano. Javascript aot compilation. In 14th Dynamic Language
Symposium (DLS), Boston, USA, Nov. 2018.

[9] M. Serrano and M. Feeley. Property Caches Revisited. In Proceedings of
the 28th Compiler Construction Conference (CC’19), Washington, USA,
feb 2019.

3


