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1. INTRODUCTION

The Web is built atop an heterogeneous set of technologies. Traditional Web develop-
ment environments rely on different languages for implementing specific parts of the
applications. Graphical user interfaces are declared with HTML/CSS or Flash. Client-
side computations are programmed with JavaScript augmented with various APIs
such as the Document Object Model (DOM) API. Communications between servers and
clients involve many different protocols such as HTTP for the low level communication,
XmlHttpRequest for implementing remote procedure calls, and JSON for serializing
data. Server sides are frequently implemented with languages such as PHP, Java,
Python, or Ruby. Using so many different tools and technologies makes it difficult to
develop and maintain robust applications. It also makes it difficult to understand their
precise semantics.

Semantics of Web applications has not been studied globally but rather compo-
nent by component. In a precursor paper Queinnec [2000] has studied the interaction
model of Web applications based on forms submissions. This work has been pursued
by Graunke and his colleagues in several publications [Graunke et al. 2003; Matthews
et al. 2004]. Several formal semantics for JavaScript have been proposed [Guha et al.
2010; Maffeis et al. 2008] excluding the semantics of the DOM that has been first
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Fig. 1. Hop architecture.

studied [Gardner et al. 2008a, 2008b]. A high-level semantics that focuses on the
Remote Procedure Calls (RPCs) of the Links language [Cooper et al. 2006] has
also been studied [Cooper and Wadler 2009]. Another formal semantics of a Web
browser [Bohannon and Pierce 2010] has been proposed as a framework to further
study security problems within the browser. Various formal semantics of program-
ming languages can be used to understand behaviors of server-side code but as precise
as they are, none of them can be used to understand applications as a whole as they
only cover small parts of the applications.

As a response to the emergent need of simplifying the development process of Web
applications, multitier languages have been recently proposed. Examples of such lan-
guages include HOP [Serrano et al. 2006], Links [Cooper et al. 2006], Swift [Chong
et al. 2009], and Ur [Chlipala 2010]. Multitier languages usually provide a unified
syntax, typically based on a mainstream programming language syntax, where Web
applications can be fully specified: server and client code. These languages usually also
relieve the programmer from the burden of thinking about communication protocols.
The HOP programming language pushes this philosophy to the extreme by address-
ing all aspects of Web applications and totally eliminates the need of any external
language in programming these applications.

HOP [Serrano et al. 2006] (http://hop.inria.fr) is based on the Scheme pro-
gramming language [Kelsey et al. 1998] which it extends in several directions. It is
multithreaded. It provides many libraries used for implementing modern applications
(mail, multimedia, ...). It also extends Scheme with constructs and APIs dedicated to
Web programming. The new constructs include: (i) service definitions that are server
functions associated with URLs that can be invoked by clients, (ii) service invocations
that let clients invoke servers’ services, (iii) client-side expressions that are used by
servers to create client-side programs, and, (iv) server-side expressions, which are em-
bedded inside client-side expressions. The new APIs are: full HTML and DOM support
that let servers and clients define and modify HTML documents and HTML fragments.

When a HOP program is loaded into a HOP broker [Serrano 2009], that is, the
HOP execution environment, it is split and compiled on the fly. Server-side parts are
compiled to a mix of bytecode or native code and client-side parts are compiled to
JavaScript [Loitsch and Serrano 2008]. In the source code, a syntactic mark instructs
the compiler about the location where the expression is to be evaluated. Figure 1 illus-
trates the dual compilation.

When the HOP broker starts, it registers all the available programs and waits
for client connections. Upon connection, it actually loads the program needed to
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fulfill the request it has received and returns a HTML document which contains the
client-side part of the program to the client that has emitted the request. That client
proceeds with the execution of the program. When needed, the client may invoke
server-side services which accept client-side values and returns server-side values. The
normal execution of the HOP program keeps flowing from the client to the server and
vice-versa.

By covering all aspects of programming Web applications, HOP can then be used
to reason globally about these applications. Our contribution in this article is to pro-
vide a formal and unified small-step operational semantics that could support such
reasoning. A denotational continuation-based semantics was previously given for a
core subset of HOP [Serrano and Queinnec 2010]. However, this work did not cope
with DOM operations nor multiple clients. It only described the elaboration of client-
side code as generated by the server-side code. The semantics given in this article, in
addition to being written in the more versatile style of operational semantics, covers
a much wider spectrum of the language. Indeed, our semantics can support global
formal reasoning about Web applications.

On one hand, the HOP language relies on standard programming constructs. On the
other hand, several features of HOP are specific to a multitier language, and therefore
require specific semantics that, as far as we can see, have not been previously formal-
ized. These features are mostly related to the stratified design of server codes. In
particular, the dynamic client code generation from the server and its installation at
client site are prominent features of HOP.

Finally, we propose a type system to enforce that typable programs do not get stuck
due to a violation to the same origin policy (codified as an error), and using the seman-
tics we show formally that the system is sound.

Contents. The article is organized as follows. In Section 2 we describe a core of the
language HOP and its semantics which is extended in Section 3 with DOM operations.
In Section 4 we model the same-origin policy and inlining of code. In Section 5 we
propose a safety property based on the same-origin policy, a static analysis, and a
soundness proof for it. Finally, we conclude in Section 6 and propose future directions.

Remarks. This article revises and extends an earlier workshop version [Boudol et al.
2010]. We extend the workshop version by adding explanations and examples and
modeling the browser same-origin policy and inlining in the semantics. We also pro-
pose a static analysis for a safety property that assures that programs are compliant
with same-origin policy and prove its soundness using the semantics.

2. CORE HOP

In this section we introduce the syntax, and then the semantics, of the HOP language,
or more precisely of the core constructs of the language. More complete versions, in-
volving the DOM part, inlining code and Same Origin Policy, will be considered in
Section 3 and 4. Our core language exhibits the most prominent features of the HOP
language: service definition and invocation, transfer of code and values from the server
to a client, that is, the distributed computing aspect of HOP.

2.1. Syntax

The Core HOP syntax is stratified into server code s and tilde code t. The former is
basically Scheme code enriched with a construct (service (x) s) to define a new service,
that is a function bound to an URL, and a construct ∼t to ship (tilde) code t to the
client. The latter may include references $x to server values, and will be translated
into client code c, before being shipped to the client. In the actual HOP system, the
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Fig. 2. Core HOP syntax.

latter is compiled into JavaScript code [Loitsch and Serrano 2008], but here we ignore
the compilation phase from HOP to JavaScript, as we provide a semantics at the level
of (source) client code.

The syntax is given in Figure 2, where x denotes any variable. We assume that we
are given a set Url, disjoint from the set of variables, of names denoting URLs. These
names are values in the Core HOP language, where they are used as denoting a func-
tion, or more accurately a service. When provided with an argument, that is a value
w, a call (uw) to a service is transformed into a value u?w that can be passed around
as an argument. In particular, such an argument will be used in the (with-hop u?w w′)
form, which sends the value w to the service at u somewhere in the Web, and waits for
a value to be returned as an argument to the continuation w′.

A server expression usually contains subexpressions of the form ∼t. As we said, t
represents code that will be executed at client site. This code cannot create a service,
that is, it does not contain any subexpression (service (x) s), but it usually calls services
from the server, by means of the (with-hop t0 t1) construct, and it may use values pro-
vided by the server, by means of subexpressions $x. When the latter are absent (that
is, when they have been replaced by the value bound to x), a t expression reduces to
a client expression c. Notice that for the server an expression ∼c is a value, meaning
that the code c is frozen and will only be executed at client site. Values also include (),
which is a shorthand for the unspecified Scheme runtime value. In a more complete
description of the language we would include other kinds of values, like for instance
Boolean truth values, integers, strings, and so on, as well as some constructs to build
and use these values.

As usual (lambda (x) s) binds x in the expression s, and the same holds for
(service (x) s). However, inside tilde code, a (lambda (x) t) does not bind x in the subex-
pressions $x. Then we have to say more precisely what is the set fv(s) of free variables
of an expression s. This set is defined as usual, except that

fv(∼t) = fv$(t)
fv($x) = ∅,

where fv$(t) is given by

fv$(x) = ∅
fv$((lambda (x) t)) = fv$(t)

fv$($x) = {x}
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(the remaining cases are defined in the obvious way). A HOP program is a closed
expression s, meaning that it does not contain any free variable (but it may contain
names u for services that are provided from outside of the program). We shall consider
expressions up to α-conversion, that is up to the renaming of bound variables, and we
denote by s{y/x} the expression resulting from substituting the variable y for x in s,
possibly renaming y in subexpressions where this variable is bound, to avoid captures.
Again, since the variables occurring in a subexpression $x are not bound by a lambda in
tilde code, we have to define more precisely what s{y/x} is. The definition is standard,
except that:

(∼t){y/x} = ∼(t{y//x})
($z){y/x} = $z,

where for tilde code t{y//x} is given by

z{y//x} = z

$z{y//x} =

{
$y if z = x
$z otherwise

(lambda (z) t){y//x} = (lambda (z′) t{z′/z}{y//x}),
where z′ �∈ {x, y} ∪ fv(t).

The operational semantics of the language will be described as a transition sys-
tem, where at each step a (possibly distributed) redex is reduced. As usual, this oc-
curs in specific positions in the code, that are described by means of evaluation con-
texts [Felleisen and Hieb 1992]. In order to describe in a simple way the communica-
tions between a client, invoking a service, and the server, which computes the answer
to the service request, we shall introduce a new form into the syntax, namely

s ::= · · · | ( js),

where j is a communication identifier (or channel), taken from some infinite set, dis-
joint from the set of variables and the set Url of URLs.

The syntax of evaluation contexts is as follows:

E ::= [] | (E s) | (w E) | ( jE) | (set! x E)
| (with-hop E s) | (with-hop w E).

Since client code and client values are particular cases of server code and server values
respectively, evaluation contexts in client code are particular cases of (server) evalu-
ation contexts. One can see that for the (with-hop s0 s1) form, one has to evaluate s0,
and then s1, before actually calling a service. As usual, we denote by E[s] the result of
filling the hole [] in context E with expression s.

2.2. Semantics

The semantics of a HOP program is represented as a sequence of transitions between
configurations. We consider a simple scenario where there is only one server and one
client. An extension for many servers and clients will be discussed in Section 4. A
configuration consists of the following

— A server configuration S, together with an environment (or store) μ providing
the values for the variables occurring in the server configuration. The server
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configuration consists in a main thread executing server code, and a number of
threads of the form ( js) executing clients’ requests to services.

— A client configuration C, which is a tuple 〈c, μ, W〉 where c is the running client
code, typically performing service requests, μ is the local environment for the client
(distinct from the one of the server: the client and the server do not share any state),
and W is a multiset of pending continuations (v j), waiting for a value returned from
a service call (which has been named j), or callbacks (v c), and more generally client
code c waiting to be processed at client site (we shall see another instance of this in
Section 3 with the onclick construct).

— A HOP environment ρ, binding URLs to the services they denote. Services bound
in ρ are defined by evaluating expressions of the form (service (x) s). Environment ρ
represents the services that can be called by the client at different URLs.

— An external environment Web, binding URLs to server-side values to be consumed
by server-side with-hop invocations. Web represents the external environment of the
whole Web with respect to the only server in the configuration.

— A set J of communication identifiers that are currently in use.

Then a configuration � has the form ((S, μ), C, ρ, Web, J). An initial configuration for
a given server-side expression s has the following form:

(({s},∅), 〈(),∅,∅〉,∅, Web,∅).

To simplify a little the semantic rules, and to represent the concurrent execution of the
various components, we shall use the following syntax for configurations:

� ::= μ | ρ | Web | J | s | 〈c, μ, W〉 | (� ‖ �),

where μ is a mapping from a finite set dom(μ) of variables to values (server values
or client values), ρ is a mapping from a finite set dom(ρ) of URLs to services, that is
functions (lambda (x) s), Web is a mapping from a set dom(Web) of URLs to server-side
values w, and W is a finite set of expressions of the form (v j)1 or (v c). Expressions (v j)
represent a continuation waiting for a callback from a request with communication
identifier j. We assume that the domains of ρ and Web are disjoint from each other,
that is, dom(ρ)∩dom(Web) = ∅. A configuration is well-formed if it contains exactly one
μ, one C, one ρ, one Web and one J 2. We only consider well-formed configurations in
what follows. We assume that parallel composition ‖ is commutative and associative,
so that the rules can be expressed following the “chemical style” of Berry and Boudol
[1990], specifying local “reactions” of the form � −→ �′ that can take place anywhere in
the configuration. That is, we have a general rule

� −→ �′

(� ‖ �′′) −→ (�′ ‖ �′′)

meaning that if the components of � are present in the configuration, which can there-
fore be written (� ‖ �′′), and if these components interact to produce �′, then we can
replace the components of � with those of �′.

1These expressions (v j) do not evaluate, and therefore we do not need to add them to the syntax of client
code.
2These components are omitted whenever they are empty.
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Fig. 3. Transformation from server value to client value.

Before introducing and commenting on the reaction rules, we need to define an aux-
iliary function transforming tilde code into client code. As we said a subexpression ∼t
in server code is not evaluated at server side, but will be shipped to the client, usually
as the answer to a service request. Since the expression t may contain references $x to
server values, to define the semantics we introduce an auxiliary function � that takes
as arguments an environment μ and an expression t, and transforms it into a client ex-
pression c. This is defined in Figure 3, where we also introduce a partial function that
transforms a (server) value into a client expression by removing the tilde, provided
the value is not a λ-abstraction. The � transformation consists in replacing $x by the
value bound to x in μ, but one should notice that a function, that is a (lambda (x) s), or
client code c cannot be sent to the client this way, because this would in general result
in breaking the bindings of free variables that may occur in such an expression. Then
this has to be considered as an error.

The semantics is given in Figure 4, which we now comment on. First notice that we
write a compound configuration (� ‖ �′) as � ‖ �′. This is not ambiguous, since parallel
composition is commutative and associative. When we have to evaluate a variable (rule
VARS), we need to look up into the corresponding environment μ, which we express as
a reaction from E[x] ‖ μ, but obviously the environment must remain unchanged as a
component of the configuration, which is why we restore it in E[w] ‖ μ, where w = μ(x).
We can also update the value of a variable in server-side store or client-side store, re-
spectively (rules SETS and SETC, where μ[x → w] denotes the updated store). As we
said when introducing the syntax, a call (uw) to a service is transformed into a value
u?w (rules REQS and REQC). Evaluating (service (x) s) (rule SERVDEFS) creates a new
URL name3 u �∈ dom(ρ), returns this name to the evaluation context, and updates the
service environment ρ by adding a new service (= function) associated with u. We may
have service invocations from the server, that is (with-hop u?w0 w1), where the name u
refers to some pre-existing service, that has not been created by the running program.
In that case (rule SERVINS), we use the returned value w provided by Web. This value
is passed as an argument to the continuation w1. In this rule Web(u?w0) represents a
call to an external service available in the Web, and allows for writing mashups using

3In the HOP language this is an optional argument to a service definition.
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Fig. 4. Core HOP semantics.

HOP in later extensions for the semantics. Observe that service invocation from the
server behaves like a RPC, whereas service invocation from a client is asynchronous:
evaluating a (with-hop u?v0 v1) from client side (rule SERVINC) creates a new commu-
nication name j, spawns a thread ( j(w v0)) at server side to evaluate the request to
the service, and terminates the invocation at client side while adding a continuation
(v1 j) that waits for the value returned from the server. This returned value is trans-
formed into client code (or value) by means of the † function, and then provided as an
argument to the continuation v1 (rule SERVRETS); the communication identifier j is
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then recovered. Concluding the semantics of the with-hop construct, a callback (v1 c)
from the set W is evaluated when the client’s code has terminated. Indeed, in the
CALLBACKC rule, client code c (representing a continuation with a return value from
a service) is randomly chosen from the set W to start execution in the client. In server
code, a subexpression ∼t is translated (rule TILDES) into a server value ∼c by means
of the transformation �. Finally, we have a last rule INITC, similar to SERVINC, that
models the situation where a client has finished its own computation (with an empty
W in its configuration), and sends a service request to the server, initiating a new
thread of computation at server side. In this rule the client’s continuation is simply
the identity (lambda (x) x) (In Section 3, this continuation is used to set up an HTML
page at client side). Let us illustrate this semantics with an example, where we use
the form (let ((x s0)) s1) as an abbreviation for ((lambda (x) s1) s0).

Example 1 Core Hop Semantics. Let

s = (let ((x (service (y) y))) ∼t)
t = (with-hop ($x ()) (lambda (x) x))

We start with a configuration where there is a service (lambda (z) s) available at URL
u0, that is with ρ0 = {u0 → (lambda (z) s)} (and μ = ∅ = J, so we omit these components).
Then we have the transitions shown in Figure 5, which displays service definition and
the interactions between clients and a server.

In Example 1, a client will invoke the service defined at u0, obtaining a client code
which invokes another service by with-hop. In the first step the continuation is the
identity. Note that in μ0 there is a fresh variable z′ introduced as the effect of lambda
application. One can see (in the last steps) that server threads compute concurrently
with clients. However, one should observe that, since the server and the clients do
not share any common state, there is no conflict between the server and client compu-
tations, nor among client computations. This means that, when reasoning about the
behavior of a HOP program, we do not have to consider all the possible interleavings,
since many steps are actually independent from each other. In fact, we could have pre-
sented the semantics using a synchronous style, where a client always waits for the
answers from the server before resuming its own computations. That is, we could have
restricted the VARC, REQC, APPC and SERVINC rules to the case where the set W
only contains callbacks of the form (v c), and no pending continuation (v j). This is not
the way a HOP program actually behaves, but this restriction to the semantics does
not change it in an essential manner, if the services always return. In any case, one
should be able to use local reasoning for server and client code.

3. DOM EXTENSION

In Section 2 we have seen how distributed computations are built and run in HOP.
In this section we consider another part of the HOP language, which allows one to
build HTML trees, that will be interpreted and displayed by the client’s browser. The
client can manipulate the host HTML page by means of the DOM (Document Object
Model [Hors et al. 2000]) interface of the browser. Then we enrich the syntax with
some basic HTML constructs, written in Scheme style, and operations supported by
the DOM. Here we consider only the HTML and DIV tags, and the (dom-appchild! s0 s1)
construct; the other ones are similar [Gardner et al. 2008a]. The HOP syntax is
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Fig. 5. HOP operational semantics: An example.

extended as shown in Figure 6, where we assume given an infinite set Pointer of point-
ers, that will be used to denote nodes in HTML trees. The pointers are runtime values.
Notice that instead of writing 〈tag〉 · · · 〈/tag〉 as in HTML, we write (〈tag〉 · · · ) in HOP,
which means that a tag is a function that is used to build an HTML node. The general
form in HOP is

(〈tag〉 [:attr] s0 . . . sn),

where attr is an optional list of attributes, and s0 . . . sn are the list of children of this
node to be created. However, in the extension for the syntax, we consider a simpler
form (〈tag〉 [:attr]) which creates a node with no child. More general forms of creating a
node with arbitrary number of children can be defined as syntactic sugar. For example,
creating a node with one child can be defined as follows:

(〈tag〉 [:attr] s) � ((lambda (x) (dom-appchild! (〈tag〉 [:attr]) x)) s).

We consider here only the cases where there is no attribute, or where this attribute
is onclick s, but we sometimes write (〈tag〉 [:attr]) for any of the two forms, when the
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Fig. 6. DOM extension for HOP syntax.

attribute is irrelevant. The optional onclick s attribute offers to the client the possibility
of running some code (namely c if s = ∼c), by clicking on the node. (In HOP there are
other similar facilities.)

The semantics of the (〈tag〉 [:attr]) construct is that it builds a node of a tree in a
forest. In order to define this, we assume given a specific null pointer, denoted α,
which is not in Pointer. We use π to range over Pointer ∪ {α}. Then a forest maps
(non null) pointers to pairs made of a (possibly null) pointer and an expression of the
form (〈tag〉 [:attr] c1 + · · · + cn). The pointer q ∈ Pointer assigned to p is the ancestor
of the node, if it exists. If it does not, this pointer is α. Such a node is labeled tag
and has n children, which are either leaves (labeled with some client code or value) or
pointers to other nodes in the tree. For simplicity we consider here the forest as joined
to the environment providing values for variables. That is, we now consider that μ is a
mapping from a set dom(μ) of variables and (nonnull) pointers, that maps variables to
values, and pointers to pairs made of a (possibly null) pointer and a node expression.
The syntax for node expressions a is as follows:

a ::= (〈tag〉 �) | (〈tag〉 :onclick c �)
� ::= ε | c | (�0 + �1),

where ε is the empty list. In what follows we assume that + is associative, and that
ε + � = � = � + ε. We shall also use the following notations in defining the semantics,
assuming that the pointers occurring in the list � are distinct:

(〈tag〉 [:attr] �) + p = (〈tag〉 [:attr] � + p)
(〈tag〉 [:attr] �0 + p + �1) − p = (〈tag〉 [:attr] �0 + �1).

Given a forest μ, and p ∈ dom(μ), we denote by μ[p → (π, a)] the forest obtained
by updating the value associated with p in μ. More generally, we define μ[μ′] as
follows:

dom(μ[μ′]) = dom(μ) ∪ dom(μ′)

(μ[μ′])(p) =

{
μ′(p) if p ∈ dom(μ′)
μ(p) otherwise.
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Fig. 7. Core HOP semantics modified for DOM.

For P ⊆ dom(μ), we also define μ � P to be the least subset of μ satisfying

P ⊆ dom(μ � P)
q ∈ dom(μ � P) & μ(q) = (q′, (〈tag〉 [:attr] �) ⇒ q′ ∈ dom(μ � P)
q ∈ dom(μ � P) & μ(q) = (π, (〈tag〉 [:attr] �0 + q′ + �1) ⇒ q′ ∈ dom(μ � P)
q ∈ dom(μ � P) ⇒ (μ � P)(q) = μ(q).

We overload this notation by writing μ � c for μ � P where P is the set of pointers that
occur in c. This is the forest that is the part of μ relevant for the expression c.

The syntax of evaluation contexts needs to be extended, but we now also have to
distinguish client evaluation contexts C from server’s evaluation contexts S:

S ::= · · · | (〈tag〉 :onclick S)
| (dom-appchild! S s)
| (dom-appchild! w S)

C ::= · · · | (dom-appchild! C c)
| (dom-appchild! v C).

The main difference between server context and client context is that at client side we
do not evaluate c0 in (〈tag〉 :onclick c0), because this is the code that will be executed
at client side when an “onclick” action is performed. Finally, as regards configura-
tions, we now assume that clients are rooted. That is, a client configuration now has
the form

〈c, μ, W, r〉,
where the pointer r is the root of the HTML page that is displayed on the client site by
the browser.

The semantic rules given in Figure 4 still hold, except for SERVRETS, which we re-
define shortly. We also have to extend the �(μ, t) function in rule TILDES to take into
account the new constructs. This is done in the obvious way, preserving the structure
of the expression (the function � only has an effect on the $x subexpressions), with
�(μ, p) = p for any p ∈ Pointer. The modified rules are given in Figure 7, while the
new ones are in Figure 8. The VARC, SETC, REQC, APPC, CALLBACKC, SERVINC
and INITC rules of Figure 4 have to be adapted to suit the new form of a client configu-
ration, which involves a root. This is done in the obvious way—so we omit the adapted
rules—except that in the INITC rule, after initiating a request (when no computation
in client is available), the client is not yet rooted, or more precisely its root is α: the
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Fig. 8. HOP semantics extended for DOM.
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Fig. 9. Example: The predicate R.

client is waiting for an HTML tree (with a root) to be provided by the server. This is
formalized in rule SERVRET1S: the server sends a root r, together with the associated
tree μ � r, which should satisfy some well-formedness condition to be displayed by the
browser. Here we only require that the node at r denotes an 〈HTML〉 node, without
any ancestor. In this rule the evaluation of (setdoc r), which is supposed to have the
(here invisible) side effect of displaying something of μ � r, immediately returns r. The
SERVRET2S rule is the same as SERVRETS of Core HOP, except that some forest may
also be returned, which should not conflict with the current client’s HTML forest. The
reader will notice the asymmetry between the rules for passing a value from the server
to a client (SERVRET1S & 2), which “drags” a tree with it, and for passing a value from
a client to the server, as an argument for a service call (SERVINC), which does not pass
a tree. This is because we have found no interesting use for that and modern browsers
does not naturally support that. Consequently, in the current version of HOP it is an
error to use a client’s node on the server.

The document sent by the server to the client upon initialization may contain some
code to execute, and also opportunities for interactions with the user, which in our
simplifying presentation of the HOP language only consists in onclick c expressions.
Then there is a phase in which the browser, while interpreting the document sent by
the server, will execute client code that is contained in the document. This is expressed
by the SCRIPTC rule, where the predicate R(r, p, μ) means that p is a descendant of
r in μ, and that the code that we find at node p, and which is to be triggered, is the
leftmost one in the tree μ � r determined by r. An example of the predicate R is given
in Figure 9. (We should also check that this tree is still a valid HTML document. We
do not formally define this predicate here; this is straightforward.) When this has
been done, the client may interact with the server, by clicking on an active node. This
is expressed by the rule ONCLICKC, where again we have a precondition Q(r, p, μ),
meaning that p is a descendant from r in μ, and that there is no code left to execute (by
means of the SCRIPTC rule) in the tree (again we do not formally define this predicate
here).

We have already explained the next three rules, from TAG1S to TAGC, that de-
scribe the construction of the server (resp. client) node in the forest from the (〈tag〉)
and (〈tag〉 :onclick s0) (resp., (〈tag〉 [:attr])) expressions. For each case we just create a
corresponding new node in the forest. In the rules for the server we see that the server
values are transformed into client values or client code by means of the † function.

The remaining rules describe how the DOM operation (dom-appchild! s0 s1) com-
putes: first the expressions s0 and s1 have to be evaluated. They are supposed to
return pointers p and q (or pointer p and value w) pointing to nodes in the forest.
Then one updates the node at p, moving q as a new child of p (or simply adding w as
a new child of p, respectively), as well as the node at the ancestor of q (if any) which
loses its q child, and we update q’s ancestor to be p. It is easy to formalize the other
DOM constructs in a similar way [Gardner et al. 2008a, 2008b].
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Let us illustrate the semantics with DOM extension with a few examples. For
all the following examples, we start with a configuration where there is a service
(lambda (z) s0) available at URL u0, that is with ρ0 = {u0 → (lambda (z) s0)}.

Example 2 Tree Transmission. This example demonstrates how the DOM tree is
manipulated and transmitted from server-side to client-side. Let

s0 = (let ((x (service (y) (〈DIV〉 y)))) s1)
s1 = (let ((d (〈DIV〉 ()))) s2)
s2 = (let ((h (〈HTML〉 d))) s3)
s3 = (let ((k (dom-appchild! h (〈DIV〉 ∼t)))) h)
t = (with-hop ($x ())

(lambda (x) (dom-appchild! $dx)))

The transitions are shown in Figure 10, where the service ships an HTML tree con-
taining a piece of client node. The client code, evaluated in client-side, requests a new
tree from the server and appends it to the current document.

Example 3 Script Node. This example shows how script nodes are evaluated in
client-side, especially the evaluation order.

s0 = (let ((d (〈DIV〉 ∼t0))) s1)
s1 = (let ((h (〈HTML〉 d))) s2)
s2 = (let ((c (dom-appchild! h (〈DIV〉 ∼t1)))) h)
t0 = ((lambda (y) y) ())
t1 = ((lambda (x) x) ())

We then have transitions shown below, where transitions regarding tree construc-
tion and transmission in server-side are omitted. The tree transmitted to the client
contains two pieces of code. The left one c0 will be evaluated before the right
one c1.

ρ0 −→ ( j((lambda (z) s0) ())) (INITC)

‖ 〈(),∅, {(setdoc j)}, α〉 ‖ ρ0 ‖ { j}
∗→ μ0 ‖ 〈q, μ1,∅, q〉 ‖ ρ1 (APPS, VARS,

where μ1 = {q → (α, (〈HTML〉 pr)), p → (q, (〈DIV〉 c0))} TAG1S,

∪ {r → (q, (〈DIV〉 c1))} APPEND3S,

c0 = ((lambda (y) y) ()) and c1 = ((lambda (x) x) ()) APPEND2S)
∗→ μ0 ‖ 〈(), μ2,∅, q〉 ‖ ρ1 (SCRIPTC,

where μ2 = μ1[p → (q, (〈DIV〉 ε))] ∪ {y′ → ()} APPS, VARS)
∗→ μ0 ‖ 〈(), μ3,∅, q〉 ‖ ρ1 (SCRIPTC,

where μ3 = μ2[r → (q, (〈DIV〉 ε))] ∪ {x′ → ()} APPS, VARS)

Example 4 Event Handler. This example demonstrates the ability to run code by
invoking an “onclick” attribute.

s0 = (〈HTML〉 (〈DIV〉 :onclick ∼t))
t = ((lambda (x) x) ())
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Fig. 10. DOM extensions example: Tree transmission.
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Here are some states in the execution of this program:

ρ0 −→ ( j((lambda (z) s0) ())) (INITC)
‖ 〈(),∅, {(setdoc j)}, α〉 ‖ ρ0 ‖ { j}

∗→ μ0 ‖ 〈q, μ1,∅, q〉 ‖ ρ1 (APPS, VARS,

where μ1 = {q → (α, (〈HTML〉 p)), TAG1S, TAG2S,

p → (q, (〈DIV〉 :onclick c))} APPEND3S, APPEND2S,

c = ((lambda (x) x) ()) TILDES, SERVRETS)
∗→ μ0 ‖ 〈(), μ2,∅, q〉 ‖ ρ1 (ONCLICKC, CALLBACKC,

where μ2 = μ1 ∪ {x′ → ()} APPC, VARC)

Example 5. This example shows that only a valid HTML document is meaningful
as an answer to an initial client request. Let

s0 = (〈DIV〉 ∼t)
t = ((lambda (x) x) ())

Since the returning tree will not be a valid HTML document, the computation will be
blocked by rule SERVRET1S.

4. SAME ORIGIN POLICY AND INLINING CODE

We have presented the core HOP semantics and DOM extension in a stand-alone set-
ting where only one server and one client exist. There are some subtleties in extending
the semantics so that it can manage many servers and many clients, where the Same
Origin Policy restricts communication between servers and clients. This policy is en-
forced by all modern browsers. However, it is often considered as over-restrictive for
contemporary Web applications, where client mashups require integrating contents
originating from different Web sites. This is usually done by “cross-site scripting” on
purpose, which is an exception to the Same Origin Policy, allowing browsers to dynam-
ically load code from different places. In this section, we discuss how HOP semantics
can be extended to handle the Same Origin Policy as well as “cross-site scripting” (in-
lining code, in HOP terms), two seemingly contradictory features of Web applications.

4.1. Same Origin Policy

In the core HOP semantics we confined ourselves to only one server and one client.
In order to express the Same Origin Policy, we have to extend the semantics to allow
many servers and clients to coexist in the global configuration. For this extension, no
modification of program syntax is necessary.

The Same Origin Policy, in the setting of HOP, meaning that a client code can only
invoke services from a server where the code is originated. We shall describe the Same
Origin Policy and behavior of inlining code within the semantics rules.

We introduce a new set Domain for denoting domain names, to distinguish between
different servers, and identify the origin of clients. In a more realistic setting, the ori-
gin is composed of the protocol (HTTP or HTTPS), a domain name, and a port number.
We use only domain names, for ease of representation. We update the definition of
components in a global configuration, so that it may contain many servers and clients.

— Each runtime server-side thread s (possibly in the form of ( js′)) is now coupled with
a domain d ∈ Domain, and thus becomes (d, s). Similarly, server-side stores are
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Fig. 11. Core HOP semantics modified for SOP.

paired with a domain d ∈ Domain. A server thread in domain d, that is, (d, s), can
only interact with the store associated with the same domain;

— Each client configuration now has the form 〈d, c, μ, W〉, where d denotes the origin
(i.e., from which server) of the contents in the client;

— The environment ρ now binds URLs to a pair made of a domain name and the
service it denotes, that is, (d, (lambda (x) s)).

The other components are left unchanged, and therefore the syntax for configurations
with multiple servers and clients is as follows:

� ::= (d, μ) | ρ | Web | J | (d, s) | 〈d, c, μ, W〉 | (� ‖ �).

As before, we only consider well-formed configurations that contain exactly one ρ, one
Web and one J.

The semantics rules given in Figure 4 still hold except for INITC, SERVDEFS and
SERVINC. The modified rules are given in Figure 11. This figure also shows two exam-
ples, namely VARS and SETC, of rules that are adapted to incorporate the new origin
components, which are left unchanged along the corresponding transitions. When ini-
tiating a new client, its origin is set as the domain of the corresponding server. This is
formalized by the rule INITC. The domain of a service is the one of the server creating
it, as expressed by rule SERVDEFS. The rule SERVINC exhibits the Same Origin Pol-
icy: the client can only send requests to services that are in the same domain as the
client.

Implementation Remarks. Although the Same Origin Policy is often portrayed as a
unified security concept implemented in modern browsers, there are subtle differences
between policies on different browser resources, as spotted by Google Browser Security
Handbook4. For example, the origin of XMLHttpRequest is determined by protocol,

4http://code.google.com/p/browsersec/wiki/Main
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domain name, and port number of a URL. However, the origin for cookies is not bound
to a protocol and port number. That is, a server with address http://server:8080 can
share cookies with a server with address https://server:80. But a client from one of
these servers cannot send XMLHttpRequest to the other server. When extending the
semantics for covering aspects such as cookies, one has to take these subtleties into
consideration.

4.2 Inlining Code

The Same Origin Policy imposes a strict restriction on what (data or code) can be re-
quested by a client, and this is usually seen as a bottleneck for developing modern
Web applications, where data are mashed up from different Web sites in a single ap-
plication. Therefore, there are exceptions to this policy. In particular, code inlining
(or cross-site scripting) is widely used as a solution to escape the Same Origin Pol-
icy. By inlining code, a client can dynamically load code from any source, and execute
it in its own execution environment. We extend the language considered up to now
to dynamically load mashup code from clients. Namely, we add a new kind of server
value:

w ::= · · · | (〈INLINE〉 u).

The server value (〈INLINE〉 u) is used to generate client mashups, where executable
code downloaded from the URL u on the Web is executed in the client’s environment.
The syntax for node expressions a is also extended as follows:

� ::= · · · | (〈INLINE〉 u).

The semantics of code inlining is based on the semantics of the DOM constructs. Recall
that the predicate R(r, p, μ) means that p is a descendant of r in μ, and that the code
that we find at node p, and which is to be triggered, is the leftmost one in the tree μ � r
determined by r. Now we extend the meaning of “code” in the definition of R, where it
can be client code c or inlining node (〈INLINE〉 u). When we encounter a inlining node
to execute, we shall pull the code from the Web, as formalized by the following rule:

Web(u) = ∼c R(r, p, μ) μ(p) = (q, (〈tag〉 �0 + (〈INLINE〉 u) + �1))

Web ‖ 〈d, v, μ, W〉 −→ Web ‖ 〈d, c, μ[p → (q, (〈tag〉 �0 + �1))], W〉
(INLINEC).

One can observe that, as opposed to SERVINC, this rule does not confine the origin of
dynamically loaded code.

5. STATIC REASONING ABOUT REQUEST SAFETY

In this section we demonstrate how the semantics can be used to formally reason about
request safety in Web applications.

5.1. Request-Safety Property

We introduce a request-safety property for core HOP, namely clients will not issue a
service request for a URL which is not defined in ρ (that is, a URL that is not bound to
any server-side programs). For example, assuming ρ = {u → (lambda (x) s)}, where

s = ∼(with-hop (u′ ()) c) and u �= u′.
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If the client starts by invoking the service at u, then the shipped client code will
invoke the service at u′. Since u′ is not defined in ρ, the client will get stuck. To
formally express this property, we modify the semantics (one rule added) such that
calling a nonexistent service is a runtime error (represented by err):

u �∈ dom(ρ)

〈E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ −→ err ‖ 〈E[()], μ, W〉 ‖ ρ
(SERVINCERR).

In the rest of this section, we use −→ to refer to the core HOP semantics with rule
SERVINCERR.

Definition 6 Request-Safety. A closed server-side expression s is request-safe
if for any global configuration �′ reachable from the initial configuration � =
(({s},∅),∅,∅, Web,∅), that is � −→∗ �′, we have err �∈ �′.

In this definition we assume that every server starts with a single closed server-side
expression, with other components empty in the global configuration.

5.2. A Type System for Request-Safety

We present a type system (for server-side expressions) to ensure that generated client
code will never send requests to nonexistent URLs. The type system we use is quite
standard. The syntax of types is:

T, T0, T1, . . . � E | U | R | T0 −→ T1,

where E is the type for primitive values (not functions). Type U is a special type
for URLs such that a URL in type U is generated by evaluating an expression
(service (x) s). Type R is a type for expressions that evaluates to requests on a valid
URL. T0 −→ T1 is a type for functions. The typing judgment has the form:


 � s : T or 
 �
s t : T,

where � is used to type server-side expressions, and �
s is used to type client code
confined by the ∼-operator.

Finally, 
 is a typing context, assigning types to variables. Specially, 
s in �
s

represents the typing context for server variables when typing tilde code.
We also formally define the update for typing contexts:


 � 
′(x) =

{

′(x) if x ∈ dom(
′)

(x) otherwise.

We define the subtyping relation to express that type E is the more general and
least precise type. There is also a coercion between type E and type E −→ E. The
reason for that is that arrow types which do not contain type U or R are not important
for preservation of the safety property we are considering.

T � T U � E R � E E −→ E � E

E � E −→ E

T ′
0 � T0 T1 � T ′

1

T0 −→ T1 � T ′
0 −→ T ′

1

.

The type system of server code is given in Figure 12. The type system of client code
is given in Figure 13. Explanations for some of the typing rules in Figure 12 follow
(the rest of the typing rules are standard and their explanation omitted).
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Fig. 12. Type system of server code for request-safety.

TUNSPEC. The value unspecified is not a URL. Hence it is typed with type E.
TURL. A URL value that does not come from a service definition expression cannot be

considered of type U.
TREQ1. A URL value with an argument that does not come from a service definition

expression cannot be considered of type U.
TTILDE. A server side tilde expression is typable if its client expression is typable.
TSET. A set expression is always typed as E since it does not return a valid URL by

semantics. Type T binds the types for x and s to be the same.
TSERVDEF. The service definition expression is the only expression typed as U since

at evaluation it generates a URL that will not violate the SOP.
TREQ2. In order to distinguish an application (s0 s1) that generates a correct argu-

ment for with-hop from other kinds of applications, we use the type R. This kind of
application requires that s0 is of type U, that is, s0 evaluates to a URL that does not
violate SOP.

TWHOP. This expression as server code has the meaning of calling other services from
the server side. Therefore the SOP is not applicable in this case. The typing system
only restricts the type of the continuation s1 to be E −→ T for some T, since there
is no guarantee that the returned value from the service is of a certain type other
than the fact that the returned value is typable. The with-hop expression has type
T since the invocation is synchronous, and the continuation s1 will be applied after
the service returned.

Typing rules in Figure 13 for tilde client code are similar to server rules (for conve-
nience in defining typing rules for configurations we keep the two sets of rules sepa-
rated). The main differences appear in the rule for the with-hop expression, TWHOP,
where t0 should be typed as a correct argument for with-hop (see explanation of rule
TREQ2 above) and TCDOLLAR is typed using the server context 
s, since a vari-
able with a dollar in front is a variable that belongs to the server. Note that in rule
TWHOP, the with-hop expression has type E, since on the client-side with-hop behave
asynchronously, returning immediately with a unit value ().
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Fig. 13. Type system of client code for request-safety.

Example 7 Typable and not Typable Expressions. Consider two independent server
expressions:

(a) ∼(with-hop ($(service (x) (lambda (x) s)) ()) (lambda (x) ()))
(b ) ∼(with-hop (u ()) (lambda (x) ()))

If expression s is typable, the expression (a) is typable since the service called is
defined by a service definition. However, the expression (b) is not typable because
URL u cannot be proved to have been generated from a service definition.

5.3. Lemmas and Proofs

In this section we prove the theorem of type soundness, which states that typable code
complies to the safety-request property. The proof follows the classical approach of
proving type safety [Wright and Felleisen 1994].

Runtime Typing System. We modify the type system to type runtime expressions
and configurations. The runtime typing judgment of expressions has the following
form:


,ρ � s : T or 
,ρ �c c : T.

For runtime server code typing, each rule is augmented with an additional component
ρ as typing condition. All rules except TURL and TREQ1 are modified in a minor
way—the addition of ρ as context for the typing—that has no impact. Rules TURL and
TREQ1 are replaced by the following set of rules:

u ∈ dom(ρ)


,ρ � u : U
(TURL)

u �∈ dom(ρ)


,ρ � u : E
(TURL′)

u ∈ dom(ρ)


,ρ � u?w : R
(TREQ1)

u �∈ dom(ρ)


,ρ � u?w : E
(TREQ1′).
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In a runtime configuration, a URL coming from environment ρ is considered correct
(evaluated by a service definition expression in the server) and hence typed as U.

Similarly, for runtime client code typing, all rules except TCDOLLAR, TCURL and
TCREQ1 are unmodified in an essential way. Notice that �c can be used to type stand-
alone client code. Therefore the rule TCDOLLAR is removed and the typing judgment
is replaces by �c instead of �
s, where 
s is used to provide typing information in rule
TCDOLLAR. Rules TCURL and TCREQ1 are replaced by the following set of rules:

u ∈ dom(ρ)


,ρ �c u : U
(TCURL)

u �∈ dom(ρ)


,ρ �c u : E
(TCURL′)

u ∈ dom(ρ)


,ρ �c u?v : R
(TCREQ1)

u �∈ dom(ρ)


,ρ �c u?v : E
(TCREQ1′).

Definition 8 Typable Store. We say that μ is typable, denoting 
,ρ �∗ μ, if and only
if ∀x.x ∈ dom(μ) ⇒ 
,ρ �∗ μ(x) : 
(x).

We also add two rules for typing runtime configurations. We overload � and �c for
typing global configurations and client configurations.


,ρ � μ

∀u ∈ dom(ρ). 
, ρ � ρ(u) : T for some T
∀s ∈ S. 
, ρ � s : T ′ or s = ( js′) ∧ 
,ρ � s′ : T ′ for some T ′

∀b ∈ C. ∃
c. 
c, ρ �c b : T ′′ for some T ′′


 � ((S, μ), C, ρ, Web, J)


,ρ �c μ


, ρ �c c : T for some T
∀c′ ∈ W. 
, ρ �c c′ : T ′ or c′ = (c′′ j) ∧ 
,ρ �c c′′ : T ′ for some T ′


,ρ �c 〈c, μ, W〉.
Essentially, a configuration is typable if all of its components are. Typing of store

μ is defined in Definition 8. Typing of a HO P environment is possible only if all
server expressions that it defines are typable. A server configuration is typable if all
its threads are typable. The same applies to a client configuration. Finally, a client
thread is typable if the client expression is typable, its store is typable as defined in
Definition 8, and all continuations in W are typable.

LEMMA 1 REPLACEMENT. If 
,ρ �∗ E[s] : T, then there exist 
′ and T ′ such that

′, ρ �∗ s : T ′, and for any s′ such that 
′, ρ �∗ s′ : T ′ we have 
,ρ �∗ E[s′] : T.

PROOF. The proof proceeds by induction on the definition of evaluation context E.
We show two important cases. Other cases follow the same reasoning.

Case E = []. By the assumption 
,ρ �∗ E[s] : T, we have 
,ρ �∗ s : T. Therefore for
any s′ such that 
,ρ �∗ s′ : T, we have 
,ρ �∗ E[s′] : T.
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Case E = (E′ s′).
By the assumption 
,ρ �∗ E[s] : T and typing rule TAPP and TCAPP,


,ρ �∗ E′[s] : T ′.
By the inductive hypothesis, 
′, ρ ′ �∗ s : T ′′ for some T ′′, and for any s′′ such that


′, ρ ′ �∗ s′′ : T ′′, 
,ρ �∗ E′[s′′] : T.
By typing rule TAPP, we have 
,ρ �∗ E[s′′] : T.

LEMMA 2 SUBSTITUTION. If 
 � x : T0, ρ �∗ s : T1, and y �∈ dom(
), then 
 � y :
T0, ρ �∗ s{y/x} : T1.

PROOF. Since the typing rules of client code are a subset of typing rules of server
code. We need only to prove the case of server code.

Let us prove by induction of the definition of typing rules of server code. We show a
few important cases only. The other cases follow similar reasoning.

Case TVAR.
By the assumption, 
 � x : T0, ρ � x′ : T ′.
If x = x′, then we have T ′ = T0 and 
 � y : T0, ρ � x′{y/x′} : T0.
If x �= x′, then we have T ′ = 
(x′) and 
 � y : T0, ρ � x′{y/x} : 
(x′).

Case TUNSPEC. By the assumption, 
 � x : T0, ρ � () : E. Thus we have

 � y : T0, ρ � (){y/x} : E.

Case TTILDE.
By the assumption, 
 � x : T0, ρ � ∼t : E.
By Lemma 3, 
 � y : T0, ρ � (∼t){y/x} : E.

Case TFUN.
By the assumption, 
 � x : T0, ρ � (lambda (x′) s) : T ′ −→ T.
By the typing rule, 
 � x : T0 � x′ : T ′, ρ � s : T.
If x = x′:

— Since x �∈ fv((lambda (x) s)), 
,ρ � (lambda (x) s) : T ′ −→ T by Lemma 4.
— By the assumption y �∈ dom(
), y �∈ fv((lambda (x) s)).
— By Lemma 4, 
 � y : T0, ρ � (lambda (x) s){y/x} : T ′ −→ T.

If x �= x′:

— By the definition of updating typing context, 
 � x′ : T ′ � x : T0, ρ � s : T.
— By the inductive hypothesis, 
 � x′ : T ′ � y : T0, ρ � s{x/y} : T.
— By the definition of updating typing context, 
 � y : T0 � x′ : T ′, ρ � s{x/y} : T.
— By the typing rule, 
 � y : T0, ρ � (lambda (x′) s){y/x} : T ′ −→ T.

Case TAPP.
By the assumption, 
 � x : T0, ρ � (s0 s1) : T.
By the typing rule, 
 � x : T0, ρ � s0 : T ′ −→ T and 
 � x : T0, ρ � s1 : T ′.
By the inductive hypothesis, 
 � y : T0, ρ � s0{y/x} : T ′ −→ T and 
 � y : T0, ρ �

s1{y/x} : T ′.
By the typing rule, 
 � y : T0, ρ � (s0 s1){y/x} : T

Case TSET.
By the assumption, 
 � x : T0, ρ � (set! x′ s) : E.
If x = x′:

— By the typing rule, 
 � x : T0, ρ � s : T0.
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— By the inductive hypothesis, 
 � y : T0, ρ � s{y/x} : T0.
— By the typing rule, 
 � y : T0, ρ � (set! x s){y/x} : E.

If x �= x′:

— By the typing rule, 
 � x : T0, ρ � s : T and T = 
(x′).
— By the inductive hypothesis, 
 � y : T0, ρ � s{y/x} : T.
— By the typing rule, 
 � y : T0, ρ � (set! x s){y/x} : E.

We can conclude by similar reasoning for other cases.

LEMMA 3 SUBSTITUTION - TILDE CODE. If 
 � x : T0, ρ � ∼t : E, and y �∈ dom(
),

 � y : T0, ρ � (∼t){y/x} : E.

PROOF. By the typing rule, ∅, ρ �
�x:T0 t : T. It is sufficient to prove
∅, ρ �
�y:T0 t{y//x} : T. We prove by induction on the typing rules for tilde code.
By the definition of substitution of server-side variables in tilde code, only the case of
rule TCDOLLAR needs to be examined.

Case TCDOLLAR.
By the assumption, t = $x′ for some x′.
If x = x′:

— By the assumption, ∅, ρ �
�x:T0 t : T0.
— By the definition, t{y//x} = $y.
— By the typing rule, ∅, ρ �
�y:T0 t{y//x} : T0.

If x �= x′:

— By the assumption, ∅, ρ �
�x:T0 t : 
(x′).
— By the definition, t{y//x} = $x′.
— By the typing rule, ∅, ρ �
�y:T0 t{y//x} : 
(x′).

We can conclude by similar reasoning for other cases.

LEMMA 4 TYPING CONTEXT. Given s and 
 such that y �∈ fv(s) and y �∈ dom(
),

,ρ �∗ s : T if and only if 
,ρ � y : T0 �∗ s : T.

PROOF. We prove only for the “only if” direction; the “if” direction is similar.
Since the typing rules of client code are a subset of typing rules of server code. We

need only to prove the case of server code.
The proof is straightforward by induction on the typing rules of server code. We

show only a few important cases.

Case TVAR.
By the assumption, 
,ρ � x : 
(x).
By the typing rule, 
′, ρ � x : 
′(x), where 
′ = 
 � y : T0.
By the definition of updating typing context, 
′(x) = 
(x), therefore


 � y : T0, ρ � s : 
(x).

Case TTILDE.
By the assumption, 
,ρ � ∼t : E.
By the typing rule, ∅, ρ �
 t : T ′ for some T ′.
It is sufficient to prove ∅, ρ �
�y:T0 t : T ′ for some T ′.
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We can prove the preceding statement by induction on the typing rules of tilde code.
Only the case of TCDOLLAR needs to be examined.

— By the inductive hypothesis, ∅, ρ �
 $x : 
(x).
— Since y �∈ dom(
), y �= x.
— By the typing rule, ∅, ρ �
�y:T0 $x : 
(x).

Case TSUB. By the assumption, 
,ρ � s : T.
By the typing rule, 
,ρ � s : T ′ and T ′ � T.
By the inductive hypothesis, 
 � y : T0, ρ � s : T ′.
By the typing rule, 
 � y : T0, ρ � s : T.

Case TFUN.
By the assumption, 
,ρ � (lambda (x) s)T ′” −→: T.
By the typing rule, 
 � x : T ′, ρ � s : T.
If y = x:

— By the definition of updating typing context, 
 � x : T0 � x : T ′, ρ � s : T.
— By the typing rule, 
 � x : T0, ρ � (lambda (x) s) : T ′ −→ T.
— Since y = x, 
 � y : T0, ρ � (lambda (x) s) : T ′ −→ T.

If y �= x:

— By the inductive hypothesis, 
 � x : T ′ � y : T0, ρ � s : T.
— By the definition of updating typing context, 
 � y : T0 � x : T ′, ρ � s : T.
— By the typing rule, 
 � y : T0(lambda (x) s) : T ′ −→ T.

We can conclude by similar reasoning for other cases.

LEMMA 5 TILDE REMOVAL. If 
,ρ � w : T and w �= ⊥, then there exists 
c such
that 
c, ρ �c w : T ′ for some T ′.

PROOF. We prove by case analysis on the definition of the function. We show only
important cases.

Case w = ().
By the assumption, ∅, ρ � () : E.
By the typing rule, 
′, ρ �c () : E for any 
′

Case w = ∼c. By the assumption, 
,ρ � ∼c : E.
Since fv(∼t) = ∅, we have ∅, ρ � ∼c : E.
By the typing rule, ∅, ρ �c c : T.
By Lemma 4, 
′, ρ �c c : T for any 
′.

LEMMA 6 TILDE CODE TRANSFORMATION. If 
,ρ �
s t : T; 
,ρ � μ; and �(μ, t) =
c, then 
,ρ �c c : T.

PROOF. By the assumption 
,ρ �
s t : T. We proceed by induction on the definition
of �.

Case t = x. By the definition of �, c = �(μ, x) = x = t. Therefore 
,ρ �c c : T.

Case t = u. By the definition of �, c = �(μ, u) = u = t. Therefore 
,ρ �c c : T.

Case t = u?v. By the definition of �, c = �(μ, u?v) = u?v = t. Therefore 
,ρ �c c : T.
Case t = (lambda (x) t′).
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By the typing rule, T = T0 −→ T1 and 
 � x : T0, ρ �
s t′ : T1.
By the inductive hypothesis, 
 � x : T0, ρ �c �(μ, t′) : T1.
Hence, by Lemma 2 if y �∈ 
 ∪ dom(μ), 
 � y : T0, ρ �c �(μ, t′{y//x}) : T1.
By the definition of �, �(μ, (lambda (x) t′)) = (lambda (y) �(μ, t′{y//x})).
By the typing rule, 
,ρ �c (lambda (y) �(μ, t′{y//x})) : T0 −→ T1.

Case t = (set! x t′).
By the typing rule, T = E and 
,ρ �
s t′ : T ′.
By the inductive hypothesis, 
,ρ �c �(μ, t′) : T ′.
By the definition of �, �(μ, (set! x t′)) = (set! x �(μ, t′)).
By the typing rule, 
,ρ �c (set! x �(μ, t′)) : E.

Case t = (t0 t1). This case follows the same reasoning as previous ones.

Case t = $x.
By the typing rule, 
s(x) = T.
By the assumption 
s, ρ � μ, 
s, ρ � μ(x) : T.
By the definition of �, �(μ, $x) = μ(x), and μ(x) must be a primitive value.
By the typing rules, 
,ρ �c μ(x) : T.

Case t = (with-hop t0 t1). This case follows the same reasoning as previous ones.

LEMMA 7 INITIAL CONFIGURATION. If 
 � s : T, then 
 � (({s},∅),∅,∅, Web,∅).

PROOF. By the hypothesis 
 � s : T and the definition of �, we have 
,∅ � s : T.
Therefore we have ∀s ∈ {s}. 
,∅ � s : T ′ for some T ′. We can also straightforwardly
conclude the following facts:

— 
,∅ � ∅ by Definition 8;
— ∀u ∈ dom(ρ). 
, ρ � ρ(u) : T for some T, where ρ = ∅;
— ∀b ∈ C. ρ �c b : T ′′ for some T ′′, where C = ∅.

Therefore by definition of the typing rule of global configuration, we conclude that

 � ((S,∅),∅,∅, Web,∅).

LEMMA 8 SUBJECT REDUCTION. If 
 � � and � −→ �′, then there exist 
′ such that

′ � �′.

PROOF. The proof proceeds by case analysis on transition � −→ �′. Let us assume
� = ((S, μ), C, ρ, Web, J) −→ �′.

Case VARS. By the core semantics, we have E[x] ∈ S such that

μ(x) = w

E[x] ‖ μ −→ E[w] ‖ μ
(VARS).

By the hypothesis of typability of global configurations, 
,ρ � E[x] : T and 
,ρ � μ
hold.

By Lemma 1, 
,ρ � x : 
(x) holds.
By Definition 8, 
,ρ � μ(x) : 
(x) holds.
By Lemma 1, 
,ρ � E[w] : T holds.
By the core semantics, �′ = ((S′, μ), C, ρ, Web, J) where S′ = (S\{E[x]}) ∪ {E[w]}.
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By the hypothesis of typability of global configurations, we have ∀s ∈ S′. 
, ρ � s :
T ′ for some T ′.

By the typing rule of global configuration, we have 
 � �′.

Case VARC. By the core semantics, we have:

μ(x) = v

〈E[x], μ, W〉 −→ 〈E[v], μ, W〉
(VARC).

The proof of this case is similar to the case of VARS.

Case SETS. By the core semantics, we have:

x ∈ dom(μ)

E[(set! x w)] ‖ μ −→ E[()] ‖ μ[x → w]
(SETS).

By hypothesis of typability of global configurations, 
,ρ � E[(set! x w)] : T and

,ρ � μ holds.

By Lemma 1, 
,ρ � (set! x w) : E holds.
By Lemma 1 and typing rule TUNSPEC, 
,ρ � E[()] : T holds.
By typing rule TSET, 
,ρ � w : 
(x).
By the core semantics, �′ = ((S′, μ′), C, ρ, Web, J) where S′ = (S\{E[x]})∪{E[w]}, and

μ′ = μ[x → w].
By hypothesis of typability of global configurations, we have ∀s ∈ S′. 
, ρ � s :

T ′ for some T ′.
By Definition 8, 
,ρ � μ, and 
,ρ � μ′(x) : 
(x), we can infer that 
,ρ � μ′. By

typing rule of global configuration, we have 
 � �′.

Case SETC. By the core semantics:

x ∈ dom(μ)

〈E[(set! x v)], μ, W〉 −→ 〈E[()], μ[x → v], W〉
(SETC).

The proof of this case is similar to the case of SETS.

Case REQS. By the core semantics:

E[(uw)] −→ E[u?w]
(REQS).

By the hypothesis of typability of global configurations, 
,ρ � E[(uw)] : T holds.
By Lemma 1, 
,ρ � (uw) : T ′ holds.
By the typing rules, T ′ is either R or not.
If T ′ is R:

— By the typing rules, we have 
,ρ � u : U and 
,ρ � w : T ′′.
— By the typing rules, we can infer that u ∈ ρ.
— By the typing rules, we have 
,ρ � u?w : R.

If T ′ is not R:

— By the typing rules, we have 
,ρ � u : E.
— By the typing rules, we can infer that u �∈ ρ.
— By the typing rules, we have 
,ρ � u?w : E.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 10, Publication date: June 2012.



Reasoning about Web Applications: An Operational Semantics for HOP 10:29

By the above analysis, 
,ρ � u?w : T ′ holds.
By Lemma 1, 
,ρ � E[u?w] : T holds.
By the core semantics, �′ = ((S′, μ), C, ρ, Web, J) where S′ = (S\{E[(uw)]}) ∪

{E[u?w]}.
By the hypothesis of typability of global configurations, we have ∀s ∈ S′. 
, ρ � s :

T ′ for some T ′.
By the typing rule of global configuration, we have 
 � �′.

Case REQC. By the core semantics:

〈E[(uv)], μ, W〉 −→ 〈E[u?v], μ, W〉
(REQC).

The proof of this case is similar to the case of REQS.

Case APPS. By the core semantics:

y �∈ dom(μ)

E[((lambda (x) s)w)] ‖ μ −→ E[s{y/x}] ‖ μ ∪ {y → w}
(APPS).

By the hypothesis of typability of global configurations,

,ρ � E[((lambda (x) s)w)] : T holds.

By Lemma 1, 
,ρ � ((lambda (x) s)w) : T ′ holds.
By the core semantics, we have y �∈ dom(μ) and y �∈ dom(
).
By the typing rules TAPP, there are two cases to consider:
If 
,ρ � (lambda (x) s) : T0 −→ U:

— By the typing rule, T ′ = E.
— By the typing rule, 
,ρ � w : T0.
— By the typing rule, 
 � x : T0, ρ � s : U.
— By Lemma 2, we have 
 � y : T0, ρ � s{y/x} : U.
— By the subtyping rule, we have 
 � y : T0, ρ � s{y/x} : E.
— By Lemma 1, we have 
 � y : T0, ρ � E[s{y/x}] : T.

If 
,ρ � (lambda (x) s) : T0 −→ T1

— By the typing rule, T ′ = T1.
— By the typing rule, 
,ρ � w : T0.
— By the typing rule, 
 � x : T0, ρ � s : T1.
— By Lemma 2, we have 
 � y : T0, ρ � s{y/x} : T1.
— By Lemma 1, we have 
 � y : T0, ρ � E[s{y/x}] : T.

By Definition 8, we have 
 � y : T0, ρ � μ′, where μ′ = μ ∪ {y → w}.
By Lemma 4, and the typability of global configurations, other components in the

configuration remains typable. Therefore we can conclude 
 � y : T0 � �′

Case APPC. By the core semantics:

y �∈ dom(μ)

〈E[((lambda (x) c)v)], μ, W〉 −→ 〈E[c{y/x}], μ ∪ {y → v}, W〉
(APPC).

The proof of this case is similar to the case of APPC.
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Case SERVINS. By the core semantics:

u �∈ dom(ρ) Web(u?w0) = w

E[(with-hop u?w0 w1)] ‖ ρ −→ E[(w1 w)] ‖ ρ
(SERVINS).

By the hypothesis of typability of global configurations,

,ρ � E[(with-hop u?w0 w1)] : T holds.

By Lemma 1, 
,ρ � (with-hop u?w0 w1) : T ′.
By the typing rule, 
,ρ � w1 : E −→ T ′.
By the typing rule, 
,ρ � (w1 w) : T ′.
By Lemma 1, 
,ρ � E[(w1 w)] : T.
By the core semantics, �′ = ((S′, μ), C, ρ, Web, J)

where S′ = (S\{E[(with-hop u?w0 w1)]}) ∪ {E[(w1 w)]}.
By the hypothesis of typability of global configurations, we have ∀s ∈ S′. 
, ρ � s :

T ′ for some T ′.
By the typing rule of global configuration, we have 
 � �′.

Case SERVDEFS. By the core semantics:

u �∈ dom(ρ)

E[(service (x) s)] ‖ ρ −→ E[u] ‖ ρ ∪ {u → (lambda (x) s)}
(SERVDEFS).

By the hypothesis of typability of global configurations, 
,ρ � E[(service (x) s)] : T
holds.

By Lemma 1, 
,ρ � (service (x) s) : U.
By the definition of typability of configuration, 
,ρ ′ � u : U, where ρ ′ = ρ ∪ {u →

(lambda (x) s)}.
By Lemma 1, 
,ρ ′ � E[u] : T.
By the core semantics, �′ = ((S′, μ), C, ρ ′, Web, J)

where S′ = (S\{E[(with-hop u?w0 w1)]}) ∪ {E[(w1 w)]}.
By the hypothesis of typability of global configurations, we have ∀s′ ∈ S′. 
, ρ � s′ :

T ′ for some T ′.
By the typing rule, we have 
,ρ � s′ : T ′.
Since ρ ′(u) = s′, we have 
,ρ ′ � ρ(u) : T ′.
By the hypothesis of typability of global configurations, ∀u ∈ dom(ρ ′). 
, ρ � ρ(u) :

T for some T.

Case SERVINC. By the core semantics:

j �∈ J ρ(u) = w W′ = W ∪ {(v1 j)} J′ = J∪ { j}
〈E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ ‖ J −→ ( j(w v0)) ‖ 〈E[()],μ, W′ 〉 ‖ ρ ‖ J′

(SERVINC).

By the hypothesis of typability of global configurations,
ρ �c 〈E[(with-hop u?v0 v1)], μ, W〉 holds.

By the definition of typability of client configurations,

c, ρ �c E[(with-hop u?v0 v1)] : T.

By Lemma 1, we have 
c, ρ �c (with-hop u?v0 v1) : T ′.
By the typing rule, we have 
c, ρ �c u?v0 : R.
By the typing rule, we have u ∈ ρ.
By the typability of global configuration, we have 
,ρ � w : T ′′.
By the typing rule, we have 
c, ρ �c ( jv1) : T ′′′.
By the typability of configurations, we have 
 � �′.
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Case SERVINCERR. By the core semantics:

u �∈ dom(ρ)

〈E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ −→ err ‖ 〈E[()], μ, W〉 ‖ ρ
(SERVINCERR).

By the typability of global configurations 
,ρ �
s E[(with-hop u?v0 v1)] : T.
By Lemma 1, 
,ρ �
s (with-hop u?v0 v1) : T ′.
However, it implies that u ∈ dom(ρ) which is contradictory with the premise in the

semantics rule. Therefore we can conclude that the transition cannot be of this case.

Case SERVRETS. By the core semantics, we have the following transition:

( jw) ‖ 〈c, μ, W ∪ {(v j)}〉 ‖ J −→ 〈c, μ, W ∪ {(v (w))}〉 ‖ J− { j}
(SERVRETS).

By the hypothesis of typability of global configurations, 
,ρ � w : T, and ρ �c
〈c, μ, W ∪ {(v j)}〉.

By Lemma 5, we have 
c, ρ �c w : T for some 
c.
By the typability of client configurations, we have ρ �c 〈c, μ, W ∪ {(v (w))}〉.
By the typability of configurations, we have 
 � �′.

Case TILDES. By the core semantics, we have the following transition:

�(μ, t) = c

E[∼t] ‖ μ −→ E[∼c] ‖ μ
(TILDES).

By the hypothesis of typability of global configurations, we have 
,ρ � E[∼t] : T;
By Lemma 1, 
,ρ � ∼t : E;
By the typing rule, we have ∅, ρ �
 t : T ′ for some T ′.
By Lemma 6, we have ∅, ρ �c c : T ′.
By the typing rule, we have that 
,ρ � ∼c : E.
By Lemma 4, we have 
,ρ � ∼c : E.
By Lemma 1, 
,ρ � E[∼c] : T.
By the typability of configurations, we have 
 � �′.

Case CALLBACKC. By the core semantics, we have the following transition:

〈v,μ, {c} ∪ W〉 −→ 〈c, μ, W〉
(CALLBACKC).

By the hypothesis of typability of global configurations, we have ρ �c 〈v,μ, {c} ∪ W〉.
By the definition, we have 
cρ �c c : T. Therefore 〈c, μ, W〉.
By the typability of global configurations, we have 
 � �′.

Case INITC. By the core semantics, we have the following transition:

j �∈ J ρ(u) = w

〈v,μ,∅〉 ‖ ρ ‖ J−→ ( j(w v)) ‖ 〈(),∅, {(setdoc j)}〉 ‖ ρ ‖ J∪ { j}
(INITC).

By the hypothesis of typability of global configurations, we have 
,ρ � w : E −→ T.
By the typing rules, we have 
,ρ � v : E.
By the typing rules, we have 
,ρ � ( j(w v)) : T.
By the definition of typability of client configuration,

we have ρ �c 〈(),∅, {(setdoc j)}〉.
By the typability of global configurations, we have 
 � �′.
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We use � −→n �n to denote the standard notion that �n can be reached from � by n
steps.

LEMMA 9 RUNTIME TYPE SAFETY. If 
 � �, err �∈ �, and � −→n �n, then err �∈ �n
and there exist a 
n such that 
n � �n.

PROOF. The proof proceeds by induction on n.
Case n = 0. By definition of −→n, �n = �. Therefore err �∈ �n. Let 
n = 
, then


n � �n.
Case n > 0. By definition of −→n, � −→n−1 �n−1 and �n−1 −→ �n. By inductive hypoth-

esis, err �∈ �n−1 and there exist a 
n−1 such that 
n−1 � �n−1.
Now we examine �n−1 −→ �n. The only way to generate runtime error is by rule

SERVINCERR.
u �∈ dom(ρ)

〈E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ −→ err ‖ 〈E[()], μ, W〉 ‖ ρ
(SERVINCERR).

If err is generated, then by the typability of global configurations and Lemma 1,

n−1, ρ �
s (with-hop u?v0 v1) : T. There must be that 
n−1, ρ �
s u?v0 : R for
u �∈ dom(ρ). It is, however, not possible by typing rules. Thus we can conclude that
err �∈ �n. By Lemma 8, there also exist 
n such that 
n � �n.

Finally we state the theorem for type soundness to prove.

THEOREM 10 TYPE SOUNDNESS. If ∅ � s : T for some T
then s is request-safe.

PROOF. Let � = (({s},∅),∅,∅, Web,∅). By Lemma 7, we have ∅ � � . By Lemma 9,
for any �′ such that � −→∗ �′, err �∈ �′.

5.4. Same Origin Policy Safety

In this section we show that previous result of type soundness also holds for the core
HOP semantics with the extension of the Same Origin Policy.

In order to model a safety property equivalent to request-safety, we add a semantics
rule: calling a service within a different domain is also considered as a runtime error.

u �∈ dom(ρ) or ρ(u) = (d′, s) d′ �= d
〈d, E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ −→ err ‖ 〈d, E[()], μ, W〉 ‖ ρ

(SERVINCERR).

We denote the core HOP semantics by −→c, and the core HOP semantics with the
extension of the Same Origin Policy by −→s.

The desired property is now defined as follows.

Definition 9 SOP-Request-Safety. A closed server-side expression s is SOP-request-
safe if for any global configuration �′ reachable from the initial configuration � =
(({d, s},∅),∅,∅, Web,∅), that is � −→∗

s �′, we have err �∈ �′.
The following definition will be needed in the proof of extended type soundness. Ba-

sically we extend a normal configuration in the core HOP semantics to a corresponding
configuration with a given domain d. That is, we assume all computations in the core
HOP semantics happen in a single domain d.

Definition 10. Let � be a normal configuration in the core HOP semantics, we define
�d to be the corresponding configuration, denoting � ∼ �d, in the SOP extension that
satisfy the following conditions:

(1) μ ∈ � ⇔ (d, μ) ∈ �d;
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(2) ρ ∈ �, ρ ′ ∈ �d, ∀u ∈ dom(ρ) ∪ dom(ρ ′).ρ(u) = s ⇔ ρ ′(u) = (d, s);
(3) Web ∈ � ⇔ Web ∈ �d;
(4) J ∈ � ⇔ J∈ �d;
(5) s ∈ � ⇔ (d, s) ∈ �d;
(6) 〈c, μ, W〉 ∈ � ⇔ 〈d, c, μ, W〉 ∈ �d;
(7) err ∈ � ⇔ err ∈ �d;

This lemma shows that every semantics step for core HOP simulates a semantic
step from the SOP-augmented semantics.

LEMMA 11. For any � and its corresponding �d for any domain d, if �d −→s �′
d, we

have � −→c �′ and �′ ∼ �′
d.

PROOF. Let us prove by case analysis on the transition �d −→s �′
d. We show only

important cases.
Case VARS. By the SOP extension, we have

μ(x) = w

(d, E[x]) ‖ (d, μ) −→ (d,E[w]) ‖ (d,μ)
(VARS).

By the core semantics, we have

μ(x) = w

E[x] ‖ μ −→ E[w] ‖ μ
(VARS).

Since E[w] ∈ �′ and (d, E[w]) ∈ �′
d, and other parts of the configurations remain

unchanged, we have �′ ∼ �′
d by Definition 10.

Case SERVINC. By the SOP extension, we have

c = E[(with-hop u?v0 v1)] ρd(u) = (d, w)

j �∈ J W′ = W ∪ {(v1 j)} J′ = J∪ { j}

〈d, c, μ, W〉 ‖ ρd ‖ J −→ (d, ( j(w v0))) ‖ 〈d, E[()],μ, W′〉 ‖ ρd ‖ J ′
(SERVINC).

By the core semantics, we have

j �∈ J ρ(u) = w W′ = W ∪ {(v1 j)} J′ = J∪ { j}
〈E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ ‖ J −→ ( j(w v0)) ‖ 〈E[()],μ, W′ 〉 ‖ ρ ‖ J′

(SERVINC).

By Definition 10, we have ρ(u) = s and ρd(u) = (d, s) holds. Since ( j(w v0)) ∈ �′ and
〈E[()], μ, W ′〉 ∈ �′ and (d, ( j(w v0))) ∈ �′

d and 〈d, E[()], μ, W ′〉 ∈ �′
d, and other parts of the

configurations remain unchanged, we have �′ ∼ �′
d by Definition 10.

Case SERVINCERR. By the SOP extension, we have

u �∈ dom(ρd) or ρd(u) = (d′, s) d′ �= d

〈d, E[(with-hop u?v0 v1)], μ, W〉 ‖ ρd −→ err ‖ 〈d, E[()],μ, W〉 ‖ ρd
(SERVINCERR).

By the core semantics, we have

u �∈ dom(ρ)

〈E[(with-hop u?v0 v1)], μ, W〉 ‖ ρ −→ err ‖ 〈E[()], μ, W〉 ‖ ρ
(SERVINCERR).
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By Definition 10, it is not possible that ρd(u) = (d′, s) and d′ �= d. Therefore
u �∈ dom(ρ). Since err ∈ �′ and err ∈ �′

d, and other parts of the configurations remain
unchanged, we have �′ ∼ �′

d by Definition 10.

Case SERVDEFS. By the SOP extension, we have

u �∈ dom(ρd)

(d, E[(service (x) s)]) ‖ ρd −→ (d, E[u]) ‖ ρd ∪ {u → (d, (lambda (x) s))}
(SERVDEFS).

By the core semantics, we have

u �∈ dom(ρ)

E[(service (x) s)] ‖ ρ −→ E[u] ‖ ρ ∪ {u → (lambda (x) s)}
(SERVDEFS).

Since ρ is updated with {u → (lambda (x) s)}, and ρd is updated with p{u →
(d, (lambda (x) s))}, and other parts of the configurations remain unchanged, we have
�′ ∼ �′

d by Definition 10.

LEMMA 12. For any � and its corresponding �d for any domain d, if �d −→∗
s �′

d, we
have � −→∗

c �′ and �′ ∼ �′
d.

PROOF. The proof is straightforward by Lemma 11 and induction on the length of
the transitions.

The theorem in this section shows that the type system presented in the previous
section is also sound with respect to the SOP-request-safe property.

THEOREM 13. If ∅ � s : T, then (d, s) is SOP-request-safe for any domain d.

PROOF. By Theorem 10, for � = (({s},∅),∅,∅, Web,∅) such that � −→∗
c �′, we have

err �∈ �′. By Lemma 12, for �d = (({(d, s)},∅),∅,∅, Web,∅), we have �b −→∗
s �′

b . By
Definition 10 err �∈ �′

b .

COROLLARY 14. Let s1 . . . sn be n SOP-request-safe expressions, and d1 . . . dn be n
different domains. Let � = (({(d1, s1) . . . (dn, sn)},∅),∅,∅, Web,∅). For any �′ such that
� −→∗

s �′, err �∈ �′.

SKETCH OF PROOF. Let us assume that err ∈ �′. Since transition among different
domains are orthogonal. There must exist a �i = (({(di, si)},∅),∅,∅, Web,∅), and �i −→∗

s
�′

i, such that �′
i is a projection of �′ with respect to domain di and err ∈ �′

i. It is,
however, contradictory to the assumption that si is SOP-request-safe, which implies
err �∈ �′

i.

6. CONCLUSION

We present a formal specification of Web applications via a small-step operational se-
mantics for the HOP programming language. The specification models HTTP requests
and responses, AJAX requests in the browser, DOM trees, program behavior on client
side, and on server side. The operational semantics faithfully models the behavior of
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HOP programs [Serrano et al. 2006] that include the features considered in this work.
We do not model certain features of the language such as inclusion of CSS specifica-
tions and cookies. Neither do we give a complete specification of the DOM, although
we believe that the given specification is enough to easily build further DOM elements
and functions [Gardner et al. 2008a] in future extensions. We also model the same
origin policy (SOP) and code inlining. The formalization has allowed us to benefit from
language-based techniques for analysis and verification. We have specified a static
type system that enforces a request safety policy with respect to SOP. We have formally
proved the soundness of the type system using the small step operational semantics.
Our next goal is to use the operational semantics to study and propose language-
based mechanims for security concerns and develop a certified trustworthy HOP
compiler.

APPENDIX

A. DIRECT IMPLEMENTATION OF HOP SMALL-STEP SEMANTICS

We have implemented a tool that allows to display all the steps in the semantics
execution for a given HOP program. We have used the tool to generate the exam-
ples given in the body of the article. The tool can be found in the following URL:
http://www-sop.inria.fr/members/Zhengqin.Luo/trwa-long/. Its code is listed as
follows.
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