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Abstract. We study the relaxation time in the random walk with jumps.
The random walk with jumps combines random walk based sampling
with uniform node sampling and improves the performance of network
analysis and learning tasks. We derive various conditions under which
the relaxation time decreases with the introduction of jumps.
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1 Introduction

In the present work we study the relaxation time or equivalently the spectral
gap of the random walk with jumps on a general weighted undirected graph. The
random walk with jumps can be viewed as a random walk on a combination of
the original graph and the complete graph weighted by a scaled parameter. This
parameter determines the rate of jumps from the current node to an arbitrary
node. The random walk with jumps has similarities with PageRank [19]. In fact,
it coincides with PageRank on the regular graphs but differs on the irregular
graphs. In the case of the random walk with jumps, the jump probability depends
on the node degree. The higher the degree of the current node is, the less likely
the random walk will jump out of the node to an arbitrary node. The random
walk with jumps can also be viewed as a particular case of the generalisation of
PageRank with node-dependent restart [6].

The random walk with jumps has been introduced in [5] to improve the ran-
dom walk based network sampling or respondent driven sampling [22] by com-
bining the standard random walk based sampling with uniform node sampling.
A big advantage of the random walk with jumps in comparison with PageRank
is that, as opposite to PageRank, the random walk with jumps on an undirected
graph is a time-reversible process and its stationary distribution is available in
a simple, explicit form. In particular, this allows us to unbias efficiently the ran-
dom walk, which is node degree biased on irregular graphs. This comes with a
price. The price is the difficulty to control the relaxation time. In the case of



PageRank the relaxation time is bounded by the reciprocal of the restart prob-
ability [10, 16]. In the case of the random walk with jumps, there is no simple
connection with the jump parameter. In [5] the authors have shown that under
a natural condition on the clustering structure of the graph, the relaxation time
decreases with the increase of the jump parameter.

Let us mention a few more applications of the random walk with jumps
beyond network sampling [5, 18, 20]. The random walk with jumps has been used
in the context of graph-based semi-supervised learning [2, 15]. The random walk
with jumps has also been used as a main building block in the quick algorithm
for finding largest degree nodes in a graph [4]. A continuous-time version of the
random walk with jumps has an application in epidemiology [13].

All this motivates us to take another look at the relaxation time of the random
walk with jumps. In particular, we are now able to give a necessary and sufficient
condition for the improvement of the relaxation time on weighted graphs. We
give an example showing that there are weighted graphs where introducing jumps
increases the relaxation time. The necessary and sufficient conditions are not easy
to interpret. Therefore we derive a series of simpler sufficient conditions. One
new sufficient condition, similar in spirit to the condition in [5], indicates that
on graphs with clusters, the relaxation time improves with the introduction of
jumps. The other new sufficient conditions require the spectral gap of the original
graph to be smaller than the reciprocal of the squared coefficient of variation of
the nodes’ degrees, thus establishing a connection between the measure of graph
irregularity and the relaxation time. We expect that the derived conditions are
satisfied in most complex networks (either due to clustering structure or due
to small spectral gap). Thus, the present study confirms that it is safe and in
most cases beneficial to use the random walk with jumps for complex network
analysis.

The structure of the paper is as follows: in the next section we define the ran-
dom walk with jumps and provide necessary background material. In Section 3
we discuss the application of Dobrushin coefficient for large jump rates. Then,
in Section 4 we discuss necessary and sufficient conditions for the reduction of
the relaxation time when the jump rate is small. In Section 5 we provide a series
of sufficient conditions, which are easier to interpret and to verify. In particular,
we provide a sufficient condition in terms of the coefficient of variation of nodes’
degrees. In Section 6 we give interesting numerical illustrations. We conclude the
paper with a conjecture in Section 7.

2 Definitions and preliminaries

Most of the analysis in the present article is for the case of a general weighted
undirected graph G with vertex set V (G), |V (G)| = n, and edge set E(G),
|E| = m, defined by the weighted adjacency matrix A = (aij) with elements

aij =

{
weight of edge (i, j), if i ∼ j,
0, otherwise.



Unless stated otherwise, we assume that G is connected.
Denote by 1 the column vector of ones of appropriate dimension. Then, d =

A1 is the vector of weighted degrees of vertices and D = Diag(d) is the diagonal
matrix with vector d on the main diagonal.

The Standard Random Walk (SRW) is a discrete-time Markov chain {Xt, t =
0, 1, ...} on the vertex set V (G) with the transition probability matrix

P = D−1A, (1)

whose elements are

pij = P [Xt+1 = j|Xt = i] =

{
wij/di, if i ∼ j,
0, otherwise.

SRW is a time-reversible process with the stationary distribution

πi =
di
2m

, i = 1, ..., n. (2)

Since SRW is time-reversible, its transition matrix is similar to a symmetric
matrix and hence the eigenvalues of the transition matrix are real, semi-simple
and can be indexed as follows:

1 = λ1 ≥ λ2 ≥ ... ≥ λn ≥ −1.

Denote λ∗ the maximum modulus eigenvalue of P different from +1 and −1 and
call γ(P ) = 1− |λ∗| the spectral gap.

The relaxation time trel is then defined by

trel =
1

γ(P )
. (3)

One interpretation of the relaxation time is as follows [17]: if t ≥ trel, then the
standard deviation of P tf is bounded by 1/e times the standard deviation of
f . Also, the following inequality (see, e.g., [1, 9, 17]) indicates a strong relation
between the relaxation time and mixing time

(log(1/ε) + log(1/2))(trel − 1) ≤ tmix(ε) ≤ (log(1/ε) + log(1/πmin))trel.

In particular, the above inequality suggests that for a finite Markov chain and
for small enough ε, the ε-mixing time is very close to log(1/ε)trel.

Now let us define the random walk with jumps (RWJ). It is a random walk
on a combination of the original graph and the complete graph weighted by a
scaled parameter α/n [5]. Specifically, let us modify the adjacency matrix in the
following way

A(α) = A+
α

n
11T . (4)

Note that the new degree matrix is given by D(α) = D + αI, where I is the
identity matrix. Then, the random walk on the modified graph is described by
the following transition probability matrix

P (α) = D−1(α)A(α), (5)



with elements

pij(α) =

{
wij+α/n
di+α

, if i ∼ j,
α/n
di+α

, otherwise,

Since RWJ is again a random walk on a weighted undirected graph, it is time-
reversible Markov chain with semi-simple eigenvalues. The stationary distribu-
tion of RWJ also has a simple form

πi(α) =
di + α

2m+ αn
, i = 1, ..., n. (6)

The modified transition matrix P (α) can be rewritten as follows:

P (α) = (D + αI)−1DP + (D + αI)−1αI 1

(
1

n
1T
)
. (7)

We note that if the graph is regular, i.e., D = dI, the above expression reduces
to

P (α) =
d

d+ α
P +

α

d+ α
1

(
1

n
1T
)
,

which is the transition matrix for PageRank (PR) [19] with the damping factor
d/(d+α). Thus, in the case of a regular graph RWJ coincides with PR. However,
when the graph has inhomogeneous degrees, these two concepts are different.
From the equivalence of RWJ to PR on the regular graph, we can immediately
conclude that the relaxation time is monotonously decreasing with α when the
graph is regular. When the graph is irregular, the situation becomes much more
complex.

We also would like to note that RWJ can be viewed as a node-dependent
PageRank [6], where the restart probability at each node is given by α/(di +α).
Thus, in contrast to PR, RWJ restarts with smaller probabilities from higher
degree nodes.

3 Application of Dobrushin coefficient

The Dobrushin ergodic coefficient (see, e.g., [8, 12, 21]) can be used to obtain a
lower bound on the spectral gap γ(P ) of a Markov chain. The Dobrushin ergodic
coefficient is given by

δ(P ) =
1

2
max
i,j∈V

∑
k∈V

|pik − pjk|, (8)

or, equivalently,

δ(P ) = 1− min
i,j∈V

∑
k∈V

pik ∧ pjk. (9)

In the case of RWJ, we can obtain a simple upper bound on δ(P ) by taking the
smallest element in the transition probability matrix. Namely, we obtain

δ(P ) ≤ 1− min
i,j∈V

∑
k∈V

α/n

dmax + α
= 1− α

dmax + α
, (10)



where dmax is the maximal degree in the graph. Since γ(P ) ≥ 1− δ(P ), we also
obtain a lower bound for the spectral gap

γ(P (α)) ≥ α

dmax + α
. (11)

And since α/(dmax + α)→ 1 as α→∞, we have

Proposition 1 For any undirected graph G, there always exists ᾱ = ᾱ(G) such
that for all α > ᾱ, we have γ(P (α)) > γ(P ).

For the regular graphs with degree d, the bound α/(d+ α) is quite tight. In
fact, for the regular graphs, as was noted at the end of the previous section α

d+α
corresponds to the restart probability and the exact value of the spectral gap
is d

d+αλ∗(P ) [10, 16]. However, we have observed that for irregular graphs the
bound (11) can be very loose.

4 Conditions in the case of small jump rate

Let us analyse in this section the effect of small jump rate on the relaxation
time.

Denote by v∗(α) the eigenvector corresponding to λ∗(α), that is

P (α)v∗(α) = λ∗(α)v∗(α). (12)

For brevity, we shall write v∗ = v∗(0) and λ∗ = λ∗(0). We also need the following
preliminary result

Lemma 1 The eigenelements v∗(α) and λ∗(α) are analytic functions with re-
spect to α.

Proof: It is known from [14, Chapter 2] (see also [3, 7]) that if the eigenvalues of
the perturbed matrix are semi-simple, then the eigenvalues as well as eigenvectors
can be expanded as power series with positive integer powers. Since in our case,
RWJ is time-reversible, its eigenvalues are semi-simple and the statement of the
lemma follows. �

Next, we are in a position to provide necessary and sufficient conditions for
the improvement of the relaxation time for small jump rates.

Theorem 1. For sufficiently small α, in the case λ∗ < 0, the spectral gap in-
creases, and equivalently, the relaxation time decreases with respect to α.

If λ∗ > 0, for sufficiently small α the necessary and sufficient condition for
the decrease of the relaxation time is

1

n
(1T v∗)

2 < λ∗v
T
∗ v∗. (13)

In addition, we have the following asymptotics:

λ∗(α) = λ∗(0) + α
1
n (v

(0)
∗ )T 11T v

(0)
∗ − λ(0)∗ (v

(0)
∗ )T v

(0)
∗

(v
(0)
∗ )TDv

(0)
∗

+O(α2).



Proof: According to Lemma 1, the eigenelements λ∗(α) and v∗(α) can be ex-
panded as power series

λ∗(α) = λ
(0)
∗ + αλ

(1)
∗ +O(α2), (14)

v∗(α) = v
(0)
∗ + αv

(1)
∗ +O(α2), (15)

for sufficiently small α. If we set α = 0, we obtain λ
(0)
∗ = λ∗(0) = λ∗ and

v
(0)
∗ = v∗(0) = v∗ such that

D−1Av∗ = λ∗v∗,

or equivalently,
Av∗ = λ∗Dv∗. (16)

It is also convenient to rewrite (12) as a generalized eigenvalue problem

(A+
α

n
11T )v∗(α) = λ∗(α)(D + αI)v∗(α). (17)

Substituting the power series (14) and (15) into equation (17) and equating
coefficients in α-terms, i.e.,

(A+
α

n
11T )(v

(0)
∗ + αv

(1)
∗ +O(α2)) =

(λ
(0)
∗ + αλ

(1)
∗ +O(α2))(D + αI)(v

(0)
∗ + αv

(1)
∗ +O(α2)),

yields

1

n
11T v

(0)
∗ +Av

(1)
∗ = λ

(0)
∗ Iv

(0)
∗ + λ

(1)
∗ Dv

(0)
∗ + λ

(0)
∗ Dv

(1)
∗ . (18)

Now let us multiply the above equation by vT∗ from the left to obtain

1

n
(v

(0)
∗ )T 11T v

(0)
∗ + (v

(0)
∗ )TAv

(1)
∗ = (19)

(v
(0)
∗ )Tλ

(0)
∗ v

(0)
∗ + (v

(0)
∗ )Tλ

(1)
∗ Dv

(0)
∗ + (v

(0)
∗ )Tλ

(0)
∗ Dv

(1)
∗ .

Due to symmetry, the equation (16) can be rewritten as

vT∗ A = λ∗v
T
∗ D,

and hence
(v

(0)
∗ )TAv

(1)
∗ = (v

(0)
∗ )Tλ

(0)
∗ Dv

(1)
∗ ,

which simplifies (19) to

(v
(0)
∗ )T 11T v

(0)
∗

n
= (v

(0)
∗ )Tλ

(0)
∗ v

(0)
∗ + (v

(0)
∗ )Tλ

(1)
∗ Dv

(0)
∗ .

Thus, λ
(1)
∗ can be expressed as

λ
(1)
∗ =

1
n (v

(0)
∗ )T 11T v

(0)
∗ − λ(0)∗ (v

(0)
∗ )T v

(0)
∗

(v
(0)
∗ )TDv

(0)
∗

. (20)

Clearly, the denominator in (20) is always positive. Now, consider two cases:



Case 1. λ∗ < 0

In this case the numerator in (20) is always positive. Then λ
(1)
∗ is also positive. By

expansion (14), when α is sufficiently small, the absolute value of λ∗ is decreasing
with respect to α.

Case 2. λ∗ > 0

Again, by expansion (14), for sufficiently small α the value of λ∗(α) decreases

in α if and only if λ
(1)
∗ is negative, i.e., when the numerator is negative. This is

precisely what was stated in the theorem’s condition. �

5 Sufficient conditions with easier interpretation

Even though the condition in Theorem 1 is necessary and sufficient, it is not easy
to use and does not have an easy intuitive interpretation. Next, we shall derive a
series of sufficient conditions with easier interpretation and verification. Towards
this goal, let us transform the condition in Theorem 1 to an equivalent form
using the combinatorial Laplacian. Specifically, we shall use the combinatorial
Laplacian of the complete graph:

LK = nI − 11T .

Lemma 2 The condition (13) is equivalent to

1− λ∗ <
vT∗ LKv∗
nvT∗ v∗

,

and if λ∗ > 0, the condition (13) is equivalent to

γ(P ) <

∑
i,j(v∗i − v∗j)2

n
∑
i v

2
∗i

. (21)

Proof: Using the definition of the Laplacian, we can write

1

n
(1T v∗)

2 =
1

n
vT∗ 11T v∗ =

1

n
vT∗ (nI − LK)v∗ = vT∗ v∗ −

1

n
vT∗ LKv∗.

Thus, we can rewrite condition (13) in a new form:

1− λ∗ <
vT∗ LKv∗
nvT∗ v∗

.

The other equivalent form follows immediately from the definitions of the spec-
tral gap and LK . �

Next we provide a couple of sufficient conditions with easy interpretation in
the context of complex networks.



Corollary 1 If

γ(P ) <
1

n
, (22)

then, for sufficiently small α > 0, the spectral gap of P (α) is larger than the
spectral gap of P .

Proof: Clearly,
∑
i,j

(v∗i(α)− v∗j(α))2 >
∑
i

v∗i(α)2. Because v∗(α) ⊥ π(α) and so

there are both positive and negative numbers among v∗i(α). Each number v∗i(α)
has at least one number of opposite sign v∗j(α) and such that (v∗i(α)−v∗j(α))2 >
v∗i(α)2. �

The above corollary has the following simple and useful interpretation: If
P has a sufficiently small gap, the addition of jumps with small rate always
improves the relaxation time. It is known that many complex networks have very
small spectral gap and thus this corollary gives an explanation why the relaxation
time typically improves with the addition of jumps in complex networks. The
next corollary refines the above argument.

Corollary 2 Denote the proportion of negative and positive v∗i(α) as µ : 1−µ.
Then, for sufficiently small α, if

γ(P ) < min(µ, 1− µ), (23)

the relaxation time decreases with respect to α.

Proof: For each positive number v∗i(α) has µn numbers of opposite sign v∗j(α)
such that (v∗i(α)−v∗j(α))2 > v∗i(α)2. Analogously, each negative number v∗i(α)
has (1− µ)n numbers of opposite sign v∗j(α) and for them (v∗i(α)− v∗j(α))2 >
v∗i(α)2. So,

∑
i,j

(v∗i(α)− v∗j(α))2 ≥ nmin(µ, 1− µ)
∑
i

v∗i(α)2. �

As a result of Corollary 2, the closer µ is to 1/2, the better. Often complex
networks have clustering structure. The eigenvector v∗ can be interpreted as a
variant of the Fiedler vector. Thus, if a complex network can be divided into two
clusters of similar sizes, the value of µ will be close to 1/2 or at least far from
zero. In such a case, the spectral gap of the original transition matrix P does
not need to be small for the addition of jumps to improve the relaxation time.
The above statement is similar in spirit to the condition given in [5].

Let us now provide a sufficient condition in terms of nodes’ degrees.

Theorem 2. Let the following condition hold:

γ(P ) < 4
(d1 + d2 + · · ·+ dn)2

n(d21 + d22 + · · ·+ d2n)
. (24)

Then, if α > 0 is sufficiently small, γ(P (α)) > γ(P ).



Proof: We replace the condition (21) with the following more stringent condi-
tion:

γ(P ) < min
f⊥π

∑
i∼j(fi − fj)2

n
∑
f2i

. (25)

Let us find the minimum of the RHS of the above expression over all vectors f ,
orthogonal to π(α), i.e., for vectors satisfying

∑
fidi = 0. So it will be enough

for γ(P ) to be less than the RHS of the condition (25).
Note that the RHS of (25) is homogeneous in f , so without loss of generality

we can set
∑
fi

2 = 1.
We shall use the method of Lagrange multipliers for the objective function∑
i,j(fi − fj)2 and the following constraints:

n∑
i=1

f2i = 1, (26)

n∑
i=1

fidi = 0. (27)

The expression
∑
i,j(fi − fj)2 taking into account the latter constraint can be

rewritten as 2n−2(f1+f2+· · ·+fn)2. Therefore we are looking for the maximum
of (f1 + f2 + · · · + fn)2, which will give us the minimum of

∑
i,j(fi − fj)2. Let

us find the maximal absolute values of the function (f1 + f2 + · · · + fn) with
respect to the above constraints. Obviously, these extreme values exist (sums
cannot be more than n and less than −n). Furthermore, their absolute values
coincide, because domains of these two sums is symmetric with the center in the
origin. So the set of values of (f1 + f2 + · · ·+ fn) is centrally symmetric and the
maximal absolute values of (f1 + f2 + · · ·+ fn) and −(f1 + f2 + · · ·+ fn) are the
same.

Looking at the geometry of our maximization problem, we can see that the
constraints give us a sphere cut by the hyperplane

∑
fidi = 0. We are looking

for the touching points of this set and some hyperplane (f1 + f2 + · · ·+ fn) = c.
Clearly, there will be exactly two centrally-symmetric points of touching, giving
us the maxima of the absolute values (the domain of this sum is symmetric with
the center of the symmetry in the origin, so the set of values of (f1+f2+· · ·+fn)
is centrally symmetric).

Now, consider the Lagrange function:

L = (f1 + f2 + · · ·+ fn)− λ1
(∑

i

f2i − 1
)
− λ2

∑
fidi. (28)

Taking partial derivatives with respect to fi for i = 1, ..., n, we obtain

0 = 1− 2λ1fi − λ2di. (29)

Firstly, multiply all these equations with di, respectively, and sum all of them
(here we also use equation (27)). The result is

0 = 2m− λ2
∑
i

d2i . (30)



Thus, λ2 = 2m∑
i d

2
i
, where m is the total number of edges.

Secondly, multiply all equations with fi, respectively, and sum all of them
(here we additionally use equations (26) and (27)). The result is

0 = S − 2λ1, (31)

where S = (f1 + f2 + · · ·+ fn). Thus, λ1 = S/2.
And finally, just sum all equations (here we also use equations (26) and (27))

to get
0 = n− 2λ1S − λ2

(
2m
)
. (32)

If we know λ1 and λ2, we also know S2 = n− 8m2∑
i d

2
i
. Substituting this into our

initial expression that we want to minimize, we obtain

min
f⊥π

1
n

∑
i,j(fi − fj)2∑

f2i
=

1

n

(
2n−2

(
n− 8m2∑

i d
2
i

))
= 4

(d1 + d2 + · · ·+ dn)2

n(d21 + d22 + · · ·+ d2n)
. (33)

Thus, if inequality (25) holds, the condition of Theorem 1 also holds, and
hence γ(P (α)) > γ(P ) for sufficiently small α. �

We can also rewrite the condition of the above theorem as follows:

Corollary 3 Let the following condition hold:

γ(P ) < 4
(d̄)2

d2
, (34)

where

d̄ =
d1 + d2 + · · ·+ dn

n
,

and

d2 =
d21 + d22 + · · ·+ d2n

n
.

Then, if α > 0 is sufficiently small, γ(P (α)) > γ(P ).

The quantity (d̄)2/d2 is the reciprocal of the efficiency or of the squared
coefficient of variation. It is also sometimes referred to as the signal-to-noise
ratio. From Corollary 3 we can see that the more “irregular” the degree sequence
is, the more stringent is the condition on the spectral gap.

The following simple sufficient condition using only d̄ and dmax also holds.

Corollary 4 For sufficiently small α, γ(P (α)) > γ(P ) is true for all graphs
such that

γ(P ) < 4d̄/dmax. (35)

Proof: The RHS of the inequality (34) is greater than d̄/dmax. �



6 Examples

Let us first demonstrate in this section that there exist weighted graphs for which
the introduction of jumps actually increases the relaxation time. Towards this
end, we consider a weighted graph of size 2 with the following adjacency matrix:

A =

[
a11 a12
a12 a22

]
.

The characteristic equation for the generalized eigenvalue problem Av = λDv
takes the form

det(A− λD) = det

[
a11 − λ(a11 + a12) a12

a12 a22 − λ(a22 + a12)

]
= 0.

It has two solutions

λ1 = 1 and λ∗ =
det(A)

(a11 + a12)(a22 + a12)
.

The eigenvector corresponding to λ∗ is given by

v∗ =

[
1

−a11+a12a22+a12

]
C.

Let us calculate the numerator in the expression (20)

1

2
(vT∗ 1)2 − λ∗vT∗ v∗ =

(a22 − a11)2(a11 + a12)(a22 + a12)− 2 det(A)[(a11 + a12)2 + (a22 + a12)2]

2(a11 + a12)(a22 + a12)3
.

Now if we choose the weights such that det(A) is close to zero or just zero and
a11 6= a22, the spectral gap will decrease, and consequently the relaxation time
will increase when α increases from zero. Thus, in general, the conditions of
Theorem 1 need to be checked in the case of weighted graphs if one wants to be
sure that the relaxation time decreases with the increase of the jump rate.

We also tried to construct an example of unweighted graph when the relax-
ation time increases with the increase in the jump rate. Somewhat surprisingly,
it appears to be hard to construct such an example. In fact, we have checked all
non-isomorphic graphs of sizes up to n ≤ 9 from the Brendan McKay’s collection
[23] and could not find a single example when the relaxation time increases with
the introduction of small jump rate. The code of this verification can be found
at [24].

We have also checked various random graph models like Erdős-Rényi graph
or non-homogeneous Stochastic Block Model and could not find an example of an
unweighted graph for which the relaxation time increases with the introduction
of jumps.



7 Conclusion and future research

We have analysed the spectral gap, or equivalently the relaxation time, in the
random walk with jumps. We have obtained a necessary and sufficient condition
for the decrease of the relaxation time when the jump rate increases from zero.
These conditions unfortunately do not have easy interpretation. Therefore, we
have proceeded with the derivation of several sufficient conditions with easy
interpretation. Some of these sufficient conditions can also be easily verified. The
derived sufficient conditions show that in most complex networks the relaxation
time should decrease with the introduction of jumps. We have also demonstrated
that there exist weighted graphs for which the relaxation time increases with the
introduction of jumps. On the other hand, we could not find such an example
in the case of unweighted graphs. At the moment, we tend to conjecture that
the introduction of jumps always improves the relaxation time in the case of
unweighted graphs.
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