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Abstract

We consider a coalition formation among players, in an n-player strategic game, over
infinite horizon. At each time a randomly selected coalition makes a joint deviation, from a
current action profile to a new action profile, which is strictly beneficial for all the players
belonging to the coalition. Such deviations define a stochastic coalitional better-response
(CBR) dynamics. The stochastic CBR dynamics either converges to a K-stable equilibrium
or becomes stuck in a closed cycle. We also assume that at each time a selected coalition
makes mistake in deviation with small probability. We prove that all K-stable equilibria and
all action profiles from closed cycles, having minimum stochastic potential, are stochastically
stable. Similar statement holds for strict K-stable equilibrium. We apply the stochastic CBR
dynamics to the network formation games. We show that all strongly stable networks and
closed cycles of networks are stochastically stable.

Keywords— Strong Nash equilibrium, Coalitional better-response, Stochastic stability, Net-
work formation games, Strongly stable networks.

1 Introduction

In a repeated play of a strategic game over infinite horizon, a Nash equilibrium that is played in
the long run depends on an initial action profile as well as the way all the players choose their
actions at each time. Young [25] considered an n-player strategic game where at each time all the
players make a simultaneous move and each player chooses an action that is the best response
to k previous games among the m, k ≤ m, most recent games in the past. In general, this
dynamics need not converge to a Nash equilibrium, it may stuck into a closed cycle. Young [25]
also considered the case where at each time with small probability each player makes mistake
and chooses some non-optimal action. These mistakes add mutations into the dynamics. In
general the mutations can be sufficiently small. This leads to the definition of a stochastically
stable Nash equilibrium which is selected by the stochastic dynamics as mutations vanish. Young
proposed an algorithm to compute the stochastically stable Nash equilibria. He showed that the
risk dominant Nash equilibrium of a 2 × 2 coordination game is stochastically stable. Kandori
et al. [16] considered a different dynamic model where at each time each player plays with
every other player in a pairwise contest. The pairwise contest is given by 2 × 2 symmetric
matrix game and each player chooses an action which has higher expected average payoff. The
mutations are present into dynamics due to wrong actions taken by the players. They showed

∗The authors’ names are given in alphabetic order.
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that the risk dominant Nash equilibrium of a 2 × 2 coordination game is stochastically stable.
That is, for 2× 2 coordination games the dynamics given by [25] and [16] select the same Nash
equilibrium. Fudenberg et al. [10] proposed a dynamics where at each time only one player is
selected to choose actions. The mutations with small probability also occur at each time. The
risk dominant Nash equilibrium of a 2× 2 coordination game need not be stochastically stable
under this dynamics.

The equilibrium concept which are stable against the coalitional deviations are more suitable
for the situations where players can a priori communicate, being in a position to form a coalition
and jointly deviate in a coordinated way. Sawa [24] introduced such an equilibrium concept
which is called (strict) K-stable equilibrium, where K is a set of all feasible coalitions. A (strict)
K-stable equilibrium corresponds to a (strict) strong Nash equilibrium [1] if there is no restriction
on coalition formation. As motivated from the application of K-stable equilibria in network
formation games considered in [7, 14, 13], we restrict ourselves to only pure actions. A K-stable
equilibrium need not always exist and in such case there exist some set of action profiles forming
a closed cycle. Recently, some stochastic dynamics due to coalitional deviations have been
proposed [4, 19, 24]. Sawa [24] studied the stochastic stability in general finite games where the
mutations are present through a logit choice rule. Newton [19] considered the situation where
profitable coalitional deviations are given greater importance than unprofitable single player
deviations. Avrachenkov et al. [4] studied the stochastic stability for network formation games
with teams. In general, the stochastic stability results depend on the way actions being chosen
during the infinite play. Some other famous works on stochastic stability in different settings
include [8, 9, 10, 20, 21, 11, 23, 18, 22].

In this paper, we consider the coalition formation in a strategic game where at each time
players are allowed to form a coalition and make a joint deviation from the current action profile
if it is strictly beneficial for all the members of the coalition. Such deviations define a coalitional
better-response (CBR) dynamics. We assume that the coalition formation is random and at
each time only one coalition can be formed among all feasible coalitions. We also consider the
possibility of making wrong decision at each time by the selected coalition. These wrong decisions
are made with small probability. These mistakes work as mutations and add perturbations into
CBR dynamics. We prove that the perturbed CBR dynamics selects K-stable equilibria or
closed cycles, that have minimum stochastic potential among all action profiles, in the long run
as mutations vanish. If there is no restriction on coalition formation, CBR dynamics selects all
the strong Nash equilibria and closed cycles, i.e., all the strong Nash equilibria and closed cycles
are stochastically stable. The similar CBR dynamics can be given for the case where each time
a coalition deviate from a current action profile such that all the players from the coalition are
at least as well off at new action profile and at least one player is strictly better off. In this
case the similar results hold for strict K-stable equilibrium and strict strong Nash equilibrium
(SSNE). We apply CBR dynamics corresponding to SSNE to network formation games where
nodes (players) of a network form a coalition and make a move to a new network if it offers
each player at least as much as it is in the current network and at least one player gets strictly
better payoff. We prove that all strongly stable networks and closed cycles are stochastically
stable. The CBR dynamics generalizes the stochastic dynamics considered in [4] by considering
the general finite games. The stochastic dynamics for pairwise stable networks considered in
[15] can also be viewed as a special case of stochastic CBR dynamics.

The paper is organized as follows. Section 2 contains the model and few definitions. We
describe the CBR dynamics in Section 3. Section 4 contains the application of CBR dynamics
to network formation games. We conclude our paper in Section 5.
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2 The Model

We consider an n-player strategic game. Let N = {1, 2, · · · , n} be a finite set of players. For
each i ∈ N , let Ai be a finite action set of player i whose generic element is denoted by ai.
Then, A =

∏n
i=1Ai is defined as a set of all action profiles whose generic element is denoted by

a = (a1, a2, · · · , an). The payoff function of player i is defined as ui : A → R. We consider the
situation where players are allowed to communicate with each other. As a consequence they can
form a coalition and revise their strategies jointly. In many situations it may not be feasible to
form all types of coalitions. Let K ⊆ P(N) \ φ be the set of all feasible coalitions, where P(N)
denotes the power set of N and φ an empty set. For a coalition S ∈ K, define AS =

∏
i∈S Ai

whose element is denoted by aS and a−S denotes an action profile of the players outside S. A
coalition of players jointly deviate from a current action profile if new action profile is strictly
beneficial for all the players from the coalition. Such deviations are called improving deviations
and it leads to the definition of a K-stable equilibrium. In some cases, a coalition of players
jointly deviate from a current action profile if at new action profile each player is at least as
well off and one player is strictly better off. Such deviations leads to the definition of a strict
K-stable equilibrium.

Definition 2.1. An action profile a∗ is said to be a K-stable equilibrium if there is no S ∈ K
and a ∈ A such that

1. ai = a∗i , ∀ i /∈ S.

2. ui(a) > ui(a
∗), ∀ i ∈ S.

If K = P(N) \φ, a K-stable equilibrium is a strong Nash equilibrium (SNE) [1]. Let A(S, a)
be the set of all action profiles reachable from a via deviation of coalition S. It is defined as

A(S, a) = {a′|a′i = ai, ∀ i /∈ S and a′i ∈ Ai, ∀ i ∈ S}.

A coalition always has option to do nothing, so a ∈ A(S, a). Let I1(S, a) be a set of improved
action profiles reachable from an action profile a via improving deviations of coalition S, i.e.,

I1(S, a) = {a′|a′i = ai, ∀ i /∈ S and ui(a
′) > ui(a), ∀ i ∈ S}. (1)

For an improved action profile a′ ∈ I1(S, a), an action profile a′S of all the players from S is
called a better-response of coalition S against a fixed action profile a−S of the players outside S.
Define, I1(S, a) = A(S, a) \ I1(S, a) as a set of all action profiles due to the erroneous decisions
of coalition S. The set I1(S, a) is always nonempty for all S and a because a ∈ I1(S, a). A
K-stable equilibrium need not always exist. In such a case there exist a set of action profiles lying
on a closed cycle and all such action profiles can be reached from each other via an improving
path. The definitions of closed cycle and improving path are as follows:

Definition 2.2 (Improving Path). An improving path from a to a′ is a sequence of action profiles
and coalitions a1, S1, a

2, · · · , am−1, Sm−1, am such that a1 = a, am = a′ and ak+1 ∈ I1(Sk, ak)
for all k = 1, 2, · · · ,m− 1.

Definition 2.3 (Cycles). A set of action profiles C form a cycle if for any a ∈ C and a′ ∈ C
there exists an improving path connecting a and a′. A cycle is said to be a closed cycle if no
action profile in C lies on an improving path leading to an action profile that is not in C.

Theorem 2.4. There always exists a K-stable equilibrium or a closed cycle of action profiles,
or both K-stable equilibrium and closed cycle.
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Proof. An action profile is a K-stable equilibrium if and only if it is not possible for any feasible
coalition from set K to make an improving deviation from it to another action profile. So, start
at an action profile. Either it is K-stable equilibrium or there exists a coalition that can make
an improving deviation to another action profile. In the first case result is established. For the
second case the same thing holds, i.e., either this new action profile is a K-stable equilibrium or
there exists a coalition that can make an improving deviation to another action profile. Given
the finite number of action profiles, the above process either finds an action profile which is a
K-stable equilibrium or it reaches to one of previous profiles, i.e., there exists a cycle. Thus, we
have proved that there always exists either a K-stable equilibrium or a cycle. Suppose there are
no K-stable equilibria. Given the finite number of action profiles and non-existence of K-stable
equilibria there must exists a maximal set C of action profiles such that for any a ∈ C and
a′ ∈ C there exists an improving path connecting a and a′, and no action profile in C lies on an
improving path leading to an action profile that is not in C. Such a set C is a closed cycle.

An strict K-stable equilibrium can be defined similarly. An action profile a∗ in Definition 2.1
is said to be strict K-stable equilibrium if the condition 1 is same and the condition 2 is ui(a) ≥
ui(a

∗) for all i ∈ S with at least one strict inequality. Further if K = P(N) \ φ, a∗ is a strict
strong Nash equilibrium (SSNE). In this case, for a given action profile a and a coalition S ∈ K
the set of improved action profiles I2(S, a) is defined as,

I2(S, a) = {a′|a′i = ai, ∀ i /∈ S, and ui(a
′) ≥ ui(a), ∀ i ∈ S, uj(a′) > uj(a), for some j ∈ S}.

(2)
and I2(S, a) = A(S, a) \ I2(S, a). The definitions of improving path and cycles can be defined
analogously to previous case. A result similar to Theorem 2.4 holds, i.e., there always exists at
least a strict K-stable equilibrium or a closed cycle of action profiles or both. A strict K-stable
equilibrium is always a K-stable equilibrium, i.e., the set of strict K-stable equilibrium is a subset
of the set of K-stable equilibrium.

Now, we give few examples of two player game illustrating the presence of K-stable equilib-
rium and closed cycle. In particular, we allow only the coalitions of size 1, and hence a K-stable
equilibrium is a Nash equilibrium.

Example 2.5. Consider a two player game

b1 b2

a1
a2

(
(4, 3) (2, 5)

(6, 1) (3, 2)

)
.

Here (a2, b2) is the only Nash equilibrium that can be reached from all other action profiles via
improving deviations. The situation is described in Figure 1.

A directed edge (a1, b1)
{1}−−→ (a2, b1) of Figure 1 represents a deviation by player 1. The other

directed edges are similarly defined. The self loop at (a2, b2) shows that a unilateral deviation
from (a2, b2) is not possible.

Example 2.6. Consider a two player game

b1 b2 b3

a1
a2
a3

(4, 4) (0, 0) (0, 0)

(0, 0) (4, 5) (1, 6)

(0, 0) (2, 5) (6, 1)

 .

The Example 2.6 has both Nash equilibrium and closed cycle. The action profile (a1, b1) is a
Nash equilibrium and the closed cycle is given by Figure 2.
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(a1, b1)

(a2, b1)

(a2, b2)

(a1, b2)

{2}{1}

{2} {1}

Figure 1: Nash equilibrium and Improving deviations

(a2, b2)

(a2, b3)

(a3, b3)

(a3, b2)

{2}

{1}{2}

{1}

Figure 2: Closed Cycle

3 Dynamic play

We consider the n player strategic game defined in Section 2 where players can a priori com-
municate with each other and form a coalition. They jointly deviate from the current action
profile to a new action profile if new action profile is strictly beneficial for all the members of
the coalition. We consider the coalition formation over infinite horizon. At each time a coali-
tion is randomly formed and it makes an improving deviation from a current action profile to
a new action profile according to the improved action profile sets defined by (1). That is, at
new action profile the actions of the players outside the coalition remain same as before and
each player of the coalition is strictly benefited. If there are no such improved action profiles
for a coalition then it does not deviate. The same thing repeats at next stage and it continues
for infinite horizon. Such deviations define a CBR dynamics. We assume that the coalition
formation is random and at each time only one coalition can be formed. If there are more than
one improved action profiles for a coalition then each improved action profile can be chosen with
positive probability. That is, the CBR dynamics is stochastic in nature. The CBR dynamics
defines a Markov chain over a finite set of action profiles A. We also assume that at each time a
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selected coalition makes mistake and jointly deviate to an action profile where all the members
of selected coalition are not strictly benefited. This happens with very small probability. Such
mistakes work as mutations and it adds another level of stochasticity in the CBR dynamics. As
a consequence we have perturbed Markov chain, see e.g., [2, 3]. We are interested in the action
profiles which are going to be selected by the CBR dynamics as mutations vanish. We next
describe the stochastic CBR dynamics as discussed above.

3.1 A stochastic CBR dynamics without mistakes

At each time t = 0, 1, 2, · · · a coalition St is selected randomly with probability pSt > 0.
We assume that at each time selected coalition makes an improving deviation from current
action profile at, i.e., at time t + 1, the new action profile is at+1 ∈ I1(St, at) with probability
pI1(at+1|St, at) where pI1(·|St, at) is a probability distribution over finite set I1(St, at). If there
is no improving deviation for coalition St, a

t+1 = at. Let X0
t denotes the action profile at time

t, then {X0
t }∞t=0 is a finite Markov chain on set A. The transition law P 0 of the Markov chain

is defined as follows:

P 0(X0
t+1 = a′|X0

t = a) =
∑

S∈K;I1(S,a)6=φ

pS pI1(a′|S, a)1I1(S,a)(a
′) +

∑
S∈K;I1(S,a)=φ

pS1{a′=a}(a
′),

(3)

where 1B is an indicator function for a given set B. It is clear that the K-stable equilibria and
closed cycles are the recurrent classes of P 0. A K-stable equilibrium corresponds to an absorbing
state of P 0 and a closed cycle corresponds to a recurrent class of P 0 having more than one action
profiles.

From Example 2.6 it is clear that in general the closed cycles together with K-stable equilibria
can be present in a game. In that case, the CBR dynamics need not converge. In Example 2.6
the CBR dynamics need not converge to Nash equilibrium (a1, b1) because once CBR dynamics
enter into closed cycle given in Figure 2 then it will never come out of it. The closed cycle
C = {(a2, b2), (a2, b3), (a3, b3), (a3, b2)} is a recurrent class and (a1, b1) is an absorbing state of
Markov chain P 0 corresponding to the game given in Example 2.6.

We call a game acyclic if it has no closed cycles. The acyclic games include coordination
games. There exists at least one K-stable equilibrium for acyclic games from Theorem 2.4. For
acyclic games the Markov chain defined by (3) is absorbing. Hence, from the theory of Markov
chain the CBR dynamics given in Section 3.1 will be at K-stable equilibrium in the long run no
matter from where it starts (see [17]).

3.2 A stochastic CBR dynamics with mistakes

We assume that at each time t a selected coalition St makes error and deviate from at to an
action profile where at least one player from the coalition St is not strictly better off. We
assume that at action profile at, coalition St makes error with probability εf(St, a

t) ∈ (0, 1),
where f(St, a

t) takes into account the fact that some coalitions can be more prone to make errors
than others and that some action profiles may lead to wrong choices more often than others.
The parameter ε allows us to tune the frequency of errors. Therefore, at time t+ 1 the coalition
St selects an improving deviation with probability (1− εf(St, a

t)). It selects at+1 ∈ I1(St, at)
according to distribution pI1(·) defined in Section 3.1. By combining the probabilities we obtain
that a coalition St selects at+1 ∈ I1(St, at) with probability (1− εf(St, a

t))pI1(at+1|St, at) . The
coalition St selects a non-improving deviation with probability εf(St, a

t). Let pI1(·|St, at) be a

probability distribution over finite set I1(St, at). Then, the coalition chooses at+1 ∈ I1(St, at)
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with probability εf(St, a
t)pI1(·|St, at). If there is no improving deviation, then with probability(

1 − εf(St, a
t)
)

the coalition does not modify the action profile, i.e., at+1 = at, and with the

complementary probability selects an action profile in I1(St, at) according to the distribution
pI1(·|St, at). The transition law P ε of perturbed Markov chain {Xε

t }∞t=0 is defined as below:

P ε(Xε
t+1 = a′|Xε

t = a) =
∑

S∈K;I1(S,a)6=φ

pS
(
(1− εf(S, a))pI1(a′|S, a)1I1(S,a)(a

′)

+ εf(S, a)pI1(a′|S, a)1I1(S,a)(a
′)
)

+
∑

S∈K;I1(S,a)=φ

pS
(
(1− εf(S, a))1{a′=a}(a

′)

+ εf(S, a)pI1(a′|S, a)1I1(S,a)(a
′)
)
, (4)

for all a, a′ ∈ A.
The perturbed Markov chain {Xε

t }∞t=0 is irreducible because given nonzero errors it is possible
to reach all the action profiles starting from any action profile in a finite number of steps. It is
also aperiodic because with positive probability the state does not change. Hence, there exists a
unique stationary distribution µε for perturbed Markov chain. However, when ε = 0, there can
be several stationary distributions corresponding to different K-stable equilibria or closed cycles.
Such Markov chains are called singularly perturbed Markov chains [2, 3]. We are interested in
the action profiles to which stationary distribution µε assigns positive probability as ε→ 0. This
leads to the definition of a stochastically stable action profile.

Definition 3.1. An action profile a is stochastically stable relative to process P ε if
limε→0 µ

ε
a > 0.

We recall few definitions from Young [25]. If P ε(a′|a) > 0, a, a′ ∈ A, the one step resistance
from an action profile a to an action profile a′ 6= a is defined as the minimum number of
mistakes (mutations) that are required for the transition from a to a′ 6= a and it is denoted by
r(a, a′). From (4) it is clear that the transition from a to a′ has the probability of order ε if
a′ /∈ I1(S, a) for all S and thus has resistance 1 and is of order 1 otherwise, so has resistance
0. So, in our setting r(a, a′) ∈ {0, 1} for all a, a′ ∈ A. A zero resistance between two action
profiles corresponds to a transition with positive probability under P 0. One can view the action
profiles as the nodes of a directed graph that has no self loops and the weight of a directed edge
between two different nodes is represented by one step resistance between them. Since P ε is
an irreducible Markov chain then there must exist at least one directed path between any two
recurrent classes Hi and Hj of P 0 which starts from Hi and ends at Hj . The resistance of any
path is defined as the sum of the weights of the corresponding edges. The resistance of a path
which is minimum among all paths from Hi to Hj is called as resistance from Hi to Hj and it
is denoted by rij . The resistance from any action profile ai ∈ Hi to any action profile aj ∈ Hj is
rij because inside Hi and Hj action profiles are connected with a path of zero resistance. Now
we recall the definition of stochastic potential of a recurrent class Hi of P 0 from [25]. It can
be computed by restricting to a reduced graph. Construct a graph G where total number of
nodes are the number of recurrent classes of P 0(one action profile from each recurrent class)
and a directed edge from ai to aj is weighted by rij . Take a node ai ∈ G and consider all the
spanning trees such that from every node aj ∈ G, aj 6= ai, there is a unique path directed from
aj to ai. Such spanning trees are called ai-trees. The resistance of an ai-tree is the sum of
the resistances of its edges. The stochastic potential of ai is the resistance of an ai-tree having
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minimum resistance among all ai-trees. The stochastic potential of each node in Hi is same and
it is a stochastic potential of Hi [25].

Theorem 3.2. For the stochastic CBR dynamics defined in Section 3.2, all K-stable equilib-
ria and all the action profiles from closed cycles, that have minimum stochastic potential, are
stochastically stable. Furthermore, if one action profile in a closed cycle is stochastically stable
then all the action profiles in the closed cycle are stochastically stable.

Proof. We know that the Markov chain P ε is aperiodic and irreducible. From (3) and (4) it is
easy to see that

lim
ε→0

P ε(a′|a) = P 0(a′|a), ∀ a, a′ ∈ A.

From (4) it is clear that, if P ε(a′|a) > 0 for some ε ∈ (0, ε0], then we have

0 < ε−r(a,a
′)P ε(a′|a) <∞.

Markov chain P ε satisfies all three required conditions of Theorem 4 in [25] from which it
follows that as ε → 0, µε converges to a stationary distribution µ0 of P 0 and an action profile
a is stochastically stable, i.e., µ0a > 0, if and only if a is contained in a recurrent class of P 0

having minimum stochastic potential. We know that the recurrent classes of Markov chain P 0

are K-stable equilibria or closed cycles. Therefore, all the K-stable equilibria and the action
profiles from closed cycles having minimum stochastic potential are stochastically stable. The
proof of last part follows from the fact that the stochastic potential of each action profile in a
closed cycle is the same.

Remark 3.3. The stochastic stability results do not depend on the function f(·) or the distri-
butions of pI1(·), pI1(·) and p = (pS)S∈K.

Corollary 3.4. If K = P(N) \ φ, all strong Nash equilibria and all action profiles from closed
cycles are stochastically stable for the stochastic CBR dynamics defined in Section 3.2.

Proof. If K = P(N) \ φ, all the strong Nash equilibria and closed cycles are the recurrent
classes of P 0. Due to the formation of grand coalition it is always possible to reach one action
profile from another action profile by at most one error. Then, the resistance rij between any
two distinct recurrent classes Hi and Hj is always 1. Hence, the stochastic potential of each
recurrent class of P 0 is J − 1, where J is the number of recurrent classes of P 0. In fact, a
spanning tree in graph G includes only J − 1 links and each of them has resistance 1. The proof
then follows from Theorem 3.2.

We can have a similar CBR dynamics without mistakes and with mistakes as given in Sections
3.1 and 3.2 respectively, if for all S ∈ K and a ∈ A the set of improved action profiles is I2(S, a)
given by (2). We have the following results.

Theorem 3.5. For a stochastic CBR dynamics corresponding to improved action profile sets
defined by (2), all strict K-stable equilibria and all the action profiles from closed cycles, that have
minimum stochastic potential, are stochastically stable. Furthermore, if one action profile in a
closed cycle is stochastically stable then all the action profiles in the closed cycle are stochastically
stable.

Proof. The proof follows from the similar arguments given in Theorem 3.2.
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Corollary 3.6. If K = P(N) \ φ, all strict strong Nash equilibria and all action profiles from
closed cycles are stochastically stable for the stochastic CBR dynamics corresponding to improved
action profile sets defined by (2).

Proof. The proof follows from the similar arguments given in Corollary 3.4.

3.2.1 Equilibrium selection in coordination games

We discuss the Nash equilibrium selection, in a 2 × 2 coordination game, by stochastic CBR
dynamics defined in Section 3.2. Our equilibrium selection results are different from the results
given in [16],[25]. We first consider the case where only the coalitions of size 1 are formed. In
this case, a K-stable equilibrium is a Nash equilibrium. Consider a 2× 2 coordination game,

s1 s2

s1

s2

(a11, b11) (a12, b12)

(a21, b21) (a22, b22)

,
where ajk, bjk ∈ R, j, k ∈ {1, 2} and a11 > a21, b11 > b12, a22 > a12, b22 > b21. The action set of
player i, i = 1, 2, is Ai = {s1, s2}. Here (s1, s1) and (s2, s2) are two Nash equilibria. In this game
there are two types of Nash equilibria. One is payoff dominant and another is risk dominant. If
a11 > a22, b11 > b22, then (s1, s1) is payoff dominant and if a11 < a22, b11 < b22, then (s2, s2)
is payoff dominant. In other cases payoff dominant Nash equilibrium does not exist. From [25],
define,

R1 = min

{
a11 − a21

a11 − a12 − a21 + a22
,

b11 − b12
b11 − b12 − b21 + b22

}
,

R2 = min

{
a22 − a12

a11 − a12 − a21 + a22
,

b22 − b21
b11 − b12 − b21 + b22

}
.

If R1 > R2, then (s1, s1) is a risk dominant Nash equilibrium and if R2 > R1, then (s2, s2) is a
risk dominant Nash equilibrium.

The state space of Markov chain is {(s1, s1), (s1, s2), (s2, s1), (s2, s2)}, where (s1, s1) and
(s2, s2) are the absorbing states of Markov chain P 0. From Remark 3.3, the stochastic stability
results do not depend on the distributions of pI1(·), pI1(·) and p = (pS)S∈K and function f(·).
Therefore, we assume that all the distributions are uniform and function f(·) has constant
value 1. Under this assumption, the transition probability matrix of perturbed Markov chain is

P ε =


1− ε

2
ε
4

ε
4 0

1−ε
2 ε 0 1−ε

2
1−ε
2 0 ε 1−ε

2

0 ε
4

ε
4 1− ε

2

 .

The unique stationary distribution of P ε is µε =
(
1−ε
2−ε ,

ε
2(2−ε) ,

ε
2(2−ε) ,

1−ε
2−ε

)
. As ε → 0,

µε → (12 , 0, 0,
1
2). That is, both the Nash equilibria are stochastically stable. This happens

because we require only 1 mutation to reach from one Nash equilibrium to another Nash equi-
librium. Therefore, the resistance from one Nash equilibrium to another Nash equilibrium is
1. Then, the stochastic potential of both the Nash equilibria will be 1. For the case when all
types of coalitions can be formed the CBR dynamics always selects a payoff dominant Nash
equilibrium whenever it exists because it is an SNE. If a payoff dominant Nash equilibrium does
not exist, both the Nash equilibria are strong Nash equilibria and in that case CBR dynamics
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selects both the Nash equilibria. The stochastic dynamics by Young [25] and Kandori et al. [16]
always select a risk dominant Nash equilibrium.

Among symmetric coordination games if we go beyond 2 × 2 matrix games the result by
Young [25] cannot be generalized, i.e., it need not select a risk dominant Nash equilibrium.
Consider an example of 3× 3 matrix game from [25],

s1 s2 s3

s1

s2

s3


(6, 6) (0, 5) (0, 0)

(5, 0) (7, 7) (5, 5)

(0, 0) (5, 5) (8, 8)

.

In this game, (s1, s1), (s2, s2) and (s3, s3) are three Nash equilibria. The stochastic dynamics by
Young [25] selects (s2, s2) that is not a risk dominant Nash equilibrium. A Nash equilibrium of an
m×m symmetric coordination game is risk dominant if it is risk dominant in all pairwise contest
(see [12]). We now discuss the equilibrium selection by CBR dynamics in above 3×3 coordination
game. We first consider the case where only the coalitions of size 1 are formed. The state space
of Markov chain is {(s1, s1), (s1, s2), (s1, s3), (s2, s1), (s2, s2), (s2, s3), (s3, s1), (s3, s2), (s3, s3)},
where (s1, s1), (s2, s2), and (s3, s3) are the absorbing states of Markov chain P 0. We label
the states (s1, s1) as 1, (s2, s2) as 2 and (s3, s3) as 3. Then, the resistance from (s1, s1) to
(s2, s2) is denoted by r12, where r12 = 1. Similarly, r13 = 2, r31 = 2, r21 = 1, r23 = 1, r32 = 1.
There are three 1-trees as given below.

1 2

3

1

1

1 2

3

1

2

1 3

2

2

1

Figure 3: 1-trees

The minimum resistance of a 1-tree among all 1-trees is 2. Hence, the stochastic potential
of (s1, s1) is 2. Similarly, by constructing 2-trees and 3-trees we can calculate the stochastic
potential of (s2, s2) and (s3, s3). The stochastic potential of (s2, s2) and (s3, s3) is also 2. Hence,
all the Nash equilibria are stochastically stable from Theorem 3.2. For the case where there is
no restriction in coalition formation, CBR dynamics selects (s3, s3) because it is a strong Nash
equilibrium.

4 Application to network formation games

In this section we consider the network formation games, see e.g., some recent books [13], [6],
[5]. In general, the networks which are stable against the deviation of all the coalitions are
called strongly stable networks. In the literature, there are two definitions of strongly stable
networks. The first definition is, corresponding to SNE, due to [7]. The second definition is,
corresponding to SSNE, due to [14]. A strongly stable network according to the definition of
[14] is also strongly stable network according to the definition of [7]. The definition of a strongly
stable network according to [14] are more often considered in the literature. We also consider
the strong stability of networks according to [14]. We discuss the dynamic formation of networks
over infinite horizon. We apply the stochastic CBR dynamics corresponding to SSNE to network
formation games to discuss the stochastic stability of networks.
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4.1 The model

Let N = {1, 2, · · · , n} be a finite set of players also called as nodes. The players are connected
through undirected edges. An edge can be defined as a subset of N of size 2, e.g., {ij} ⊂ N
defines an edge between player i and player j. The collection of edges define a network. Let
G denotes a set of all networks on N . For each i ∈ N , let ui : G → R be a payoff function of
player i, where ui(g) is a payoff which player i receives at network g.

To reach from one network to another requires the addition of new links or the destruction
of existing links. It is always assumed in the literature that forming a new link requires the
consent of both the players while a player can delete a link unilaterally. The coalition formation
in network formation games has also been considered in the literature. Some players in a
network can form a coalition and make a joint move to another network by adding or severing
some links, if new network is at least as beneficial as the previous network for all the players of
coalition and at least one player is strictly benefited (see [14]). We recall few definitions from
[14] describing the coalitional moves in network formation games and the stability of networks
against all possible coalitional deviations.

Definition 4.1. A network g′ is reachable from g via deviation by a coalition S as denoted by
g →S g

′, if

1. ij ∈ g′ and ij /∈ g then {i, j} ⊂ S.

2. ij ∈ g and ij /∈ g′ then {i, j} ∩ S 6= φ.

The first condition of the above definition requires that a new link can be added only between
the nodes which are the part of a coalition S and the second condition requires that at least
one node of any deleted link has to be a part of a coalition S. We denote G(S, g) as a set of all
networks which are reachable from g via deviation by S, i.e., G(S, g) = {g′|g →S g

′}.

Definition 4.2. A deviation by a coalition S from a network g to a network g′ is said to be
improving if

1. g →S g
′,

2. ui(g
′) ≥ ui(g), ∀ i ∈ S (with at least one strict inequality).

We denote I2(S, g) as a set of all networks g′ which are reachable from g by an improving
deviation of S, i.e.,

I2(S, g) =
{
g′|g →S g

′, ui(g
′) ≥ ui(g), ∀ i ∈ S, uj(g′) > uj(g) for some j ∈ S

}
.

It is clear that g /∈ I2(S, g) for all S. We denote I2(S, g) = G(S, g) \ I2(S, g) as a set of
all networks which are reachable from g due to erroneous decisions of S. This set is always
nonempty as g ∈ I2(S, g) for all S.

Definition 4.3. A network g is said to be strongly stable if it is not possible for any coalition
S to make an improving deviation from network g to some other network g′.

A strongly stable network need not always exist and in that case there exists some set of
networks lying on a closed cycle and all the networks in a closed cycle can be reached from each
other via an improving path. An improving path and a closed cycle in network formation games
can be defined similarly to Definitions 2.2 and 2.3, respectively.

Theorem 4.4. There exists at least a strongly stable network or a closed cycle of networks.

Proof. The proof follows from the similar arguments used in Theorem 2.4.
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4.2 Dynamic network formation

The paper by Jackson and Watts [15] is the first one to consider the dynamic formation of
networks. They considered the case where at each time only a pair of players form a coalition
and only a link between them can be altered. We consider the situation where at each time a
subset of players form a coalition and deviate from a current network to a new network if at
new network the payoff of each player of the coalition is at least as much as at current network
and at least one player has strictly better payoff. This process continues over infinite horizon.
A coalition can make all possible changes in the network and as a result more than one link can
be created or severed at each time. So, we consider the following network formation rules by
[14] given below:

• The creation of a link between two nodes requires the agreement of the whole coalition.

• A coalition can create/severe simultaneously multiple links among its members.

The CBR dynamics corresponding to SSNE can be applied to dynamic network formation. That
is, at time t a network is gt and a coalition St is selected with probability pSt > 0 and it makes
an improving deviation to a new network that is at least as beneficial as gt for all players of
coalition St and at least one player of St is strictly benefited. So, at time t + 1 network is
gt+1 ∈ I2(St, gt) with probability pI2(gt+1|St, gt). If an improving deviation is not possible for
selected coalition St, then gt+1 = gt. The above process defines a Markov chain over state space
G and its transition probabilities can be defined similarly to (3). In general this Markov chain is
multichain. We can also assume that at each time selected coalition St makes error with small
probability f(St, gt)ε. That is, gt+1 ∈ I2(St, gt) with probability (1− f(St, gt)ε)pI2(gt+1|St, gt)
and gt+1 ∈ I2(St, gt) with probability f(St, gt)εpI2(gt+1|St, gt). The transition probabilities of
the perturbed Markov chain can be defined similar to (4). The presence of mutations makes the
Markov chain ergodic for which there exists a unique stationary distribution. We are interested in
the stochastically stable networks, i.e., the networks to which positive probabilities are assigned
by the stationary distribution as ε → 0. The stochastic stability analysis similar to the one
given in Section 3.2 holds here. Thus, we have the following result.

Theorem 4.5. All the strongly stable networks and closed cycles of a network formation game
are stochastically stable.

Proof. The proof follows directly from Corollary 3.6.

5 Conclusions

We introduce coalition formation among players in an n-player strategic game over infinite
horizon and propose a stochastic CBR dynamics. The mutations are present in the dynamics
due to erroneous decisions taken by the coalitions. We show that all K-stable equilibria and
all action profiles from closed cycles, that have minimum stochastic potential, are stochastically
stable. Similar development holds for strict K-stable equilibrium. When there is no restriction
on coalition formation, all SNE and closed cycles are stochastically stable. Similar development
holds for SSNE. We apply CBR dynamics to network formation games and prove that all strongly
stable networks and closed cycles of networks are stochastically stable.
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