
HopTeX - Compiling HTML to LaTeX with CSS

Manuel Serrano
Inria Sophia Méditerranée

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex – France

Manuel.Serrano@inria.fr

Abstract
This article1 presents HopTeX, a new application for authoring
HTML and LATEX documents. The content of the document is either
be expressed in HTML or in a blending of HTML and a dedicated
wiki syntax, for the sake of conciseness and readability. The ren-
dering of the document is expressed by a set of CSS rules. The main
originality of HOPTEX is to consider LATEX as a new media type for
HTML and to express the compilation from HTML to LATEX by the
means of dedicated style sheet rules.

HOPTEX can then be used to generate high quality documents
for both paper printed version and electronic version. The online
version of this paper is available at the HOPTEX web page. It can
be read using a regular Web browser or using Smartphone browsers.

HOPTEX is implemented in HOP, a multi-tier programming
language for the Web 2.0. This implementation extensively relies
on two facilities generally only available on the client-side that
HOP also supports on the server-side of the application: DOM
manipulations and CSS server-side resolutions.

http://hop.inria.fr/hop/weblets/homepage?weblet=hoptex

GNU General Public License

1. Introduction
Many scientific publications, in particular in academia, are au-
thored with TEX or LATEX [10, 11]. This is a batch system where
documents are actually disguised programs that, when executed,
produce various output document formats including DVI or PDF.

Although the TEX programming language is Turing-complete,
it is mostly exclusively used as a purely authoring declarative lan-
guage. Being more than forty years old it lacks most modern fea-
tures of programming languages: its syntax is difficult to parse,
it supports no object-oriented features, and it offers a limited set
of functions for interacting with the operating system. In conse-
quence, programming in TEX requires a strong expertise that is re-
pellent to many, although a small community of aficionados is able

1 Work partially supported by the French ANR agency, grant ANR-09-
-EMER-009-01.

to use it beyond expectations (see for instance [6]). On the other
hand TEX is still widely used because its rendering engine, coupled
with the MetaFont tool, delivers high quality documents that hardly
no contemporary typesetting system matches.

The most striking shortcoming of TEX/LATEX is its inability to
produce HTML. Since publishing on the web is nowadays manda-
tory, translators from LATEX to HTML such as Latex2html or He-
vea [13] have emerged. These tools have limitations because they
offer few facilities for controlling the graphical rendering of the
generated documents. This limitation comes from their inability to
use CSS with the generated HTML documents because these lack
HTML classes or HTML identifiers.

Other tools such as Skribe [5] and Scribble [4] follow the sym-
metrical path which consists in considering LATEX as a target and
no longer as a source. They attempt to improve LATEX by provid-
ing a sane programming language used to generate the texts. They
offer an ad hoc syntax that combines algorithmic constructs and
text oriented markups. A program can generate LATEX as well as
HTML. These two systems are agnostic with respect to the gener-
ated format. As a consequence of this design choice, they adopt
abstractions reflecting a least-common denominator of their target
formats. That design choice also makes them difficult to use when
fine grain tuning of the generated document is needed. This charac-
teristic is shared by systems such as Texinfo or DocBook [16] that
represent texts using a neutral syntax that can be either compiled to
HTML, LATEX, and even other formats.

Accommodating HTML as a regular data type in programming
language is not new. DSSSL [8], the pioneer and LAML are two
examples based on the Scheme programming language [9]. Other
languages such as XDuce [7] or XQuery [2] extends this to XML.
These languages are well suited for manipulating XML documents
but they have no particular skill for authoring documents.

HOPTEX is a new system for authoring articles, reports, docu-
mentation, and books that follows yet another approach. It accepts
as input either HTML or a compact wiki syntax that can be sec-
onded by the expressions of the HOP programming language. It
either produces web pages or LATEX files. HOPTEX aims at com-
bining the best of the two worlds: it generates HTML for using the
modern interactive features of the web browsers and it generates
LATEX for producing high quality paper output. This approach en-
ables HOPTEX to generate online documents that embed arbitrary
HTML fragments such as videos, canvas, pictures, or interactive
Ajax elements. It also enables HOPTEX to generate paper docu-
ments that rely on pre-existing LATEX styles. HOPTEX generates
regular LATEX files so it is up to the user to include the correct proper
statement in his document source. For instance, to accommodate
the ACM style required by the conference, the head of the present
paper contains the following:

<tex:verbatim>
\documentclass[nocopyrightspace]{sigplanconf}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{color}

\setlength{\pdfpagewidth}{8.5in}
\setlength{\pdfpageheight}{11in}
...
\maketitle
</tex:verbatim>

HOPTEX is implemented in HOP [14], a multi-tier program-
ming language for the web. HOP offers features that dramatically
simplify the implementation of HOPTEX. In particular, it con-
structs a server-side DOM for the HTML documents and it supports
a server-side CSS resolver. These two features are extensively used
to compile to LATEX.

This presentation of HOPTEX is organized as follows. First, to
let users unfamiliar with the HOP programming language under-
stand this paper without consulting previous articles, the language
is briefly presented in Section 2. Section 3 presents the main func-
tionalities of HOPTEX. Section 4 shows how LATEX is generated out
of the initial HTML document. Section 5 shows the benefit HOP-
TEX users can expect from resorting to a full-fledged web pro-
gramming language.

2. Background, the Hop programming language
HOP is a multi-tier programming language for the web which
shares many characteristics with JavaScript. It belongs to the func-
tional languages family. It relies on a garbage collector for automat-
ically reclaiming unused allocated memory. It supports type anno-
tations that let the compiler partially check types at compile-time.
Types that cannot be inferred are check dynamically at runtime. It
is fully polymorphic (i.e., the universal identity function can be im-
plemented). HOP has also several differences with JavaScript, the
most striking one being its parenthetical syntax closer to HTML
than to C-like languages. HOP is a full-fledged programming lan-
guage so it offers an extensive set of libraries. It advocates CLOS-
like object oriented programming [1]. Its main characteristic is that
it fosters a programming model where a web application is con-
ceived as a whole. For that, it relies on a single formalism that
embraces simultaneously server-side and client-side of the appli-
cations. Both sides communicate by means of function calls and
signal notifications. Server-side parts are compiled to a mix of byte-
code or native code and client-side parts are compiled to JavaScript
[12]. In the source code, a syntactic mark instructs the compiler
about the location where the expression is to be evaluated.

When an URL is intercepted by a HOP server for the first
time, the server automatically loads the associated program and the
libraries it depends on. Programs first authenticate the user they
are to be executed on behalf of and they check his permissions. In
order to load or install the program on the client side, the server
elaborates an abstract syntax tree (AST) and compiles it on the fly
to generate a HTML/JavaScript document that is sent to the client.
Here is an example of a simple HOP program that is started by
browsing the URL http://localhost/hop/hello.

(define-service (hello)
(<HTML> (<DIV> :onclick ~(alert "world!") "Hello")))

Contrary to HTML, HOP’s markups (i.e., ,<HTML> and <DIV>) are
node constructors. That is, the service hello elaborates an AST
whose compilation into HTML is delayed until the result of the
request is transmitted to the client. This two phased evaluation
process is strongly different from embedded scripting language
such as PHP. The AST representing the GUI exists on the client

as well as on the server. This brings flexibility because it gives the
server opportunities to deploy optimized strategies for building and
manipulating the ASTs as it lets DOM computations take place on
the server-side of the application. This characteristic is extensively
used for implementing HOPTEX.

3. HopTeX
This article not being a HOPTEX user manual only its promi-
nent features are presented. HOPTEX documents are expressed in
HTML. However, because HTML concrete syntax is verbose it is
cumbersome to manipulate for the user. HOPTEX therefore pro-
poses an alternative wiki syntax that can be used in conjunction
of HTML. It is expected that this syntax will be preferred by users
so it is first presented in this section. Secondly, it is shown how
the wiki syntax and the full-fledged HTML syntax can be blended
inside documents.

3.1 The surface syntax
HOPTEX syntax is stratified: the surface syntax is used to typeset
input texts, the deep syntax, which coincides with the syntax of
the HOP expressions, is used to embed complex HTML trees in
the document. The surface syntax is inspired by most popular
wiki syntaxes and in particular by MediaWiki2 and CreoleWiki3. It
allows authors to express a subset of HTML in a concise and visual
way. For instance, tags for strong and emphasize are ** and //
which are considered by some more intuitive and more compact
than the corresponding HTML tags. For instance, the following
HOPTEX input text:

HOP wiki supports **strong**, //emphasize//,
underline , and ++mono space++. These

can be ** combined ** **//anyhow//**.

is rendered as:

HOP wiki supports strong, emphasize, underline, and mono
space. These can be combined anyhow.

The surface syntax supports sections (==), paragraphs (~~), ver-
batim texts (lines beginning with two white spaces), tables (lines
beginning by either ^ or |), lists (lines beginning with two whites-
paces followed by either a * or - character), or other classical block
constructs that are separated one entry from another by two blank
lines. For instance, the following table:

| This | is ^ a table ^

produces the following result:

This is a table

The delimiter ^ introduces table head while the delimiter |
introduces regular table cells. This explains why the words “a table”
is rendered with a bold font in the example above.

HOPTEX supports mathematical expressions which are intro-
duced by the $$ delimiter. Inside this delimiter HOPTEX borrows
the syntax of TEX whose syntax for mathematics is deemed ex-
pressive and compact. Mathematical expressions are compiled to
MathML on the fly. For instance:

* $$\prod n^m \lim {n \rightarrow \infty}
x = 0$$
* $$\overbrace{\overline{x}^{2} + 1}$$
* $$(n+1)^2\quad \sqrt{1-x^2}\quad

\overline{w+\bar z} \quad p^{e 1} 1$$

2 http://www.mediawiki.org
3 http://www.wikicreole.org

produces:

•
∏m

n limn→∞ x = 0

•
︷ ︸︸ ︷
x2 + 1

• (n + 1)2
√

1− x2 w + z̄ pe11

Links and anchors are syntactically similar to those of Medi-
aWiki but extended to support citations, references, and footnotes
that are introduced by using a dedicated protocol (bib: for cita-
tions, section: for sections, ...). For instance:

Links refer to URLs such as
++[[http://www.inria.fr]]++.
They may also refer to sections or
bibliographic entries such as:
HopTex is described in Section
[[section://HopTeX]].

produces:

Links refer to URLs such as http://www.inria.fr. They may
also refer to sections or bibliographic entries such as: HopTex is
described in Section 3.

3.2 The deep syntax
The surface syntax trades completeness for compactness. That is
not all HTML trees can be represented using the surface syntax.
For such trees, the deep syntax is used. The escaping sequence
of the deep syntax is ,(. When the HOPTEX parser reads such
a prefix, it reads the rest of the expression using the regular HOP
parser, evaluates the expression, and inserts the result in the tree.
For instance:

The //deep// escape sequence is
,(<TT> ",("). It can be used to insert
HTML trees such as ,(<KBD> "C-x s"). The
++<WIKI>++ markup is used to
,(:style "color: darkblue"

(<WIKI> [enter the //surface// syntax
from the //deep// syntax])).

produces:

The deep escape sequence is ,(. It can be used to insert HTML
trees such as C-x s . The <WIKI> markup is used to enter the
surface syntax from the deep syntax.

4. Generating TeX
Wiki syntaxes such as the HOPTEX surface syntax are designed
to express a subset of HTML concisely. As such, they are easy to
translate into HTML. They are far less obviously translated into
TEX. This translation is described in this section.

Observation 1: TEX/LATEX (henceforth LATEX) and HTML are not
isomorphic. HTML is more flexible and more compositional. For
instance a HTML TABLE might contain PRE elements while LATEX
refuses verbatim environments inside a tabular. Consequently
not all HTML documents, and thus HOPTEX documents, can be
automatically compiled into LATEX.

Facing this problem, two obvious solutions emerge: either re-
duce the expressiveness to HOPTEX to the least common denomi-
nator of HTML and LATEX, or treat HTML parts that have no LATEX
equivalent specially. We have considered the intersection of the two
languages too small so we have adopted the latter solution. In con-
sequence, from time to time, HOPTEX users have to specify explic-
itly how to compile some part of the text into LATEX. However, we
have worked hard to minimize the number of occurrences of such

situations and we have worked even harder to provide convenient
means for expressing these ad-hoc compilation schemas.

Observation 2: Cascading Style Sheets (henceforth CSS) [3]
effectively separate the structure of a document from its rendering.
If compiling HTML into LATEX is possible roughly equivalent to
rendering HTML into LATEX, then, CSS could probably be used for
that compilation.

Consider our previous example using bold-face fonts and italic
and consider what happens if we ask a web browser to render them
using the following CSS rules:

strong:before { content: "{\\textbf{"; }
em:before { content: "{\\emph{"; }
strong:after, em:after { content: "}}"; }

The browser will display the following document

HOP wiki supports {\textbf{bold}},
{\emph{italic}}...

which is almost4 a LATEX compilation.
The HOPTEX compilation relies on CSS in a principled manner

where the compilation rules are expressed as CSS rules. In addition
to simplicity, using CSS also brings flexibility because it let users
provide their own compilation rules in their own CSS files that can
override the default compilation strategy.

4.1 CSS driven compilation
The browser cannot be used to implement the compilation as a
simple HTML rendering for two reasons. First, the browser cannot
save the rendered text. Second, some compilation rules are more
complex than merely adding a prefix and a suffix. For instance,
in HTML, pre elements are regular blocks that only differ from
paragraph by not collapsing white spaces and by breaking lines at
newline character positions and by using a dedicated font. LATEX
has nothing similar. The verbatim environment has the same be-
havior for justification and line breaks but considers markups as
plain texts. Extensions such as alltt approach pre but all have
incompatibilities. In consequence, HTML pre elements have to be
treated specially when compiled to LATEX.

HOPTEX relies on server-side CSS processing. It resorts to
the HSS [15] compiler which is included in the HOP development
environment [14]. Amongst other features, HSS contains a parser
that builds abstract syntax trees and a resolver that matches rules
against HTML elements.

When a HOPTEX input text is to be compiled into LATEX, the
surface syntax is first parsed to produce a full-fledged server-side
DOM representation of the HTML document. The elements of this
tree are matched against CSS rules which govern the compilation
into LATEX. The extra tex keyword can be used in CSS @media rules
to specify rules that are only applicable to the LATEX compilation.

The rest of this section presents the details of the compilation.
The algorithm is expressed by 4 HOP functions. We deem the
HOP language sufficiently high level to be used as an abstract
notation for describing these algorithms. Readers unfamiliar with
functional programming will probably find some details of the
implementation obscure. We hope they will still be able to grasp
the general intuition of the algorithms.

The service hoptex/tex implements the entry point of the
compiler. It accepts two parameters, the URL of the source file to
be compiled and the name of the target file. The service first builds
a server side DOM for the document (using the library function
wiki-file->dom). Then it loads the CSS style sheets imported in
the DOM tree and invokes the xml->tex function.

4 Almost compilation only because apart from using cut-and-paste there is
no means to save the result of this compilation.

(define-service (hoptex/tex url dest)
(let* ((doc (wiki-file->dom url))

(hd (dom-get-elements-by-tag-name doc "head"))
(css (map tex-load-hss (links-of-head hd))))

(call-with-output-file dest
(lambda (op) (xml->tex doc css op)))))

The function xml->tex is in charge of compiling one node of
the DOM tree into one LATEX element. The parameter node is the
node to be compiled, the parameter css is the opaque data struc-
ture representing the CSS rules, and the last parameter p is the out-
put port where to write the result of the compilation. Numbers are
written in the target file without modification; strings are escaped,
that is, all special LATEX characters are protected against interpreta-
tion (the function tex-string is in charge of this task); lists are
recursively processed; and XML nodes are treated specially by the
function xml-elements->tex which is given in Figure 1.

(define (xml->tex node::obj css::obj p::output-port)
(cond

((string? node)
(display (tex-string node) p))

((number? node)
(display node p))

((list? node)
(for-each (lambda (o) (xml->tex o css p)) node))

((xml-element? node)
(xml-element->tex node css p))))

Compiling a XML element is decomposed in 7 steps.

1. Compute node style. It is computed by the library function
css-get-computed-style. If no style is found then the com-
pilation simply compiles recursively the children of the node.

2. Check if the element is visible. The style may make an element
invisible if it contains declarations such as display: none.
Invisible elements are ignored by the compiler.

3. Compile the prelude. The prelude is computed using the tag of
the node and the elements of the style.

4. Compile the before attribute. The “before” attribute is string of
characters that has to be inserted before the current element. It
is handled by the function xml-style->tex. For instance, the
default “before” attribute of the HTML em nodes is the string
“{\em{”. The “before” attribute can be customized by users
while the prelude is hardwired in HOPTEX.

5. Compile the body of the node. This involves two cases. If the
CSS style contains a dedicated compiler for the node, use that
compiler. Otherwise, recursively compiles the children nodes.

6. Compile the after attribute. The “after” attribute is symmetrical
to the “before” attribute. It closes the LATEX environment opened
in the “before” attribute.

7. Compile the postlude. The postlude is symmetrical to the pre-
lude. It mostly consists in closing the environment opened in the
prelude. For instance, if the prelude as emitted “{\small{”, the
postlude emits “}}”.

The function xml-style->tex, not given here, is a trimmed
down version of xml-element->tex that is in charge of process-
ing the content strings of the or attributes.

4.2 Examples
In this section we present a few examples of compilation and
we show how users can change the generated LATEX rendering by
providing additional CSS rules.

4.2.1 Example 1, a simple compilation
Assuming the CSS rules given in Section 4, let us study the compi-
lation of the following text:

A **strong //and emphasized//** text

First, the server parses the text and translates it into HTML. Along
this process, it builds a DOM representation of the following tree:

<DIV> A strong and emphasized
 text</DIV>

The compiler has to compile the DIV elements which has three
children: the string “A”, the DIV containing the “STRONG...” ele-
ments, and the string “text”. Since the DIV element has no style
attached to it then its compilation consists in a simple traversal of
the tree. The first string is written as is. Then comes the compilation
of the STRONG and EM elements. These ones have styles that spec-
ify a “before” and “after” strings that are inserted in the generated
LATEX output. The result of the compilation is:

A {\textbf{strong{\emph{and emphasized}}}} text

4.2.2 Example 2, adding user rules
A user wanting to emphasize even more texts which are under a
STRONG and a EM elements could use his own CSS rule such as
(remember that the > CSS operator filters direct descendant of a
node):

strong > emph {
text-decoration: underline;

}

This changes the compilation of the EM nodes whose parents are
STRONG nodes. It adds the rule text-decoration: underline
to the style computed by the css-get-computed-style that en-
riches the default compilation of EM elements. The generated LATEX
code becomes:

A {\textbf{strong{\emph{\underline{and
emphasized}}}}} text

4.2.3 Example 3, designating elements
As with HTML, CSS rules for HOPTEX can be used to change the
compilation of individual nodes. A simple way to achieve this is
to assign identifiers to nodes and use these identifiers in the rules.
Wiki tags used by HOPTEX accept identifier and class declarations.
They are given by suffixing the tag with :id@class. For instance,
one may write:

~~:p1@note This is a note.

which defines a paragraph named p1 that belongs to the class note.
Identifiers and classes can be used in rules such as:

p.note:before { content: "Note:"; font-style: italic; }
@media tex { #p1 { font-size: 70%; } }

The “p.note:before” rule applies to all rendering engines. So
in particular to the LATEX code generator that adds the italicized
version content before the paragraph. The “#p1” rule only applies
to the LATEX compilation because protected by a “@media tex”
rule. It instructs the code generator to use tiny font the paragraph
“#p1” that will be compiled as:

\begin{tiny}{\textit{Note:} This is a note.\end{tiny}}

4.3 Three particular cases
As mentioned in Section 4, resorting to “before” and “after” at-
tributes of CSS style suffice to compile most HTML elements. How-
ever, for a few of them, inserting a prefix and a suffix is not enough.

(define (xml-element->tex node::xml-element css p)
;; step 1: compute the style
(let ((style (css-get-computed-style css node)))

(if (css-style? style)
;; step 2: check visibility
(when (css-visible? style)

(xml-element-visible>tex node css p style))
;; step 1b: plain recusive compilation
(xml->tex (xml-element-body node) css p))))

(define (xml-element-visible->tex n css p style)
(with-access::css-style style (after before)

(let ((texc (style->tex (xml-element-tag n) style))
(css-proc (css-style-get-attribute style ’proc)))

;; step 3: tex prelude
(for-each (lambda (t) (display (car t) p)) texc)
;; step 4: style :before
(when (css-style? before)

(xml-style->tex before css p))
;; step 5: body compilation
(if (procedure? css-proc)

;; step 5b: a dedicated compiler is used
(css-proc n css p)
;; step 5c: a simple recursive descent is used
(xml->tex (xml-element-body n) css p))

;; step 6: style :after
(when (css-style? after)

(xml-style->tex after css p))
;; step 7: tex postlude
(for-each (lambda (t) (display (cdr t) p)) texc)))))

Figure 1. Compiling XML elements.

The current HOPTEX version makes a special case for exactly 4
elements, namely IMG, PRE, TABLE, and A. We present the compila-
tion of the first three in this section. The compilation of A is delayed
to Section 5.1.

When CSS prefixes are not enough, an ad hoc compilation
function can be defined. These functions are declared in the rules
as the value of the HOPTEX specific proc property. They are HOP
functions that HOPTEX calls with three parameters: the node to be
compiled, the current css rule set, and the output port where the
result should be written. Let us illustrate these compilation function
on three examples.

4.3.1 Compiling images
Images are inserted in the text with either the regular IMG markup
or with the wiki syntax {{...}} as in:

{{screenshot.png|a screenshot}}

Images are compiled in LATEX into a includegraphics envi-
ronment in which image resizing is expressed as a ratio of the line
width. The HOPTEX function xml->tex-img is in charge of this
translation. It computes the LATEX size of the image. If no width
is specified for a image, the generated LATEX image spans over the
whole line. If a width is given, the percentage string is converted
into a floating point value in the range [0..1], which is concatenated
to the string \linewidth.

(define (xml->tex-img node::xml-img css p)
(fprintf p "\\includegraphics[width=~a]{~a}"

(let ((w (node-computed-style node :width css)))
(if (string? w)

(let ((m (pregexp-match "^([0-9]+)%$" w)))
(if (not m)

;; a string such as "10em"
w
;; a percentage
(format "0.~a\\linewidth" (cadr m))))

"\\linewidth"))
(dom-get-attribute node "src")))

The default HOPTEX rule for compiling images is:

img { width: 80%; proc: $xml->tex-img; }

The dollar sign before the xml->tex-img is a syntactic annotation
that tells the CSS parser that the following expression is not a literal
but a value of the HOP language. The compilation of the image
given above using the previous CSS is:

\includegraphics[width=0.8\linewidth]
{screenshot.png}

4.3.2 Compiling pre-formatted blocks
As noted in Section 4, HTML PRE elements have no direct LATEX
counterpart. To compile them, HOPTEX generates a full line wide
tabular nested in a texttt environment, and it replaces all white
spaces with the explicit command \ that forces LATEX to introduce
plain blank characters. The implementation of this function is as
follows:

(define (xml->tex-pre node::xml-pre css p)
(with-access::xml-pre node (body)

(display "\\noindent\\texttt{" p)
(display "\\begin{tabular*}{\\linewidth}" p)
(display "{l@{\\extracolsep{\\fill}}}\n" p)
(let loop ((b body))

(cond

((string? b)
(let ((s (tex-string b)))

(display
(string-substitute s " \n" "\\ " "\\\\\n")
p)))

((pair? b)
(for-each loop b))

(else
(xml->tex b css p))))

(display "\\end{tabular*}}\n" p)))

The CSS rule that accommodates this compilation scheme is:

pre {
font-size: small;
proc: $xml->tex-pre;

}

4.3.3 Compiling tables
HTML tables and LATEX tabulars have nearly orthogonal designs.
HTML tables tunings are expressed on a per-cell basis while LATEX
tables are configured on a per-column/per-row basis. In conse-
quence, compiling HTML tables into LATEX tabulars is inherently
ad hoc. The default HOPTEX compilation flushes left cells and in-
cludes no rule at all. The function xml->tex-table first counts
the number of columns in order to generate the LATEX columns dec-
laration. Then, each row of the table is compiled with the function
xml->tex-tr that separates each element with the & sign and that
inserts an end of line delimiter after each row.

(define (xml->tex-table el::xml-table css p)
(define (count-columns obj)

(define (tr-count-columns obj)
(length (xml-element-body obj)))

(apply max
(map tr-count-columns (xml-element-body obj))))

(fprintf p "\\begin{tabular}{~a}\n"
(make-string (count-columns el) #\l))

(xml->tex (xml-element-body el) css p)
(display "\\end{tabular}\n" p))

(define (xml->tex-tr el::xml-tr css p)
(with-access::xml-element el (body)

(if (null? body)
(display "\\\\\n" p)
(let loop ((body body))

(xml->tex (car body) css p)
(if (null? (cdr body))

(display " \\\\\n" p)
(begin

(display " & " p)

(loop (cdr body))))))))

The default CSS rules for table are as follows:

table { proc: $xml->tex-table; }
tr { proc: $xml->tex-tr; }
th:before { content: "{\\textbf{\\textsf{"; }
th:after { content: "}}}"; }

In addition to connecting the two functions above to the TABLE
and TR elements, it also configures TH elements to mimic their
HTML default appearance. Provided with these declarations, the
table example given Section 3.1 is compiled as:

\begin{tabular}{lll}
This & is & {\textbf{\textsf{a table}}} \\
\end{tabular}

5. A full-fledged programming language
In this section we illustrate the benefits of using a full-fledged
programming language in HOPTEX by presenting two extensions.
We show how to manage bibliographic references and how to
delegate the placement of floating elements to CSS rules.

5.1 Accommodating bibliography
Bibliography citations are treated by HOPTEX as a special kind
of external hyperlinks. Consistently, the wiki syntax is augmented
with the new bib:// protocol that accommodates citations which
then look like:

[[bib://knuth:tex86 lamport:latex86]]

Because the BibTex format is widely used, it has been found
appropriate to make it directly usable in HOPTEX. For that, a
full BibTex parser has been implemented in HOPTEX. When a
document is to be processed, the BibTex bibliography database is
then parsed and stored in a hash table. Then the DOM is traversed
and all citations are adjusted. For the sake of the example, here is
the code in charge of this traversal:

(define (citation? e)
(when (xml-element? e)

(with-access::xml-element e (attributes)
(let ((href (xml-get-attribute :href attributes)))

(and href
(string? (xml-attribute-value href))
(string-prefix? "bib://"

(xml-attribute-value href)))))))

(define (dom-get-citations expr)
(filter citation?

(dom-get-elements-by-tag-name expr "a")))

It uses regular DOM functions, that in HOP are also available on the
server-side of the applications, to retrieve all the link elements (A
HTML elements) whose links are prefixed by the “bib://” string.

5.2 Placing floats
Placing floating elements with LATEX, is a nightmare that we have
all lived once. Directives such as htbn are supposed to instruct the
layout algorithm but they constantly fail. More strict directives have
been added such as !H but in practice they show similar results. The
only effective solution to trick the internal TEX algorithms consists
in moving the floating elements in the source text back and forth.
In addition to be painful and error prone this idiosyncratic behavior
has an important drawback when a single source is used to generate
LATEX and HTML document. Since the web browser does not move
float elements, the figures moved for LATEX appear as randomly
placed in the HTML version.

Because HOPTEX generates LATEX documents from HTML
specifications, we have an opportunity to improve over the pre-
viously described solution. Instead of moving the floating elements
in the source text, HOPTEX moves them only in the generated
LATEX target accordingly to configurations expressed in CSS rules.
For instance, one may write:

@media tex {
#float1 {

with: 100%;
column-count: 2;
float: -350;

}
}

(define (move-float-backward! node offset)
(let loop ((o offset)

(prev node))
(if (= o 0)

(dom-insert-before!
(dom-parent-node prev) node prev)

(loop (- o 1) (dom-previous-node prev doc)))))

(define (dom-previous-node node doc)
(let ((sibling (dom-previous-sibling node)))

(if (not sibling)
(dom-parent-node node)
(dom-last-node sibling))))

(define (dom-last-node node)
(let ((l (dom-child-nodes node)))

(if (pair? l)
(let ((n (car (last-pair l))))

(if (xml-text-element? n)
n
(dom-last-node n)))

node)))

Figure 2. Moving elements backward in a DOM tree.

which means that the float element named “float1” has to be
moved 350 elements upward in the DOM tree.

Prior to generating LATEX code the DOM tree is thus traversed
to inspect all floating elements that have a float style attribute
attached. Such elements are moved backward when the value is
negative and forward when positive. The source code for moving
a node in the tree is traditional DOM programming. It is given in
Figure 2.

6. Conclusion
HOPTEX is an operational system. It has already been used to write
a couple of articles in addition to the present one. The whole imple-
mentation counts less than 4KLOC lines of HOP code and 1KLOC
of CSS rules. Such a compactness is possible only because it ex-
tensively uses the features offered by the HOP programming lan-
guage: high level of abstractions supported by functional values,
object-oriented support, full polymorphism, DOM server-side ma-
nipulation, CSS server-side resolution, and builtin parsing facili-
ties. HOPTEX is free software released under the GPL license. It is
available from the HOP web page.

References
[1] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kicza-

les, and D. Moon. Common lisp object system specification.
In special issue, number 23 in SIGPLAN Notices, Sept. 1988.
URL http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/-
ai-repository/ai/html/cltl/cltl2.html.

[2] W. W. W. Consortium. XQuery 1.0: An XML Query Language. Tech-
nical Report REC-xquery-20070123/, W3C Recommendation, Jan.
2007.

[3] W. W. W. Consortium. Cascading Style Sheets level 2 revision 1
CSS2.1 Specification. Technical Report CR-CSS2-20090423, W3C
Recommendation, Apr. 2009.

[4] M. Flatt, E. Barzilay, and R. B. Findler. Scribble: closing the book on
ad hoc documentation tools. In ICFP ’09: Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Program-
ming, pages 109–120, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-332-7. doi: http://doi.acm.org/10.1145/1596550.1596569.
URL http://www.cs.utah.edu/plt/publications/-
icfp09-fbf.pdf.

[5] E. Gallesio and M. Serrano. Skribe: a Functional Authoring Language.
Journal of Functional Programming, 2005.

[6] A. Greene. BASIX – An Interpreter Written in TEX. TUG-
Boat, 11(3):381–392, 1990. URL http://www.tug.org/-
TUGboat/Articles/tb11-3/tb29greene.pdf.

[7] H. Hosoya and B. Pierce. Xduce: a Typed XML Processing Language.
In In Proc. of Workshop on the Web and Data Bases (WebDB, pages
226–244. Springer-Verlag, 2000.

[8] ISO/IEC. Information technology, Processing Languages, Document
Style Semantics and Specification Languages (dsssl). Technical Re-
port 10179:1996(E), ISO, 1996.

[9] R. Kelsey, W. Clinger, and J. Rees. The Revised(5) Report on
the Algorithmic Language Scheme. Higher-Order and Symbolic
Computation, 11(1), Sept. 1998. URL http://www.inria.fr/-
mimosa/fp/Bigloo/doc/r5rs.html.

[10] D. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Readings, Massachusetts, USA, 1986.

[11] L. Lamport. LaTeX - a Document Preparation System. Addison-
Wesley, Readings, Massachusetts, USA, 1986. ISBN 0-201-15790-X.

[12] F. Loitsch and M. Serrano. Trends in Functional Programming, vol-
ume 8, chapter Hop Client-Side Compilation, pages 141–158. Seton
Hall University, Intellect Bristol (ed. Morazán, M. T.), UK/Chicago,
USA, 2008. ISBN 978-1-84150-196-3.

[13] L. Maranget. Hevea, un traducteur de LaTeX vers HTML en caml. In
Actes des 10e Journés francophones des langages applicatifs. INRIA,
1999.

[14] M. Serrano. The HOP Development Kit. In proceedings of the Seventh
ACM SIGPLAN Workshop on Scheme and Functional Programming,
Portland, Oregon, USA, Sept. 2006.

[15] M. Serrano. HSS: a Compiler for Cascading Style Sheets. In
10th ACM SIGPLAN Int’l Conference on Principles and Practice of
Declarative Programming (PPDP), Hagenberg, Austria, July 2010.

[16] N. Walsh and L. Muellner. DocBook: The Definitive Guide. O’Reilly,
Oct. 1999. ISBN 156592-580-7.

