The HOP Development Kit

Manuel Serrano

Inria Sophia Antipolis
2004 route des Lucioles - BP 93 F-06902 Sophia Antipolis,e2eBrance

http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT

Hop, is a language dedicated to programming reactive anadin
applications on the web. It is meant for programming apfibice
such as web agendas, web galleries, web mail clients, etdeWh
a previous paperHop, a Language for Programming the Web
2.0, available ahttp://hop.inria.fr) focused on the linguistic
novelties brought by Hop, the present one focuses on itaiérec
environment. That is, it presents Hop’s user librariegxtensions
to the HTML-based standards, and its execution platforeHbp
webbroker.

DOWNLOAD
Hop is available athttp://hop.inria.fr.

The web site contains the distribution of the source code, th
online documentation, and various demonstrations.

1. Introduction

Along with games, multimedia applications, and email, thebw
has popularized computers in everybody’s life. The revotuis

for building HTML graphical user interfaces is presentedehdt
is presented in Section 2, along with a presentation of thp Ho
solution for bringing abstraction to Cascade Style Sheets.

The section 3 focuses on programming the Hop web broker.
Its presents basic handling of client requests and it ptestie
facilities for connecting two brokers and for gatheringoimhation
scattered on the internet. The Section 4 presents the maitidns
of the broker programming library.

1.1 Theweb 2.0

In the newsgrougomp . lang. functional, a Usenet news group
for computer scientists (if natesearchersin computer science)
someone reacted rather badly to the official announce ofvhié a
ability of the first version Hop:

“I really don’t understand why people are [so] hyped-up over
Web 2.0. It's just Java reborn with a slower engine that déesn
even have sandboxing capabilities built into it. | guess thype
will taper off just like the Java hype, leaving us with yet teo
large technology and a few niches where it's useful”

This message implicitly compares two programming langsage
namely Java and JavaScript and reduces Hopyeb another

engaged and we may be at the dawn of a new era of computinggeneral-purpose programming languageis is a misunderstand-

where the web is a central element.
Many of the computer programs we write, for professional
purposes or for our own needs, are likely to extensively bhge t

ing. The point of Hop is to help writing new applications tlaae
nearly impossible (or at least, discouragingly tediousytite us-
ing traditional programming languages such as Java antkéhe\s

web. The web is a database. The web is an API. The web is a novelSuch, its goal is definitivelpot to compete with these languages.

architecture. Therefore, it needs novel programming laggs and
novel programming environments. Hop is a step in this dioact

A previous paper [1] presented the Hop programming language
This present paper presents the Hop execution environriiést.
rest of this section presents the kind of end-user appticatHop
focuses on (Section 1.1) and the technical solutions it ptem
(Section 1.2). The rest of this paper assumes a familiatitty strict
functional languages and with infix parenthetical syntestesh as
the ones found in Lisp and Scheme.

Because it is normal for a web application to access datapase
manipulate multimedia documents (images, movies, and ayusi
and parse files according to public formats, programmingitbie
demands a lot of libraries. Even though it is still young, Hop
provides many of them. In an attempt to avoid a desperateindgpo
presentation this paper does not present them all! Onlyilbinary

[Copyright(© 2006, Manuel Serrano]

As a challenge, imagine implementing a program that reptsse
the user with a map of the United States of America that : hegs t
user zoom in and out on the map, and also helps with trip pheapni
In particular the user may click on two cities, and the agtian
responds with the shortest route between the cities, thmatsd
trip time, the price of the gas for the trip (using local punizes)
the weather forecasts along the route (for the appropiia® tand
where to find the best pizza and gelatos in each town alongdlye w
Although it is possible to write such a program using Java an@
existing resources available online, the web 2.0 is thasgtfucture
that makes itfeasibleto write such programs. Because the web
2.0 provides the potential to easily combine fancy graphicd
information from disparate sources online into new, infation-
aware applications. Unfortunately, the programming mdalethe
web 2.0 is missing. Hop is one attempt to provide the right @hod
and the rest of this paper explains how.

1.2 The HOP architecture

Hop enforces a programming model where the graphical utsrin
face and the logic of an application are executed on two reiffe
engines. In theory, the execution happens as if the two esgire
located on different computers even if they are actuallgdently
hosted by a single computer. In practice, executing a Hoficapp
tion requires:

2010/7/27

¢ A web browser that plays the role of the engine in charge of the
graphical user interface. It is therminal of the application. It
establishes communications with the Hapker.

¢ A Hop brokerwhich is the execution engine of the application.
All computations that involve resources of the local coneput
(CPU resource, storage devices, various multi-media dsyic
...) are executed on the broker. The broker it also in chafge o
communicating with other Hop brokers or regular web servers
in order to gather the information needed by the application

The Hop programming language provides primitives for ménag
the distributed computing involved in a whole applicatiompar-
ticular, at the heart of this language, we find thigh-hop form.
Its syntax is:

(with-hop (serwvice a, ..) callback)

Informally, its evaluation consists in invoking a remetervice,
i.e., a function hosted by a remote Hop broker, and, on caiople
locally invoking thecallback. The formwith-hop can be used
by engines executing graphical user interfaces in ordep&os
computations on the engine in charge of the logic of the appli
cation. It can also be used from that engine in order to spawn
computations on other remote computation engines.

2. Graphical User Interfaces

This section presents the support of Hop for graphical ugter-i
faces. It presents the library of widgets supported by Hap itm
proposal for bringing more abstraction to Cascade StyleeShe
(CsSs).

2.1 HOP Widgets

Graphical user interfaces are made of elementary grapbiijatts
(generally namedidgetd. Each of these objects has its own graph-
ical aspect and graphical behavior and it reacts to usenaictions

by intercepting mouse events and keyboard events. Heralkitto
for implementing graphical user interfaces are charazdrby:

1. the mechanisms for catching user interactions, and
2. the composition of graphical elements, and
3. the richness of them widgets.

HTML (either W3C’s HTML-4 or XHTML-1) do a good job at
handling events. Each HTML elementsréactiveand JavaScript,
the language used for programming events handlers, is atequ
CSS2, the HTML composition model based on boxes, is close to
be sufficient. The few lacking facilities are up to be addedht®
third revision. On the other hand, the set of HTML widgetsasip
It mainly consists of boxes, texts, and buttons. This isfficant
if the web is considered for implementing modern graphicaru
interfaces. Indeed, these frequently sBdersfor selecting integer
valuestreesfor representing recursive data structuresepaddor
compact representations of unrelated documents, and ntlaegso
HTML does not support these widgets and, even worse, sirise it
not a programming language, it does not allow user to imptgme
their own complementary sets of widgets. Hop bridges this ga
Hop proposes a set of widgets for easing the programming of
graphical user interfaces. In particular, it proposesider widget
for representing numerical values or enumerated setpioses a
WYSIWYG editor. It extends HTML tables for allowing autornat
sorting of columns. It supports varioaentainerwidgets such as a
panfor splitting the screen in two horizontal or vertical readle
areas, anotepadwidget for implementingtab elements, aop-
iwindow that implements a window system in the browser, etc.

In this paper, we focus on one widget that is representafitkeo
container family, theéreewidget.

2.1.1 The tree widget

Atree is a traditional widget that is frequently used fomresgenting

its eponymous data structure. For instance, it is extelysiveed

for implementing file selectors. The syntax of Hop trees i&gi
below. The meta elements required by the syntax are expresse
using lower case letters and prefixed with the charaftefhe
concrete markups only use upper case letters. The metameme
Jmarkup refers to the whole set of Hop markups.

Jmarkup — ... | Jtree

Atree — (<TREE> Jtree-head Jtree-body)
ZAtree-head — (<TRHEAD> Jmarkup)
XAtree-body — (<TRBODY> Jleaf-or-treex)
ZXleaf-or-tree — Jleaf | Jtree

ZXleaf — (<TRLEAF> Jmarkup)

As an example, here is a simple tree.

(define (dir->tree dir)
(<TREE>
(<TRHEAD> dir)
(<TRBODY>
(map (lambda (f)
(let ((p (make-file-name dir f£)))
(if (directory? p)
(dir->tree p)
(<TRLEAF> :value gf £))))
(directory->1list dir)))))

When an expression such é8ir->tree "/") is evaluated on
the broker, a tree widget representing the hierarchy of th&dn
files is built. It has to be sent to a client for rendering.

Hop containers (i.e., widgets that contain other widgets) a
stati as in the example above, dynamic A static container
builds its content only once. A dynamic container rebuitdbn-
tent each time it has to be displayed. A static tree has a fieedfs
subtrees and leaves. A dynamic tree recomputes them eazhirtim
folded. A dynamic tree is characterized by the use oktDELAY>
markup in its body. The syntax of this new markup is:

(<DELAY> thunk)

The argumenthunk is a procedure of no argument. Evaluating
a<DELAY> form on the Hop broker installs an anonymous service
whose body is the application of thiaunk. When the client, i.e.,

a web browser, unfolds a dynamic tree, its invokes the servic
associated with thehunk on the broker. This produces a new tree
that is sent back to the client and inserted in the initiad.tre

(define (dir->dyntree dir)
(<TREE>
(<TRHEAD> dir)
(<TRBODY>
(<DELAY>
(lambda ()
(map (lambda (f)
(let ((p (make-file-name dir f£)))
(if (directory? p)
(dir->dyntree p)
(<TRLEAF> :value qf £))))
(directory->1list dir)))))))

Even if the functiordir->dyntree only differs fromdir->tree
by the use of the<DELAY> markup, its execution is dramatically
different. When the expressiofdir->dyntree "/") is evalu-
ated, the broker no longer traverses its entire hierarchiles. It

2010/7/27

only inspects the files located in the directory'. When the client, For instance, instead of duplicating a color specificatiomiany

i.e., aweb browser, unfolds a node representing a dire¢tayro- attributes, it is convenient to declare a variable holdimg ¢olor
ker traverses only that directory for scanning the files.t€og to value and use that variable in the CSS. That is, the traciticsS:
dir->tree, the directories associated with nodes that are never

unfolded are never scanned &ir->dyntree. button {

border: 2px inset #555;

2.1.2 Extending existing HTML markups span.button {

Because Hop is not HTML it is very tempting to add some HTML border: 2px inset #555;
facilities to Hop, for instance by adding new attributes tarkups. }

In order to keep the learning curve as low as possible, wetriss
temptation. Hop offers the HTML markups as is, with on exiept
the markup. In HTML, this markup has arc attribute $(define border-button-spec "2px inset #555")
that specifies the actual implementation of the image. Ithman

URL or an in-line encoding of the image. In that case, the ienag button {

represented by a string whose first part is the declaratiamaifne border: $border-button-spec;

type and the second part a row sequence of characters nefingse
the encoding (e.g., base64encoding of the bytes of the image).
While this representation is close to impractical for a hamiten }
HTML documents, itis easy to produce for automatically gate=
documents, such as the ones produced by Hop. Hop adds a new In other situations, the computation power of Hop signifian

in Hop can be re-written as:

span.button {
border: $border-button-spec;

attributeinline to HTML images. When this attribute is set#e helps the CSS specifications. As an example, imagine a gaphi
(the representation of the valtielie in the concrete Hop syntax), specification for 3-dimensional borders. Given a base cal@-
the image is encoded on the fly. dimensional inset border is implemented by lightening tpeand

This tiny modification to HTML illustrates why a programming left borders and darkening the bottom and right bordersadgJie
language can dramatically help releasing documents to #f2 w two Hop library functionsolor-ligher andcolor-darker this
Thanks to thisinline attribute, it is now easy to produce stand can be implemented as:
alone HTML files. This eliminates the burden of packaging HTM

. 3 — n n
documents with external tools suchtag or zip. $(define base-color "#555")

button
2.2 HOP Cascade Style Sheets bordei—top: 1px solid $(color-lighter base-color);
Cascading Style Sheets (CSS) enable graphical custooizabif border-left: 1px solid $(color-lighter base-color);
HTML documents. A CSS specifies rendering information for vi border-bottom: 1px solid $(color-darker base-color);
sualizing HTML documents on computer screens, printingnthe border-right: 1px solid $(color-darker base-color);
on paper, or even pronouncing them on aural devices. A CSS use ¥
selectors to designate the elements onto which a custaomizap- The specification of the buttons border is actually a comgoun
plies. Attributes, which are associated with selectorscip the property made of four attributes. It might be convenient itadb
rendering information. The set of possible rendering faites is these four attributes to a unique Hop variable. Since the BISS
rich. CSS exposes layout principles based on horizontalvand ~ escape character enables to inject compound expresdimsan
tical boxes in the spirit of traditional text processing kgagions. be wriiten as:

CSS version 2 suffers limitations (for instance, it only gois one
column layout) that are to be overcome by CSS version 3. CSS is $(define base-color "#555")
so expressive that we think that when CSS v3 is fully suppdsie $(define button-border
web browsers, HTML will compete with text processors likeea (let ((cl (color-lighter base-color))
for printing high quality documents. (c2 (color-darker base-color)))
- . { border-top: 1px solid $ci;

CSS selectors are expressed in a little language. The elemen border-left: ipx solid $c2;
to which a rendering attribute applies are designed eithehéir border-bottom: 1px solid $c2;
identities, their classes, their local or global positionthe HTML border-right: 1px solid $ci }))
tree, and their attributes. The language of selectors iseegjve
but complex, even if not Turing-complete. On the one hand, th button {
identity and class designations are suggestive of objeetted $button-border;
programming. On the other hand, they do not support inhrerita }
Implementing re-usable, compact, and easy-to-underst8H is
a challenging task. Frequently the HTML documents have to be .
modified in order to best fit the CSS model. For instance, dummy 3. Programming the HOP web broker
<DIV> or HTML elements have to be introduced in The Hop web broker implements the execution engine of an ap-
order to ease the CSS selection specification. We think thgt t plication. While the client executes in a sandbox, the brdiees
complexity is a drawback of CSS, and Hop offers an improvemen privileged accesses to the resources of the computer iugzac

Like the Hop programming language, Hop-CSS (HSS in short) on. As a consequence, the client has to delegate to the hituker
uses a stratified language approach. HSS extends CSS in-one dioperations it is not allowed to execute by itself. These afpens
rection: it enables embedding, inside standard CSS spegaiis, might be reading a file, executing a CPU-intensive operaton
Hop expressions. The CSS syntax is extended with a new canstr collecting information from another remote Hop broker anfra
tion. Inside a HSS specification, techaracter escapes from CSS remote web server. In that respect, a Hop broker is more tiasgba

and switches to Hop. This simple stratification enablestiantyi server because it may act has a client itself for handlingrazat
Hop expressions to be embedded in CSS specifications. We haverequests. Still, a Hop broker resembles a web server. licpkat,
found this extension to be useful to avoiding repeating tons. it conforms to the HTTP protocol for handling clients contiats

3 201077127

and requests. When a client request is parsed, the brokaratas HTML documents, cascade style sheets, etc.). It declasefethl
a response. This process is described in the next sections. path which is used to denote the file to be served. In general these

responses are produced by rules equivalent to the followireg
3.1 Requests to Responses

Clients send HTTP messages to Hop brokers that parse the mes
sages and build objects representing these requests. ¢fosaeh

(hop-add-rule!
(lambda (req)
(if (and (is-request-local? req)

objects, a broker elaborates a response. Programming @&rbrok (file-exists? (request-path req)))
means adding new rules for constructing responses. Thieseane (instantiate: :http-response-file
implemented as functions accepting requests. On retiawm gither (path (request-path req))))))

produce a new request or a response. The algorithm for cmstr

ing the responses associated with requests is defined assoll In order to servérttp-response-file responses, the broker

reads the characters from the disk and transmit them toiés eia

(define (request->response req rules) a socket. Some operating systems (such as Linux 2.4 andrhighe
(if (null? rules) propose system calls for implementing this operation effity.
(default-response-rule req) This liberates the application from explicitly reading andting
(let ((n ((car rules) req))) the characters of the file. With exactly one system call, thelas
(cond file is read and written to a socket. For this, Hop uses subetasf

((is-response? n)

) http-response-file.

((is-request? n) The ClaSSI.lttp—regpo.nse—shoutf:ast is one of them. It is
(request->response n (cdr rules))) used for serving music files according to the shoutcast podito
(else This protocol adds meta-information such as the name of tiean
(request->response req (cdr rules))))))) the author, etc., to the music broadcasting. When a cliergady
for receiving shoutcast information, it must addiaty-metadata
attribute to the header of its requests. Hence, in order tivade
shoutcasting on the broker one may use a rule similar to tlenfo

Theelsebranch of the conditional is used when no rule applies.
It allows rules to be built usinghen andunless, without having
to be a series of nestads.

A rule may produce a response. In that case, the algorithm ing one.
returns that value. A rule may also annotate a request at Auiew (hop-add-rule!
request from the original one. In that case, the algorithpliepthe (lambda (req)
remaining rules to that new request. (if (and (is-request-local? req)
The default response rule, which is used when no other rule (file-exists? (request-path req)))
matches, is specified in the configuration files of the broker. (if (is-request-header? req ’icy-metadata)
(instantiate::http-response-shoutcast
3.2 Producing responses (path (request-path req)))
(instantiate::http-response-file
The broker has to serve various kind of responses. Somensspo (path (request-path req)))))))

involve local operations (such as serving a file located endik
of the computer where the broker executes). Some othermsspo
involve fetching information from the internet. Hop propsssev-
eral type of responses that correspond to the various wayayit
fulfill client requests.

From a programmer’s point of view, responses are repregente

Note that since the rules scanned in the inverse order of the
their declaration, the shoutcast rule must be added afeerule
for regular files.

3.2.3 Serving dynamic content

by subclasses of the abstract cld3stp-response. Hop pro- Hop provides several classes for serving dynamic contéra fifst
poses an extensive set of pre-declared response classesosh onehttp-response-procedure, is used for sending content that
important ones are presented in the rest of this sectionoQrfse, varies for each request. The instances of that class carocagure
user programs may also provide new response classes. that is invoked each time the response is served. In the dgamp

above, we add a rule that createidual URL /count that returns
3.2.1 Noresponse! the value of an incremented counter each time visited.

Responses instance of the classp-response-abort are ac-
tually no responseThese objects are used to prevent the broker
for answering unauthorized accesses. For instance, on righy w

(let ((count 0)
(resp (instantiate::http-response-procedure
(proc (lambda (op)

to prevent the broker for serving requests originated frone-a (set! count (+ 1 count))

mote host. For that, he should had a rule that returns annicesta (printf op

of http-response-abort for such requests. "<HTML>~a< /HTML>"
Hop provides predicates that return true if and only if a esju count))))))

comes from the local host. Hence, implementing remote lnstss (hop-add-rule!

(lambda (req)

restriction can be programmed as follows. .
(when (and (is-request-local? req)

(hop-add-rule! (string=7 (request-path req) "/count"))
(lambda (req) resp))))
(if (is-request-local? req)
req
(instantiate: :http-response-abort)))) 3.2.4 Serving data

322 Senving fil Hop programs construct HTML documents on the server. On de-
e erving nies mand they are served to clients. These responses are imykune
The classhttp-response-file is used for responding files. It

is used for serving requests that involve static documesttic Ihttp://www.shoutcast.com/.

4 2010/7/27

by thehttp-response-hop class. When served, the XML tree in-

side a response of this type is traversed and sent to the.cfien
an example, consider a rule that adds the URAct to the broker.
That rule computes a HTML table filled with factorial numhers

(hop-add-rule!
(lambda (req)

(when (and (is-request-local? req)

(string=7 (request-path req) "/fact"))
(instantiate: :http-response-hop
(xml (<TABLE>
(map (lambda (n)
(<TR>
(<TH> n)
(<TD> (fact n))))
(iota 10 1))))))))

Instead of always computing factorial value from 1 to 10s ieasy
to modify the rule for adding a range.

(hop-add-rule!
(lambda (req)
(when (and (is-request-local? req)
(substring? (request-path req) "/fact/"))
(let ((m (string->integer
(basename (request-path req)))))
(instantiate: :http-response-hop
(xml (<TABLE>
(map (lambda (n)
(<TR>
(<TH> n)
(<TD> (fact n))))
(iota m 1)))))))))

(with-hop "/hop/fact/10"
(lambda (1)
(<TABLE>
(map (lambda (p)
(<TR>
(<TH> (car p))
(<TD> (cdr p))))
)N

The point of this last example is not to argue in favor of mgvin
this particular computation from the broker to the cliemtsljust
to show how these moves can be programmed with Hop.

3.2.5 Serving remote documents

Hop can also act as a web proxy. In that case, it interceptests|
for remote hosts with which it establishes connectionsdts the
data from those hosts and sends them back to its clients.|lage c
http-response-remote represents such a request.

In order to let Hop act as a proxy, one simply adds a rule simila
to the one below.

(hop-add-rule!
(lambda (req)
(unless (is-request-local? req)
(instantiate::http-response-remote
(host (request-host req))
(port (request-port req))
(path (request-path req))))))

This rule is a good candidate for acting as dedaultrule presented
in Section 3.1. The actual Hop distribution uses a defauk ru
almost similar to this one. It only differs from this code legurning
an instance of thattp-response-string class for denoting a

Next, we now show how to modify the rule above so that 404 errorwhen the requests refer to local files.
the computation of the HTML representation of the factorial
table is moved from the broker to the client. As presented in 3.2.6 Serving strings of characters
Section 1.2, the Hop programming language supports the form

with-hop. This invokes a service on the broker and applies, on

the client, a callback with the value produced by the servites

value might be an HTML fragment or another Hop value. On the
server, HTML fragments are represented by responses ofake c

http-response-hop. The other values are represented by the
classhttp-response-js. When such a response is served to the

client, the value is serialized on the broker according ®&J80N

formaf and unserialized on the client. We can re-write the previous
factorial example in order to move the computation of the HTM

table from the broker to the client. For that, we create a thie
returns the factorial values in a list.

(hop-add-rule!
(lambda (req)
(when (and (is-request-local? req)
(substring? (request-path req) "/fact/"))
(let ((m (string->integer
(basename (request-path req)))))
(instantiate::http-response-js
(value (map (lambda (n)
(cons n (fact n)))

(iota m 1))))))))

The/fact URL can be used in client code as follows.

2http://www.json.org/.

Some requests call for simple responses. For instance when a
quest refers to an non existing resource, a simple error cudt
be served to the client. The classtp-response-string plays
this role. Itis used to send a return code and, optionallyessage,
back to the client.

The example below uses lettp-response-string to re-
direct a client. From time to time, Google udssuncingwhich is
a technique that allows them to log requests. That is, whesglgo
serves arequest, instead of returning a list of found URLsturns
a list of URLSs pointing to Google, each of these URL contagnin
forward pointer to the actual URL. Hence Google links loddeli

http://www.google.com/url?q=www.inria.fr

When Hop is configured for acting as a proxy it can be used to
avoid this bouncing. A simple rule may redirect the clienthe
actual URL.

(hop-add-rule!
(lambda (req)
(when (and (string=? (request-host req)
"www.google.com")
(substring? (request-path req) "/url" 0))
(let ((q (cgi-fetch-arg "q" path)))
(instantiate::http-response-string
(start-line "HTTP/1.0 301 Moved Permanently")
(header (list (cons ’location: g))))))))

A similar technique can be used for implementing blackiti
When configured as web proxy, Hop can be used to ban ads con-
tained in HTML pages. For this, let us assume a black list of do
main names held in a hash table loaded on the broker. The rule

2010/7/27

above prevents pages from these domains to be served. théets
client believe that ads pages do not exist.

(hop-add-rule!
(lambda (req)
(when (hashtable-get *blacklist* (request-host req))
(instantiate::http-response-string
(start-line "HTTP/1.0 404 Not Found")))))

3.3 Broker hooks

When aresponse is generated by the algorithm presentedtini$e
3.1 and using the rules of Section 3.2 the broker is readylfidl fu
a client request. Prior to sending the characters compadk&gn-
swer, the broker still offers an opportunity to apply prograable
actions to the generated request. That is, before send:geth
sponse, the broker applié®oks A hook is a function that might
be used for applying security checks, for authenticatingiests or
for logging transactions.

A hook is a procedure of two arguments: a request and a re-
sponse. It may modify the response (for instance, for adeitig
header fields) or it may return a new response. In the follgwin
example, a hook is used to restrict the access of the fileseof th
directory/tmp.

(hop-hook-add!
(lambda (req resp)
(if (substring? (request-path req) "/tmp/")
(let ((auth (get-request-header req ’authorization)))
(if (file-access-denied? auth "/tmp")
(instantiate: :http-response-authentication
(header ’("WWW-Authenticate: Basic realm=Hop"))
(body (format "Authentication required.")))
resp))
resp)))

When a request refers to a file located in the directtuyip,
the hook presented above forces Hop to check if that reqsi@si-i
thenticated (a request is authenticated when it containsader
field authorization with correct values). When the authentica-
tion succeeds, the file is served. Otherwise, a request fheati-
cation is sent back to the client.

4. The HOP library

The Hop standard library provides APIs for graphical uséerin
faces, for enabling communication between the clients badto-
ker, for decoding standards documents formats (exy5 Er jpeg
pictures, b3 for mp3 music, XML, HTML, Rss ...). It also of-
fers APIs for enabling communications between two brokeis a
between brokers and regular web servers. Since the comaiunic
tion between two brokers is similar to the communicatiorween
clients and brokers (see the formth-hop presented Section 1.2),

it is not presented here. In this section we focus on the cammu
cations between brokers and regular web servers.

The Hop library provides facilities for dealing with lowvel
network communications by the means of sockets. While #his i
powerful and enables all kind of communications it is geltera
tedious to use. In order to remove this burden from prograrsme
Hop provides two high-level constructions: th@ NLINE > markup
and thewith-url form.

4.1 The<INLINE> markup
The <INLINE> markup lets a document embed subparts of an-

other remote document. When the broker sends a HTML tree to a

client, itresolvests <INLINE> nodes. That is, it opens communi-
cation with the remote hosts denoted to by thENLINE> nodes,

it parses the received documents and it includes theseesshito
the response sent to its client.

The <INLINE> node accepts two options. The first onerc,
is mandatory. It specifies the URL of the remote host. The g@@am
below builds a HTML tree reporting information about thereut
version of the Linux kernel. This information is fetchededitly
from the kernel home page. It is contained in an element whose
identifier isversions.

(<HTML>
(<BODY>
"The current Linux kernel versions are:"
(let ((d (KINLINE> :src "http://www.kernel.org")))
(dom-get-element-by-id d "versions"))))

This program fetches the entire kernel home page. From that
document it extracts the node nameasions. The second option
of the <INLINE> node allows a simplification of the code by
automatically isolating one node of the remote documeng. :Eld
option restricts the inclusion, inside the client resporiseone
element whose identifier isid. Using this second option, our
program can be simplified as shown below.

(<HTML>
(<BODY>
"The current Linux kernel versions are:"
(<INLINE> :src "http://www.kernel.org"
:id "versions")))

In addition to be more compact, this version is also more ef-
ficient because it does not require the entire remote docutoen
be loaded on the broker. As it receives characters from tite ne
work connection, the broker parses the document. As sodrhas i
parsed a node whose identifiervisrsions it closes the connec-
tion.

4.2 Thewith-url form
The syntax of the fornwith-url is as follows:

(with-url url callback)

Informally, its evaluation consists in fetching a remotednent
from the web and on completion, invoking thellback with
the read characters as argument. Unlike to <tI®ILINE> node,
the characters do not need to conform any particular syMaxe
precisely, the fetched document does not necessarily reée t
a valid XML document. In the example below, we show how the
with-url form can be used to implement a simple RSS reader.

The functionrss-parse provided by the standard Hop library
parses a string of characters according to the RSS graminaar. |
cepts four arguments, the string to be parsed and threeraonst
tors. The first and seconds build a data structure represeR$S
sections. The last one builds data structures for reprieseRISS
entries.

(define (make-rss channel items)
(<TREE>
channel
(<TRBODY> items)))

(define (make-channel channel)
(<TRHEAD> channel))

2010/7/27

(define (make-item link title date subject descr)
(<TRLEAF>
(<DIV>
:class "entry"
(<A> :href link title)
(if date (list "(" date ")"))
(if subject (<I> subject))
descr)))

Once provided with the tree constructors, parsing RSS dentsn
is straightforward.

(define (rss->html url)
(with-url url
(lambda (h)
(rss-parse h make-rss make-channel make-item))))

Producing a RSS report is then as simple as:

(rss->html "kernel.org/kdist/rss.xml")

5. Conclusion

Hop is a programming language dedicated to programmingaote
tive web applications. It differs from general purpose pamgming
languages by providing support for dealing with program®seh
execution is split across two computers. One computer ibange
of executing the logic of the application. The other one isharge
of dealing with the interaction with users.

This article focuses on the Hop development kit. It presents
some extensions to HTML that enable fancy graphical user-int
faces programming and it presents the Hop web broker pregram
ming. In the presentation various examples are presemtgartic-
ular, the paper shows how to implement simple a RSS readbr wit
Hop in no more than 20 lines of code!

The Hop library is still missing important features for weiop
gramming. In particular, it does not provide&p interface, it can-
not handle secure ¥rPsconnections, and it does not implement
graphical visual effects. We continue to work on Hop, howeard
would love your feedback.

6. References

[1] Serrano, M. and Gallesio, E. and Loitsch, FHOP, a language for
programming the Web 2.0— Proceedings of the First Dynamic
Languages Symposium, Portland, Oregon, USA, Oct, 2006.

Acknowledgments

I would like to thanks Robby Findler for his invitation to the
Scheme workshop and for his extremely helpful comments en th

paper.

2010/7/27

