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a b s t r a c t

The linear vibration absorber is a widely-used vibration mitigation device. However, when

the absorber is tuned according to Den Hartog’s equal-peak method, the resulting narrow

bandwidth may decrease its effectiveness, especially when the host structure is uncertain

or in the presence of environmental variability. In this paper, a new tuning strategy of the

linear absorber, based on the concept of robust equal peaks, is introduced for mitigating a

specific resonance of an uncertain mechanical system. Both analytical and numerical inves-

tigations are carried out to demonstrate the robustness of the proposed absorber. For 20%

uncertainty in the stiffness of the host system, the performance improvement brought by the

robust equal-peak method amounts to more than 30% with respect to Den Hartog’s tuning

rule.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction
The use of linear resonators for the mitigation of resonant vibrations was first proposed by Watts [1] and Frahm [2,3] to

reduce the rolling motion of ships. The problem was later formalized in more rigorous terms by Ormondroyd and Den Hartog [4],

Den Hartog [5] and Brock [6], who developed tuning rules that formed the basis of Den Hartog’s equal-peak method. The vibration

absorber considered in Refs. [4–6] consists of a mass-spring-dashpot system attached to the primary system to be controlled.

Through the proper tuning of the absorber’s spring and dashpot, it is possible to approximately obtain h∞ optimization of the

frequency response in the vicinity of the target resonance frequency.

Thanks to its simplicity, effectiveness, low cost and small requirements for maintenance [7], the linear vibration absorber

(often referred to as tuned mass damper, tuned vibration absorber or dynamic vibration absorber) was implemented in various

real-life structures. Its main applications include structures subject to human-induced vibrations, such as spectator stands and

pedestrian bridges (the most famous example is the Millenium bridge in London [8]), steel structures excited by machines

such as centrifuges and fans, aircraft engines [9], helicopter rotors [10], tall and slender structures subject to wind-induced

vibrations, but also power lines [11] and long-span suspended bridges [12,13]. For a list of installations of vibration absorbers in

civil structures, the interested reader can refer to [14,15].

An overview of existing designs for passive vibration absorbers is given in Ref. [7]. They include classical absorbers with trans-

lational mass movements, pendulum absorbers, centrifugal pendulum absorbers [16], ball absorbers, sloshing liquid absorbers

[17] and particle vibration absorbers [18], although the sloshing liquid and particle vibration absorbers have qualitatively differ-

ent features than the more typical vibration absorbers with a concentrated mass. Many different configurations and variations

of the original vibration absorber were studied in the last decades, e.g., a damped host system [19], different combinations of
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response and excitation [20] and the use of multi-vibration absorbers to control several resonances [21].

A fundamental drawback of the linear tuned vibration absorber (LTVA) is that it requires a fine tuning between its natural

frequency and the targeted resonance frequency. The LTVA may therefore lose efficiency in the presence of uncertainty [22–24]

or nonlinearity [25]. In this context, the main contribution of this paper is to revisit the tuning strategy of a LTVA attached to a

primary system with uncertain stiffness and damping. As in previous studies [22,24,26,27], a min-max formulation is adopted; it

is solved using the scenario approach [28], a recently-introduced robust optimization method. The careful analysis of the results

obtained through the scenario approach brings new insight into the problem which gives rise to the concept of robust equal

peaks introduced in this paper.

The paper is organized as follows. Section 2 briefly reviews Den Hartog’s equal-peak method and the detuning of the LTVA

when attached to an uncertain system. In Section 3, the absorber tuning strategy is formulated as a worst-case design problem;

the scenario approach is also presented. Section 4 introduces the concept of robust equal peaks and provides numerical and

analytical solutions for tuning the robust LTVA. Section 5 discusses the validity and limitations of the proposed tuning strategy.

The conclusions of the present study are summarized in Section 6.

2. The linear tuned vibration absorber: equal-peak method

The steady-state response of an undamped mass-spring system subjected to harmonic excitation at a constant frequency can

be suppressed using an undamped LTVA, as proposed by Frahm in 1909 [2]. However, LTVA performance deteriorates signifi-

cantly when the excitation frequency varies. To improve robustness, damping was introduced in the absorber by Ormondroyd

and Den Hartog [4]. Denoting by k1 and c1 the stiffness and damping of the primary system and by k2 and c2 their analogous of

the absorber, the equations of motion of the coupled system are

m1ẍ1 + k1x1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) = f (t)

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0
(1)

and their counterpart in the frequency domain is[
k1 + k2 + i𝜔

(
c1 + c2

)
− 𝜔2m1 −

(
k2 + i𝜔c2

)
−
(

k2 + i𝜔c2

)
k2 + i𝜔c2 − 𝜔2m2

]{
X1

X2

}
=

{
F(𝜔)

0

}
(2)

where X1(𝜔) and X2(𝜔) are the displacements of the harmonically-forced primary system and of the damped LTVA, respectively.

Den Hartog realized that the receptance function of the primary mass, i.e., h1 = X1(𝜔)
F(𝜔) , passes through two invariant points

independent of absorber damping. He proposed to adjust the absorber stiffness to have two fixed points of equal heights in

the receptance curve and to select the absorber damping so that the curve presents a horizontal tangent through one of the

fixed points. This laid down the foundations of the so-called equal-peak method, widely used in practical applications [29]. As

illustrated in Fig. 1, the equal-peak method minimizes the maximum amplitude response of the primary system, corresponding

to H∞ optimization.
Fig. 1. Illustration of Den Hartog’s equal-peak method, 𝜔1 = 50 Hz, m1 = 10 kg, 𝜂 = 0.05. Equal peaks are obtained for k2 = 4.48e4 N/m and c2 = 39.98 N s/m.
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Fig. 2. LTVA detuning for 20% variation in the primary system’s stiffness k1 .
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Den Hartog [5] and Brock [6] derived approximate analytical formulas for the absorber stiffness and damping, respectively:

𝜔2

𝜔1

=

√
k2m1

k1m2

= 𝜂
1 + 𝜂

𝜉2 = c2

2
√

k2m2

=
√

3

8(1 + 𝜂)
(3)

here 𝜔1 and 𝜔2 are the natural frequencies of the primary system and of the absorber, respectively, 𝜂 = m2∕m1 is the mass

atio and 𝜉2 is the damping ratio of the absorber.

Interestingly, it is only recently that an exact closed-form solution to this classical problem could be found [30]:

𝜔2

𝜔1

= 2

1 + 𝜂

√√√√2
[

16 + 23𝜂 + 9𝜂2 + 2(2 + 𝜂)
√

4 + 3𝜂
]

3(64 + 80𝜂 + 27𝜂2)

𝜉2 = c2

2
√

k2m2

= 1

4

√
8 + 9𝜂 − 4

√
4 + 3𝜂

1 + 𝜂

(4)

hen the primary system is uncertain, the performance of the equal-peak method can quickly deteriorate. For instance, for 20%

ncertainty in the primary system’s stiffness k1, Fig. 2 shows that the maximum peak amplitude can increase by almost 200%.

he objective of this paper is therefore to revisit the equal-peak method in the presence of uncertainty.

. Worst-case design of the linear tuned vibration absorber

.1. Problem statement

In this section, the tuning of the LTVA for a primary system with uncertain stiffness and damping is formulated as a worst-

ase optimization problem. Hence, the LTVA that minimizes the maximum response amplitude of the primary system among all

ossible outcomes of the uncertain set is sought:[
c∗

2
, k∗

2

]
= arg

[
min

c2,k2∈ℝ+

(
max

[c1,k1]∈Δ
|||h1

(
𝜔|m1, c1, k1,m2, c2, k2

)|||∞
)]

, (5)

here ||h1(𝜔)||∞ denotes the H-infinity norm of the receptance of the primary system, and Δ represents the sample space.

.2. The scenario approach

Problem (5) is solved in Section 4.1 by means of the scenario approach, a general-purpose numerical method for robust
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optimization [28,31]. Here, we briefly recall the mathematical foundations of this technique.

Consider the robust optimization problem

y∗ = arg

[
min

y

(
cTy

)]
s.t. ∶

g(y, 𝛿) ≤ 0 ∀ 𝛿 ∈ Δ.
(6)

where y is the d-dimensional vector of design variables, 𝛿 ∈ Δ is a generic random quantity with probability distribution pΔ, c

is a constant vector, and g is a set of convex constraints with respect to y. The optimal solution of Problem (6), denoted by y∗, is

robust all over the uncertain domain Δ. Hence, y∗ is feasible for any sample 𝛿 ∈ Δ, i.e., g(y∗, 𝛿) ≤ 0.

When the event space of Δ is a dense set – as it is most often the case – solving Problem (6) is challenging because an

infinite number of constraints have to be enforced. The scenario approach solves a relaxed version of Problem (6), where the

obtained solution is only feasible in a subset of Δ such that the probability that a realization of the uncertain quantities belongs

to this subset is larger than a desired threshold 1 − 𝜖. Here 𝜖 ∈ (0, 1] is referred to as risk parameter. The extreme cases 𝜖 = 1 and

𝜖 = 0+ are associated to the solution of a deterministic problem (uncertainty is neglected) and of the original robust optimization

Problem (6), respectively.

The main theorem of the scenario approach [32] states that, given the confidence level 𝛽 ∈ [0, 1), the risk parameter 𝜖, and

n independent instances
(
𝛿1,… , 𝛿n

)
of Δ extracted according to pΔ and such that n satisfies

d−1∑
i=0

n!
i!(n − i)!

𝜖i(1 − 𝜖)n−i ≤ 𝛽, (7)

the solution of the finite-dimensional problem

y(s) = arg

[
min

y

(
cT y

)]
s.t. ∶

g(y, 𝛿) ≤ 0 ∀ 𝛿 ∈
(
𝛿1,… , 𝛿n

) (8)

satisfies, with probability not smaller than 1 − 𝛽, all unseen constraints in Δ except for a fraction 𝜖 of Δ, i.e.,

∃ Δs ⊂ Δ s.t. Pr
(

g
(

y(s), 𝛿
) ≤ 0, ∀ 𝛿 ∈ Δs

) ≥ 1 − 𝛽

Pr
(
Δs

) ≡ ∫Δs

pΔ (𝛿) d𝛿 ≥ 1 − 𝜖
(9)

The theorem is illustrated schematically in Fig. 3: by randomly extracting n samples from the uncertain set it is possible to

guarantee with a desired confidence, 1 − 𝛽, that the solution obtained by enforcing the constraints only for these samples (i.e., a

finite number of constraints) is feasible on a dense subset Δs which is at least a ‘portion’ 1 − 𝜖 of Δ. We further emphasize that

both 𝜖 and 𝛽 are chosen a priori.

Thanks to the replacement of Problem (6) with Problem (8), the solution becomes easily tractable using classical optimization

algorithms. However, based on the n instances or scenarios considered during the optimization, the solution is only guaranteed

with probability 1 − 𝛽 in the subset Δs, the size of which is governed by the user-defined parameter 𝜖. A conservative bound of

Equation (7) which gives an explicit expression of n as a function of 𝜖 and 𝛽 is [33]

n ≥ 2

𝜖
(d − ln 𝛽) (10)

Enforcing 𝛽 to zero requires an infinite number of scenarios. However, because 𝛽 appears as the argument of a logarithm, it can

be taken as small as desired, e.g., 𝛽 = 1e − 10, without substantially increasing the required number of scenarios. The probability

that the solution is verified in the subset Δs is thus virtually equal to 1.
Fig. 3. Schematic representation of the scenario approach.
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Depending on the application at hand, the theorem may yield very conservative solutions, i.e., the probability of the subset

where the constraints are violated by the computed solution y(s) can be much smaller than 𝜖. The sampling-and-discarding

theorem overcomes this issue [34]: for a solution with risk 𝜖, the greatest number of samples j that can be removed from a set

of n samples obeys the relation

j + d − 1!
j!(d − 1)!

j+d−1∑
i=0

n!
i!(n − i)!

𝜖i(1 − 𝜖)n−i ≤ 𝛽. (11)

Interestingly, the removed samples can be selected according to any arbitrary criterion. So, in practice, for a given risk, if n is

chosen as large as possible according to the available computational resources, the j removed samples should violate the solution

y(s), so that very similar a priori and a posteriori violation sets are obtained.

4. The concept of robust equal peaks

The design of a robust LTVA is first tackled in this section by means of the scenario approach with the sampling-and-

discarding theorem. The parameter𝛽 is set to 1e − 10 in all simulations. An analytical solution to the obtained numerical solution

is then sought.

Table 1 lists the parameters of the primary system and the considered mass ratio. The damping and stiffness of the primary

system are statistically independent random variables with uniform marginal distributions. Specifically, a 20% uncertainty is

considered for the stiffness, and the damping ratio is allowed to vary between 0 and 1%.

Table 2 is introduced to facilitate the connection between Section 3.2 and the notation used in the reminder of the paper.

4.1. Numerical solution using the scenario approach

The cost function of Problem (6) is linear with respect to the design variables. For this reason, we introduce an auxiliary

variable, h, to recast Problem (5) into the form of Problem (6):[
c∗

2
, k∗

2
, h∗

]
= arg

(
min

c2,k2,h∈ℝ+
h

)
s.t. ∶

|||h1

(
𝜔|m1, c1, k1,m2, c2, k2

)|||∞ ≤ h ∀
[
c1, k1

]
∈ Δ.

(12)

The optimum value of h, namely h∗, is identified by solving the optimization problem (analogously to c∗
2

and k∗
2
), and it represents

the worst-case magnitude of the H-infinity norm of the receptance function h1.

Fig. 4(a) presents the evolution of the optimal solution h∗ as a function of the risk. It appears that h∗ does not exceed 1.2e −
5 m∕N, a 30% improvement with respect to the classical LTVA (see Fig. 2). The optimal variable h∗ in the chance-constrained

problem is associated to the worst realization of h1 among all possible values of the uncertain parameters in Δs, which is a

subset of Δ. Hence, h∗ monotonically decreases with the risk 𝜖 because the size of the set Δs also decreases. However, if the
Table 1

Parameters considered for the design of the robust LTVA.  (a, b)
denotes the uniform distribution with support [a, b]; the tilde means

“distributed according to”.

Parameter Value

m1 10 kg

m2 0.5 kg

𝜔1∕ (2𝜋) 50 Hz

𝜉1 0.01

c1 ∼ (
0, 2 m1𝜔1𝜉1

)
k1 ∼ (

0.8 m1𝜔
2
1
, 1.2 m1𝜔

2
1

)
corr

(
C1, K1

)
0

Table 2

Analogy between the notations used in Section 3.2 and 4.1.

Section 3.2 Section 4.1

y [c2, k2, h]
c [0, 0, 1]
d 3

𝛿 [c1, k1]
Δ

[
0, 2 m1𝜔1𝜉1

]
×
[
0.8 m1𝜔

2
1
, 1.2 m1𝜔

2
1

]
pΔ Uniform distribution
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(a)

(b) (c )

Fig. 4. Optimal absorber as a function of the risk 𝜖. The performance index is illustrated in (a). Figures (b) and (c) depict the absorber’s stiffness and damping, respectively.
actual value of the uncertain parameters lie in the violation set, the H-infinity norm of h1 is greater than h∗. To better clarify

this point, consider the extreme case 𝜖 = 1. When the risk is maximum, the design of the absorber ignores the uncertainty.

Hence, the absorber is designed by using the classical equal peaks concept with the nominal values of the parameters of the

primary system. In this case, h∗ is the H-infinity norm of the nominal response function (tuned curve of Fig. 2). Fig. 4(b–c)

plot the corresponding damping and stiffness coefficients of the robust LTVA. For small risks, k∗
2

and c∗
2

take values around

k2 = 4e4 N∕m and c2 = 50 N s∕m, respectively, which are to be compared to those obtained using Den Hartog’s equal peak

method, i.e., k2 = 4.48e4 N∕m and c2 = 39.98 N s∕m.

Further insight into the obtained solution can be gained by analyzing the violation set. To this end, we first consider the 10%
risk solution for which h∗ was found to be 8.39e−6 m/N. Fig. 5, which illustrates the value ||h1(𝜔)||∞ in the whole uncertain set,

clearly shows that values greater than h∗ are obtained in the top- and bottom-left corners. Constraint violation therefore occurs

at the extremity of the stiffness’ uncertainty interval and for the smallest damping values. This finding is confirmed by looking at

the evolution of the violation set as a function of the risk. Fig. 6 reveals that the violation set is more and more squeezed toward

the top- and bottom-left corners as risk approaches 0.

The receptance curves of the samples used to compute the 10% risk-guaranteed solution, depicted in Fig. 7, also convey

important information. It turns out that the two worst samples, located close to the two extremities of the stiffness’ uncertainty

interval, present resonance peaks with identical amplitude.

Summarizing, these results suggest the concept of robust equal peaks which considers only two samples k
(min)
1

, c
(min)
1

and

k
(max)
1

, c
(min)
1

in the sample space Δ:

The solution of the original worst-case Problem (12) is such that the amplitude of the leftmost resonance peak of sample

k
(min)
1

, c
(min)
1

should be equal to the amplitude of the rightmost resonance peak of sample k
(max)
1

, c
(min)
1

.
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Fig. 5. ||h1(𝜔)||∞ in the uncertain set for the 10% risk-guaranteed absorber. The black line delimits the boundary of the violation set.

Fig. 6. Violation set as a function of the risk 𝜖.

Mathematically,

[
c∗

2
, k∗

2
, h∗

]
= arg

(
min

c2,k2 ,h∈ℝ+
h

)
s.t. ∶

||||h1

(
𝜔|m1, c

(min)
1

, k
(min)
1

,m2, c2, k2

)||||∞ = h,

||||h1

(
𝜔|m1, c

(min)
1

, k
(max)
1

,m2, c2, k2

)||||∞ = h.

(13)

Although nonlinear, Problem (13) has just two equality constraints and can be efficiently solved using classical optimizers. The

solution found is k2 = 3.97e4 N∕m and c2 = 50.39 N s∕m.

We finally note that the concept of robust equal peaks holds for a given bounded event space, Δ, regardless of the specific

probability distribution, pΔ. This conjecture is further discussed in Section 5.
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Fig. 7. Receptance curves of the samples used at 𝜖 = 0.1. The red-shaded region defines the envelope of the samples. The orange lines represent the worst samples. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.2. An analytical solution

The previous section has shown that an undamped primary system corresponds to the worst-case scenario, meaning that

damping uncertainty can be safely neglected. The stiffness is defined on the bounded support
[
k(min), k(max)].

We adopt the notations

𝜔1 =

√
k
(max)
1

+ k
(min)
1

2m1

, 𝜂 = m2

m1

, 𝜈 =
k
(max)
1

− k
(min)
1

k
(max)
1

+ k
(min)
1

(14)

for the nominal resonance frequency, the mass ratio, and the relative range of the stiffness, respectively, and

𝜆 = c2

m2𝜔1

, 𝜌 = k2

m2𝜔
2

1

(15)

are the dimensionless parameters of the absorber. Defining 𝜃 = 𝜔∕𝜔1 the dimensionless pulsation, the equations of motion (2)

become[
(1 + 𝛿) + 𝜂𝜌 + i𝜃𝜂𝜆 − 𝜃2 −𝜂 (𝜌 + i𝜃𝜆)

− (𝜌 + i𝜃𝜆) 𝜌 + i𝜃𝜆 − 𝜃2

]{
X1

X2

}
= 1

m1𝜔
2

1

{
F(𝜃)

0

}
(16)

where 𝛿 ∈ [−𝜈, 𝜈] is the random variable modeling the stiffness uncertainty. The objective of the tuning strategy developed

herein is to find analytical values of 𝜌 and 𝜆 for a given mass ratio 𝜂 so as to solve the robust equal-peak Problem (13).

The absolute value of the dimensionless receptance function is

|||h̃1(𝜃|𝜆, 𝜌, 𝜂, 𝛿)||| = ||||| h1

m1𝜔
2

1

||||| =
√

𝜃2𝜆2 + 𝜃2 − 𝜌

a(𝜃|𝜂, 𝛿) 𝜆2 + b(𝜃|𝜌, 𝜂, 𝛿) , (17)

where

a(𝜃|𝜂, 𝛿) = 𝜃2
[
𝜃2(1 + 𝜂) − 1 − 𝛿

]2
,

b(𝜃|𝜌, 𝜂, 𝛿) = {
𝜃4 − 𝜃2

[
𝜌 (1 + 𝜂) + 1 + 𝛿

]
+ 𝜌 (1 + 𝛿)

}2
.

(18)

According to the theory of the classical equal-peak method, for given 𝜌, 𝜂, and 𝛿, the receptance curve exhibits two fixed points

p and q for varying 𝜆, as illustrated in Fig. 8. Their abscissas, 𝜃p and 𝜃q, are such that Equation (17) is independent of 𝜆. This

occurs when

𝜃2
p,q b(𝜃p,q|𝜌, 𝜂, 𝛿) = (

𝜃2
p,q − 𝜌

)
a(𝜃p,q|𝜂, 𝛿). (19)

Solving Equation (19) for 𝜃p,q yields

𝜃2
p,q = 𝜌(1 + 𝜂) + 1 + 𝛿 ∓

√
𝜌2(1 + 𝜂)2 − 2𝜌(1 + 𝛿) + (1 + 𝛿)2

𝜂 + 2
. (20)
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Fig. 8. Receptance curves for the parameters listed in Table 1. Blue and orange curves correspond to 𝛿 = ∓0.2, respectively. Dash-dotted, solid and dashed lines correspond

to different absorber damping values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The ordinates of the fixed points can be evaluated by means of Equation (17) for any arbitrary damping value 𝜆. Manipulations

are simplified using 𝜆 → ∞, so that|||h̃1(𝜃p,q|∞, 𝜌, 𝜂, 𝛿)|||2 = 1

𝜃2
p,q (1 + 𝜂) − 1 − 𝛿

. (21)

Following the robust equal-peak tuning strategy, only the two samples corresponding to 𝛿 = ±𝜈 have to be considered. Their

receptance curve possesses two fixed points denoted p− and q− for 𝛿 = −𝜈, and p+ and q+ for 𝛿 = 𝜈. As illustrated in Fig. 8, the

optimal stiffness of the robust LTVA 𝜌∗ is obtained by imposing equal ordinates to the fixed points p− and q+.||||h̃1

(
𝜃p−

||∞, 𝜌∗, 𝜂,−𝜈
)|||| = ||||h̃1

(
𝜃q+

||∞, 𝜌∗, 𝜂, 𝜈
)||||, (22)

Substituting Equations (20) and (21) into Equation (22) and solving for 𝜌∗ results in

𝜌∗ =
1 − 𝜈

√
𝜈2(1 + 𝜂)2 + 𝜂 (𝜂 + 2)(
𝜈2 + 1

)
(1 + 𝜂)2

. (23)

As in the classical equal-peak method, damping is determined by imposing horizontal tangents at p− and q+. Differentiating

Equation (17) with respect to 𝜃 yields

d
|||h̃1

|||2
d𝜃

= a2𝜆
4 + a1𝜆

2 + a0, (24)

where

a2 = −2𝜃3 (1 + 𝜂)
√

a(𝜃|𝜂, 𝛿),
a1 = −4𝜃𝜌2 (1 + 𝜂)

√
a(𝜃|𝜂, 𝛿) − 𝜃6

[
𝜃2

(
𝜂2 + 2𝜂 + 4

)
− 4 (1 + 𝛿)

]
+ 2𝜃4𝜌

[
2𝜃2

(
𝜂2 + 3𝜂 + 2

)
− (3𝜂 + 4) (1 + 𝛿)

]
,

a0 = −2
(
𝜃2 − 𝜌

) [
𝜃4 + 𝜌2 (1 + 𝜂) − 2𝜃2𝜌

]√
b(𝜃|𝜌, 𝜂, 𝛿)

(25)

Table 3

Absorber parameters for the classical and robust equal-peak methods, 𝜈 = 0.2.

Parameter Classical Robust – numerical Robust – analytical

k2 4.48e4 N∕m 3.97e4 N∕m 3.97e4 N∕m

c2 39.98 N s∕m 50.39 N s∕m 52.37 N s∕m
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Fig. 9. Comparison between numerical and analytical implementation of the robust equal peaks.

Evaluating Equations (24) and (25) for p− and q+ and solving

d
|||h̃1

|||2
d𝜃

|||||||𝜃=𝜃p− ,q+

= 0 (26)

for 𝜆2 yields 𝜆p−
and 𝜆q+

. Closed-form expression of Equation (26) is

a
(p−,q+)
2

𝜆4
p−,q+

+ a
(p−,q+)
2

𝜆2
p−,q+

+ a
(p−,q+)
0

= 0, (27)

with

a
(p−,q+)
2

= − 2𝜃4
p−,q+

(1 + 𝜂)
[
𝜃2

p−,q+
(1 + 𝜂) − 1 ± 𝜈

]
,

a
(p−,q+)
1

= − 4𝜃2
p−,q+

𝜌∗2 (1 + 𝜂)
[
𝜃2

p−,q+
(1 + 𝜂) − 1 ± 𝜈

]
− 𝜃6

p−,q+

[
𝜃2

p−,q+

(
𝜂2 + 2𝜂 + 4

)
− 4 (1 ∓ 𝜈)

]
+ 2𝜃4

p−,q+
𝜌∗

[
2𝜃2

p−,q+

(
𝜂2 + 3𝜂 + 2

)
− (3𝜂 + 4) (1 ∓ 𝜈)

]
,

a
(p−,q+)
0

= − 2
(
𝜃2

p−,q+
− 𝜌∗

) [
𝜃4

p−,q+
+ 𝜌∗2 (1 + 𝜂) − 2𝜃2

p−,q+
𝜌∗
] {

𝜃4
p−,q+

− 𝜃2
p−,q+

[
𝜌∗ (1 + 𝜂) ∓ 𝜈 + 1

]
+ 𝜌∗ (1 ∓ 𝜈)

}
,

𝜃2
p−,q+

= 𝜌∗(1 + 𝜂) + 1 ∓ 𝜈 ∓
√
𝜌∗2(1 + 𝜂)2 − 2𝜌∗(1 ∓ 𝜈) + (1 ∓ 𝜈)2

𝜂 + 2
.

(28)

(a) (b)

Fig. 10. Performance of the analytical rule as a function of stiffness detuning (a) and of primary’s damping (b). Dashed lines are computed by using the classical Den Hartog’s

rule (Equation (3)). Solid lines use the analytical robust equal peaks tuning rule (Equation (29)).
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Fig. 11. Samples used by the scenario approach for very large uncertainty in the primary system’ stiffness, namely 55% (a) and 70% (b). The risk parameter is set to 𝜖 = 0.1.
Equation (27) has always a positive and a negative solution for physically meaningful systems. The positive value is systemati-

cally chosen. The optimum value of the damping parameter is taken as their average,
𝜆p−+𝜆q+

2
, so that the dimensional optimal

parameters of the absorber are

k∗
2
= m2 𝜔

2

1
𝜌∗, c∗

2
= m2 𝜔1

𝜆p−
+ 𝜆q+

2
. (29)

For the parameters listed in Table 1, Table 3 compares the absorber coefficients calculated numerically through Equation (13)

and analytically through the classical (3) and robust (29) equal-peak methods. The corresponding receptance curves in Fig. 9 con-

firm the important detuning of the classical equal-peak method and also shows that the proposed analytical solution presents

only a very slight deviation from the numerical solution. A more quantitative assessment for various uncertainty levels is pro-

vided in Fig. 10. For large uncertainty (𝜈 = 0.3), the error of the analytical rule is barely 6% whereas the error given by classical

equal-peak method amounts to 110%.

The error when the lower bound of the damping interval is not zero is depicted in Fig. 10(b). Unsurprisingly, the predictive

capability of the analytical formulas obtained for an undamped primary system deteriorates. However, the error remains below
10% even for a lower bound of the damping ratio of 2%.

Fig. 12. Violation set in function of the risk 𝜖 when the damping and stiffness of the primary system are noncorrelated truncated Gaussian random variables.
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5. Further considerations
This section further investigates the validity of the concept of robust equal peaks. Specifically, we first analyze whether the

concept still holds for an arbitrarily large uncertain set. If the uncertainty in the primary system’ stiffness is increased up to 55%,

Fig. 11(a) shows that equal peaks still hold between the two samples located at the extremes of the stiffness’ uncertainty interval.

However, it can be observed that the envelope of the samples reaches a plateau at the right extremity of the interval. Increasing

the uncertainty further, i.e., to 70% as in Fig. 11(b), equal peaks occur between two samples which are not at the extremes of the

uncertainty interval. For this fairly unrealistic uncertainty, the numerical and analytical solutions obtained through Equations

(13) and (29), respectively, can no longer be exploited, but the risk-guaranteed absorber can still be designed by means of the

scenario approach.

The influence of the joint probability distribution pΔ is now examined. Fig. 12 depicts the violation set in the case of trun-

cated Gaussian distributions. Even if the violation set seems to shrink at a slower pace, this figure presents qualitatively the

same features as for the uniform distribution in Fig. 6. For a bounded but non-rectangular distribution, one should remark that

imposing equal peaks at the extremes of the uncertainty interval yields a slightly conservative solution in terms of receptance

h∗, because the outer rectangle encompassing the original event space is considered. Finally, for an unbounded Gaussian dis-

tribution, robust equal peaks cannot be strictly imposed. Risk-guaranteed solutions can still be computed using the scenario

approach, but a good approximation to the worst-case solution will require a very small risk, and, hence, a large computational

burden. To alleviate it, the convex hull of the samples can be considered or even just the extreme stiffness and lowest damping

of the samples themselves.

6. Conclusion

The objective of this paper was to develop a new tuning strategy for linear vibration absorbers in the case of uncertain reso-

nances. Specifically, for H∞ minimization of the receptance curve, we have shown that the amplitude of the leftmost resonance

peak of the sample associated with minimum stiffness and damping should be equal to the amplitude of the rightmost reso-

nance peak of the sample associated with the maximum stiffness and minimum damping. This problem can be solved either

numerically through a simple minimization problem with equality constraints, i.e., Equation (13), or analytically using Equation

(29). This tuning strategy, termed the robust equal-peak method, provides a generalization of Den Hartog’s equal-peak method

in the presence of uncertainty in the primary system.
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