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Low-thrust transfer: a fast-oscillating control problem
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Orbital perturbations may introduce new frequencies

o

.‘. Third-body effects

Earth's non-sphericity 2 Satellite longitude

Objective: Simplify dynamics by averaging
Motivation: Initial guess to shooting algorithms

Challenges: Do adjoint variables introduce additional fast dynamics?
What happens when resonances are crossed?



Outline

1. Minimum time control of fast oscillating systems

2. Averaging the optimal control Hamiltonian

3. Time optimal deorbiting of a solar sail




1. Minimum time control of fast oscillating systems

min { subject to:
Slow variablgs ............................. lul|<1

do _
A /
at =@V
»-Low thrust, I(0) = Io
,, I(ty) = 1
Fast variables €= f f



1. Hamiltonian of the extremal flow

Denote by p; and p, the adjoints to / and ¢

Define the pre-Hamiltonian

m
H' = w(l)-pg +e | fo(l, ¢)+ D Fi(l, p)ui| -py
i=1




1. Hamiltonian of the extremal flow

Denote by p; and p, the adjoints to / and ¢

Define the pre-Hamiltonian

m
H' = w(l)-pg +e | fo(l, ¢)+ D Fi(l, p)ui| -py
i=1

Apply Pontryagin maximum principle
H = max H'(I,¢,py, Py, U)

|[uf]<1

= w(l) -py +e€ ) Py +J D (Fil
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1. Necessary conditions for optimality

Boundary conditions

1(0) = Io Py(0) =0
I(tf) = If Py(if) =0

Equations of motion

di_9H dp; __oH
dt op; dt ol
dg OH dpy o H

dt  apy dt o



_l1. Solution of the problem via shooting

Find tr and p(0) such that q(t) = qr




1. How averaging can facilitate the solution via shooting?

Smoothing: Less local minima, facilitates convergence

Reduced system: Independent of ¢, p, is constant

Averaged trajectory
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1. How averaging can facilitate the solution via shooting?

A priori knowledge of the control structure is not needed!

Control [-]
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2. Can we use averaging? Are adjoints slow or fast?

Hamiltonian:
?

H = Py~ () + K (1,6, p1, Py

Equations of motion of the adjoints:
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2. The averaged control system

Assume that / is in a non-resonant zone (i.e., incommensurate frequencies w(/))

Averaged Hamiltonian

H = | #(1.6,p,pg) d

r

r

I
T3

(1) Py ek (1,9, p1. Py) | dg

For trajectories of interest: p4(t) is e-slow and e-small (not proven here)
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2. A "non-conventional” fast-oscillating problem

Classical fast-oscillating system Problem studied in this talk
dx dx _ f
47 = € f(x, ¢) ?—e (X, ¢, n) +9(x) n
d¢ _ w(x) d_'] = € h(x, ¢, n)
dt t
22 _ wix)
dt

Initial conditions such that
n(t)=0(e) Vtel0,t]
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2. Case study: transfer in the Earth-Moon system
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_lz. How to generate "reliable" averaged trajectories?
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¢$(0) = (90,90) deg

Semi-major axis [R/o0n)

Same 1(0), py(0), py(0),
Different ¢(0) |
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_lZ This is because p; is constant and c p’ e%—p(pa—“’

x 10~ $(0) = (90, 180) deg
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2. Short-periodic variations

Averaged + short periodic trajectory
Y=J+€T (J, )

Time

. /
Where ¢y are Fourier coefficients of %

19



4% 10~

_lz. Transforming p,(0) is the key

¢(0) = (90,90) deg

10
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t/TMoon



_lZ. Transforming p,(0) is the key
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_lZ. The classical transformation is not adequate for p;
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_lZ. Nested transform for the short-periodic variations of py

First, build the transformation of py:
Py(®) = Py + Tp,(J, b, Pys Py)

Then, use this information to evaluate the Fourier coefficients of:

23



_lZ. Short-periodic variations of p; are accurately evaluated

1.01

Averaged + short periodic

EO.Q? Original system
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t/TMoon [']
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_lz. Transforming initial conditions is not yet enough

Semi-major axis [R/oon)

0.42

0.2

same 1(0), py(0),
Different ¢(0), ps(0)

|

#(0) = (90,90) deg

20
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2. Is it a resonance effect?

10

$(0) = (90,90) deg
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6:1 resonance
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2. Yes, but divergence happened much earlier!
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8:1 resonance
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2. What happens when resonances are crossed?

P11 H

1
| il
-~
o),
: Y
Averaged N
+ ! W
short periodic:;  Averaged , .
¥ "W, Original system
19:1 resonance . i8:1 resonance
0.5 * .
o) 5 10

t/TMoon [‘]

15

28



‘lZ. Resonance crossing induces small jumps of py

2
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2. Resonant averaged form

Assume that there is k such that:
lw(J) - k| < cVe

Perform the change of variables:

) 1
L=J, =k—¢2, a:k g
Ly Ly
PL =Py Pﬁ‘k b p —kl i
- ’ - ’ a
1kl|2 1kl|2

Average with respect to o

L 21 k kJ_ k kJ_
7{:/ W(L, [ ]ﬁ,[ ]Pﬁ,o)d
k=, PL | T ez ) Y LK Tk VAL
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2. Transformation to interface averaged forms

x 10>

, Resonantaverage

Restoring semi-fast angle
L=dJ+eT (J,B)

|

10
t/TMoon [']
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‘lz. Jumps of adjoints to fast variables are properly

5 X 10°
| Reconstructed(resonant form) |
= Mlihhm.h
$ mw'r[r;r"r’w
_17 -
EReconstructed (double average)
i 5 10

t/TMoon [']
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2. The transform enable 'gluing' of different forms

0.6 L *

15
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3. De-orbiting leveraging on solar radiation pressure

[02)) Initial orbit (Molniya-like)
a=26000km, e=0.7,
I =65deg, w=270deg, Q=0deg

Final conditions
Perigee altitude = 250km
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3. Mathematical modeling

Assumptions

SRP is the only perturbation

"Cannonball" model (SRP toward Sun direction)
"Perfect sail" (SRP is negligible when u = 0)

Yvyvy

Attitude dynamics is neglected

Optimal control
» Switching function

s=f(1,9)-pr +91(/,)Py

» Control

1 it (¢, pr.pg) > O

0 otherwise

I-
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3. Semi-major axis and eccentricity

4.08

a [Rp]

3.99

0.74

0.69

Osculating
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3. Trajectory of the perigee altitude
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_l3. Short-periodic oscillations include the control structure

1500

Perigee altitude [km]
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3. Control as a function of the phases at initial time
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3. "Four-seasons" control structure

2 bangs per orbit 2 bangs per orbit
I | | |
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3. "Four-seasons" control structure

o Bang-Bang

u=1
(max SRP)

g Bang-Bang

Ecliptic plane

u=0
(min SRP)
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3. Way forward

Complexity of the model

Orbital perturbations

Eclipses

Singular arcs

» The second fast angle is: Ig,,—Q

» Similar treatment of bang-bang (regularization)
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Conclusion

Non-conventional fast-oscillating dynamical problem

Analogies with other problems in space mechanics (e.g., quasi-satellite orbits)

Key role of the transformation of the adjoints to fast variables

Benefits of averaged control system:

» Reduced set of unknown

» Smoothed trajectories

» Control structure is not required
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