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Abstract— Internet measurements show that a small number
of large TCP flows are responsible for the largest amount of
data transferred, whereas most of the TCP sessions are made
up of few packets. Several authors have invoked this property to
suggest the use of scheduling algorithms which favor short jobs,
such as LAS (Least Attained Service), to differentiate between
short and long TCP flows.

We propose a packet level stateless, threshold based scheduling
mechanism for TCP flows, RuN2C. We describe an implemen-
tation of this mechanism which has the advantage of being
TCP compatible and progressively deployable. We compare
the behavior of RuN2C with LAS based mechanisms through
analytical models and simulations. As an analytical model, we
use a two level priority Processor Sharing PS + PS. In the
PS+PS system, a connection is classified as high or low priority
depending on the amount of service it has obtained. We show
that PS + PS reduces the mean response time in comparison
with standard Processor Sharing when the hazard rate of the
file size distribution is decreasing. By simulations we study the
impact of RuN2C on extreme values of response times and the
mean number of connections in the system.

Both simulations and analytical results show that RuN2C has
a very beneficial effect on the delay of short flows, while treating
large flows as the current TCP implementation does. In contrast,
we find that LAS based mechanisms can lead to pathological
behavior in extreme cases.

Keywords. TCP/IP, M/G/1, Processor Sharing, LAS, Response
time, Simulations, Queueing theory.

I. INTRODUCTION

We study the differentiation between short and long flows
in a TCP/IP network. There are several reasons to favor short
flows. The reasons are based on user ergonomics, on the design
of TCP congestion control, on the file size distribution and on
queueing theory. Most user interactions with a network or with
applications running across a network consist either entirely
of short interchanges or, of short interchanges followed by
a longer transfer. If the sum of transfer times were constant,
from an ergonomics point of view, it would seem preferable to
diminish the transfer times of short transactions at the expense
of transfer times of longer transactions, as they do not require
as much user attention as short transactions.

TCP applications react to congestion and losses by reducing
their window sizes either with a certain fluidity through fast
retransmit procedures or after a timeout. For short connections
with small window sizes, a loss is often detected only after
a timeout and possibly after all data has been sent to the

network. As a result, timeouts on short connections are not
very effective in reducing the overall traffic and stabilizing the
network [1]. A loss occurrence for a short TCP transfer may
thus increase the transfer time manifold while, on the other
hand, a reduction in the latency of the order of one second
would be a significant improvement [2] for short transactions.

From a queueing theory point of view, it has been shown
that choosing an appropriate scheduling policy may signifi-
cantly improve the performance of the system. One of the
classical results of queuing theory says that the Shortest
Remaining Processing Time (SRPT) policy is optimal for
the network as it is able to reduce the overall mean latency
of the flows [3]. This is only applicable, if there is use of
a priori knowledge of the flow sizes, which obviously is
not the case in the current TCP/IP architecture. When the
size jobs is not known, LAS has been proposed as a good
approximation of SRPT . Yashkov showed in [4], (see also
[5]) that LAS scheduling policy is optimal with respect to
the average time in the system among all work conserving
disciplines that do not take advantage of precise knowledge
of the job lengths, when the service time distribution has a
decreasing hazard rate (DHR). The same result is presented
by Righter and Shantikumar in [6]. Harchol et al. [7] showed
that for distributions with DHR LAS effectively reduces the
average time in the system with respect to PS.

From the traffic point of view, it is known that Internet flow
size distributions exhibit heavy tailed behavior (see, e.g. [8],
[9], [10]) and can often be modeled by a distribution with
a decreasing hazard rate, e.g. Pareto distribution. Thus most
TCP sessions, e.g. interactive sessions, are of small size but
a small amount of large flows, e.g. from data applications,
are responsible for the largest amount of transferred data.
As a consequence, if scheduling policies that favor short
connections were to be implemented in the Internet, the
average time in the system could be reduced.

Lastly, the perceived quality is more prone to high variations
in transfer times of short flows than of long flows and, as we
will argue, in the current TCP/IP network short transactions
have wild variations in transfer times, in part due to the
conservative value of the retransmission timer [11].

In several recent works [12], [13], [14], [15], [16], [17],
the authors address the differentiation between short and long
flows in Internet networks. In [12] the authors suggest two ap-



proaches based solely on simulation studies. The first approach
is application based and it is proposed in the framework of
Differentiated Services (DiffServ), with Assured Forwarding
(AF) and RED with In and Out (RIO). This approach requires
a non trivial choice of the numerous AF and RIO parameters.
The second approach is TCP state based, using each connec-
tion’s window size and relying on the compliance of the end
hosts. Furthermore, this approach requires tuning of weighted
round robin (WRR) parameters, which again is neither evident
nor robust.

In [13], [14], [15] the authors propose a two class based
architecture to provide better service to short TCP flows. At the
edge router, state information is kept for active flows. Packets
are marked with high priority if the current length of the flow is
below some threshold and inside the network service differen-
tiation is performed by RIO routers or WRR scheduling. They
present the gain obtained on mean response times through
simulations. The results presented show reasonable gain in the
average performance, but with no discussion on the worst case
performance or on the variance of the performance. In [14],
[15], the authors also discuss the analytical modeling of their
approach, but are only able to give approximate numerical
results based on the use of the Kleinrock’s conservation law
[3].

In [16] and ensuing work [17] the authors study the LAS
(or FB) scheduling policy on the flow level and what the
LAS policy would produce in the context of a TCP network
if packets from TCP flows were sorted in decreasing order of
attained service.

The above mentioned papers have two main drawbacks.
The first drawback is that all the previous works rely only
on one metric, the mean conditional response time for given
flow size. We notice that dramatically different mechanisms
such as Last Come First Serve (LCFS) and PS give identical
mean conditional response times [3]. In contrast, we judge the
effectiveness of size-based scheduling mechanisms for TCP
flows not only on mean conditional response times but also on
extreme values of response times. We also analyze the system
stability by measuring the number of ongoing connections.
Through these performance measures, we are able to give a
thorough and improved picture of the benefits of our scheme
on the predictability of the performance of the flows and on
the stability of the network.

The second drawback of previous works, is that the pro-
posed implementation mechanisms and simulation studies rely
on buffer architectures requiring the tuning of many parame-
ters, e.g. RIO and WRR. In contrast, we propose the use of
simple priority queues with Drop Tail that has the advantage
of being robust and scalable.

We propose a novel mechanism, RuN2C, as an implementa-
tion of a threshold based procedure, which does not necessitate
state management. This mechanism has the advantage of
being implementable in different parts of a network: in access
networks on the transmission side, in backbone networks
(although authors have argued that such mechanisms are less
useful in backbone networks) or more interestingly on the

reception side of an access network. Also, the mechanism does
not require prior agreements between ISPs to be used across
networks and is robust to small variations, e.g., orders of 10
packets in the value of the threshold.

We will use the following terms. We will call RuN (Run-
ning Number differentiation mechanism) an implementation
of LAS over a TCP/IP network, where TCP packets are
given priority according to the rank of their first data byte in
the connection’s data stream. We will call RuN2C (Running
Number 2 Class differentiation mechanism) an implementation
over a TCP/IP network of a two priority class processor shar-
ing (PS + PS) scheduling mechanism in which packets are
classified as high or low priority according to the comparison
of the packet’s first data byte rank in the connection’s data
stream with a given threshold.

We derive asymptotical results based on analytical models
of the proposed mechanisms, assuming Drop Tail routers,
to show that threshold based mechanisms produce close to
standard TCP transfer times for large transfers while LAS
may discriminate severely against large transfers. We prove
analytically that when the service time distributions have
decreasing hazard rates the overall mean response time in a
system employing PS+PS scheduling is always smaller than
the mean response time in a PS system. Furthermore, we show
numerically that by an appropriate choice of the threshold, the
overall mean response time in the system can be chosen close
to the minimum response time in a LAS system.

The novel threshold based mechanism, RuN2C, is then
compared to LAS based mechanisms and standard Drop Tail
scheduling through simulations. We show that RuN2C pro-
duces an important improvement of performance with respect
to all cited metrics for short flows, while treating large flows
as the current TCP implementation does.

The rest of the paper is organized as follows. Section II
discusses the theoretical justifications for the RuN2C mecha-
nism in comparison to standard TCP over Drop Tail queues
and to LAS. Section III provides details for a possible
implementation of RuN2C in a TCP/IP network. Section IV
provides a more exhaustive study of RuN and RuN2C via
simulations. In particular, we study the variability of TCP
transfers’ response times. The paper is concluded in section
V.

II. ALGORITHMS AND MATHEMATICAL MODELS

In this section we analyze two packet level scheduling
policies for the differentiation between short and long TCP
flows. We study these scheduling policies using PS-type flow
level models. In particular, we are interested in calculating
the mean response time T (x) for jobs with service time x.
In order to evaluate what impact that giving priority to short
connections has on large flows, we study the asymptotics of
T (x) as x → ∞. The notation E[T ] is used to denote the
overall mean response time. The other metrics of interest
are the throughput, Θ(X) = x/T (x), and the slowdown,
S(x) = T (x)/x. From the user perception, the mean response
time and its variance is an appropriate metric for the HTTP



type web traffic and the average throughput is an appropriate
metric for the FTP type traffic. We study these metrics in more
detail in Section IV.

Assuming a Poisson flow arrival process, a small Bandwidth
Delay Product (BDP), and comparable Round Trip Times
(RTTs), the current realization of the TCP/IP network is well
represented by the M/G/1 − PS queuing model [8], [18].
The performance metrics for the M/G/1 − PS model with
the capacity scaled to one is given by [3]

T
PS

(x) =
x

1 − ρ
, (1)

Θ
PS

(x) = 1 − ρ, (2)

S
PS

(x) =
1

(1 − ρ)
. (3)

Based on these performance metrics, the Processor Sharing
policy is fair in the sense that it gives a constant throughput
to all flows regardless of their size. Thus the mean slowdown
of the flow is also independent of the flow size.

A. RuN Scheduling Policy

We first analyze the LAS flow level scheduling policy and
its packet level implementation RuN. For the LAS implemen-
tation one should know the running number of the packet,
i.e., one should know if the packet is the first, third, tenth,
etc. packet of a flow. The RuN packet level scheduling policy
consists in serving the packets arriving to the router buffer
in ascending order according to their running number. Hence,
the abbreviation for this implementation scheme is RuN. On
the flow level, the LAS or Foreground Background (FB∞)
scheduling policy has been thoroughly studied (see e.g. [3])1.

Let us consider a flow that requires a total service time of
x. Let F (x) be the distribution function of the flow service
times. Next we denote as Xn

x the n-th moment of the truncated
distribution at x. Namely,

Xn
x =

∫ x

0

yndF (y) + (x)n (1 − F (x)) .

The utilization factor for the truncated distribution is ρx =
λX1

x. This value represents the virtual load a customer of size
x sees in the system. From [3] we know that the average
response time conditioned on the flow size is

T
LAS

(x) =
W (x) + x

1 − ρx
, (4)

with

W (x) =
λX2

x

2(1 − ρx)
. (5)

The LAS scheduling policy is optimal with respect to
the overall mean response time among the scheduling disci-
plines that do not use any information about the remaining
service time of connections when the file size distribution

1For the sake of analytical tractability we use here the model with an
infinitesimal size of the service quanta given to each user. But the results can
be extended to the case of finite service quanta [19], [20], [21].

has a decreasing hazard rate [4], [6]. In particular we have
E[T

LAS
] ≤ E[T

PS
], even though some large flows suffer

(see Figure 2). Furthermore, if the flow size distribution has
finite mean and variance, then, as shown in [22],

lim
x→∞S

LAS
(x) = lim

x→∞S
PS

(x) =
1

1 − ρ
.

Specifically, consider the Pareto distribution, F (x) = 1 −
(k/x)α, which is an acceptable approximation for the file size
distribution for the current Internet state. Clearly, its hazard
rate,

µ(x) =
F ′(x)

1 − F (x)
=

α

x
,

is a decreasing function, and thus E[T
LAS

] ≤ E[T
PS

].
Let us analyze the asymptotics for T

LAS
(x) as x goes to

infinity. From expression (4) one immediately obtains that

T
LAS

(x) =
1

1 − ρ
x +

λX2

2(1 − ρ)2
+ o(1).

We note that if the variance X2 is large, the mean conditional
response times for the middle size flows in the case of LAS
can be significantly larger than in the case of PS. Moreover,
if the variance is infinite (1 < α < 2), the asymptotics has the
following form

T
LAS

(x) =
1

1 − ρ
x +

λkα

(1 − ρ)2(2 − α)
x2−α + o(x2−α).

There is no asymptote in this case, even though the limit
limx→∞ S

LAS
(x) exists. This implies that the performance

of LAS deviates increasingly from PS performance with the
increase of the file size.

Finally, we note that the LAS scheduling policy can be very
unfair. Consider the case when many flows of the same size
arrive subsequently in such a manner that a new flow enters the
system just before the previous flow is about to be finished. In
this scenario, all these flows will leave the system at the same
time under the LAS policy. There might be a huge difference
between the response times for the first and the last flows.
On contrary, the PS scheduling discipline will treat all flows
fairly in this scenario.

The above remarks and the difficulty in implementing the
RuN mechanism prompt us to look for some scheduling policy
which combine good properties of both LAS and PS. An
example of such a policy is proposed in the next section.

B. RuN2C Scheduling Policy

RuN2C is a threshold based scheduling policy that blends
the good features of both LAS and PS. On the flow level,
this policy serves flows in the first queue as long as they have
received an amount of service less than a given threshold.
They then move to the second queue, which is serviced only
if the first queue is empty. Inside the queues flows are serviced
using the PS discipline. This policy corresponds to the two
level PS scheduling policy M/G/1 − PS + PS introduced
in [3]. On the packet level, we consider a drop tail queue



with a threshold based two class priority mechanism, hence
the abbreviation RuN2C for the packet level mapping. Upon a
packet arrival in a router, the running number is inferred and
is compared to a given threshold value. The packet is marked
to either a high priority with small running number or a low
priority with high running number. The packets with a number
smaller than the threshold (class 1 packets) will be serviced
before the packets with a number larger than the threshold
(class 2 packets). A possible implementation is presented in
Section III.

Let th be the value of the threshold. Given a flow of size
x where x > th, the first th packets of a flow will have high
priority, while the rest x−th packets will be considered as low
priority packets.2 For those flows with a size equal or smaller
than th, the system behaves as a pure PS system where the
service time distribution is truncated at th. Hence the mean
response time is given by

T
PS+PS

(x) =
x

1 − ρth
, (6)

for x ∈ [0, th]. The average number of flows served during a
busy period is 1/(1 − ρth). For flows with size x ∈ (th,∞)
the mean response time conditional on the flow size is given
by

T
PS+PS

(x) =
W (th) + th + α(x − th)

1 − ρth
. (7)

The expression consists of the delay due to the time spent in
the first high priority queue, where the flow is serviced up to
the threshold th, (W (th) + th)/(1− ρth), and the time spent
in the lower priority queue α(x − th)/(1 − ρth). W (th) is
given by (5).

The only unknown expression is α(x). It is the virtual time
spent in the lower priority queue and to solve it one can
consider a queuing system with bulk arrivals to the lower
priority queue after a busy period in the high priority queue.
This approach results in the following integral equation [3] for
α′(x) = dα(x)/dx

α′(x) = λn

∫ ∞

0

α′(y)B(x + y)dy

+λn

∫ x

0

α′(y)B(x − y)dy

+bB(x) + 1, (8)

where

n =
1 − F (th)
1 − ρth

is the mean fraction of flows that reach the low priority queue
after a busy period of the high priority queue,

b = 2λ(1 − F (th))
W (th) + th

1 − ρth

2We remind that here we consider the normalized service time.

is the average number of flows that arrive to the low priority
queue conditioning that at least one does. B(x) is the com-
plementary truncated distribution given by

B(x) =
1 − F (th + x)

1 − F (th)
,

which for the exponential case, due to the memoryless prop-
erty, reduces to the form given in [3], B(x) = 1 − F (x).

The integral equation (8) can be solved by using either
the finite approximation of the Riemann sum or fixed point
iterations. Note that though in [15] the authors use the same
approach to model their system, and derive a similar integral
equation, they are not able to solve the resulting integral
equation, even numerically.

Theorem 1 describes the limiting behavior of the slowdown
for large file sizes in the case of M/G/1−PS+PS scheduling
policy.

Theorem 1: Let the service time distribution have a finite
mean. Then the slowdown for the PS +PS scheduling policy
has a limit as the flow size goes to infinity

lim
x→∞S

PS+PS
(x) = lim

x→∞S
PS

(x) =
1

1 − ρ
.

The proof of the theorem is postponed to Appendix A.
Furthermore, it has been recently shown that the mean condi-
tional response time T

PS+PS
(x) has an asymptote with the

slope 1/(1−ρ) and with finite bias independent of the second
moment of the service time distribution [23].

Based on this result, we note that the advantage of the
PS + PS scheduling discipline against LAS is that the
absolute difference between PS + PS and PS transfer times
remains bounded, even in the case of distributions with infinite
variance. As a consequence, very large flows should not
see a difference between RuN2C and the current TCP/IP
implementation.

Furthermore, for service time distributions with decreasing
hazard rate, the average performance, in terms of response
times, of PS + PS is better than PS. This a particular result
of more general results that will appear in [24].

Theorem 2: Let the service time distribution have a finite
mean and decreasing hazard rate. Then the mean overall
response time for PS + PS and PS satisfy

E[T
PS+PS

] ≤ E[T
PS

]

The proof of the theorem is postponed to the Appendix B.
We study numerically the value of the mean overall re-

sponse time, E[T
PS+PS

]. In Figure 1 we depict the value
of the average response time as a function of the threshold
for a bounded Pareto flow size distribution with parameters
BP (k, p, α) = BP (13, 5000, 1.1) and mean 64 packets. An
optimal choice of the threshold in the PS +PS scheme gives
nearly the same gain in overall performance as in the case
of LAS, without the drawbacks of servicing very long flows
unfairly. This result is even more striking if we keep in mind
that LAS is optimal with respect to the average time in the
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system, when the hazard rate of the service distribution is
decreasing, among all the work conserving disciplines that do
not take advantage of precise knowledge of the job lengths [4]
and [6]. Of course, we recognize that the optimal theoretical
value of the threshold may be different from the value which
gives the best performance for a real implementation. For a
Pareto distribution, with maximum flow size of 5000 packets,
the optimal threshold is around 200 packets. In the context
of TCP it is sufficient to set up the threshold parameter to a
much smaller value (for example 10) in order to guarantee that
a TCP connection will recover from a loss by fast retransmit
rather than by a costly timeout, see Section III.

Interestingly, even though the benefit that LAS and PS +
PS provide to short flows are comparable, PS+PS provokes
a smaller degradation of the performance for large flows
than LAS. Figure 2 shows the delay for flows for the three
different scheduling policies, as a function of their size.
The flow size distribution is bounded Pareto with parameters
BP (13, 5000, 1.1) and mean 64 packets. We observe that
even though large flows do not suffer much with PS + PS,
the average time in the system is reduced significantly (see
Figure 1).

The analytical flow level models presented in this section
can be used to model the proposed packet level implementa-

tions, as long as the transient effect of TCP congestion control,
namely the initial slow start phase is taken into account.
Thus, assuming that the TCP maximum window size is the
bottleneck, not the BDP of the link and looking at the cycle
for every RTT and assuming that an application sends one
window, w, worth of packets one packet at a time during one
RTT, we have

T
SS

(x) =
{

(�log2 x� + 1)RTT, x ≤ 2�log2 w�+1

TSS(x − 1) + RTT/w, otherwise.

Adding the slow start model to the scheduling delay models of
this section have a good correspondence with the simulation
results of Section IV. Due to limited available space, we only
consider the simulation results, but conclude that the delay
of short and long TCP flows can be modeled by two main
components: slow start and queueing.

III. IMPLEMENTATION OF RUN2C FOR TCP/IP

As explained previously, RuN2C is a threshold based two
class differentiation mechanism. The packet level implemen-
tation requires maintaining a two class priority queue and
knowledge of the value of the threshold parameter between
high and low priority queues.

In order to propose a stateless implementation, routers must
be able to classify packets from a TCP connection without
taking into account previous events. To this end we propose
that routers infer the served amount of bytes by only looking
at the current TCP sequence number3. TCP sequence numbers
are incremented from one segment to the other by the number
of bytes in the packet’s workload and the initial sequence
number is picked at random when the TCP connection is
established.

The principal retained is to have TCP sequence numbers
start from a set of Possible Initial Numbers PINi where
i ∈ {1, . . . , 2R} equally spaced in the sequence number field
ranging from 0 to 232 − 1. These numbers should be spaced
not too far to allow for the initial sequence number of a TCP
connection to be picked sufficiently at random4. They must be
spaced far enough to reduce the probability (or the occurrence
rate) of running over to the next PIN .

Let th be the value in bytes of the threshold, packets for
which the sequence number is between PINi and PINi + th
will be classified as priority packets in contrast to packets
for which the sequence number lies between PINi + th and
PINi+1, where PINi+1 is the next possible initial number
(see Figure 3).

With this structure the sequence number expressed in binary
code is divided into three parts (see Figure 3). The R = 32−
(L+TH) most significant bits are picked at random, providing
2R different PIN values. The next L bits and the following
TH bits, where TH = log2th, are set to zero when the TCP

3As this may be inefficient in terms of packet processing in routers, this
lookup may also be performed in edge routers. These may then set TOS bits
in the IP header if the mechanism is to be used in routers which may not
allow for sequence number lookup.

4Misbehaving users should not be able to infer the initial sequence numbers
[25].
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connection is established. This scheme permits to infer the
priority of the packet by a simple mask based comparison,
since when the sequence number belongs to the low priority
range [PINi + th, PINi+1] the L intermediate bits will be
equal to 0. Packet sequence numbers from a given connection
will overflow to the next PIN after 2L+TH bytes which we
show in the Subsection III-A can be chosen quite large.

Note that since the sequence number is counted in bytes, the
interval 2TH is divided into MSS (Maximum Segment Size)
disjoint sets. This allows us to choose also at random the first
log2MSS bits of the initial sequence number. We can thus
increase the randomness of the scheme allowing both the first
R bits and the log2MSS least significant bits to be random.

As our implementation retains the per byte nature of TCP
flow control, the number of high priority bytes of each
connection will be fixed and independent of the MSS of
the connection. In packet count based schemes, e.g. [13], the
number of high priority segments is fixed and the number
of high priority bytes depends on the MSS. Our scheme
provides positive features from both the user and network
point of view. From the network point of view, the maximum
number of segments per connection that will get high priority
can be controled just by setting the values of TH based on
a small data segment (typically 512bytes). From the user
point of view, since the number of bytes with high priority
will be fixed by the network, this scheme is transparent and
will guarantee a well-defined fairness with respect to other
users and at the same time it will prevent misbehaving users
from getting preferential treatment since whatever the value of
MSS a connection choses, only the number of bytes defines
the amount of preferential treatment obtained.

A. Dividing the sequence number space

The threshold th must be chosen in such a way that
short flows benefit from the differentiation mechanism while
keeping the load of high priority low in order not to harm
longer flows. To find a compromise solution, we note two
facts. First, short TCP flows are prone to timeouts upon packet
losses (see for example [26]). The impact of timeouts can be
extremely important on the response time of short flows since
its minimum value is 1 s [11]. Thus, to avoid timeouts, packets
should be given priority until the congestion window reaches a
value of 3 or 4. This is the case if approximately 8 packets are
transmitted. This corresponds to a threshold th of 12KBytes

if MSS = 1460 KBytes. Second, since TCP flow sizes are
heavy tailed, even though flows shorter than 8 packets may
represent a significant number of TCP flows, they will account
for a small proportion of the total load. Hence, giving priority
to short flows, will not lead to the starvation of longer flows.

To allow for th = 12kByte we require TH =
log2(12000) ≈ 14 bits for the least significant bits in the
sequence number. Let us consider L to be 8. Sequence
numbers will overflow to the next PIN after having sent
222 ≈ 4Mbytes. The latter amount of data corresponds to
2800 packets. At the worst case, this might induce a packet
loss with probability 3.6×10−4, which is negligible in respect
to the current packet loss rate in the Internet. With this setting
there are 210 = 1024 possible values for PIN . This may not
provide satisfactory degree of randomness in the choice of the
initial sequence numbers. As mentioned previously, this can
be improved choosing the first log21460 ≈ 10 bits at random.
Therefore, the total number of random bits available is equal
to 10+10 = 20, which can produce 1 million random values.

B. Deployment

We now give some indications on deploying such a mech-
anism in a TCP/IP network. Standard TCP connections may
be sharing RuN2C enabled routers. In such a case they will
not benefit from the priority queue except if they randomly
start their sequence number to do so. Analytical models in the
previous section and the simulation results given in the next
section, show that long TCP connections obtain equivalent
performances with tail drop routers and RuN2C routers as
long as the load of the priority traffic remains small. One
may expect for a similar result to stand for non-adapted short
TCP flows if the priority traffic is sufficiently small. RuN2C
routers can thus be considered compatible with current TCP
implementations. In addition TCP connections implementing
RuN2C are not affected by tail drop routers. We thus conclude,
that RuN2C can be progressively deployed on a network, as
it is always beneficial for all adapted TCP connections and
never worse than the current implementation for non-adapted
connections.

IV. SIMULATIONS

The two packet level scheduling disciplines (RuN and
RuN2C) presented in the previous section were studied an-
alytically on the flow level using PS-type models. In this
section we use the NS simulator [27] to study metrics which
were not analyzed in the Section II, i.e., the extreme values
of the response times and the number of ongoing flows in the
system. In NS flow sequence numbers start from zero for each
flow and the implementation of RuN and RuN2C schemes is
straightforward.

The simulation topology used consists of a 10Mbps bottle-
neck link serviced by 10 access links. The bottleneck buffer
has a finite size of 100 packets. We use two basic, but different
simulation settings:

(S1) 10Mbps access links with a total network propagation
delay of 6 ms.



(S2) 2Mbps access links with a total propagation delay of 60
ms.

(S1) is chosen to be one where the arrival process to
the bottleneck link is bursty and a single connection may
completely use the bottleneck capacity. Thus the traffic in
the network will experience many losses and longer queuing
delays. In (S2) the arrival process is less bursty, due to the
smaller bandwidth of the access links, and the delay due to
propagation delay is more dominant than the delay due to
queuing. In all simulations, packet size is set to 1500 bytes
and maximum TCP window is 30 packets. We use in RuN2C
a threshold of 20 packets.

In the simulations, the schemes are implemented by inspect-
ing the sequence number of the packet from the TCP header at
the bottleneck router. The packet is then placed in the buffer
either in ascending order according to its sequence number
(RuN) or classified to higher or lower priority level (RuN2C)
based on a predefined sequence number threshold. In both
scheduling mechanisms, the tail drop is in a push out fashion,
i.e. if the buffer is full, the arriving packet is first placed into
the buffer, and then the tail of the buffer is pushed out. The
two proposed scheduling mechanisms are then compared to a
traditional FIFO Drop Tail queue.

We consider two flow size distribution scenarios:

(D1) A heavy tailed distribution, which is a mixture of
two distributions. 80% of flows are short TCP flows
with exponentially distributed flow sizes with mean
size of 4 packets (6 kbytes) and 20% are long TCP
flows with a bounded Pareto distribution BP (k, p, α) =
BP (13, 5000, 1.1) and mean 64 packets. Thus the load
of short flows is 20% and the load of long flows 80%.

(D2) 50 persistent TCP flows and a 20% load of short TCP
flows with exponentially distributed flow sizes with mean
size of 6 packets (9 kbytes).

We use the following metrics to assess the performance of
the different mechanisms:

• number of flows in the network,
• mean and maximum latency for short TCP flows,
• throughput and its variance for long TCP flows.

A. Mixed distribution of short and long flows

Consider topology (S1) with traffic distribution (D1). In
Figure 4 we plot the number of flows in the system under the
three different schedulers as a function of time, thus depicting
the change in the stability of the network. RuN and RuN2C
mechanisms are able to considerably reduce both the average
number of flows in the network as well as the variability. From
the figures we thus notice that RuN2C is nearly as efficient as
RuN to reduce the average overall number of flows.

Figure 5 shows the change in delay under the three sched-
ulers. We can make two observations from the figure. The
mean response time is reduced using the RuN and RuN2C
schedulers by more than a ten fold for all flows under
the threshold of 20 packets and considerably for flows less
than 40 packets i.e. 60kbytes. Thus the proposed scheduling
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Fig. 4. Number of flows in the network during the simulation under setting
(S1) and distribution (D1)

mechanisms are able to reduce the delay for the short flows.
Figure 5 also nicely illustrates the difference between the
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Fig. 5. Mean delay as a function of packet size for short flows under setting
(S1) and distribution (D1)

two RuN schemes. Up to the threshold of 20 packets there
is minimal difference in strictly ordering the packets and in
merely dividing them into two classes. After the threshold the
RuN2C scheme resembles the DropTail though for flow sizes
close to 20 packets the effect of the preferential treatment to
the first 20 packets is still visible in a reduced delay.

Besides the average delay, we study the maximum delay
for the short flows shown in Figure 6. We notice that under
the RuN and RuN2C schemes the maximum delay is close
to the mean delay for all short flows, while the DropTail
scheme results in some flows having very large delays. As
an example consider the flow with size of 7 packets, under
the RuN and RuN2C schemes it has a maximum delay of
100 ms, while under DropTail the maximum delay is 200s, a
difference of 3 orders. This is the result of multiple backoffs
of the TCP retransmission timer. This example illustrates the
blackout impression users can have even in a moderately
loaded system. Thus, RuN and RuN2C schemes significantly
reduce the timeouts for short flows and hence improve the
predictability of response times.
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setting (S1) and distribution (D1)

Figure 7 depicts how the gain in smaller delay for the short
flows affects the throughput of long flows. It seems that for a
maximum flow size of 5000 packets i.e. 7.5Mbytes, all flows
have the same or better throughput under the RuN and RuN2C
schemes compared to DropTail. However, as will be shown
later the RuN scheme may not be beneficial for all long flows
if many long flows coincide at the same time.
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Fig. 7. Mean throughput as a function of packet size for all flows under
setting (S1) and distribution (D1)

Consider now topology (S2), with smaller access link ca-
pacities and a larger overall RTT. It is expected that the gain
in smaller delay for the short flows is not as considerable as
there are fewer drops and thus fewer retransmits in topology
(S2), furthermore the propagation delay dominates the total
delay for flows. Figure 8 depicts the number of flows in the
network. Though the aggregated packet arrival process to the
bottleneck link is less bursty, there is still a difference in the
stability of the network.

Figure 9 shows the mean response time using the two
schedulers. Though the RuN and RuN2C schemes are able
to reduce the delay, the effect of slow start (step like pattern)
and the large propagation delay are dominant.

We notice that the change in average delay is still con-
siderable. Mainly we notice that the delay under DropTail
is of the same magnitude for a propagation delay of 6 ms
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Fig. 8. Number of flows in the network during the simulation under setting
(S2) and distribution (D1)
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Fig. 9. Mean delay as a function of packet size for short flows under setting
(S2) and distribution (D1)

or 60 ms. While for RuN and RuN2C schemes the delay is
clearly mainly due to propagation delay and marginally due to
queuing delays. The maximum delay is also reduced for the
short flows, as shown in Figure 10.

Figure 11 depicts that as the change in delay for the short
flows was not as large, neither is the change in throughput for
the long flows. However, it still seems that the RuN2C scheme
is able to improve the throughput for all flows.

B. Effect on persistent flows

Now consider the same two network parameter settings
as previously, but the flow distribution (D2). Instead of long
TCP flows that arrive randomly with a fixed size we load the
network with 50 persistent TCP flows. We then study how the
scheduling mechanisms affect these persistent flows and the
randomly arriving short flows that coexist with the persistent
flows. We present the same set of metrics as in the previous
section. The effect of the RuN schemes on the persistent flows
is different than on the randomly arriving long flows. However,
studying the persistent flows gives us an indication of the effect
of scheduling during a snapshot of the network, when long
flows coexist at the same time.

Figure 12 depicts the number of flows in the network on
the log scale, as the reduction in the number of short flows is
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Fig. 11. Mean throughput as a function of packet size for all flows under
setting (S2) and distribution (D1)

of more than two orders.
Figure 13 shows the change in average delay for short flows

under the three schedulers. The stabilizing effect of the RuN
schemes is clear from figures 12 and 13. Under DropTail the
latency for short flows is dominated by drops and retransmits
as it has been already mentioned in Section IV-A.

Figure 14 depicts how the gain in smaller delay for the
short flows affects the throughput of persistent flows. From
the figure we see that the 50 persistent flows have negligible
difference between the mean throughputs, though under RuN
the throughput is the lowest. There are, however, large dif-
ferences in the variance of the throughput. The RuN scheme
reduces the mean throughput and has zero variance. This is
because the RuN scheme services the persistent flows exactly
the same amount and as a consequence the data points in the
middle figure all coincide and look like one data point! Under
RuN, all the persistent flows start at the same time and are
serviced in the order of packet sequence numbers in a strict
round robin fashion packet by packet. If at some point a more
aggressive flow has more packets serviced than others, it has to
wait in the buffer or is pushed out of the buffer and thus slowed
down until the others have caught up with the aggressive flow.
This shows how the LAS policy may reduce the overall mean
response time if all long flows start at the same time, but may
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Fig. 12. Number of short flows in the network during the simulation under
topology (S1) and distribution (D2)
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Fig. 13. Mean delay as a function of packet size for short flows under
topology (S1) and distribution (D2)

be extremely unfair for long flows starting during the service
time of other long flows, as discussed in Section II.

Note also that the throughput variance for RuN2C is three
times smaller than the throughput variance for DropTail. The
RuN2C scheme is thus able to both increase the average
throughput as well as reduce the variance, without the risk
of the pathological behavior of LAS. For the topology (S2)
the conclusions are the same and figures are omitted due to
lack of space.

V. CONCLUSIONS

We propose a packet level size-based scheduling mech-
anism for TCP flows, RuN2C, which is a threshold based
differentiation scheme. We describe an implementation of this
mechanism which has the advantage of being TCP compatible,
robust, scalable and progressively deployable. We show nu-
merically, how the value of the threshold affects the optimality
of the scheduling policy and compare by means of simulations
the proposed implementation to standard TCP over tail drop
buffers and to LAS implementation RuN.

We showed that RuN2C is beneficial from both the system’s
and the user’s point of view for small transfers. From the user’s
perspective the network response becomes more predictable
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and the average response time is reduced. In addition, many
short flows get served promptly at the expense of some few
long flows. In fact, we show that RuN2C performs very similar
to standard TCP for large flows. From the system’s point of
view, the average number of active sessions is reduced.

On the contrary, we show that LAS based implementations,
on top of being difficult to implement, may show degraded
performance for large transfer sizes since for service dis-
tributions with infinite variance LAS deviates increasingly
from PS for large file sizes. This is in contrast to RuN2C,
which exhibits performance close to that of standard TCP
for large transfers and is simpler to implement. At the flow
level, we prove that the PS + PS scheduling policy reduces
the mean overall response time E[T

PS+PS
] with respect to

PS when the hazard rate of the service time distribution is
decreasing. In addition, we provide numerical indications that
by an appropriate tuning of the threshold, PS +PS performs
very closely to LAS, which is known to be the optimal
scheduling discipline, with respect to the average time in the
system, among work conserving disciplines, when no precise
knowledge of the job lengths is available and when the hazard
rate of the job distribution is decreasing.

At the TCP level the benefit brought by the RuN2C mech-
anism seems to come at no cost. This benefit is obtained
as a consequence of a better work scheduling, from the
performance point of view, of the loss epochs. That is, short
TCP flows are extremely vulnerable to packet loss and they
have a high probability of experiencing a costly timeout.
In contrast, large TCP flows are more robust against losses
since they are more likely to have large congestion windows.
Therefore, many short sessions benefit from giving priority to
short flows at almost no cost for long flows, as short sessions
account for a small proportion of total network load.
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APPENDIX A: PROOF OF THEOREM 1

First we note that the solution of the integral equation (8)
is equivalent to the solution

δα′(x) = λn

∫ ∞

0

δα′(y)B(x + y)dy

+λn

∫ x

0

δα′(y)B(x − y)dy (9)

+bB(x),

where
δα′(x) := α′(x) − 1 − ρth

1 − ρ
. (10)

The above transformation removes the constant component
of the solution. Next, we consider the fixed point iterations

δα′
k+1(x) = λn

∫ ∞

0

δα′
k(y)B(x + y)dy

+λn

∫ x

0

δα′
k(y)B(x − y)dy

+bB(x), k = 0, 1, ...

on the complete functional space of continuous bounded non
negative functions C[0,∞) with the supremum metric. Let∥∥δα′∥∥ = supx |δα′(x)| < ∞.

If we show that the linear integral operator

A[β(x)] = λn

∫ ∞

0

β(y)B(x + y)dy

+λn

∫ x

0

β(y)B(x − y)dy + bB(x)

is a contraction, then the integral equation (8) has a unique
solution in C[0,∞). Clearly the operator A[β(x)] maps the
space C[0,∞) into itself.

Let us denote as d the distance in the metric space C[0,∞),
that is d(δα′

1, δα
′
2) = supx{|δα′

1 − δα′
2|}. Let us now show

that the linear operator A[β(x)] is indeed a contraction map-
ping on C[0,∞).

d(A[δα′
1],A[δα′

2]) = sup
x
{|A[δα′

1] −A[δα′
2]|}

≤ λn̄ sup
x
{A[|δα′

1] −A[δα′
2]|}

sup
x

(∫ ∞

0

B(x + y)dy+
∫ x

0

B(x − y)dy

)

= λn̄d(δα′
1, δα

′
2)

X − Xth

1 − ρth

= d(δα′
1, δα

′
2)

ρ − ρth

1 − ρth
.

Thus, the mapping is a contraction if ρ < 1.
We now show that limx→∞ δα′(x) = 0. We note that

limx→∞ B(x) = 0. Clearly the first integral tends to zero
as x → ∞. Then we have:

lim sup
x→∞

δα′(x) =
λn

1 − F (th)

lim sup
x→∞

∫ x

0

δα′(y)(1 − F (x − y + th))dy

We note that 1−F (x−y + th) is an increasing function on
y and limy→∞(1−F (x−y + th)) = 1. We choose x∗ < x to
be large enough so ∀x > x∗, δα′(x) < lim supz→∞ δα′(z).
Let us denote 1 − F (x − x∗ + th) = ε, then

δα′(x) ≤ λn

1 − F (th)

(
x∗εM + lim sup

z→∞
δα′(z)

)
∫ x

x∗
(1 − F (x − y + th))dy.

Now we take the lim supx→∞ of the above expression. We
note that the first component tends to 0 since lim supx→∞ ε =
limx→∞(1 − F (x − x∗ + th)) = 0. Integrating by parts it is
easy to see that

∫ x

0
(1 − F (y))dy = X̄x. Then we obtain

lim sup
x→∞

δα′(x) ≤ λn

1 − F (th)
lim sup

z→∞
δα′(z)

lim sup
x→∞

∫ x

x∗
(1 − F (x − y + th))dy

=
λn

1 − F (th)
lim sup

z→∞
δα′(z)

lim sup
x→∞

¯Xx−x∗−th − X̄th

1 − F (th)

=
ρ − ρth

1 − ρth
lim sup

x→∞
δα′(x).

Since (ρ − ρth)/(1 − ρth) < 1 if ρ < 1, the equality holds
only if lim supx→∞ δα′(x) = 0. Consequently, the limit exists
and is equal to zero. Hence, using equations (10) and (7), we
conclude that limx→∞ S

PS+PS
(x) = 1/(1 − ρ).

APPENDIX B: PROOF OF THEOREM 2

Let S be the set of scheduling disciplines that do not use any
information about the remaining service times of jobs, but only
information on the attained services of these jobs. Note that
PS + PS, PS,LAS ∈ S. Define U

S

x as the mean unfinished
truncated work in a system with a scheduling discipline S ∈ S.
For example, let us consider a job present in the system which
has obtained already 3 units of service and that requires 10
more units of service. If x = 5, the contribution of this job
to the unfinished truncated work will be equal to 2. It has
been shown recently [24] that for any scheduling S ∈ S U

S

x

is given by

U
S

x = λ

∫ x

0

T
S
(y)(1 − F (y))dy. (11)

Furthermore, in [24] (see Proposition 1) it has been shown
that for any S1, S2 ∈ S, where U

S1

x ≤ U
S2

x and the



service time distribution has a decreasing hazard rate, then
E[TS1 ] ≤ E[TS2 ]. In the rest of the proof we show that indeed
U

PS+PS

x ≤ U
PS

x .
Recalling the results of equations (6) and (7) we have that

T
PS+PS

(x) =




x

1 − ρth
if x ≤ th,

W (th) + th

1 − ρth
+

α(x − th)
1 − ρth

if x > th.

(12)
Denote now

α∗ = inf
x>0

α′(x).

The following inequality follows straightly from the integral
equation (8):

α∗ = inf
x>0

{
λn

∫ ∞

0

α′(y)B(x + y) dy

+λn

∫ x

0

α′(y)B(x − y) dy + +bB(x) + 1
}

≥ inf
x>0

{
λn

∫ ∞

0

α∗B(x + y) dy

+λn

∫ x

0

α∗B(x − y) dy + 1
}

= λnα∗
∫ ∞

0

B(z) dz + 1

= α∗ ρ − ρth

1 − ρth
+ 1.

and thus,

α∗ ≥ 1 − ρth

1 − ρ
. (13)

By combining equations (12) and (13), we have


(T
PS+PS

)′(x) =
1

1 − ρth
≤ 1

1 − ρ
if x < th,

(T
PS+PS

)′(x) ≥ α∗

1 − ρth
≥ 1

1 − ρ
if x > th.

(14)

Note further that

(T
PS

)′(x) =
1

1 − ρ
. (15)

Since T
PS

(0) = T
PS+PS(a)

(0) = 0, it follows from (14)
and (15) that, for all x < th,

T
PS+PS

(x) ≤ T
PS

(x). (16)

Define then

x∗ = inf{x ≥ th | T
PS+PS

(x) > T
PS

(x)}.
By the above definition and (16), we have, for all x < x∗,

T
PS+PS

(x) ≤ T
PS

(x).

Thus, by (11), we deduce that, for all x ≤ x∗,

U
PS+PS

x ≤ U
PS

x .

By definiton of x∗ and using equations (14) and (15), we
have that, for all x > x∗,

(U
PS+PS

x )′ = λF (x)T
PS+PS

(x) > λF (x)T
PS

(x) = (U
PS

x )′.
(17)

Finally, since both PS + PS and PS are work conserving
disciplines, for which the mean unfinished work is equal in
the M/G/1 queue, we have

lim
x→∞U

PS+PS

x = lim
x→∞U

PS

x . (18)

Now we argue that, for all x > x∗,

U
PS+PS

x < U
PS

x .

Suppose on contrary that there exists x∗∗ such that U
PS+PS

x∗∗ =
U

PS

x∗∗ . Then, consider the following integral that is strictly
positive by equation (17)

0 <

∫ ∞

x∗∗

(
(U

PS+PS

x )′ − (U
PS

x )′
)

dx

= lim
x→∞(U

PS+PS

x − U
PS

x ) = 0.

The last equality follows from equation (18). Hence by con-
tradiction, for all x > x∗, U

PS+PS

x < U
PS

x , which completes
the proof.


