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We study a semi-supervised learning method based on the similarity graph and Regularized
Laplacian. We give convenient optimization formulation of the Regularized Laplacian method
and establish its various properties. In particular, we show that the kernel of the method
can be interpreted in terms of discrete and continuous time random walks and possesses
several important properties of proximity measures. Both optimization and linear algebra
methods can be used for efficient computation of the classification functions. We demonstrate
on numerical examples that the Regularized Laplacian method is robust with respect to
the choice of the regularization parameter and outperforms the Laplacian-based heat kernel
methods.
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1. Introduction

Graph-based semi-supervised learning methods have the following three principles at
their foundation. The first principle is to use a few labelled points (points with known
classification) together with the unlabelled data to tune the classifier. In contrast with
the supervised machine learning, the semi-supervised learning creates a synergy between
the training data and classification data. This drastically reduces the size of the training
set and hence significantly reduces the cost of experts’ work. The second principal idea
of the semi-supervised learning methods is to use a (weighted) similarity graph. If two
data points are connected by an edge, this indicates some similarity of these points.
Then, the weight of the edge, if present, reflects the degree of similarity. The result
of classification is given in the form of classification functions. Each class has its own
classification function defined over all data points. An element of a classification function
gives a degree of relevance to the class for each data point. Then, the third principal idea
of the semi-supervised learning methods is that the classification function should change
smoothly over the similarity graph. Intuitively, nodes of the similarity graph that are
closer together in some sense are more likely to belong to the same class. This idea of
classification function smoothness can naturally be expressed using graph Laplacian or
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its modification.
The work [37] seems to be the first work where the graph-based semi-supervised learn-

ing was introduced. The authors of [37] formulated the semi-supervised learning method
as a constrained optimization problem involving graph Laplacian. Then, in [35, 36] the
authors proposed optimization formulations based on several variations of the graph
Laplacian. In [4] a unifying optimization framework was proposed which gives as partic-
ular cases the methods of [35] and [36]. In addition, the general framework in [4] gives as a
particular case an interesting PageRank based method, which provides robust classifica-
tion with respect to the choice of the labelled points [3, 5]. We would like to note that the
local graph partitioning problem [2, 20] can be related to graph-based semi-supervised
learning. An interested reader can find more details about various semi-supervised learn-
ing methods in the surveys and books [9, 23, 38].

In the present work we study in detail a semi-supervised learning method based on the
Regularized Laplacian. To the best of our knowledge, the idea of using Regularized Lapla-
cian and its kernel for measuring proximity in graphs and application to mathematical
sociology goes back to the works [13, 15]. In [23] the authors compared experimentally
many graph-based semi-supervised learning methods on several datasets and their con-
clusion was that the semi-supervised learning method based on the Regularized Laplacian
kernel demonstrates one of the best performances on nearly all datasets. In [8] the au-
thors studied a semi-supervised learning method based on the Normalized Laplacian
graph kernel which also shows good performance. Interestingly, as we show below, if we
choose Markovian Laplacian as a weight matrix, several known semi-supervised learning
methods reduce to the Regularized Laplacian method. In this work we formulate the
Regularized Laplacian method as a convex quadratic optimization problem which helps
to design easily parallelizable numerical methods. In fact, the Regularized Laplacian
method can be regarded as a Lagrangian relaxation of the method proposed in [37]. Of
course, this is a more flexible formulation, since by choosing an appropriate value for the
Lagrange multiplier one can always retrieve the method of [37] as a particular case. We
establish various properties of the Regularized Laplacian method. In particular, we show
that the kernel of the method can be interpreted in terms of discrete and continuous
time random walks and possesses several important properties of proximity measures.
Both optimization and linear algebra methods can be used for efficient computation of
the classification functions. We discuss advantages and disadvantages of various numeri-
cal approaches. We demonstrate on numerical examples that the Regularized Laplacian
method is competitive with respect to the other state of the art semi-supervised learning
methods.

The paper is organized as follows: In the next section we formally define the Regularized
Laplacian method. In Section 3 we discuss several related graph-based semi-supervised
methods and graph kernels. In Section 4 we present insightful interpretations and prop-
erties of the Regularized Laplacian method. We analyse important limiting cases in
Section 5. Then, in Section 6 we discuss various numerical approaches to compute the
classification functions and show by numerical examples that the performance of the
Regularized Laplacian method is better or comparable with the leading semi-supervised
methods. Section 7 concludes the paper with directions for future research.

2. Notations and method formulation

Suppose one needs to classify N data points (nodes) into K classes and assume P data
points are labelled. That is, we know the class to which each labelled point belongs.

2
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Denote by Vk the set of labelled points in class k = 1, ...,K. Of course, |V1|+...+|VK | = P .
The graph-based semi-supervised learning approach uses a weighted graph G = (V,A)

connecting data points, where V , |V | = N , denotes the set of nodes and A denotes the
weight (similarity) matrix. In this work we assume that A is symmetric and the under-
lying graph is connected. Each element aij represents the degree of similarity between
data points i and j. Denote by D the diagonal matrix with its (i, i)-element equal to the

sum of the i-th row of matrix A: di =
∑N

j=1 aij . We denote by L = D −A the Standard

(Combinatorial) Laplacian associated with the graph G.
Define an N ×K matrix Y as

Yik =

{
1, if i ∈ Vk, i.e., point i is labelled as a class k point,

0, otherwise.

We refer to each column Y∗k of matrix Y as a labeling function. Also define an N ×K
matrix F and call its columns F∗k classification functions. The general idea of the graph-
based semi-supervised learning is to find classification functions so that on the one hand
they are close to the corresponding labeling function and on the other hand they change
smoothly over the graph associated with the similarity matrix. This general idea can be
expressed by means of the following particular optimization problem:

min
F

{
K∑
k=1

(F∗k − Y∗k)T (F∗k − Y∗k) + β

K∑
k=1

F T∗kLF∗k

}
, (1)

where β ∈ (0,∞) is a regularization parameter. The regularization parameter β rep-
resents a trade-off between the closeness of the classification function to the labeling
function and its smoothness.

Since the Laplacian L is positive-semidefinite and the second term in (1) is strictly
convex, the optimization problem (1) has a unique solution determined by the stationarity
condition

2(F∗k − Y∗k)T + 2βF T∗kL = 0, k = 1, ...,K,

which gives

F∗k = (I + βL)−1Y∗k, k = 1, ...,K. (2)

The matrix Qβ = (I + βL)−1 is known as Regularized Laplacian kernel of the graph
[28, 33] and can be related to the matrix forest theorems [1, 13] and stochastic matrices [1].
The classification functions F∗k, k = 1, ...,K, can be obtained either by numerical linear
algebra methods (e.g., power iterations) applied to (2) or by numerical optimization
methods applied to (1). We elaborate on numerical methods in Section 6. Once the
classification functions are obtained, the points are classified according to the rule

Fik > Fik′ ,∀k′ 6= k ⇒ Point i is classified into class k.

The ties can be broken in arbitrary fashion.

3
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3. Related approaches

Let us discuss a number of related approaches. First, we discuss formal relations and in
the numerical examples section we compare the approaches on some benchmark exam-
ples.

3.1 Relation to heat kernels

The authors of [17, 18] first introduced and studied the properties of the heat kernel
based on the normalized Laplacian. Specifically, they introduced the kernel

H(t) = exp(−tL), (3)

where

L = D−1/2LD−1/2

is the normalized Laplacian. Let us refer to H(t) as the normalized heat kernel. Note
that the normalized heat kernel can be obtained as a solution of the following differential
equation

Ḣ(t) = −LH(t),

with the initial condition H(0) = I. Then, in [19] the PageRank heat kernel was intro-
duced

Π(t) = exp(−t(I − P )), (4)

where

P = D−1A, (5)

is the transition probability matrix of the standard random walk on the graph. In [20]
the PageRank heat kernel was applied to local graph partitioning.

In [28] the heat kernel based on the standard Laplacian

H(t) = exp(−tL), (6)

with L = D − A, was proposed as a kernel in the support vector machine learning
method. Then, in [37] the authors proposed a semi-supervised learning method based on
the solution of a heat diffusion equation with Dirichlet boundary conditions. Equivalently,
the method of [37] can be viewed as the minimization of the second term in (1) with the
values of the classification functions F∗k fixed on the labelled points. Thus, the proposed
approach (1) is more general as it can be viewed as a Lagrangian relaxation of [37]. The
results of the method in [37] can be retrieved with a particular choice of the regularization
parameter.

4
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3.2 Relation to the generalized semi-supervised learning
method

In [4] the authors proposed a generalized optimization framework for graph based semi-
supervised learning methods

min
F


N∑
i=1

N∑
j=1

wij‖diσ−1Fi∗ − djσ−1Fj∗‖2 + µ

N∑
i=1

di
2σ−1‖Fi∗ − Yi∗‖2

 , (7)

where wij are the entries of a weight matrix W = (wij) which is a function of A (in
particular, one can also take W = A).

In particular, with σ = 1 we retrieve the transductive semi-supervised learning method
[35], with σ = 1/2 we retrieve the semi-supervised learning with local and global consis-
tency [36] and with σ = 0 we retrieve the PageRank based method [3].

The classification functions of the generalized graph based semi-supervised learning
are given by

F∗k =
µ

2 + µ

(
I − 2

2 + µ
D−σWDσ−1

)−1
Y∗k, k = 1, ...,K.

Now taking as the weight matrix W = I− τL = I− τ(D−A) (note that with this choice
of the weight matrix, the generalized degree matrix D′ = diag(W1) becomes the identity
matrix), the above equation transforms to

F∗k =

(
I +

2τ

µ
L

)−1
Y∗k, k = 1, ...,K,

which is (2) with β = 2τ/µ. It is very interesting to observe that with the proposed
choice of the weight matrix all the semi-supervised learning methods defined by various
σ’s coincide.

4. Properties and interpretations of the Regularized Laplacian method

There is a number of interesting interpretations and characterizations which we can pro-
vide for the classification functions (2). These interpretations and characterizations will
give different insights about the Regularized Laplacian kernel Qβ and the classification
functions (2).

4.1 Discrete-time random walk interpretation

The Regularized Laplacian kernel Qβ = (I + βL)−1 can be interpreted as the overall
transition matrix of a random walk on the similarity graph G with a geometrically
distributed number of steps. Namely, consider a Markov chain whose states are our data
points and the probabilities of transitions between distinct states are proportional to the
corresponding entries of the similarity matrix A:

p̂ij = τaij , i, j = 1, . . . , N, i 6= j, (8)

5
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where τ > 0 is a sufficiently small parameter. Then the diagonal elements of the transition
matrix P̂ = (p̂ij) are

p̂ii = 1−
∑
j 6=i

τaij , i = 1, . . . , N (9)

or, in the matrix form,

P̂ = I − τL. (10)

The matrix P̂ determines a random walk on G which differs from the “standard”
one defined by (5) and related to the PageRank heat kernel (4). As distinct from (5),
the transition matrix (10) is symmetric for every undirected graph; in general, it has a

nonzero diagonal. It is interesting to observe that P̂ coincides with the weight matrix W
used for transformation of Subsection 3.2.

Consider a sequence of independent Bernoulli trials indexed by 0, 1, 2, . . . with a certain
success probability q. Assume that the number of steps, K, in a random walk is equal
to the trial number of the first success. And let Xk be the state of the Markov chain at
step k. Then, K is distributed geometrically:

Pr{K = k} = q(1− q)k, k = 0, 1, 2, . . . ,

and the transition matrix of the overall random walk after a random number of steps K,
Z = (zij), zij = Pr{XK = j | X0 = i}, i, j = 1, . . . , N, is given by

Z = q

∞∑
k=0

(1− q)kP̂ k = q

∞∑
k=0

(1− q)k(I − τL)k

= q (I − (1− q)(I − τL))−1 =
(
I + τ(q−1 − 1)L

)−1
.

Thus, Z = Qβ = (I + βL)−1 with β = τ(q−1 − 1).
This means that the i-th component of the classification function can be interpreted

as the probability of finding the discrete-time random walk with transition matrix (10)
in node i after the geometrically distributed number of steps with parameter q, given the
random walk started with the distribution Y∗k/(1

TY∗k).

4.2 Continuous-time random walk interpretation

Consider the differential equation

Ḣ(t) = −LH(t), (11)

with the initial condition H(0) = I. Also consider the standard continuous-time random
walk that spends exponentially distributed time in node k with the expected duration
1/dk and after the exponentially distributed time moves to a new node l with probability
akl/dk. Then, the solution hij(t) = exp(−tL) of the differential equation (11) can be
interpreted as a probability to find the standard continuous-time random walk in node

6
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j given the random walk started from node i. By taking the Laplace transform of (11)
we obtain

H(s) = (sI + L)−1 = s−1(I + s−1L)−1. (12)

Thus, the classification function (2) can be interpreted as the Laplace transform divided
by 1/s, or equivalently the i-th component of the classification function can be interpreted
as a quantity proportional to the probability of finding the random walk in node i after
exponentially distributed time with mean β = 1/s given the random walk started with
the distribution Y∗k/(1

TY∗k).

4.3 Proximity and distance properties

As before, let Qβ=(qβij)N×N be the Regularized Laplacian kernel (I + βL)−1 of (2).

Qβ determines a positive 1-proximity measure [14] s(i, j) := qβij , i.e., it satisfies [13] the
following conditions:

(1) for any i ∈ V,
∑

k∈V q
β
ik = 1 and

(2) for any i, j, k ∈ V, qβji + qβjk − q
β
ik ≤ q

β
jj with a strict inequality whenever i = k and

i 6= j (the triangle inequality for proximities).

This implies [14] the following two important properties: (a) qβii > qβij for all i, j ∈ V
such that i 6= j (egocentrism property); (b) ρβij := β(qβii + qβjj − q

β
ij − q

β
ji) is1 a distance

on V. Because of the forest interpretation of Qβ (see Section 4.4), it is called the adjusted

forest distance. The distances ρβij have a twofold connection with the resistance distance

ρ̃ij on G [16]. First, limβ→∞ ρ
β
ij = ρ̃ij , i, j ∈ V. Second, let Gβ be the weighted graph

such that: V (Gβ) = V (G) ∪ {0}, the restriction of Gβ to V (G) coincides with G, and
Gβ additionally contains an edge (i, 0) of weight 1/β for each node i ∈ V (G). Then it

follows that ρβij(G) = ρ̃ij(G
β), i, j ∈ V. In the electrical interpretation of G, the weight

1/β of the edges (i, 0) is treated as conductivity, i.e., the lines connecting each node
to the “hub” 0 have resistance β. An interested reader can find more properties of the
proximity measures determined by Qβ in [13].

Furthermore, every Qβ, β > 0 determines a transitional measure on V, which means

[12] that: qβij q
β
jk ≤ qβik q

β
jj for all i, j, k ∈ V with qβij q

β
jk = qβik q

β
jj if and only if every path

in G from i to k visits j.

It follows that dβij := − ln

(
qβij/

√
qβiiq

β
jj

)
provides a distance on V. This distance is

cutpoint additive, that is, dβij + dβjk = dβik if and only if every path in G from i to k

visits j. In the asymptotics, dβij becomes proportional to the shortest path distance and
the resistance distance as β → 0 and β →∞, respectively.

4.4 Matrix forest characterization

By the matrix forest theorem [1, 13], each entry qβij of Qβ is equal to the specific weight
of the spanning rooted forests that connect node i to node j in the weighted graph G
whose combinatorial Laplacian is L.

1Cf. the cosine law [21] and the inverse covariance mapping [22, Section 5.2].

7
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More specifically, qβij = Fβiaj/F
β, where Fβ is the total β-weight of all spanning rooted

forests of G, Fβiaj being the total β-weight of such of them that have node i in a tree
rooted at j. Here, the β-weight of a forest stands for the product of its edges weights,
each multiplied by β.

Let us mention a closely related interpretation of the Regularized Laplacian kernel Qβ
in terms of information dissemination [11]. Suppose that an information unit (an idea)
must be transmitted through G. A plan of information transmission is a spanning rooted
forest F in G: the information unit is initially injected into the roots of F; after that it
comes to the other nodes along the edges of F. Suppose that a plan is chosen at random:
the probability of every choice is proportional to the β-weight of the corresponding forest.
Then by the matrix forest theorem, the probability that the information unit arrives at

i from root j equals qβij = Fβiaj/F
β. This interpretation is particularly helpful in the

context of machine learning for social networks.

4.5 Statistical characterization

Consider the problem of attribute evaluation from paired comparisons.
Suppose that each data point (node) i has a value parameter vi, and a series of paired

comparisons rij between the points is performed. Let the result of i in a comparison with
j obey the Scheffé linear statistical model [32]

E(rij) = vi − vj , (13)

where E(·) is the mathematical expectation. The matrix form of (13) applied to an
experiment is

E(r) = Xv,

where v = (v1, . . . , vN )T , and r is the vector of comparison results, X being the incidence
matrix (design matrix , in terms of statistics): if the kth element of r is a comparison
result of i confronted to j, then, in accordance with (13), xki = 1, xkj = −1, and xkl = 0
for l 6∈ {i, j}.

Suppose that X is known, r being a sample, and the problem is to estimate v up to a
shift [10, Section 4]. Then

ṽ(λ) = (λI +XTX)−1XTr (14)

is the well-known ridge estimate of v, where λ > 0 is the ridge parameter. Denoting
β = λ−1 and XTX = L (it is easily verified that XTX is a Laplacian matrix whose
(i, j)-entry with j 6= i is minus the number of comparisons between i and j) one has

ṽ(λ) = (I + βL)−1βXTr, (15)

i.e., the solution is provided by the same transformation based on the Regularized Lapla-
cian kernel as in (2) (cf. also (12)). Here, the weight matrix A of G contains the numbers
of comparisons between nodes; s = XTr is the vector of the sums of comparison results
of the nodes: si =

∑
j rij −

∑
j rji, where rij and rji are taken from r, which has one

entry (either rij or rji) for each comparison result.

8
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Suppose now that value parameter vi (belonging to an interval centered at zero) is a
positive or negative intensity of some property, and thus, vi can be treated as a signed
membership of data point i in the corresponding class. The pairwise comparisons r are
performed with respect to this property. Then βXTr = βs is a kind of labeling function
or a crude correlate of membership in the above class, whereas (15) provides a refined
measure of membership which takes into account proximity. Along these lines, (15) can
be considered as a procedure of semi-supervised learning.

A Bayesian version of the model (13) enables one to interpret and estimate the ridge
parameter λ = 1/β. Namely, assume that:
(i) the parameters v1, . . . , vN chosen at random from the universal set are independent
random variables with zero mean and variance σ21 and
(ii) for any vector v, the errors in (13) are independent and have zero mean, their
unconditional variance being σ22.

It can be shown [10, Proposition 4.2] that under these conditions, the best linear
predictors for the parameters v are the ridge estimators (15) with β = σ21/σ

2
2.

The best linear predictors for v are the ṽi’s that minimize E(ṽi−vi)2 among all statistics
of the form ṽi = ci + CTi r satisfying E(ṽi − vi) = 0.

The variances σ21 and σ22 can be estimated from the experiment. In fact, there are many
approaches to choosing the ridge parameter, see, e.g., [24, 29] and the references therein.

5. Limiting cases

Let us analyse the formula (2) in two limiting cases: β → 0 and β → ∞. If β → 0, we
have

F∗k = (I − βL)Y∗k + o(β).

Thus, for very small values of β, the method resembles the nearest neighbour method
with the weight matrix W = I − βL. If there are many points situated more than one
hop away from any labelled point, the method cannot produce good classification with
very small values of β. This will be illustrated by the numerical experiments in Section 6.

Now consider the other case β → ∞. We shall employ the Blackwell series expansion
[7, 31] for the resolvent operator (λI + L)−1 with λ = 1/β

(I + βL)−1 = λ(λI + L)−1

= λ

(
1

λ

1

N
11T +H − λH2 + ...

)
, (16)

where H = (L + 1
N 11T )−1 − 1

N 11T is the generalized (group) inverse of the Laplacian.

Since the first term in (16) gives the same value for all classes if 1TY∗k = 1TY∗l, k 6= l
(which is typically the case), the classification will depend on the entries of the matrix H
and finally, of the matrix (L + 1

N 11T )−1. Note that the matrix (L + α11T )−1, with a
sufficiently small positive α, determines a proximity measure called accessibility via dense
forests. Its properties are listed in [15, Proposition 10]. An interpretation of H in terms
of spanning forests can be found in [15, Theorem 3]; see also [26].

The accessibility via dense forests violates a natural monotonicity condition, as distinct
from (I+βL)−1 with a finite β. Thus, a better performance of the regularized Laplacian
proximity measure with finite values of β can be expected.

9
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For the sake of comparison, let us analyse the limiting behaviour of the heat kernels.
For instance, let us consider the Standard Laplacian heat kernel (6), since it is also based
on the Standard Laplacian. In fact, it is immediate to see that the Standard Laplacian
heat kernel has the same asymptotic as the Regularized Laplacian kernel. Namely, if
t→ 0,

H(t) = exp(−tL) = I − tL+ o(t).

Similar expressions hold for the other heat kernels. Thus, for small values of t, the
semi-supervised learning methods based on heat kernels should behave as the nearest
neighbour method.

Next consider the Standard Laplacian heat kernel when t→∞. Recall that the Lapla-
cian L = D − A is a positive definite symmetric matrix. Without the loss of generality,
we can denote and rearrange the eigenvalues of the Laplacian as 0 = λ1 ≤ λ2 ≤ ... and
the corresponding eigenvectors as u1, ..., un. Note that u1 = 1. Thus, we can write

H(t) = u1u
T
1 +

N∑
i=2

exp(−λit)uiuTi .

We can see that for large values of t the first term in the above expression is non-
informative as in the case of the Regularized Laplacian method and we need to look
for the second order term. However, in contrast to the Regularized Laplacian kernel, the
second order term exp(−λ2t)u2uT2 is a rank-one term and cannot in principle give correct
classification in the case of more than two classes. The second term of the Regularized
Laplacian kernel H is not a rank-one matrix and as mentioned above can be interpreted
in terms of proximity measures.

6. Numerical methods and examples

Let us first discuss various approaches for the numerical computation of the classifica-
tion functions (2). Broadly speaking, the approaches can be divided into linear algebra
methods and optimization methods. One of the basic linear algebra methods is the power
iteration method. Similarly to the power iteration method described in [6], we can write

F∗k = (I + βD − βA)−1Y∗k,

F∗k = (I − β(I + βD)−1A)−1(I + βD)−1Y∗k,

F∗k = (I − β(I + βD)−1DD−1A)−1(I + βD)−1Y∗k.

Now denoting B := β(I + βD)−1D and C := (I + βD)−1, we can propose the following
power iteration method to compute the classification functions

F
(s+1)
∗k = BD−1AF

(s)
∗k + CY∗k, s = 0, 1, ... , (17)

10
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with F
(0)
∗k = Y∗k. Since B is a diagonal matrix with the diagonal entries less than one,

the matrix BD−1A is substochastic with the spectral radius less than one and the power
iterations (17) are convergent. However, for large values of β and di, the matrix BD−1A
can be very close to stochastic and hence the convergence rate of the power iterations
can be very slow. Therefore, unless the value of β is small, we recommend to use the
other methods from numerical linear algebra for the solution of linear systems with
symmetric matrices (recall that L is a symmetric positive semi-definite matrix in the case
of undirected graphs). In particular, we tried the Cholesky decomposition method and the
conjugate gradient method. Both methods appeared to be very efficient for the problems
with tens of thousands of variables. Actually, the conjugate gradient method can also
be viewed as an optimization method for the respective convex quadratic optimization
problem such as (1) and (7). A very convenient property of optimization formulations (1)
and (7) is that the objective, and consequently, the gradient, can be written in terms of
a sum over the edges of the underlying graph. This allows a very simple (and with some
software packages even automatic) parallelization of the optimization methods based on
the gradient. For instance, we have used the parallel implementation of the gradient
based methods provided by the NVIDIA CUDA sparse matrix library (cuSPARSE) [39]
and it showed excellent performance.

Let us now illustrate the Regularized Laplacian method and compare it with some
other state of the art semi-supervised learning methods on two datasets: Les Miselables
and Wikipedia Mathematical Articles.

The first dataset represents the network of interactions between major characters in
the novel Les Miserables. If two characters participate in one or more scenes, there is
a link between these two characters. We consider the links to be unweighted and undi-
rected. The network of the interactions of Les Miserables characters has been compiled
by Knuth [27]. There are 77 nodes and 508 edges in the graph. Using the betweenness
based algorithm of Newman and Girvan [30] we obtain 6 clusters which can be identi-
fied with the main characters: Valjean (17), Myriel (10), Gavroche (18), Cosette (10),
Thenardier (12), Fantine (10), where in brackets we give the number of nodes in the
respective cluster.

First, we generate randomly (100 times) labeled points (two labeled points per class).
In Figure 1 we compare the Regularized Laplacian method with the PageRank method
as well as with the three heat kernel methods derived from variations of the graph
Laplacian. We plot average precision as a function of parameter β or t, depending on
the method. Even though the parameters β and t have different interpretations, we
plot all the curves on the same plot to obtain a clear comparison. We recall that the
parameter β in the Regularized Laplacian method has an interpretation of the Tikhonov
regularization parameter, whereas the parameter t in the heat kernel methods has an
interpretation of time. In all subsequent double figures, the right subfigure displays a
zoom for small values of β and t. In [4, 5] it was observed that the PageRank based
semi-supervised method (obtained by taking σ = 0 in (7)) is the only method among
a large family of semi-supervised methods which is robust to the choice of the labelled
data [3–5]. Thus, we compare the Regularized Laplacian method with the PageRank
based method from the family (7). As we can see from Figure 1, the performance of the
Regularized Laplacian method is not far from that of the PageRank based method on Les
Miserables dataset. The horizontal line in Figure 1 corresponds to the PageRank based
method with the best choice of the regularization parameter or the restart probability
in the context of PageRank. Since the Regularized Laplacian method is based on graph
Laplacian, we also compare it in Figure 1 with the three heat kernel methods derived
from variations of the graph Laplacian. Specifically, we consider the three time-domain
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Figure 1. Les Miserables Dataset. Labelled points are chosen randomly.

kernels based on various Laplacians: Standard Heat kernel (6), Normalized Heat kernel
(3), and PageRank Heat kernel (4). For instance, in the case of the Standard Heat
kernel the classification functions are given by F∗k = H(t)Y∗k. It turns out that all the
three time-domain heat kernels are very sensitive to the value of the chosen time, t.
Even though there are parameter settings that give similar performances of Heat kernel
methods and the Regularized Laplacian method, the Regularized Laplacian method has
a large plateau for values of β where the good performance of the method is assured.
Thus, the Regularized Laplacian method is more robust with respect to the parameter
setting than the heat kernel methods.

To see better the behaviour of the heat kernel methods for large values of t, we have
chosen a larger interval for t in Figure 2. The performance of the heat kernel meth-
ods degrades quite significantly for large values of t. This is actually predicted by the
asymptotics given in Section 5. Since we have more than two classes, the heat kernels
with rank-one second order asymptotics are not able to distinguish among the classes.
All heat kernel methods as well as the Regularized Laplacian method show a deterio-
ration in performance for small values of t and β. This was predicted in Section 5, as
all the methods start to behave like the nearest neighbour method. In particular, as fol-
lows from the asymptotics of Section 5 and can be observed in the figures the Standard
Laplacian heat kernel method and the Regularized Laplacian method shows exactly the
same performance when t→ 0 and β → 0.

It was observed in [5] that taking labelled data points with large (weighted) degree
is typically beneficial for the semi-supervised learning methods. Thus, we now label
randomly two points out of three points with maximal degree for each class. The average
precision of all the methods is given in Figure 3. One can see that if we choose the labelled
points with large degree, the Regularized Laplacian Method outperforms the PageRank
based method. Some heat kernel based methods with large degree labelled points also
outperform the PageRank based method but their performance is much less stable with
respect to the value of parameter t.

Next, we consider the second dataset consisting of Wikipedia mathematical articles.
This dataset is derived from the English language Wikipedia snapshot (dump) from
January 30, 20102. The similarity graph is constructed by a slight modification of the
hyper-text graph. Each Wikipedia article typically contains links to other Wikipedia arti-

2http://download.wikimedia.org/enwiki/20100130
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Figure 2. Les Miserables Dataset. Heat Kernel methods vs PR method, larger t.
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Figure 3. Les Miserables Dataset. Labelled points are chosen with large degrees.

cles which are used to explain specific terms and concepts. Thus, Wikipedia forms a graph
whose nodes represent articles and whose edges represent hyper-text inter-article links.
The links to special pages (categories, portals, etc.) have been ignored. In the present
experiment we did not use the information about the direction of links, so the similarity
graph in our experiments is undirected. Then we have built a subgraph with mathematics
related articles, a list of which was obtained from “List of mathematics articles” page
from the same dump. In the present experiments we have chosen the following three
mathematical classes: “Discrete mathematics” (DM), “Mathematical analysis” (MA),
“Applied mathematics” (AM). With the help of AMS MSC Classification3 and experts
we have classified related Wikipedia mathematical articles into the three above men-
tioned classes. As a result, we obtained three imbalanced classes DM (106), MA (368)
and AM (435). The subgraph induced by these three topics is connected and contains
909 articles. Then, the similarity matrix A is just the adjacency matrix of this subgraph.

First, we have chosen uniformly at random 100 times 5 labeled nodes for each class. The
average precisions corresponding to the Regularized Laplacian method, the PageRank
based method and the three heat kernel based methods are plotted in Figure 4. As one
can see, the results of Wikipedia Mathematical articles dataset are consistent with the
results of Les Miserables dataset.

3http://www.ams.org/mathscinet/msc/msc2010.html
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Figure 4. Wiki Math Dataset. Labelled points are chosen randomly.
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Figure 5. Wiki Math Dataset. Labelled points are chosen with large degree.

Then, for each class out of 10 data points with largest degrees we choose 5 points
and average the results. The average precisions for the Regularized Laplacian method,
PageRank based method and for the three heat kernel based methods are plotted in
Figure 5. The results are again consistent with the corresponding results for Les Miser-
ables dataset. Our main conclusions from the above experiments are that the Regularized
Laplacian method is nearly as robust as the PageRank method and it outperforms the
PageRank method when labelled points with large degree are chosen.

We would like to mention that for the computations in the Wiki Math dataset with
many parameter settings and extensive averaging using NVIDIA CUDA sparse matrix
library (cuSPARSE) [39] were noticeably faster than using numpy.linalg.solve calling
LAPACK routine gesv. The code for the methods and experiments is available from
the authors upon request.

Finally, we would like to recall from Subsection 4.5 that a good value of β can be
provided by the ratio σ21/σ

2
2, where σ21 is the variance related to the data points and σ22

is the variance related to the paired comparison between points. We can argue that σ21 is
naturally large and the paired comparisons between points can be performed with much
more certainty, and hence, σ22 is small. This gives a statistical explanation why it is good
to take relatively large values for the parameter β in the Regularized Laplacian method.
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7. Conclusions

We have studied in detail the semi-supervised learning method based on the Regularized
Laplacian. The method admits both linear algebraic and optimization formulations. The
optimization formulation appears to be particularly well suited for parallel implementa-
tion. We have provided various interpretations and proximity-distance properties of the
Regularized Laplacian graph kernel. We have also shown that the method is related to
the Scheffé linear statistical model. The method was tested and compared with the other
state of the art semi-supervised learning methods on two datasets. The results from the
two datasets are consistent. In particular, we can conclude that in terms of robustness the
Regularized Laplacian method is comparable in performance with the PageRank method
and outperforms the related heat kernel based methods. In terms of precision, if the la-
belled points are chosen randomly, the Regularized Laplacian method is not far from the
PageRank method. If the labelled points with large degree are chosen, the Regularized
Laplacian method outperforms the PageRank method.

Several interesting research directions remain open for investigation. It will be inter-
esting to compare the Regularized Laplacian method with the other semi-supervised
methods on a very large dataset. We are currently working in this direction. We observe
that there is a large plateau of β values for which the Regularized Laplacian method
performs very well. It will be very useful to characterize this plateau analytically. Also,
it will be interesting to understand analytically why the Regularized Laplacian method
performs better when the labelled points with large degree are chosen.
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