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Abstract. In Geomagnetism it is of interest to separate the Earth’s core magnetic field from
the crustal magnetic field. However, measurements by satellites can only sense the sum of the two
contributions. In practice, the measured magnetic field is expanded in spherical harmonics and
separation into crust and core contribution is achieved empirically, by a sharp cutoff in the spectral
domain. In this paper, we derive a mathematical setup in which the two contributions are modeled
by harmonic potentials Φ0 and Φ1 generated on two different spheres SR0 (crust) and SR1 (core)
with radii R1 < R0. Although it is not possible in general to recover Φ0 and Φ1 knowing their
superposition Φ0 + Φ1 on a sphere SR2 with radius R2 > R0, we show that it becomes possible
if the magnetization m generating Φ0 is localized in a strict subregion of SR0

. Beyond unique
recoverability, we show in this case how to numerically reconstruct characteristic features of Φ0 (e.g.,
spherical harmonic Fourier coefficients). An alternative way of phrasing the results is that knowledge
of m on a nonempty open subset of SR0 allows one to perform separation.
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1. Introduction. The Earth’s magnetic field B, as measured by several satellite
missions, is a superposition of various contributions, e.g., of iono-/magnetospheric
fields, crustal magnetic field, and of the core/main magnetic field, see [23, 24, 32]
for an overview and [26, 30, 35, 40] for some recent geomagnetic field models. While
iono-/magnetospheric contributions can to a certain extent be filtered out due to their
temporal variations, the separation of the core/main field Bcore and the crustal field
Bcrust is typically based on the empirical observation that the power spectra of Earth
magnetic field models have a sharp knee at spherical harmonic degree 15 (see, e.g., [25,
32]). However, under this spectral separation, large-scale contributions (i.e., spherical
harmonic degrees smaller than 15) are entirely neglected in crustal magnetic field
models. In [22], a Bayesian approach has been proposed that addresses the separation
of geomagnetic sources based on their correlation structure. The correlation of certain
components, e.g., internally and externally produced magnetic fields, can (to some
extent) be obtained from the underlying geophysical equations. But this approach
does not explicitly address the problem that some of the involved separation problems,
e.g., the separation into crustal and core magnetic field contributions, are generally
not unique for the given data situation. The goal of this paper is to derive conditions
under which a rigorous separation of the contributions Bcrust and Bcore is possible,
as well as to formulate extremal problems whose solutions lead to approximations of
these contributions or certain features thereof. The main assumption that we make
for our approach to work is that the magnetization generating Bcrust is localized in
a strict subregion of the crust. By linearity, this is equivalent to assuming that this
magnetization is known on a spherical cap that may, in principle, be arbitrary small.
For applications, this is interesting in as much as that the crustal magnetization may
be estimated in certain places of the Earth from local measurements. Thus, given
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such a local estimation, its contribution can be subtracted from global magnetic field
measurements to yield a crustal contribution that stems from magnetizations localized
in a strict subregion of the Earth (namely the complement of those places where a
local estimate of the magnetization has been performed), thereby allowing us to apply
the separation approach indicated in this paper. Similarly, if one can identify places
on the Earth which are only weakly magnetized as compared to others, the separation
process that we will describe may reasonably be applied by neglecting magnetizations
in such places.

We assume throughout that the overall magnetic field is of the form B = Bcrust+
Bcore in R3 \BR0 , where BR0 = {x ∈ R3 : |x| < R0} denotes the ball of radius R0 > 0
and overline indicates closure (here R0 can be interpreted as the radius of the Earth).
Since the sources of Bcrust and Bcore are located inside BR0

(hence, the corresponding
magnetic fields are curl-free and divergence-free in R3 \ BR0

), there exist potential
fields Φ, Φcrust, Φcore such that B = ∇Φ, Bcrust = ∇Φcrust, and Bcore = ∇Φcore
in R3 \ BR0

. Therefore, from a mathematical point of view, the problem reduces to
finding unique Φcrust, Φcore from the knowledge of Φ (but we should keep in mind
that the actual measurements bear on the magnetic field B).

It is known that Bcrust is generated by a magnetization M confined in a thin
spherical shell BR0−d,R0

= {x ∈ R3 : R0 − d < |x| < R0} of thickness d > 0 (for the
Earth, d ≈ 30km is typical), therefore the corresponding magnetic potential can be
expressed as (see, e.g., [8, 19])

Φcrust(x) =
1

4π

∫
BR0−d,R0

M(y) · x− y
|x− y|3

dλ(y), x ∈ R3,(1)

where the dot indicates the Euclidean scalar product in R3 and λ the Lebesgue mea-
sure. Due to the thinness of the magnetized layer relative to the Earth’s radius, it
is reasonable to substitute the volumetric M by a spherical magnetization m (i.e.,
M = m⊗ δSR0

in a distributional sense). Then, the magnetic potential (1) becomes

Φcrust(x) =
1

4π

∫
SR0

m(y) · x− y
|x− y|3

dωR0
(y), x ∈ R3 \ SR0

,(2)

where SR0
= {x ∈ R3 : |x| = R0} denotes the sphere of radius R0 > 0 and dωR0

the
corresponding surface element. When interested in reconstructing the actual magneti-
zation M, substituting a spherical magnetization m is of course a significant restriction
(however, one that is fairly frequent in Geomagnetism). But since our main focus is
on Bcrust and the corresponding potential Φcrust rather than the magnetization itself,
this restriction actually involves no loss of information: in Section 3 we show that,
under mild summability assumptions, any potential Φcrust produced by a volumetric
magnetization M in BR0−d,R0

can also be generated by a spherical magnetization m
on SR0

.
The core contribution Bcore is governed by Maxwell’s equations (see, e.g., [5])

∇×Bcore = σ(E + u×Bcore),

∇ ·Bcore = 0,

∇×E = −∂tBcore,

∇ ·E = ρ,

where σ denotes the conductivity, ρ the charge density, and u the fluid velocity in
the Earth’s outer core (the constant permeability µ0 and permittivity ε0 have been
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Fig. 1. Illustration of the setup of Problem 1.1.

set to 1). The conductivity σ is assumed to be zero outside a sphere SR1
of radius

0 < R1 < R0. The condition R1 < R0 is crucial to the forthcoming arguments and is
justified by common geophysical practice and results (see, e.g., [6, 33]). In particular
it implies that ∇ × Bcore = 0 in R3 \ BR1 , therefore, Bcore = ∇Φcore in R3 \ BR1

for some harmonic potential Φcore. Although the geophysical processes in the Earth’s
outer core can be extremely complex, of importance to us is only that Φcore can be
expressed in R3 \ BR1

as a Poisson transform:

Φcore(x) =
1

4πR1

∫
SR1

h(y)
|x|2 −R2

1

|x− y|3
dωR1

(y), x ∈ R3 \ BR1
,(3)

for some scalar valued auxiliary function h on SR1
; this follows from previous consid-

erations which imply that Φcore is harmonic in R3 \ BR1
and continuous in R3 \ BR1

.
Summarizing, the problem we treat in this paper is the following (the setup is illus-
trated in Figure 1):

Problem 1.1. Let Φ ∈ L2(SR2
) be given on a sphere SR2

⊂ R3 \ BR0
of radius

R2 > R0. Assume Φ is decomposable into Φ = Φ0 + Φ1 on SR2
, where Φ0 = Φ0[m]

is of the form (2), with m ∈ L2(SR0
,R3), and Φ1 = Φ1[h] is of the form (3), with

h ∈ L2(SR1) and R1 < R0. Are Φ0 and Φ1 uniquely determined by the knowledge of
Φ on SR2 , and if yes can they be reconstructed efficiently?

The answer to the uniqueness issue in Problem 1.1 is generally negative. But
under the additional assumption that supp(m) ⊂ ΓR0 for a strict subregion ΓR0 ⊂ SR0

(i.e., ΓR0 6= SR0), uniqueness is guaranteed. This follows from results in [7, 27] and
their formulation on the sphere in [17], to be reviewed in greater detail in Sections 2
and 4. In fact, we show in this case that h and the curl-free contribution of m can be
reconstructed uniquely from the knowledge of Φ. Additionally, we provide a means
of approximating 〈Φ0, g〉L2(SR2

) knowing Φ on SR2
, where g is some appropriate test

function (e.g., a spherical harmonic). This allows one to separate the crustal and the
core contributions to the Geomagnetic potential if, e.g., the crustal magnetization can
be estimated over a small subregion on Earth by other means.

Throughout the paper, we call Φ0 the crustal contribution and Φ1 the core contri-
bution. We should point out that the examples we provide at the end of the paper are
not based on real Geomagnetic field data but they reflect some of the main properties
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of realistic scenarios (e.g., the domination of the core contribution at low spherical
harmonic degrees). In Section 3, we take a closer look at harmonic potentials of the
form (1) and (2) and show that the balayage onto SR0

of a volumetric potential sup-
ported in BR0−d,R0 preserves divergence form. More precisely, if M is supported in
BR0−d,R0 and its restriction to SR is uniformly square-integrable for R ∈ (R0−d,R0),
then there exists a spherical magnetization m supported on SR0

, which is square
summable and generates the same potential as M in R3 \ BR0

. The latter property
justifies the above-described modeling of the crustal magnetic field. Auxiliary ma-
terial on geometry, spherical decomposition of vector fields as well as Sobolev and
Hardy spaces is recapitulated in Section 2. Eventually, in Section 5 we formulate an
extremal problem for the approximation of Φ0 and 〈Φ0, g〉L2(SR2

) and provide some
initial numerical examples, followed by a brief conclusion in Section 6. Some tech-
nical results on potentials of distributions and an additional numerical example are
gathered in the appendix.

2. Auxiliary Notations and Results. We start with some basic definitions
of function spaces and differentiation on the sphere. For R > 0, the sphere SR is
a smooth, compact oriented surface embedded in R3. That is, SR can be described
by finitely many charts ψj : Uj → Vj (for open subsets Uj ⊂ SR and Vj ⊂ R2,
j = 1, . . . , N), which allows a meaningful definition of the surface area measure ωR on
the sphere SR via the Lebesgue measure λ in R2. For x ∈ Uj ⊂ SR, the tangent space
Tx at x is the image of the derivative Dψ−1

j [ψj(x)] : R2 → R3. The tangent space may

be described intrinsically as Tx = {y ∈ R3 : x · y = 0}. A k-times differentiable or Ck-
smooth function f : SR → R is a function such that f ◦ψ−1

j is k-times differentiable or
has continuous partial derivatives up to order k, respectively, for each j = 1, . . . , N .
We simply say that f is smooth if it is C∞-smooth. Due to the simple geometry of
the sphere SR, this definition of differentiability is in fact equivalent to requiring that
the radial extension f̄(x) = f(R x

|x| ) of f has the corresponding regularity in R3 \ {0}.
This allows us to express the surface gradient ∇SRf(x) of a differentiable function
f : SR → R at a point x ∈ SR via the relation ∇SRf(x) = ∇f̄(y)|y=x, where ∇
denotes the Euclidean gradient (formally, the surface gradient at x is defined as the
unique vector v ∈ Tx such that the differential df [x] : Tx → R can be identified by
the scalar product with v, i.e., df [x](y) = v · y for y ∈ Tx).

Furthermore, L2(SR) is denoted to be the space of square-integrable scalar val-
ued functions f : SR → R, while L2(SR,R3) denotes the space of square integrable
vector valued spherical functions f : SR → R3, equipped with the inner products
〈f, h〉L2(SR) =

∫
SR f(y)h(y)dωR(y) and 〈f ,h〉L2(SR,R3) =

∫
SR f(y) ·h(y)dωR(y), respec-

tively. A vector field f : SR → R3 is said to be tangential if f(x) ∈ Tx for all x ∈ SR.
The subspace of all tangential vector fields in L2(SR,R3) is denoted by TR. Note that
the smooth vector fields are dense in TR. Clearly, if f is smooth, then ∇SRf lies in TR.
The Sobolev space W 1,2(SR) may be defined as the completion of smooth functions
with respect to the norm [20]

‖f‖W 1,2(SR) =
(
‖f‖2L2(SR) + ‖∇SRf‖2L2(SR,R3)

)1/2

.

Since, for an appropriate set of charts ψj : Uj → Vj , j = 1, . . . , N , of the sphere, the
Vj are bounded and the corresponding determinants of the metric tensors are bounded
from above and below by strictly positive constants, it holds that f ∈W 1,2(SR) if and
only if the functions f ◦ ψ−1

j lie in the Euclidean Sobolev spaces W 1,2(Vj) (see, e.g.,

[28]). The gradient ∇SRf(x) at x ∈ SR of a function f ∈ W 1,2(SR) still satisfies the
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representation df [x](y) = ∇SRf(x) · y for y ∈ Tx, where df has to be understood in
the sense of distributional derivatives and∇SRf(x) needs not be a pointwise derivative
in the strong sense (see [38, Ch.VIII]). Let us put

GR = {∇SRf : f ∈W 1,2(SR)}.

We claim that GR is closed in L2(SR,R3). Indeed, if ∇SRfn is a Cauchy sequence in
GR, where fn ∈ W 1,2(SR) is defined up to an additive constant, we may pick fn so
that

∫
SR fndωR = 0 and then it follows from the Hölder and the Poincaré inequalities

[20, Prop. 3.9] that ‖fn−fm‖L2(SR) ≤ C‖∇SRfn−∇SRfm‖L2(SR,R3) for some constant
C. Hence fn is a Cauchy sequence in W 1,2(SR), therefore it converges to some f there
and consequently ∇SRfn converges to ∇SRf in L2(SR,R3). Thus, GR is complete and
therefore it is closed in L2(SR,R3), which proves the claim.

When h is a smooth tangential vector field on SR, its surface divergence ∇SR · h
is the smooth real valued function such that

(4)

∫
SR
f ∇SR · h dωR = −

∫
SR

(∇SRf) · h dωR, for all f ∈ C∞(SR).

When h ∈ TR is not smooth, (4) must be interpreted in a weak sense, namely ∇SR ·h
is the distribution on SR acting on smooth real-valued functions by 〈f ,∇SR · h〉 =
−
∫
SR ∇SRf · h dωR, for all f ∈ C∞(SR). This clearly extends by density to a linear

form on W 1,2(SR), upon letting f converge to a Sobolev function. Then it is apparent
that

DR = {h ∈ TR : ∇SR · h = 0}

is the orthogonal complement to GR in TR. In particular,

TR = GR ⊕DR,(5)

which is the so-called Helmholtz-Hodge decomposition. The particular geometry of
SR makes it easy to see that f ∈ DR if and only if its radial extension f̄(x) = f(R x

|x| )

is divergence free, as a R3-valued distribution on R3 \ {0}.
We now consider the operator Jx : Tx → Tx given by Jx(y) = x

|x| × y, for y ∈ Tx,

where × indicates the vector product in R3; that is, Jx is the rotation by π/2 in Tx.
We define J : TR → TR to be the isometry acting pointwise as Jx on Tx, namely
(Jf)(x) = Jx(f(x)) for f ∈ TR. It turns out that J(GR) = DR. This fact holds for
more general sufficiently smooth surfaces embedded in R3. A proof seems not easy to
find in the literature and will be provided in a forthcoming publication (for the special
case of continuously differentiable tangential vector fields on the sphere, the assertion
essentially corresponds to [15, Thm. 2.10]). This motivates the notion of a surface
curl gradient LSR = x×∇SR , acting at a point x ∈ SR, and justifies the representation
DR = {LSRf : f ∈W 1,2(SR)}. For convenience, we define the following ”normalized”
operators: ∇S = R∇SR and LS = x

|x| × ∇S. The Euclidean gradient then has the

expression ∇ = x
|x|∂ν + 1

|x|∇S, acting at a point x ∈ R3, where ∂ν = x
|x| · ∇ denotes

the radial derivative.
Eventually, if we let NR indicate the space of radial vector fields in L2(SR,R3)

(i.e., those functions whose value at x is perpendicular to Tx for each x ∈ SR), we get
from (5) the orthogonal decomposition

L2(SR,R3) = NR ⊕ GR ⊕DR.(6)
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Related to the latter but of more relevance to our problem is the Hardy-Hodge decom-
position that we now explain. For that purpose, we require the following definition.

Definition 2.1. The Hardy space H2
+,R of harmonic gradients in BR is defined

by

H2
+,R = {g = ∇g : function g : BR → R with ∆g = 0 in BR and ‖∇g‖2,+ <∞} ,

where ‖g‖2,+ =
(

supr∈[0,R)

∫
Sr |g(ry)|2dωr(y)

) 1
2 and ∆ is the Euclidean Laplacian in

R3. Likewise, the Hardy space H2
−,R of harmonic gradients in R3 \ BR is defined by

H2
−,R =

{
g = ∇g : function g : R3 \ BR → R with ∆g = 0 in R3 \ BR and ‖∇g‖2,− <∞

}
,

where ‖g‖2,− =
(

supr∈(R,∞)

∫
Sr |g(ry)|2dωR(y)

) 1
2 . Note that, by Weyl’s lemma [11,

Theorem 24.9], it makes no difference whether the Euclidean gradient and Laplacian
are understood in the distributional or in the strong sense.

Members of H2
+,R and H2

−,R have non-tangential limits a.e. on SR, and if g ∈
H2
±,R, its non-tangential limit has L2(SR,R3)-norm equal to ‖g‖2,±, see [38, VII.3.1]

and [39, VI.4]. We still write g for this non-tangential limit and we regard it as the
trace of g on SR. This way Hardy spaces can be interpreted as function spaces on
SR as well as on BR or R3 \ BR, but the context will make it clear if the Euclidean
or the spherical interpretation is meant because the argument belongs to R3 \ SR
in the former case and to SR in the latter. The Hardy-Hodge decomposition is the
orthogonal sum

L2(SR,R3) = H2
+,R ⊕H2

−,R ⊕DR.(7)

Projecting (7) onto the tangent space TR and grouping the first two summands into
a single gradient vector field yields back the Hodge decomposition (5). The Hardy-
Hodge decomposition drops out at once from [3] and (5). Its application to the study
of inverse magnetization problems has been illustrated in [7, 17, 27]. Although not
studied in mathematical detail, spherical versions of the Hardy-Hodge decomposition
have previously been used to a various extent in Geomagnetic applications (see, e.g.,
[5, 16, 19, 31]).

By means of the reflection RR(x) = R2

|x|2 x across SR, we define the Kelvin trans-

form KR[f ] of a function f defined on an open set Ω ⊂ R3 to be the function on
RR(Ω) given by

KR[f ](x) =
R

|x|
f(RR(x)), x ∈ RR(Ω).(8)

A function f is harmonic in Ω if and only if KR[f ] is harmonic in RR(Ω) (e.g., [4,
Thm. 4.7]).

Now, assume that f ∈ H2
+,R with f = ∇f and f(0) = 0. Then ∇KR[f ] ∈ H2

−,R.

In fact, if for f ∈ H2
+,R (resp. f ∈ H2

−,R) we let
∫

f indicate the harmonic function

f in BR (resp. in R3 \ BR) whose gradient is f , normalized so that f(0) = 0 (resp.
lim|x|→∞ f(x) = 0), then f 7→ ∇KR ◦

∫
f maps H2

+,R continuously into H2
−,R and

back [3]. Moreover, in view of (8) we have that

∇KR[f ](x) =
R3∇f(RR(x))

|x|3
− 2x · ∇f(RR(x))

R3x

|x|5
− f(RR(x))

Rx

|x|3
.(9)
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Clearly f and KR[f ] coincide on SR, therefore the tangential components of ∇f and
∇KR[f ] agree on SR (these are the spherical gradients ∇SRf and ∇SRKR[f ]). The
normal components ∂νf and ∂νKR[f ], though, are different. Indeed, we get from (9)
that

∂νKR[f ](x) = −∂νf(x)− f(x)

R
, x ∈ SR.(10)

We turn to some special systems of functions. First, let {Yn,k}n∈N0, k=1,...,2n+1

be an L2(S)-orthonormal system of spherical harmonics of degrees n and orders k. A
possible choice is

Yn,k(x) =


√

2n+1
2π

(k−1)!
(2n+1−k)!

Pn,n+1−k(sin(θ)) cos((n+ 1 − k)ϕ) k = 1, . . . , n,√
2n+1

4π
Pn,0(t), k = n+ 1,√

2n+1
2π

(2n+1−k)!
(k−1)!

Pn,k−(n+1)(sin(θ)) sin((k − (n+ 1))ϕ) k = n+ 2, . . . , 2n+ 1,

for x = (cos(θ) cos(ϕ), cos(θ) sin(ϕ), sin(θ))T ∈ S1, θ ∈ [−π2 ,
π
2 ], ϕ ∈ [0, 2π), and Pn,k

the associated Legendre polynomials of degree n and order k (see, e.g., [15, Ch. 3] for
details; another common notation is to indicate the order of the spherical harmonics

by k = −n, . . . , n rather than k = 1, . . . , 2n + 1). Then HR
n,k(x) =

( |x|
R

)n
Yn,k

(
x
|x|
)

is

a homogeneous, harmonic polynomial of degree n in R3 (sometimes also called inner
harmonic and equipped with a normalization factor 1

R ). In fact, every homogeneous
harmonic polynomial in R3 can be expressed as a linear combination of inner harmon-
ics. The Kelvin transform HR

−n−1,k = KR[HR
n,k] is a harmonic function in R3 \ {0}

with lim|x|→∞HR
−n−1,k(x) = 0 (sometimes called outer harmonic). In [3, Lemma 4]

the following result was shown.

Lemma 2.2. The vector space span{∇HR
−n−1,k}n∈N0, k=1,...,2n+1 is dense in H2

−,R
and the vector space span{∇HR

n,k}n∈N0, k=1,...,2n+1 is dense in H2
+,R.

For each fixed x ∈ R3 \BR, the function gx(y) = 1
|x−y| is harmonic in a neighbor-

hood of BR and, therefore, its gradient

gx(y) = ∇x gx(y) = − x− y
|x− y|3

lies in H2
+,R. As a consequence of Lemma 2.2, we shall prove the following density

result.

Lemma 2.3. The vector space span{gx : x ∈ R3 \ BR} is dense in H2
+,R and the

vector space span{gx : x ∈ BR} is dense in H2
−,R.

Proof. As KR[gx] = 1
|x|gx/|x|2 and ∇KR ◦

∫
is an isomorphism from H2

−,R onto

H2
+,R (see discussion before (9)), we need only prove the second assertion. Define

g(y) = 1
|y| as a function of y ∈ R3 \ {0}. For α = (α1, α2, α3) ∈ N3

0 with |α| =

α1 + α2 + α3 = n, the derivative ∂αg(y) = ∂n

∂α1y1∂α2y2∂α3y3
g(y) is of the form Hα(y)

|y|1+2n ,

where Hα is a homogeneous harmonic polynomial of degree n, and actually every
homogeneous harmonic polynomial Hα is a scalar multiple of |y|(1+2n)∂αg(y) for some
α [4, Lemma 5.15]. The discussion before Lemma 2.2 now implies that ∂αg is an
element of span{HR

−n−1,k}n∈N0, k=1,...,2n+1. Thus, by this lemma, we are done if we

can show that whenever f ∈ H2
−,R is orthogonal in L2(SR,R3) to all gx, x ∈ BR, then

it must be orthogonal to all∇HR
−n−1,k. To this end, differentiating 〈f ,gx〉L2(SR,R3) = 0
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with respect to x leads us to

0 =

〈
f , ∇ Hα(.− x)

| · −x|1+2n

〉
L2(SR,R3)

(11)

for all α ∈ N3
0 and n = |α|. Setting x = 0 yields

0 =

〈
f , ∇ Hα

| · |1+2n

〉
L2(SR,R3)

= R−2n−1 〈f , ∇KR[Hα]〉L2(SR,R3) .

Since every inner harmonic HR
n,k can be expressed as a linear combination of Hα, this

relation and the considerations before Lemma 2.2 imply 〈f , ∇HR
−n−1,k〉L2(SR,R3) = 0

for all n ∈ N0, k = 1, . . . , 2n+ 1, which is the desired conclusion. �

3. Harmonic Potentials in Divergence-Form. The potential of a measure
µ on R3 is defined by

pµ(x) = − 1

4π

∫
R3

1

|x− y|
dµ(y).(12)

It is the solution of ∆Φ = µ in R3 which is “smallest” at infinity. If µ ≥ 0, the poten-
tial pµ is a superharmonic function and therefore it is either finite quasi-everywhere
or identically −∞, see [2] for these properties and the definition of “quasi every-
where”. Decomposing a signed measure into its positive and negative parts (the
Hahn decomposition) yields that pµ is finite quasi-everywhere if µ is finite and com-
pactly supported (i.e., if supp(µ), which is closed by definition, is also bounded). If
supp(µ) ⊂ BR, the Riesz representation theorem and the maximum principle for har-
monic functions imply that there exists a unique measure µ̂ with supp(µ̂) ⊂ SR such
that ∫

g(y)dµ(y) =

∫
g(y)dµ̂(y)

for every continuous function g in BR which is harmonic in BR. Since y 7→ 1/|x− y|
is harmonic in a neighbourhood of BR when x /∈ BR, this entails that the potentials
pµ and pµ̂ coincide in R3 \ BR, i.e.,

pµ(x) = pµ̂(x), x ∈ R3 \ BR.

The measure µ̂ is called the balayage of µ onto SR (see, e.g., [2]). In fact, the poten-
tials pµ and pµ̂ coincide quasi-everywhere on SR as well. An expression for µ̂ easily
follows from the Poisson representation of a function f which is continuous in BR and
harmonic in BR:

f(x) =
1

4πR

∫
SR

R2 − |x|2

|x− y|3
f(y) dωR(y), x ∈ BR.(13)

Clearly Equation (13), Fubini’s theorem, and the definition of balayage imply that

dµ̂(x) = dµ|SR(x) +

(
1

4πR

∫
BR

R2 − |y|2

|x− y|3
dµ(y)

)
dωR(x).(14)
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Lemma 3.1. Let the measure µ be supported in BR. Furthermore, assume that µ
is absolutely continuous in BR with a density h (i.e., dµ(y) = h(y)dy) that satisfies
the Hardy condition

ess. sup
0≤r<R

∫
Sr
|h(y)|2 dωr(y) <∞.(15)

Then the balayage µ̂ of µ on SR is absolutely continuous with respect to ωR (i.e.,

dµ̂(y) = ĥ(y)dωR(y)) and it has a density ĥ ∈ L2(SR).

Proof. Starting from (14) and the assumption that µ is absolutely continuous, we find

that the density ĥ of µ̂ is

ĥ(x) =
1

4πR

∫
BR

R2 − |y|2

|x− y|3
h(y)dλ(y), x ∈ SR.

Using Fubini’s theorem and the identity∣∣∣∣ x|x| − |x|y
∣∣∣∣ =

∣∣∣∣ y|y| − |y|x
∣∣∣∣ , x, y ∈ R3 \ {0},

together with the changes of variable η = ξ
r , y = rx

R2 , we are led to

‖ĥ‖2L2(SR) =
1

(4πR)2

∫
SR

(∫
BR

R2 − |y|2

|x− y|3
h(y) dλ(y)

)2

dωR(x)

=
1

(4πR)2

∫
SR

(∫ R

0

(∫
Sr

R2 − |ξ|2

|x− ξ|3
h(ξ) dωr(ξ)

)
dr

)2

dωR(x)

≤ R

(4πR)2

∫
SR

(∫ R

0

(∫
Sr

R2 − |ξ|2

|x− ξ|3
h(ξ) dωr(ξ)

)2

dr

)
dωR(x)

=
1

(4πR)2

∫
SR

∫ R

0

(∫
Sr

1− ( rR )2

| xR −
ξ
R |3

h(ξ) dωr(ξ)

)2

dr

 dωR(x)

=
1

(4πR)2

∫
SR

∫ R

0

(∫
Sr

1−
∣∣ rx
R2

∣∣2
| ξr −

rx
R2 |3

h(ξ) dωr(ξ)

)2

dr

dωR(x)

=
1

(4πR)2

∫ R

0

r4

∫
SR

(∫
S1

1−
∣∣ rx
R2

∣∣2
|η − rx

R2 |3
h(rη) dω1(η)

)2

dωR(x)

 dr

=

∫ R

0

r4

(
1

4π( rR )2

∫
S r
R

(
1

4π

∫
S1

1− |y|2

|η − y|3
h(rη) dω1(η)

)2

dω r
R

(y)

)
dr.(16)

Now, the function

f(y) =
1

4π

∫
S1

1− |y|2

|η − y|3
h(rη) dω1(η)

is the Poisson integral of h(r·) over the unit sphere S1 (and represents the middle
integral on the right hand side of (16)). Thus, f is harmonic in B1 and its square |f |2
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is subharmonic there. The latter implies that the mean of |f |2 over the sphere S r
R

,
r < R, is not greater than its mean over S1, i.e.,

1

4π( rR )2

∫
S r
R

|f(y)|2dω r
R

(y) ≤ lim
s
R→1−

1

4π( sR )2

∫
S s
R

|f(y)|2dω s
R

(y)

=
1

4π

∫
S1

|h(rη)|2 dω1(η)

=
1

4πr2

∫
Sr
|h(y)|2 dωr(y) ≤ M

4πr2
,

where the constant M > 0 comes from the Hardy condition (15). Together with (16),
we find that

‖ĥ‖2L2(SR) ≤
MR3

12π
,

eventually showing that ĥ ∈ L2(SR) and that µ̂ is absolutely continuous with respect

to ωR with density ĥ. �

More generally, an arbitrary distribution D with compact support has a potential
pD given outside of supp(D) by

pD(x) = D

(
− 1

4π

1

|x− ·|

)
, x ∈ R3 \ supp(D).(17)

Compactness of supp(D) easily implies that D indeed acts on −1/(4π|x−·|) when x /∈
supp(D) so that pD is well-defined (cf. Section SM1 in the supplementary materials
for details). If D is supported in BR (in particular, if it is supported in some shell
BR−d,R), we define the balayage of D onto SR to be the distribution D̂ on SR that
satisfies

pD̂(x) = pD(x), x ∈ R3 \ BR.

Strictly speaking, D̂ is a distribution on SR so that pD̂ should rather be denoted by

pD̂⊗δSR
, where D̂ ⊗ δSR is the distribution on R3 which is the tensor product of D̂

with the measure δSR corresponding in spherical coordinates to a Dirac mass at r = R
(see [37]). Nevertheless, to alleviate notation, we do write pD̂. Thus, what is meant

in (17) when D = D̂ is that D̂ is applied to the restriction to SR of −1/(4π|x− ·|).
We briefly comment on the existence and uniqueness of such a balayage in Section

SM1 of the supplementary materials. If D is (associated with) a measure µ, then (17)
coincides with (12) and the balayage was given in (14). The main difference between
the case of a finite compactly supported measure µ and the case of a general compactly
supported distribution D is that usually pD(x) cannot be assigned a meaning when
x ∈ supp(D) whereas pµ is well-defined quasi everywhere on supp(µ). We say that D
is in divergence form if

D = ∇ ·M,(18)

where ∇· is to be understood as the distributional divergence and M is a R3-valued
distribution. If, e.g., M ∈ L2(BR−d,R,R3) and supp(M) ⊂ BR−d,R, then the corre-
sponding potential pD coincides with Φcrust in (1). Now we can formulate the main
result of this section, namely, that balayage preserves divergence form for those M
satisfying a Hardy condition.
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Lemma 3.2. Let D = ∇·M, where M ∈ L2(BR,R3) satisfies the Hardy condition

ess. sup
0≤r<R

∫
Sr
|M(y)|2 dωr(y) <∞.

Then there exists m ∈ L2(SR,R3) such that D̂ = ∇ · (m ⊗ δSR) is the balayage of D
onto SR.

Proof. Let M = (M1,M2,M3)T denote the components of M. The definition of pD
yields

pD(x) =
1

4π

∫
BR

M(y) · x− y
|x− y|3

dλ(y)

=
1

4π

3∑
j=1

∫
BR
Mj(y)

xj − yj
|x− y|3

dλ(y), x ∈ R3 \ BR.(19)

If we choose the measure µj such that dµj(y) = Mj(y)dy, we get from Lemma 3.1
and the Hardy condition on M that there exists a mj ∈ L2(SR) such that balayage
of µj onto SR is given by the measure µ̂j with dµ̂j = mjdωR, j = 1, 2, 3. Setting

m = (m1,m2,m3)T and observing that gx,j(y) =
xj−yj
|x−y|3 = −∂xj 1

|x−y| is harmonic in

BR and continuous in BR, for fixed x ∈ R3 \BR, then the definition of balayage yields
together with (19) that

pD(x) =
1

4π

3∑
j=1

∫
SR
mj(t)

xj − yj
|x− y|3

dωR(y)

=
1

4π

∫
SR

m(y) · x− y
|x− y|3

dωR(y) = pD̂(x), x ∈ R3 \ BR.(20)

The latter implies that D̂ = ∇ · (m⊗ δSR), as announced. �

Remark 3.3. Lemma 3.2 eventually justifies the statement made in the introduc-
tion that, to every square summable volumetric magnetization M in the Earth’s crust
BR−d,R that satisfies the Hardy condition, there exists a spherical magnetization m on
SR that produces the same magnetic potential and therefore also the same magnetic
field in the exterior of the Earth.

4. Separation of Potentials. We are now in a position to approach Problem
1.1. For this we study the nullspace of the potential operator ΦR1,R0,R2 (cf. Definition
4.1), mapping a magnetization m on SR0

and an auxiliary function h ∈ L2(SR1
) to the

sum of the potentials (2) and (3) on SR2
. First, we show in Section 4.1 that uniqueness

holds in Problem 1.1 if supp m 6= SR0 . Similar results hold for the magnetic field
operator BR1,R0,R2 = ∇ΦR1,R0,R2 (cf. Theorem 4.5). In Section 4.2, we discuss how
the previous results can be used to approximate quantities like the Fourier coefficients
〈Φ0, Yn,k〉L2(SR2

) of Φ0. Finally, in Section 4.3, we show that Φ = Φ0 + Φ1 may well
vanish though Φ0,Φ1 6= 0. This follows from Lemma 4.13 and answers the uniqueness
issue of Problem 1.1 in the negative when supp m = SR0 .

4.1. Uniqueness Issues. In accordance with the notation from Problem 1.1,
we define two operators: one mapping a spherical magnetization m to the potential
pD̂ with D̂ = ∇·(m⊗δSR0

), and the other mapping an auxiliary function h ∈ L2(SR1
)

to its Poisson integral, both evaluated on SR2
.
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Definition 4.1. Let 0 < R1 < R0 < R2 be fixed radii and ΓR0
a closed subset of

SR0
. Let

ΦR0,R2

0 : L2(ΓR0
,R3)→ L2(SR2

), m 7→ 1

4π

∫
ΓR0

m(y) · x− y
|x− y|3

dωR0
(y), x ∈ SR2

,

and

ΦR1,R2

1 : L2(SR1
)→ L2(SR2

), h 7→ 1

4πR1

∫
SR1

h(y)
|x|2 −R2

1

|x− y|3
dωR1

(y), x ∈ SR2
.

The superposition of the two operators above is denoted by

ΦR1,R0,R2 : L2(ΓR0
,R3)× L2(SR1

)→ L2(SR2
), (m, h) 7→ ΦR0,R2

0 [m] + ΦR1,R2

1 [h].

We start by characterizing the potentials pD̂, with D̂ in divergence-form, which

are zero in R3 \ BR.

Lemma 4.2. Let m ∈ L2(SR,R3) and D̂ = ∇·(m⊗δSR) be in divergence-form. Let
further m = m+ +m−+d be the Hardy-Hodge decomposition of m, i.e., m+ ∈ H2

+,R,

m− ∈ H2
−,R, and d ∈ DR. Then pD̂(x) = 0, for all x ∈ R3\BR, if and only if m+ ≡ 0.

Analogously, pD̂(x) = 0, for all x ∈ BR, if and only if m− ≡ 0.

Proof. We already know that gx(y) = x−y
|x−y|3 lies in H2

+,R for every fixed x ∈ R3 \BR.

The orthogonality of the Hardy-Hodge decomposition and the representation (20) of
pD̂ yield that m− and d do not change pD̂ in R3 \ BR. Conversely, if pD̂(x) = 0 for

all x ∈ R3 \ BR, then

pD̂(x) = 〈gx,m〉L2(SR,R3) = 〈gx,m+〉L2(SR,R3) = 0, x ∈ R3 \ BR.

Since Lemma 2.3 asserts that span{gx : x ∈ R3 \ BR} is dense in H2
+,R, the above

relation implies m+ ≡ 0. The assertion for the case where pD̂(x) = 0, for all x ∈ BR
likewise follows by observing that gx(y) = x−y

|x−y|3 lies in H2
−,R for fixed x ∈ BR. �

Since ΦR0,R2

0 [m] = pD̂, we may use Lemma 4.2 to characterize the nullspace of

ΦR0,R2

0 (extending the magnetization m ∈ L2(ΓR0 ,R3) by zero on SR0 \ ΓR0 if the

latter is nonempty). As to ΦR1,R2

1 , we know its nullspace reduces to zero because the
Poisson integral (3) yields the unique harmonic extension of h ∈ L2(SR1

) to R3 \BR1

which is zero at infinity (i.e., h is the nontangential limit of its Poisson extension a.e.
on SR1

, see [4, Thm. 6.13]). This motivates the following statement on the nullspace
N(ΦR1,R0,R2) of ΦR1,R0,R2 .

Theorem 4.3. Let the setup be as in Definition 4.1 and assume that ΓR0
6= SR0

.
Then the nullspace of ΦR1,R0,R2 is given by

N(ΦR1,R0,R2) = {(d, 0) : d ∈ DR0
, supp(d) ⊂ ΓR0

}.

Proof. Clearly ΦR1,R0,R2 [(m, h)] is harmonic in R3 \ {ΓR0
∪ SR1

} and vanishes at
infinity. If ΦR1,R0,R2 [(m, h)](x) = 0 for x ∈ SR2

, then it follows from the maximum
principle that ΦR1,R0,R2 [(m, h)](x) = 0 for all x ∈ R3 \ BR2

. Subsequently, by real
analyticity, ΦR1,R0,R2 [(m, h)] must vanish identically in R3 \ {ΓR0

∪ BR1
} which is

connected because ΓR0
6= SR0

. Thus, ΦR1,R0,R2 [(m, h)] extends harmonically (by the
zero function) across ΓR0 :

ΦR1,R0,R2 [(m, h)](x) = 0, x ∈ R3 \ BR1 .(21)
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Since ΦR1,R0,R2 [(m, h)] = ΦR0,R2

0 [m] + ΦR1,R2

1 [h], where ΦR1,R2

1 [h] is harmonic on

R3 \ BR1
, we find that ΦR0,R2

0 [m] in turn extends harmonically across ΓR0
, there-

fore it is harmonic in all of R3. Additionally ΦR0,R2

0 [m] vanishes at infinity, hence

ΦR0,R2

0 [m](x) = 0 for all x ∈ R3 by Liouville’s theorem. Since ΦR0,R2

0 [m] = pD̂ for

D̂ = ∇ · (m⊗ δSR0
), Lemma 4.2 now implies that m = d ∈ DR0

with supp d ⊂ ΓR0
.

Next, as ΦR0,R2

0 [m] vanishes identically on R3, we get from (21) that ΦR1,R2

1 [h](x) = 0
for all x ∈ R3 \ BR1

. Then, injectivity of the Poisson transform entails that h ≡ 0,
hence N(ΦR1,R0,R2) ⊂ {(m, 0) : m ∈ DR0

supp(m) ⊂ ΓR0
}.

The reverse inclusion N(ΦR1,R0,R2) ⊃ {(m, 0) : m ∈ DR0 , supp(m) ⊂ ΓR0} is

clear because Lemma 4.2 yields that ΦR1,R0,R2 [(m, 0)](x) = ΦR0,R2

0 [m](x) = 0, for all
x ∈ R3 \ ΓR0 if m ∈ DR0 . �

Corollary 4.4. Notation being as in Definition 4.1 with ΓR0 6= SR0 , let Φ =
ΦR1,R0,R2 [(m, h)] for some m ∈ L2(ΓR0

,R3) and some h ∈ L2(SR1
). Then, a pair of

potentials of the form Φ̄0 = ΦR0,R2

0 [m̄] and Φ̄1 = ΦR1,R2

1 [h̄], with m̄ ∈ L2(ΓR0
,R3)

and h̄ ∈ L2(SR1
), is uniquely determined by the condition Φ(x) = Φ̄0(x) + Φ̄1(x),

x ∈ SR2
.

Proof. From Theorem 4.3 we get that h is uniquely determined by the values of Φ
on SR2

, and also that the components m+ ∈ H2
+,R0

and m− ∈ H2
−,R0

of the Hardy-

Hodge decomposition of m are uniquely determined. The former implies h̄ ≡ h
and the latter m̄ ≡ m + d̄, for some d̄ ∈ DR0

. By Lemma 4.2 we have that

ΦR0,R2

0 [m](x) = ΦR0,R2

0 [m+ d̄](x) for x ∈ R3 \SR0
, so we eventually find that Φ̄0 and

Φ̄1 are uniquely determined. �

Corollary 4.4 answers the uniqueness issue of Problem 1.1 in the positive provided
that supp(m) 6= SR0

. In other words, assuming a locally supported magnetization,
it is possible to separate the contribution of the Earth’s crust from the contribution
of the Earth’s core if only the superposition of both magnetic potentials is known on
some external orbit SR2 . Of course, in Geomagnetism, it is the magnetic field B = ∇Φ
which is measured rather than the magnetic potential Φ. However, the result carries
over at once to this setting. More in fact is true: if supp(m) 6= SR0

, separation is
possible if only the normal component of B is known on SR2

. Indeed, we have the
following theorem.

Theorem 4.5. Let the setup be as in Definition 4.1 with ΓR0 6= SR0 , and consider
the operator

BR1,R0,R2 :L2(ΓR0 ,R3)× L2(SR1 ,R3)→ L2(SR2 ,R3),

(m, h) 7→ ∇ΦR0,R2

0 [m] +∇ΦR1,R2

1 [h].

Define further the normal operator:

BR1,R0,R2
ν :L2(ΓR0

,R3)× L2(SR1
,R3)→ L2(SR2

),

(m, h) 7→ ∂ν

(
ΦR0,R2

0 [m] + ΦR1,R2

1 [h]
)
.

Then the nullspaces of BR1,R0,R2 and BR1,R0,R2
ν are all given by

N(BR1,R0,R2) = N(BR1,R0,R2
ν ) = {(d, 0) : d ∈ DR0

, supp(d) ⊂ ΓR0
}.
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Proof. Let BR1,R0,R2
ν [(m, h)](x) = 0 for x ∈ SR2

. Then ΦR1,R0,R2 [(m, h)] has
vanishing normal derivative on SR2

, and is otherwise harmonic in R3 \ BR2
. Note

that ΦR1,R0,R2 [(m, h)] is even harmonic across SR2
onto a slightly larger open set,

hence there is no issue of smoothness to define derivatives everywhere on SR2 . Since
ΦR1,R0,R2 [(m, h)] vanishes at infinity, its Kelvin transform u = KR2 [ΦR1,R0,R2 [(m, h)]]
is harmonic in BR2

with u(0) = 0 [4, Thm. 4.8], and by (10) it holds that ∂νu(x) +
u(x)/R2 = 0 for x ∈ SR2

. Now, if u is nonconstant and x is a maximum place for u on
SR2

, then ∂νu(x) > 0 by the Hopf lemma [4, Ch. 1, Ex. 25]. Hence u(x) < 0, imply-
ing that u < 0 on BR2

, which contradicts the maximum principle because u(0) = 0.
Therefore u vanishes identically and so does ΦR1,R0,R2 [(m, h)] on SR2 . Appealing to
Theorem 4.3 now achieves the proof. �

The next corollary follows in the exact same manner as Corollary 4.4. To state it,
we indicate with a subscript ν the normal component of a field in L2(SR2 ,R3) while
a subscript τ denotes the tangential component.

Corollary 4.6. Let the setup be as in Definition 4.1 with ΓR0
6= SR0

, and let
the operator BR1,R0,R2 , be as in Theorem 4.5. Define further the operators

BR0,R2

0 : L2(ΓR0 ,R3)→ L2(SR2 ,R3), m 7→ ∇ΦR0,R2

0 [m],

and

BR1,R2

1 : L2(SR1
)→ L2(SR2

,R3), h 7→ ∇ΦR1,R2

1 [h].

Let further B = BR1,R0,R2 [(m, h)], with m ∈ L2(ΓR0
,R3) and h ∈ L2(SR1

). A pair

of fields of the form B̄0 = BR0,R2

0 [m̄] and B̄1 = BR1,R2

1 [h̄], with m̄ ∈ L2(ΓR0
,R3) and

h̄ ∈ L2(SR1
), is uniquely determined by the condition Bν(x) = (B̄0)ν(x) + (B̄1)ν(x)

and thus, a fortiori, by the condition B(x) = B̄0(x) + B̄1(x) for x ∈ SR2 .

Remark 4.7. Opposed to the normal component, it does not suffice to know
the tangential component Bτ on SR2

in order to obtain uniqueness of B0 and B1.
Namely, letting m ≡ 0 and h be any nonzero constant function on SR1

, then Bτ (x) =

(B0)τ (x) + (B1)τ (x) = ∇SR2
ΦR0,R2

0 [m](x) + ∇SR2
ΦR1,R2

1 [h](x) = 0 and B0(x) =

∇ΦR0,R2

0 [m](x) = 0 but B1(x) = ∇ΦR1,R2

1 [h](x) = −hR1

|x|3 x 6= 0 for x ∈ SR2
.

4.2. Reconstruction Issues. In this section, we discuss how quantities such
as the Fourier coefficients 〈Φ0, Yn,k〉L2(SR2

) of Φ0 can be approximated knowing Φ,
without having to reconstruct Φ0 itself. Such Fourier coefficients are of interest, e.g.,
when looking at the power spectra of Φ and Φ0 (cf. the empirical way of separating
the crustal and the core magnetic fields mentioned in the introduction). As an extra
piece of notation, given ΓR ⊂ SR and f : SR → Rk, we let f|ΓR : ΓR → Rk designate
the restriction of f to ΓR.

Theorem 4.8. Let the setup be as in Definition 4.1 and assume that ΓR0 6= SR0 .
Then, for every ε > 0 and every function g ∈ H2

+,R0
⊕H2

−,R0
, there exists f ∈ L2(SR2)

(depending on ε and g) such that∣∣∣〈ΦR1,R0,R2 [m, h], f〉L2(SR2
) − 〈m,g|ΓR0

〉L2(ΓR0
,R3)

∣∣∣ ≤ ε‖(m, h)‖L2(ΓR0
,R3)×L2(SR1

),

for all m ∈ L2(ΓR0
,R3) and h ∈ L2(SR1

).

Proof. According to Theorem 4.3 and the orthogonality of the Hardy-Hodge decom-
position, (g|ΓR0

, 0) is orthogonal to the nullspace N(ΦR1,R0,R2) of ΦR1,R0,R2 , for if



RECOVERY OF GEOMAGNETIC FIELD COMPONENTS 15

d ∈ DR0
and supp(d) ⊂ ΓR0

, then 〈g|ΓR0
,d〉L2(ΓR0

,R3) = 〈g,d〉L2(SR0
,R3) = 0. There-

fore, (g|ΓR0
, 0) lies in the closure of the range of the adjoint operator

(
ΦR1,R0,R2

)∗
,

i.e., to each ε > 0 there is f ∈ L2(SR2
) with∥∥∥(ΦR1,R0,R2

)∗
[f ]− (g|ΓR0

, 0)
∥∥∥
L2(ΓR0

,R3)×L2(SR1
)
≤ ε.(22)

Taking the scalar product with (m, h), we get from (22) and the Cauchy-Schwarz
inequality:∣∣∣〈ΦR1,R0,R2 [m, h], f〉L2(SR2

) − 〈m,g|ΓR0
〉L2(ΓR0

,R3)

∣∣∣
=

∣∣∣∣〈(m, h),
(
ΦR1,R0,R2

)∗
[f ]− (g|ΓR0

, 0)
〉
L2(ΓR0

,R3)×L2(SR2
)

∣∣∣∣
≤
∥∥∥(ΦR1,R0,R2

)∗
[f ]− (g|ΓR0

, 0)
∥∥∥
L2(ΓR0

,R3)×L2(SR1
)
‖(m, h)‖L2(ΓR0

,R3)×L2(SR1
)

≤ ε‖(m, h)‖L2(ΓR0
,R3)×L2(SR1

),

which is the desired result. �

Corollary 4.9. Let the setup be as in Definition 4.1 with ΓR0 6= SR0 . Then, for
every ε > 0 and every function g ∈ L2(SR2), there exists f ∈ L2(SR2) (depending on
ε and g) such that∣∣∣〈ΦR1,R0,R2 [m, h], f〉L2(SR2

) − 〈ΦR0,R2

0 [m], g〉L2(SR2
)

∣∣∣ ≤ ε‖(m, h)‖L2(ΓR0
,R3)×L2(SR1

),

for all m ∈ L2(ΓR0
,R3) and h ∈ L2(SR1

).

Proof. First observe that〈
ΦR0,R2

0 [m], g
〉
L2(SR2

)
=
〈
m,
(

ΦR0,R2

0

)∗
[g]
〉
L2(ΓR0

,R3)
,(23)

where the adjoint operator of ΦR0,R2

0 is given by(
ΦR0,R2

0

)∗
: L2(SR2

)→ L2(ΓR0
,R3), g 7→ H[g]|ΓR0

,

H[g](x) = − 1

4π

∫
SR2

g(y)
x− y
|x− y|3

dωR2(y), x ∈ SR0 .(24)

Clearly H[g] ∈ H2
+,R0

whenever g ∈ L2(SR2), therefore, (23) together with Theorem
4.8 yield the desired result. �

Remark 4.10. The interest of Corollary 4.9 from the Geophysical viewpoint lies
with the fact that ΦR1,R0,R2 [m, h] (more specifically: its gradient) corresponds to
the measurements on SR2 of the superposition of the core and crustal contributions,

whereas ΦR0,R2

0 [m] corresponds to the crustal contribution alone. Thus, if we can
compute f knowing g, we shall in principle be able to get information on the crustal
contribution up to arbitrary small error. Note also that (g, 0) 6∈ Ran

(
ΦR1,R0,R2

)∗
unless g ≡ 0, due to the injectivity of the adjoint of the Poisson transform (which
is again a Poisson transform). Therefore we can only hope for an approximation of

〈ΦR0,R2

0 [m], g〉L2(SR2
) in Corollary 4.9, up to a relative error of ε > 0, but not for an

exact reconstruction.
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Results analogous to Theorem 4.8 and Corollary 4.9 mechanically hold in the
setup of Theorem 4.5 and Corollary 4.6 (i.e., separation of the crustal and core mag-
netic fields B0 and B1 instead of the potentials). Below we state the corresponding
results but we omit the proofs for they are similar to the previous ones.

Theorem 4.11. Let the setup be as in Theorem 4.5. Then, for every ε > 0 and
every field g ∈ H2

+,R0
⊕H2

−,R0
, there exists f ∈ L2(SR2 ,R3) (depending on ε and g)

such that∣∣∣〈BR1,R0,R2 [m, h], f〉L2(SR2
,R3) − 〈m,g|ΓR0

〉L2(ΓR0
,R3)

∣∣∣ ≤ ε‖(m, h)‖L2(ΓR0
,R3)×L2(SR1

),

for all m ∈ L2(ΓR0 ,R3) and h ∈ L2(SR1). The same holds if BR1,R0,R2 [m, h] gets
replaced by BR1,R0,R2

ν [m, h], this time with f ∈ L2(SR2).

Corollary 4.12. Let the setup be as in Theorem 4.5 and Corollary 4.6. Then,
for every ε > 0 and every field g ∈ L2(SR2

,R3), there exists f ∈ L2(SR2
,R3) (depend-

ing on ε and g) such that∣∣∣〈BR1,R0,R2 [m, h], f〉L2(SR2
,R3) − 〈B

R0,R2
0 [m],g〉L2(SR2

,R3)

∣∣∣ ≤ ε‖(m, h)‖L2(ΓR0
,R3)×L2(SR1

),

for all m ∈ L2(ΓR0 ,R3) and h ∈ L2(SR1). The same holds if BR1,R0,R2 [m, h] gets
replaced by BR1,R0,R2

ν [m, h], this time with f ∈ L2(SR2
).

4.3. The Case ΓR0 = SR0 . We turn to the case where ΓR0 = SR0 . Then,
uniqueness no longer holds in Problem 1.1, but one can obtain the singular value
decomposition of ΦR1,R0,R2 fairly explicitly and thereby quantify non-uniqueness. In-
deed basic computations using spherical harmonics yield:

(ΦR0,R2
0 )∗[Yn,k](x)

=
1

4π

∫
SR2

Yn,k

(
y

|y|

)
∇x

1

|x− y|dωR2(y)

=
1

4π

∞∑
m=0

∇x
∫
SR2

1

|y|

(
|x|
|y|

)m
Yn,k

(
y

|y|

)
Pm

(
x

|x| ·
y

|y|

)
dωR2(y)(25)

=

∞∑
m=0

2m+1∑
l=1

1

2m+ 1

1

Rm+1
2

∇x
(
|x|mYm,l

(
x

|x|

))∫
SR2

Yn,k

(
y

|y|

)
Ym,l

(
y

|y|

)
dωR2(y)

=
R2

2n+ 1
∇HR2

n,k(x) =
R2

2n+ 1

(
R0

R2

)n
∇HR0

n,k(x), x ∈ SR0 ,

and

(ΦR1,R2

1 )∗[Yn,k](x)

=
1

4πR1

∫
SR2

Yn,k

(
y

|y|

)
|y|2 −R2

1

|x− y|3
dωR2

(y)

=
1

4πR1

∞∑
m=0

(2m+ 1)

∫
SR2

1

|y|

(
|x|
|y|

)m
Pm

(
x

|x|
· y
|y|

)
Yn,k

(
y

|y|

)
dωR2(y)(26)

=
1

R1R2

∞∑
m=0

2m+1∑
l=1

(
R1

R2

)m
Ym,l

(
x

|x|

)∫
SR2

Yn,k

(
y

|y|

)
Ym,l

(
y

|y|

)
dωR2

(y)

=

(
R1

R2

)n−1

Yn,k

(
x

|x|

)
, x ∈ SR1 ,
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where HR2

n,k, HR0

n,k are the inner harmonics from Section 2 and Pm the Legendre poly-
nomial of degree m (see, e.g., [13, 15, Ch. 3] for details). So, we get for the adjoint
operator (ΦR1,R0,R2)∗ that

(ΦR1,R0,R2)∗[Yn,k] =

(
R2

2n+ 1

(
R0

R2

)n
∇HR0

n,k ,

(
R1

R2

)n−1

Yn,k

)T
.(27)

Similar calculations also yield that

ΦR0,R2

0 [∇HR0

n,k](x) =
n

R2

(
R0

R2

)n
Yn,k

(
x

|x|

)
, x ∈ SR2

,

and

ΦR1,R2

1 [Yn,k](x) =

(
R1

R2

)n+1

Yn,k

(
x

|x|

)
, x ∈ SR2

,

so we obtain for ΦR1,R0,R2 that

ΦR1,R0,R2 [α∇HR0

n,k, βYm,l] = α
n

R2

(
R0

R2

)n
Yn,k + β

(
R1

R2

)m+1

Ym,l,(28)

with α, β ∈ R. Based on the representations (27) and (28), further computation
leads us to a characterization of the nullspace of ΦR1,R0,R2 in Lemma 4.13. Note that
ΦR1,R0,R2 : L2(ΓR0

,R3) × L2(SR1
) → L2(SR2

) is a compact operator, being the sum

of two compact operators (for ΦR0,R2

0 and ΦR1,R2

1 have continuous kernels).

Lemma 4.13. Let ΓR0 = SR0 , then the nullspace of ΦR1,R0,R2 is given by

N(ΦR1,R0,R2) ={(m− + d, 0) : m− ∈ H2
−,R0

, d ∈ DR0}

∪ span

{(
∇HR0

n,k ,−
n

R1

(
R0

R1

)n
Yn,k

)T
: n ∈ N, k = 1, . . . , 2n+ 1

}
,

while the orthogonal complement reads

N(ΦR1,R0,R2)⊥ = span

{(
∇HR0

n,k ,
2n+ 1

R1

(
R1

R0

)n
Yn,k

)T
: n ∈ N, k = 1, . . . , 2n+ 1

}
.

All non-zero eigenvalues values of (ΦR1,R0,R2)∗ΦR1,R0,R2 are of the form

σn =
n

2n+ 1

(
R0

R2

)2n

+

(
R1

R2

)2n

, n ∈ N,

and the corresponding eigenvectors in L2(SR0 ,R3)× L2(SR1) are(
∇HR0

n,k ,
2n+ 1

R1

(
R1

R0

)n
Yn,k

)T
, n ∈ N, k = 1, . . . , 2n+ 1.

Lemma 4.13 entails that the nullspace of ΦR1,R0,R2 contains elements of the form
(m, h) with h 6= 0, hence ΦR1,R0,R2 [(m, h)] may well vanish on SR2

even though

ΦR1,R2

1 [h] is nonzero there, by injectivity of the Poisson representation. In other

words, separation of the potentials ΦR0,R2

0 and ΦR1,R2

1 knowing their sum on SR2
is

no longer possible in general if ΓR0
= SR0

.
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5. Extremal Problems and Numerical Examples. In this section, we pro-
vide some first approaches on how the results from the previous sections can be used
to approximate the Fourier coefficients of Φ0. For brevity, we treat only separation of
the crustal and core magnetic potentials (underlying operator ΦR1,R0,R2) and not the
separation of the crustal and core magnetic fields (underlying operator BR1,R0,R2).
The procedure in such case is of course similar. In the supplementary material (Sec-
tion SM2) we illustrate a similar example aiming at a reconstruction of Φ0 as a whole
rather than its single Fourier coefficients.

5.1. Reconstruction of Fourier Coefficients of Φ0. To get a feeling of how
functions f in Corollary 4.9 behave, let us derive some of their basic properties. Recall
they where isentified to be those f ∈ L2(SR2) satisfying (22) with g = (ΦR0,R2

0 )∗[g].

Lemma 5.1. Let 0 6= g ∈ L2(SR2
) and set g = (ΦR0,R2

0 )∗[g]. To each ε > 0, let
fε ∈ L2(SR2) satisfy ‖(ΦR1,R0,R2)∗[fε]− (g|ΓR0

, 0)‖L2(ΓR0
,R3)×L2(SR1

) ≤ ε. Then:
(a) lim

ε→0
‖fε‖L2(SR2

) =∞,

(b) lim
ε→0
‖(ΦR1,R2

1 )∗[fε]‖L2(SR1
) = 0,

(c) lim
ε→0
〈fε, Yn,k〉L2(SR2

) = 0, for fixed n ∈ N0, k = 1, . . . , n.

Proof. From Remark 4.10 we know that (g|ΓR0
, 0) ∈ Ran

((
ΦR1,R0,R2

)∗)
but also

(g|ΓR0
, 0) 6∈ Ran

((
ΦR1,R0,R2

)∗)
. Thus, ‖fε‖L2(SR2

) cannot remain bounded as ε→ 0,

otherwise a weak limit point f0 ∈ L2(SR2
) would meet (ΦR1,R0,R2)∗[f0] = (g|ΓR0

, 0),
a contradiction which proves (a). Next, the relation

‖(ΦR1,R0,R2)∗[fε]− (g|ΓR0
, 0)‖2L2(ΓR0

,R3)×L2(SR1
)

= ‖(ΦR0,R2

0 )∗[fε]− g|ΓR0
‖2L2(ΓR0

,R3) + ‖(ΦR1,R2

1 )∗[fε]‖2L2(SR1
) ≤ ε

2

immediately implies that limε→0 ‖(ΦR1,R2

1 )∗[fε]‖L2(SR1
) = 0 which is (b). Finally,

expanding fε in spherical harmonics, one readily verifies that (26) together with (b)
yields part (c). �

Next, we give a quantitative appraisal of the fact that the Fourier coefficients of
ΦR0,R2

0 on SR2 , to be estimated up to relative precision ε by choosing g = Yp,q in
Corollary 4.9, can be approximated directly by those of ΦR1,R0,R2 (i.e., neglecting
entirely the core contribution) when R1

R2
is small enough (i.e., the core is far from the

measurement orbit) and the degree p is large enough. We also give a quantitative
version of Lemma 5.1 point (c). This provides us with bounds on the validity of the
separation technique consisting merely of a sharp cutoff in the frequency domain.

Lemma 5.2. Let ε > 0 and choose g = (ΦR0,R2

0 )∗[Yp,q] for some p ∈ N0 and
q ∈ {1, . . . , 2p+ 1}. Then the following assertions hold true.

(a) If R2
1

(
R1

R2

)p−1 ≤ ε, then f = Yp,q satisfies

(29) ‖(ΦR1,R0,R2)∗[f ]− (g|ΓR0
, 0)‖L2(ΓR0

,R3)×L2(SR1
) ≤ ε.

(b) If f ∈ L2(SR2
) satisfies ‖(ΦR1,R0,R2)∗[f ] − (g|ΓR0

, 0)‖L2(ΓR0
,R3)×L2(SR1

) ≤ ε,
then, for all n ∈ N0, k = 1, . . . , 2n+ 1,

(30) |〈f, Yn,k〉L2(SR2
)| ≤ ε

Rn−1
2

Rn+1
1

.
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Proof. To prove (a), note that (ΦR1,R0,R2)∗ =
(

(ΦR0,R2

0 )∗, (ΦR1,R2

1 )∗
)

and by (26)

that

‖(ΦR1,R2

1 )∗[f ]‖L2(SR1
) = R2

1

(
R1

R2

)p−1

≤ ε,

while ‖(ΦR0,R2

0 )∗[f ]− g|ΓR0
‖L2(ΓR0

,R3) = 0 if f = Yp,q. Hence (29) holds.

As to (b), any f ∈ L2(SR2
) with ‖(ΦR1,R0,R2)∗[f ]− (g, 0)‖L2(ΓR0

,R3)×L2(SR1
) ≤ ε

satisfies in particular, in view of (26):

‖(ΦR1,R2

1 )∗[f ]‖2L2(SR1
) =

∞∑
n=0

2n+1∑
k=1

R4
1

(
R1

R2

)2(n−1)

|〈f, Yn,k〉L2(SR2
)|2 ≤ ε2,

from which (30) follows at once. �

We turn to the computation of a function f as in Corollary 4.9, regardless of
assumptions on R1

R2
or on the degree of a spherical harmonics Yn,k for which we want

to estinate 〈ΦR0,R2

0 , Yn,k〉L2(SR2
). One way is to solve the following extremal problem.

Note that finding f requires no data on the potential Φ that we eventually want to
separate into Φ0 + Φ1.

Problem 5.3. Let the setup be as in Definition 4.1 with ΓR0
6= SR0

. Fix g ∈
L2(SR2

) as well as ε > 0, and set g = (ΦR0,R2

0 )∗[g]. Then, find f ∈ W 1,2(SR2
) such

that

‖f‖W 1,2(SR2
) = inf

f̄∈W1,2(SR2
),

‖(ΦR1,R0,R2 )∗[f̄]−(g|ΓR0
,0)‖

L2(ΓR0
,R3)×L2(SR1

)
≤ε

‖f̄‖W 1,2(SR2
).(31)

It may look strange to seek f ∈ W 1,2(SR2
) whereas Corollary 4.9 merely deals with

scalar products in L2(SR2
). This extra-smoothness requirement, though, helps regu-

larizing the problem.

Lemma 5.4. Let the setup be as in Problem 5.3 and additionally g ∈ L2(SR2
) with

‖g|ΓR0
‖L2(ΓR0

,R3) > ε. Then, there exists a unique solution 0 6≡ f ∈ W 1,2(SR2
) to

Problem 5.3. Moreover, the constraint in (31) is saturated, i.e. ‖(ΦR1,R0,R2)∗[f ] −
(g|ΓR0

, 0)‖L2(ΓR0
,R3)×L2(SR1

) = ε.

Proof. Since H[g] given by (24) lies in H2
+,R0

, the same argument as in the proof of

Theorem 4.8 and the density of W 1,2(SR2
) in L2(SR2

) together imply the existence
of f̄ ∈ W 1,2(SR2

) such that ‖(ΦR1,R0,R2)∗[f̄ ] − (g|ΓR0
, 0)‖L2(ΓR0

,R3)×L2(SR1
) ≤ ε is

satisfied, which ensures that the closed convex subset of W 1,2(SR2
) defined by

Cε =
{
f̄ ∈W 1,2(SR2

) : ‖(ΦR1,R0,R2)∗[f̄ ]− (g|ΓR0
, 0)‖L2(ΓR0

,R3)×L2(SR1
) ≤ ε

}
is non-empty. Existence and uniqueness of a minimizer f now follows from that of a
projection of minimum norm on any nonempty convex set in a Hilbert space. From
the assumption that ‖g‖L2(ΓR0

,R3) > ε, we get that f 6≡ 0 because 0 /∈ Cε. If the

constraint is not saturated, then there is δ > 0 such that, for every f̄ ∈ W 1,2(SR2
)

with ‖f̄‖W 1,2(SR2
) ≤ 1, also f + tf̄ satisfies the constraint ‖(ΦR1,R0,R2)∗[f + tf̄ ] −

(g, 0)‖L2(ΓR0
,R3)×L2(SR1

) ≤ ε for t ∈ (−δ, δ). Since f is a minimizer, this implies

0 = ∂t‖f + tf̄‖2W 1,2(SR2
)

∣∣∣
t=0

= 2
〈
f, f̄
〉
W 1,2(SR2

)
,



20 L. BARATCHART AND C. GERHARDS

for every f̄ ∈ W 1,2(SR2
) with ‖f̄‖W 1,2(SR2

) ≤ 1. Thus f ≡ 0, contradicting what
precedes. �

Remark 5.5. Lemma 5.1 together with the exponential decay of the eigenvalues
of (ΦR1,R2

1 )∗ in (26) suggest that most of the relevant information of a solution f ∈
W 1,2(SR2) of Problem 5.3 must be contained in Fourier coefficients 〈f, Yn,k〉L2(SR2

)

of increasingly high degrees n as ε → 0. Lemma 5.2 provides a hint at the range of
accuracies ε for which numerical solutions of Problem 5.3 with g = (ΦR0,R2

0 )∗[Yp,q]
behave differently for small and large p.

Discretization. For the actual solution of Problem 5.3, we from now on assume
that ‖g|ΓR0

‖L2(ΓR0
,R3) > ε, hence the constraint is saturated by Lemma 5.4, and we

use a Lagrangian formulation and obtain from [9, Thm. 2.1] that f ∈ W 1,2(SR2
)

solves for (
Id + λ

(
ΦR1,R0,R2

)∗∗ (
ΦR1,R0,R2

)∗)
[f ] = λ

(
ΦR1,R0,R2

)∗∗
[(g|ΓR0

, 0)],(32)

where λ > 0 is such that ‖(ΦR1,R0,R2)∗[f ] − (g|ΓR0
, 0)‖L2(ΓR0

,R3)×L2(SR1
) = ε. Here,

the operator
(
ΦR1,R0,R2

)∗∗
stands for the adjoint of the restriction of

(
ΦR1,R0,R2

)∗
to

the domain W 1,2(SR2
). In order to avoid computing

(
ΦR1,R0,R2

)∗∗
, we rewrite (32)

in variational form:

〈f, ϕ〉W 1,2(SR2
) + λ

〈(
ΦR1,R0,R2

)∗
[f ],

(
ΦR1,R0,R2

)∗
[ϕ]
〉
L2(ΓR0

,R3)×L2(SR1
)

= λ
〈

(g|ΓR0
, 0),

(
ΦR1,R0,R2

)∗
[ϕ]
〉
L2(ΓR0

,R3)×L2(SR1
)
,(33)

for all ϕ ∈ W 1,2(SR2). Remark 5.5 indicates that a discretization of f in terms of
finitely many spherical harmonics is generally not advisable. As a remedy, we use a
discretization in terms of the Abel-Poisson kernels

Kγ(t) =
1

4π

1− γ2

(1 + γ2 − 2γt)
3
2

, t ∈ [−1, 1].(34)

More precisely, we expand f as

f(x) =

M∑
m=1

αmKγ,m(x) =

M∑
m=1

αm

∞∑
n=0

2n+1∑
k=1

γnYn,k

(
x

|x|

)
Yn,k(xm), x ∈ SR2

,(35)

where Kγ,m(x) = Kγ( x
|x| · xm). The parameter γ ∈ (0, 1) is fixed and controls the

spatial localization of Kγ,m (a parameter γ close to one means a strong localization)
while xm ∈ S1, m = 1, . . .M, denote the spatial centers of the kernels Kγ,m. Further-
more, one can see from (35) that γ relates to the influence of higher spherical harmonic
degrees in the discretization of f . Some general properties of the Abel-Poisson kernel
Kγ can be found, e.g., in [13, Ch. 5]. Computations based on the representations in
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Section 4.3 yield

(ΦR1,R0,R2)∗[Kγ,m]

=

∞∑
n=0

2n+1∑
k=1

Yn,k(xm)γn
(

R2

2p+ 1

(
R0

R2

)n
∇HR0

n,k ,

(
R1

R2

)n−1

Yn,k

)T
(36)

=

(
∇
∞∑
n=0

2n+1∑
k=1

γn
R2

2p+ 1

(
R0

R2

)n( | · |
R0

)n
Yn,k(xm)Yn,k

(
·
| · |

)
,

(
R2

R1

)
K γR1

R2
,m

)T

=

(
R2

4π
∇F γ|·|

R2
,m
,

(
R2

R1

)
K γR1

R2
,m

)T
,

where Fγ,m(x) = Fγ( x
|x| ·xm), with Fγ(t) = (1 + γ2− 2γt)−

1
2 for t ∈ [−1, 1]. Inserting

(35) and (36) into (33), fixing g = (ΦR0,R2

0 )∗[Yp,q] and choosing ϕ = Kγ,n for n =
1, . . . ,M, as test functions, we are lead to the following system of linear equations

Mα = d,(37)

where

M =


1

λ
〈Kγ,m,Kγ,n〉W1,2(SR2

) +

(
R2

4π

)2〈
∇F γ|·|

R2
,m
,∇F γ|·|

R2
,n

〉
L2(ΓR0

,R3)

+

(
R2

R1

)2〈
K γR1

R2
,m
,K γR1

R2
,n

〉
L2(SR1

)


n,m=1,...,M

,

α =
(
αm
)
m=1,...,M

,

d =

(
R2

2

4π(2p+ 1)

(
R0

R2

)p
〈∇HR0

p,q ,∇Fn〉L2(ΓR0
,R3)

)
n=1,...,M

.

A function f of the form (35), determined by coefficients αm, m = 1, . . . ,M , which
solves (37) will from now on be denoted as fp,q. We use fp,q as an approximation of

the solution to (33) for the choice g = (ΦR0,R2

0 )∗[Yp,q].

A Numerical Example. In order to generate input data Φ = ΦR1,R0,R2 [m, h]
for a test example, we choose

m(x) = b1
x

|x|
Lγ1

(
x

|x|
· y1

)
+ b2

x

|x|
Lγ2

(
x

|x|
· y2

)
,

b1 = 15, b2 = 10,

h(x) =

5∑
n=0

2n+1∑
k=1

an,kYn,k

(
x

|x|

)
,(38)

a0,1 = a1,1 = 25, a2,5 = a3,5 = a4,5 = 24, a5,5 = 23, an,k = 0 else,

with y1 = (0, 0,−1)T and y2 = (0, 1
2 ,−

√
3

2 )T . The corresponding crustal and core

contributions are then given by Φ0 = ΦR0,R2

0 [m] and Φ1 = ΦR1,R2

1 [h]. The functions
Lγi are chosen as follows:

Lγi(t) =

{
0, t ∈ [−1, γi),
(t−γi)k
(1−γi)k , t ∈ [γi, 1],

(39)
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Input data Φ for γ1 = 1
20

, γ2 = 1
2

Input data Φ for γ1 = 3
5

, γ2 = 3
5

Φ0 for γ1 = 1
20

, γ2 = 1
2

Φ1 for γ1 = 1
20

, γ2 = 1
2

Fig. 2. Spatial plot of the input data Φ = Φ0 + Φ1 with parameters γ1 = 1
20

, γ2 = 1
2

(top left)

and γ1 = 3
5

, γ2 = 3
5

(top right) for the magnetization m from (38), as well as the underlying crustal

contribution Φ0 and core contribution Φ1, exemplarily for γ1 = 1
20

, γ2 = 1
2

(bottom).

True Rp, R0
p for γ1 = 1

20
, γ2 = 1

2
Reconstructions R0

p

True Rp, R0
p for γ1 = 3

5
, γ2 = 3

5
Reconstructions R0

p

Fig. 3. Left: Power spectrum Rp of the input data Φ and power spectrum R0
p of the crustal

contribution Φ0. Right: True crustal power spectrum R0
p (blue) and reconstructed power spectrum R0

p

(red) for different parameters λ. The top row shows the results for the parameters γ1 = 1
20
, γ2 = 1

2

and the bottom row for γ1 = 3
5
, γ2 = 3

5
.

Scaled Power Spectrum of f1,1 Scaled Power Spectrum of f50,1

Fig. 4. Scaled power spectrum NRp,qn for p = 1, q = 1 (left) and p = 50, q = 1 (right).
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for k = 3. These functions have been studied in more detail in [36] and are suited for
our purposes since they are compactly supported and allow a recursive computation
of the Fourier coefficients of m. The parameters γi ∈ (−1, 1) reflect the localization of
Lγi (a parameter γi close to one means a strong localization). In our test examples, we
investigate the two setups γ1 = 1

20 , γ2 = 1
2 and γ1 = 3

5 , γ2 = 3
5 , where latter reflects a

slightly stronger localization of the underlying magnetization. For the involved radii,
we choose R0 = 1 and R2 = 1.06 (at scales of the Earth, the latter indicates a realistic
satellite altitude of about 380km above the Earth’s surface) and R1 = 0.5 (at scales
of the Earth, this is a rough approximation of the radius of the outer core). The
subregion ΓR0 = {x ∈ SR0 : x · (0, 0, 1)T ≤ 0} is set to be the Southern hemisphere
and the chosen magnetizations of the form (38) satisfy supp(m) ⊂ ΓR0 . For our
computations, we use the localization parameter γ = 0.95 and choose M = 8, 499
uniformly distributed centers xm ∈ S1, m = 1, . . . ,M, for the kernels Kγ,m. All
numerical integrations necessary during the procedure are performed via the methods
of [10] (when the integration region comprises the entire sphere SR0

, SR1
, or SR2

,
respectively) and [21] (when the integration is only performed over the spherical cap
SR0\ΓR0). The input data for the two different setups associated with γ1, γ2 are shown
in the top row of Figure 2. Furthermore, the underlying potentials Φ0 and Φ1 are
exemplarily indicated for the case γ1 = 1

20 , γ2 = 1
2 in the bottom row. These setups

are not based on real geomagnetic data but they reflect a typical geomagnetic situation
in the sense that the core contribution clearly dominates the crustal contribution at
low spherical harmonic degrees. The power spectra of Φ0 in Figure 3 show that an
empirical separation of Φ0 and Φ1 by a sharp cut-off at degree p = 2 or p = 3 would
neglect relevant information in the crustal contribution Φ0.

Corollary 4.9 states that a reasonable approximation of the Fourier coefficient
〈Φ0, Yp,q〉L2(SR2

) of the crustal contribution Φ0 is now given by 〈Φ, fp,q〉L2(SR2
), with

fp,q of the form described in the previous subsection. We do this for various degrees
p and orders q and we illustrate the results in terms of power spectra (which allow an
easy comparison to the empirical method of a sharp cutoff in spectral domain): The
crustal power spectrum is defined as

R0
p = Rp[Φ0] =

2p+1∑
q=1

∣∣∣〈Φ0, Yp,q〉L2(SR2
)

∣∣∣2 , p ∈ N0.

Our approximated power spectrum is then of the form

R0
p =

2p+1∑
q=1

∣∣∣〈Φ, fp,q〉L2(SR2
)

∣∣∣2 , p ∈ N0.

The power spectrum of the input signal Φ (i.e., the superposition of the crustal and

core contribution) is analogously defined by Rp = Rp[Φ] =
∑2p+1
q=1 |〈Φ, Yp,q〉L2(SR2

)|2.
Figure 3 shows the true and the reconstructed power spectra and we see that they

yield good results (for a well-chosen parameter λ) in both setups under investigation.
Stronger deviations mainly occur at lower spherical harmonic degrees p. The solid
red spectrum in Figure 3 indicated as ’Reconstruction for best λ’ does not reflect
the result for a single global choice of λ but rather for λ that might vary depending
on each degree p of the spectrum. The setup for magnetizations m with parameters
γ1 = 3

5 , γ2 = 3
5 was chosen to investigate magnetizations with a slightly stronger

localization, meaning that the corresponding potential Φ0 has slightly stronger con-
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tributions at higher spherical harmonic degrees than for the setup γ1 = 1
20 , γ2 = 1

2
(indicated in the right hand images in Figure 3).

In Figure 4, we illustrate the effects mentioned in Remark 5.5 by observing the
scaled power spectrum NRp,qn = 1

2n+1Rn[fp,q] = 1
2n+1

∑2n+1
k=1 |〈fp,q, Yn,k〉L2(SR2

)|2 of

fp,q for p = 1, q = 1, and p = 50, q = 1 (we scaled by a factor 1
2n+1 solely to get a better

idea of the average influence of a single |〈fp,q, Yn,k〉L2(SR2
)|2, k = 1, . . . , 2n+ 1, rather

than the total power
∑2n+1
k=1 |〈fp,q, Yn,k〉L2(SR2

)|2 for fixed degree n). As expected from
Remark 5.5, larger Lagrange parameters λ (which correspond to smaller ε) result in a
general shift of the major contributions of the power spectrum of fp,q towards higher
spherical harmonic degrees for both choices of p, q. On the other hand, a slightly
different behaviour between p = 1, q = 1 and p = 50, q = 1 can be observed: the
spike around n = 50 for the p = 50, q = 1 remains while such a thing does not happen
for the smaller degree p = 1, q = 1.

6. Conclusion. In this paper, we set up a geophysically reasonable model of
the core and crustal magnetic field potentials Φ1 and Φ0 respectively, for which we
showed that each single potential can be recovered uniquely if only the superposition
Φ = Φ0 + Φ1 is known on an external sphere SR2

. Furthermore, we supplied first
approaches to the reconstruction of Φ0 and of its Fourier coefficients. The latter is
particularly interesting as it would allow a comparison with the empirical approach to
separation based on a sharp cut-off in the power spectrum of Φ. Two main directions
call for further study: (1) the geophysical post-processing of real geomagnetic data in
order to back up (or deny) the assumption that m is supported in a subregion ΓR0

of
the Earth’s surface; (2) improving numerical schemes allowing reconstruction of Φ0

or its Fourier coefficients when the core contribution Φ1 is clearly dominating (as is
expected at lower spherical harmonic degrees in realistic geomagnetic field models)
and when SR1 is close to SR0 . The domination of the core contribution has been
simulated to some extent in the presented examples but is expected to be stronger in
real scenarios.
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Birkhäuser, 2004.

[15] W. Freeden and M. Schreiner. Spherical Functions of Mathematical Geosciences. Springer,
2009.

[16] C. Gerhards. Locally supported wavelets for the separation of spherical vector fields with
respect to their sources. Int. J. Wavel. Multires. Inf. Process., 10:1250034, 2012.

[17] C. Gerhards. On the unique reconstruction of induced spherical magnetizations. Inverse Prob-
lems, 32:015002, 2016.

[18] M. Grothaus and T. Raskop. Limit formulae and jump relations of potential theory in sobolev
spaces. Int. J. Geomath., 1:51–100, 2010.

[19] D. Gubbins, D. Ivers, S.M. Masterton, and D.E. Winch. Analysis of lithospheric magnetization
in vector spherical harmonics. Geophys. J. Int., 187:99–117, 2011.

[20] E. Hebey. Sobolev spaces on Riemannian manifolds. Number 1635 in Lecture Notes in Math-
ematics. Springer, 1996.

[21] K. Hesse and R.S. Womersley. Numerical integration with polynomial exactness over a spherical
cap. Adv. Comp. Math., 36:451–483, 2012.

[22] M. Holschneider, V. Lesur, S. Mauerberger, and J. Baerenzung. Correlation-based modeling and
separation of geomagnetic field components. J. Geophys. Res. Solid Earth, 121:3142–3160,
2016.

[23] G. Hulot, C. Finlay, C. Constable, N. Olsen, and M. Mandea. The magnetic field of Planet
Earth. Space Sci. Rev., 152:159–222, 2010.

[24] M. Kono, editor. Geomagnetism, volume 5 of Treatise on Geophysics. Elsevier, 2009.
[25] R.A. Langel and R.H. Estes. A geomagnetic field spectrum. Geophys. Res. Let., 9:250–253,

1982.
[26] V. Lesur, I. Wardinski, M. Hamoudi, and M. Rother. The second generation of the GFZ

Reference Internal Magnetic Model: GRIMM-2. Earth Planets Space, 62:765–773, 2010.
[27] E.A. Lima, B.P. Weiss, L. Baratchart, D.P. Hardin, and E.B. Saff. Fast inversion of magnetic

field maps of unidirectional planar geological magnetization. J. Geophys. Res.: Solid Earth,
118:1–30, 2013.

[28] J.L. Lions and E. Menages. Probemes aux limites non homogenes et applications. Dunod, 1968.
[29] W.S. Massey. Algebraic topology: an introduction. Springer, 1984.
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