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Abstract - We consider the problem of comparing source/signal sep-
aration algorithms for MIMO wireless channels. The channelstate is
not known to the transmitter and the receiver. The receiver estimates
the channel via a training sequence or uses blind methods to separate
the signals. By comparing the ’capacity’ of a composite channel, we
answer the following questions for a given channel:

i. What is the optimum training sequence size in a training based
method ?

ii. How do the training based, blind (considering Constant modu-
lus algorithm, CMA, specifically) and semiblind methods compare with
each other ?

Keywords : Channel estimation, MIMO channels, Signal separation
algorithms, Training sequence, Blind algorithms, CMA.

1. INTRODUCTION
Wireless channels are necessary for ubiquitous connectivity.
However, due to time varying multipath fading, broadcast na-
ture and limited power and bandwidth, it is important to op-
timize the wireless resources. Therefore, multiple transmit
and receive antennas, adaptive power control, modulation
and coding are employed to increase the transmission rate
and reduce the bit error rate [14]. An important component
in the success of these adaptive techniques is efficient, accu-
rate channel estimation and equalization. Due to time vary-
ing nature of the channel, for a good channel estimate, one
needs to send the training sequence frequently. Therefore,a
significant (� 18% in GSM ) fraction of the channel capacity
is consumed by the training sequence. The usual blind equal-
ization techniques have also been found to be inadequate
([13]) due to their slow convergence and/or high computa-
tional complexity. Therefore, semi-blind algorithms, which
use some training sequence along with blind techniques have
been proposed (Chapter 7 of [13] and references therein). In
this paper, we provide a systematic comparison of the train-
ing based, blind and semi-blind algorithms.

In comparing training based methods with blind algo-
rithms one encounters the problem of comparing the loss in
BW in training based methods (due to training symbols) with
the gain in BER (due to better channel estimation/equalization
accuracies) as compared to the blind algorithms. We over-
come this problem by comparing these methods via the chan-
nel capacity they provide. To-wards this goal, we combine
the channel, equalizer and the decoder to form a compos-
ite channel. (We use the misnomer equalizer for the source
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separation algorithm throughout the paper for convenience
of presentation). The input to this channel will be symbols
from a finite alphabet and the output of this channel will be
the decoded symbols. Hence this is a discrete channel. The
capacity of this composite channel will be a good measure
for comparison of the various signal separating algorithms.

Consider a frame involvingN channel uses withNt train-
ing symbols. In a training based method, the channel is esti-
mated from these symbols and then the information symbols
are decoded. Using the probability of error provided by this
method one can compute the capacityC of the composite
channel per channel use. Then the overall channel capacity
per channel use in the frame will be(N �Nt)C=N . In a
blind algorithm (say CMA)Nt = 0 but using the general
statistics of the arrival process one estimates the channel(or
may directly obtain an equalizer) as the information sym-
bols arrive. After all theN symbols of a frame arrive, we
obtain an equalizer. We use this equalizer to estimate the
transmitted information symbols of the frame. The result-
ing probability of error can be used to obtain the capacity
of the composite channelCb, which will also be the overall
channel capacity per channel use in this case. Comparing(N �Nt)C=N with Cb provides a reasonable comparison.
One can compare these capacities with the capacity obtained
by a semi-blind method also.

This problem for the training based methods has also
been studied in [11] and [12]. They obtain a lower bound on
the channel capacity and find the optimal training sequence
length (and also placement in case of [11]). We not only
study the problem of optimal training sequence length, but
also compare it to blind and semi blind methods. Also, we
actually obtain the channel capacity and compare the differ-
ent methods.

The paper is organized as follows. Section2 describes
our model and the approach to be followed for comparing
different methods. Section3 considers the training based
channel estimation and section4 studies the blind algorithm
(CMA) while section5 combines the two approaches to ob-
tain a semiblind algorithm. Section6 compares the capacity
of the three algorithms using few examples and Section7
concludes the paper.



2. THE MODEL AND OUR APPROACH
Consider a wireless channel withm transmit antennas andn receive antennas withm � n. The time axis is divided
into frames; each frame consisting ofN channel uses. The
transmitted symbols are chosen from a finite alphabetS =fs1; s2; � � � ; sLg. At time k, vector �A(k)"Sm is transmit-
ted from them transmit antennas. We represent the ele-
ments ofSm by Sm = f �Si; 1 � i � Lmg i.e each�Si is
am length complex vector formed from elements ofS. The
channel gain matrixH is assumed constant during a frame
(quasi static channel). We assume it to vary independently
from frame to frame. These are commonly made assump-
tions. Thus, if we use training based methods, the channel
estimate for a frame depends upon the received training se-
quence during that frame only. Therefore, we will need to
consider a single frame in this paper.

The vectors received at then receive antennas in any
frame are �Y (k) = H �A(k) + �N(k) 81 � k � N (1)

where �N(k) is an iid sequence of complex Gaussian vectors
with mean0 and co-variance�2nI (denoted byCN (0; �2nI)).
We also assume thatH � CN (�H ; �2hI): this is a
Rayleigh/Rician channel with independent components. Our
approach can be easily extended to complex Gaussian chan-
nels with any arbitrary covariance matrix as well. (1) also
implies that there is inter-channel interference but no inter-
symbol interference (ISI). This results from a flat fading chan-
nel.

The channel statistics is available at the transmitter and
the receiver but the actual channel gain matrixH is not known
to the receiver and the transmitter. The receiver tries to esti-
mateH , or directly obtain an equalizer to estimate/detect the
information symbols transmitted. For this the most common
method used in wireless channels is to send a known training
sequence in the frame. This is used by the receiver to esti-
mateH (say via the maximum likelihood estimation (MLE)).
In the rest of the frame, information symbols are transmitted
and are decoded at the receiver using the channel estimate. If
a longer training sequence is used, we obtain a better channel
estimate resulting in lower BER. However, we loss channel
BW (capacity) because information symbols are sent for a
shorter duration. Thus one needs to find the ’optimal’ train-
ing sequence length for a given channel. Further we expect
that by combining some of the blind methods with the train-
ing based methods we can obtain the same performance with
a shorter training sequence and hence better capacity.

To address the issue of fair comparison of various equal-
izers (training, blind and semiblind), we form a ’composite’
channel, made of the channel, the channel estimator and the
decoder. It forms a finite input - output alphabet time invari-
ant channel. It would be a time invariant channel as the chan-
nel state is not known to the transmitter, and hence the trans-
mitter would experience average behavior in every frame.

We will show that one can compute the composite channel’s
transition matrix and hence it’s capacityC using the statis-
tics of the original channel at transmitter and receiver. Since
all the symbols in the frame undergo same fading and also
since the equalizer used by them is same, the capacity of the
channel per channel use is(N �Nt)=N C. We need to findNt which maximizes(N �Nt)C.

We will carry out the above program in section 3 for
training based methods. Next we will consider the blind
channel estimation/equalization algorithms. Since Constant
Modulus Algorithm (CMA) ([13]) has been one of the most
used and successful algorithms, we will consider CMA. We
assume perfect carrier phase estimation to resolve the phase
ambiguity left after CMA algorithm. We will obtain the chan-
nel capacity of the composite channel corresponding to this
system using the results in [1]. This will provide a more
systematic comparison of the training based and blind algo-
rithms. Finally we will combine the two methods and obtain
a semi-blind algorithm.

3. TRAINING BASED CHANNEL ESTIMATION
We first estimate the channel via the Minimum Mean Square
Estimator (MMSE) [2] (which is also MLE in this situation)
usingmNt training symbols. A MMSE equalizer is designed
using the channel estimate and then used in Maximum Like-
lihood (ML) decoding (equivalent to minimum distance de-
coding in Gaussian channels) of the entire frame.

Defineh = ve
t(H); �h = ve
t(�H) andĥ = ve
t(Ĥ),
whereve
t(H) denotes the complex matrixH in real vector
form by concatenating the real parts of all columns one after
the other and then concatenating the imaginary parts. If�A is
a complex vector thenve
t( �A) once again represents the cor-
responding real vector and we useA to represent this vector.
That isA = ve
t( �A). This notation is used throughout the
paper, i.e if a lettere represents real vector of size2n then�e
will represent the corresponding complex vector of sizen.

Let �YTS 4= ATS�h + �NTS represent thenNt length re-
ceived data corresponding to allmNt training symbols. HereATS is annNt � nm complex matrix suitably formed from
the known training symbols and the noise in the observations
at the receiver isNTS .

The MMSE(MLE) channel estimator ([2]) is given by��h+�2hAHTS(�2hATSAHTS+�2nI)�1( �YTS�ATS ��h) and
form real vector̂h from the above estimator.(h; ĥ) are jointly
Gaussian with mean(�h; �h). Here, as explained before,��h
is a complex vector such that�h = ve
t(��h). We useH , HT
to denote hermition, complex conjugate respectively.

Given ĥ and hencêH , the MMSE equalizer is given by,E(Ĥ) = q mEA �ĤHĤ + mEA�2nI��1 ĤH , whereEA is the

energy per symbol.

We first compute the transition probabilities (withb�A rep-
resenting output of the decoder corresponding to the input

vector �A), fP (b�A = �Sj= �A = �Si; H; Ĥ); �Si; �Sj 2 Smg of



the composite channel givenH; Ĥ and then average over all
values ofh; ĥ to obtain the overall transition probabilities of

the composite channel,fP (b�A= �A)g. It is easy to see that the
transition probabilities givenH; Ĥ are same for all the sym-
bols in the frame as the channel is quasi stationary and the
same equalizer being used for the entire frame. The over-
all transition probabilities can be estimated at the transmitter
and receiver once they have channel statistics as explained
below.
LetBi4=fY 2 R2n : \l6=ik �Sl�E(Ĥ) �Y k2�k �Si�E(Ĥ) �Y k2g:
Then transition probabilities are given (with�Y = H �Sj + �N ,�N � CN (0; �2nI) andE representing expectation) by,P (b�A = �Si= �A = �Sj ;H; Ĥ) = Prob(Y 2 Bi), andP (b�A = �Si= �A = �Sj) = Eh;ĥP (b�A = �Si= �A = �Sj ;H; Ĥ).

The composite channel now becomes a time invariant

channel with capacityC = supP ( �A) I(b�A; �A) whereI(b�A; �A)
represents the mutual information with input pmf (probabil-

ity mass function)P ( �A) and transition probabilitiesfP (b�A= �A)g.
The overall capacity per channel use isN�NtN C.

SinceP (b�A= �A) is independent of the input pmfP ( �A), the

mutual informationI(b�A; �A) is a concave function ofP ( �A)
([5], p. 31) and hence optimization over the convex set of
probability mass functions results in a global maximum.

4. BLIND CMA EQUALIZER

The CMA Equalizer for single user MIMO flat fading chan-
nel with same source alphabet for all transmit antennae can
be written as ([3]),ECMA = argminE=(�e1;:::;�em) �ml=1E �j�el �Y (k)HT j2 �R22�2
or equivalently (terms in the summation are positive )�e
mal = argmin�el E �j�el �Y (k)HT j2 �R22�2 ; l = 1; 2; : : :m;
where�el represents thelth row andR2 = Ej �Aj4=Ej �Aj2:

To obtain the above optimum, the correspondingm up-
date equations are (1 � l � m) , (el = ve
t(�el), contains
all the real parts first and then the imaginary parts, similarto
the definition for a column vector.)el(k + 1) = el(k) + �HCMA �el(k); ve
t(H �A(k)); N(k)�

(2)
where withY =Z +N , and vector�Y def= ve
t(i �Y ) ( i=p�1),HCMA(e; Z;N)4=�((eY )2+(e �Y )2�R22) �(eY )Y T+(e �Y ) �Y T �

A close look at (2) shows that allm sub cost functions are
same and the different equalizers should be initialized appro-
priately to extract the desired source symbols. In this work,
we choose the initial conditionE�0 (which will be used in all
frames) such that the channel capacity is optimized. In [3] a
new joint CMA algorithm is proposed that ensures that the
MIMO CMA separates all the sources successfully irrespec-
tive of the initial conditions. In future we will analyze this
algorithm using our analysis.

In the next subsection, we show how analytically we can
obtain the value of CMA equalizer at any timet and then pro-
ceed with obtaining the channel capacity with that equalizer.

4.1. CMA Equalizer approximated by ODE
When there is no ISI, the capacity achieving input distri-
butionP ( �A), must be independent from symbol to symbol
(One symbol means the entirem � 1 complex vector trans-
mitted at the same time instant). Further, as the transmitter
and receiver is completely unaware of the channel state, ca-
pacity achieving input distribution will be iid (independent
and identically distributed).

Each one of them update equations in (2) is similar to
the CMA update equation for SISO with ISI. Therefore it is
easy to that all the proofs in [1] for convergence of the CMA
trajectory to the solution of an ODE hold (note that the input
distribution would be iid). Thus the update equation(2) can
be approximated by the trajectory of the ODE,_el(t) = ĤCMA(el(t)) 4= EZ [EN (HCMA(el; Z;N))℄ (3)

where �Z 4= H �A. The approximation can be made accurate
with high probability by taking� small enough.

We obtain the capacity of the composite channel approx-
imately by obtaining the capacity of the channel using the so-
lution of the ODE as equalizer. We can solve (3) numerically
and obtain the equalizer co-efficientsE(T ) at timeT = �N
(� is the step size) which approximates the CMA equalizer
afterN channel uses. These co-efficients are used for ML
decoding of the entire block. We will show that the tran-
sitional probabilities of the approximate composite channel
will be a continuous function of pmfP ( �A) and the common
initial equalizer settingE0. Also it is easy to see that,E(T )
can be computed at the transmitter and the receiver once the
original channel statistics are known.

Given a value ofH , with �Z := H �A, �Z := ve
t(i �Z),I := ��2n EN(N �NT ) (which is permutation of identity ma-
trix), the equation (3) becomes [1],_el(t) =�E �A[(el(t)Z)3ZT ℄+R22E �A(ZZT )el(t)+R22�2nel(t)�3�2n(el(t)E �A(ZZT )el(t)T )el(t)�3�4nel(t)(3)�3�2nkel(t)k2el(t)E �A(ZZT )�3�4nkel(t)k2el(t)�E �A[(el(t) �Z)3 �ZT ℄+R22E �A( �Z �ZT )el(t)+R22�2nel(t)�3�2n(el(t)E �A( �Z �ZT )el(t)T )el(t)�3�4nel(t)(3)�3�2nkel(t)k2el(t)E �A( �Z �ZT )�3�4nkel(t)k2el(t)�E �A[(el(t)Z)2(el(t) �Z) �ZT ℄��2nkel(t)k2el(t)E �A( �Z �ZT )�2�2nE �A(el(t)Zel(t) �Z)el(t)I��2nel(t)E �A(el(t)Z)2�2�2nel(t)Iel(t)T el(t)E �A �Z �ZT � �2�4nkel(t)k2el(t)�3�4n(el(t))(2:�1)�3�4n(el(t))(1:�2)�E �A[(el(t) �Z)2(el(t)Z)ZT ℄��2nkel(t)k2el(t)E �A(ZZT )�2�2nE �A(el(t) �Zel(t)Z)el(t)I��2nel(t)E �A(el(t) �Z)2�2�2nel(t)Iel(t)T el(t)E �A � �ZZT � �2�4nkel(t)k2el(t)�3�4n(el(t))(2:�1)�3�4n(el(t))(1:�2)

(4)



HereR �A is the source covariance matrix,el(t)(3) is the vec-
tor formed by taking cube of the individual terms,k:k repre-
sents the norm of the vector.(el(t))(1:�2) is the vector formed
by taking square of the individual terms in�el(t) and then
multiplying term by term with vectorel(t). (el(t))(2:�1) is
defined in a similar way.
It is clear to see thatE(T ) is a function ofH;E0 andP ( �A).
DefineE(E0; H; P ( �A))def= � Re(E(T )) �Im(E(T ))Im(E(T )) Re(E(T )) �

,

whereRe(); Im() represent the real and imaginary parts re-
spectively. Next we prove a few properties which are useful
in numerically computing the channel capacity for this sys-
tem.

Lemma 1 E(E0; H; P ( �A)) is a continuously differentiable
function of E0; H and P ( �A).
Proof : Please refer to the Appendix.

GivenH;P ( �A) andE0, the transitional probabilities of
the approximate composite channel obtained by solving the

ODE are, ( with�Y def= H �Sj + �N )P (b�A= �Si= �A= �Sj ;E0; P ( �A); H)=P rob(E(E0 ;H ;P ( �A))Y 2Bi)
(5)

whereBi 4= fX 2 R2m : \l6=ik �Sl � �Xk2 � k �Si � �Xk2g.
For any given(P ( �A); E0), the transition probabilities are,P (b�A= �Si= �A= �Sj ;E0; P ( �A))=EhP (b�A= �Si= �A= �Sj ;E0;P ( �A);H).
The following two lemmas prove the continuity of these over-
all transition probabilities.

Lemma 2 For any given (E0; P ( �A)), E(E0; H; P ( �A)) is
full rank for almost all H .

Proof : Please refer to the Appendix.

Lemma 3 P (b�A = �Si= �A = �Sj ;E0; P ( �A)) is a continuous
function of E0 and P ( �A).
Proof: Please refer to the Appendix.

From Lemma 3, one also obtains that the conditional
mutual informationI(b�A; �A=E0; P ( �A)) between�A and b�A is
a continuous function of(E0; P ( �A)). Also, P( �A), the set
of probability mass functions on�A is compact. (Note that�A 2 Sm, but we denote the set of probability mass functions
byP( �A) ).

Thus CapacityC(E0) := supP ( �A)2P( �A) I(b�A; �A=E0) of
the approximate channel for a givenE0, can be achieved.
Note that the approximate composite channel for a givenE0,
is a discrete memoryless channel as in the case of the training
based equalizer.

Lemma 4 C(E0) is a continuous function of E0.

Proof : Please refer to the Appendix.
When the receiver and the transmitter have the knowl-

edge of channel statistics, one can computeE0�, whereE�0 :=argmaxE02Cm�n C(E0), if it exists. Even if it does not, one
can chooseE�0 such thatC(E�0 ) is as close tosupE0 C(E0)

as required. Therefore, approximate Capacity of the channel
with the CMA equalizer per channel use is equal toCCMA � C(E�0 ) = supP ( �A) I(b�A; �A=E�0 )
and hence the capacity for the whole frame is= NCCMA.

5. SEMI-BLIND CMA ALGORITHM

In this section we consider a system where the training data
of lengthNt is placed in the beginning of the frame (it is not
really required, we assume it for the convenience). After the
training data we use CMA algorithm to further improve the
system performance. We use MMSE equalizer of the training
based channel estimator̂H obtained in section3 as the ini-
tializer for the CMA algorithm. The equalizer co-efficients
obtained from the CMA at the end of the frame are used for
decoding of data for the whole frame.

Once again we use the ODE approximation of the CMA
trajectory in the capacity analysis. The difference from the
blind case, being that the initializerE0 is given by the train-
ing based channel estimator. NowT = �(N �Nt).

As seen in section3 (h; ĥ) are jointly Gaussian with mean(�h; �h). The initializer for the CMA,E0(Ĥ) = q mEA �ĤHĤ + mEA�2nI��1 ĤH is a continuously

differentiable function ofĤ .
By Lemma 1E(E0(Ĥ); H; P ( �A)) (The matrix now cor-

responds to timeT = �(N �Nt)) is continuously differen-
tiable inH;P ( �A) andÊ0(Ĥ) and hence also in̂H .

Then by a small modification of the proof in Lemma 2
we can show that for a givenP ( �A), E(E0(Ĥ); H; P ( �A)) is
full rank for almost allH andĤ .

Once again, if the transmitter and receiver have the in-
formation about the statistics of the channel, they can know
the averaged conditional probabilities and hence, the channel
capacity can be computed as in blind CMA.

Defining the conditional probabilities as in the blind case,
and following the same steps as in Lemma 3 one can see that,P (b�A = �Sj= �A = �Si;P ( �A)):= Eh;ĥP ( �̂A = �Sj= �A = �Si;P ( �A); H; Ĥ)
is a continuous function ofP ( �A). Thus the mutual informa-

tion I(b�A; �A=P ( �A)) is a continuous function ofP ( �A).
Therefore by compactness ofP( �A),supP ( �A)2P( �A) �I(b�A; �A=P ( �A))� is achieved at someP ( �A)�.
Thus the approximate capacity of the channel with the semi-
blind equalizer isCSB � N�NtN I(b�A; �A=P ( �A)�).

Having obtained the capacity of the channel with training
based, blind and semiblind methods, one can compare them
for any MIMO wireless channel. Then one can obtain the
optimal scheme (say a semiblind channel with a given lengthNt of the training sequence). In the next section we carry out
this comparison for a few example cases.



The usual optimization techniques will provide only a lo-
cal optimum for the blind and semi blind methods. But com-
paring the local maxima of blind/semiblind algorithm with
the global optimum of the training based method would in-
dicate that blind/semiblind method are better at least by the
amount shown in simulations.

6. SIMULATIONS

Simulations have been carried out over real Gaussian chan-
nels with BPSK modulations. We consider2 � 2 MIMO
channels for simulations. We fixed the frame length at 64
symbols. We follow the systematic approach explained above
for calculating the capacity of the composite channel for all
the equalizers. We normalized the channel gain to one for
both the receive antennas and fixed noise variance to 1. In
Figure 1 we have plotted capacity of the training, semi-blind
and blind equalizers versus transmitted power, which in this
case becomes received SNR. We varied the mean�h and
variance�2h of the channel during our experiments.

When the channel variance is small and the mean is large
(first sub figure in Figure 1), it is seen that there is an im-
provement of up to 0.7 db (approx 16% improvement in TX
power) in semiblind algorithms. But as the mean approaches
zero (the third sub figure in Figure 1 is with mean 0), it is
seen that the improvement diminishes. Thus semiblind al-
gorithms make good improvement in the presence of line of
sight (LOS) ray and may not be useful for mean 0 channels.
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Fig. 1. Capacity versus transmitted power

We have observed that for training and semiblind equal-
izers, the capacity increases with the number of training sym-
bols, reaches a maximum and starts decreasing. From this,
we can estimate the ’optimal’ number of training sequences
(see Table 1 for some examples). It is observed that usually
less than 10 symbols are sufficient for achieving the maxi-
mum capacity. It is interesting to note that the same proce-
dure can also be used for choosing the optimal training se-
quences (for a givenNt). This is possible mainly because
the input alphabet is finite and hence a finite number of com-
parisons will do the job. This might be tedious and we have
not conducted experiments in this regard.

Table 1 also shows comparison of various equalizers with
respect to noise variance. A substantial improvement in per-
formance is observed for semiblind in comparison with any
other equalizers in most of the cases.

Table 1. Capacity of the various equalizers form;n = 2,�h = [0:85 0:01 0:01 0:85℄ and�2h = 0:1387 andEA =16:0 �2n Training Semi Blind Blind
(Cap, OptNT ) (Cap, OptNT ) Capacity3:0 (1.1117, 5) (1.1593, 2) 1.10884:0 (0.9975, 2) (1.0428, 2) 1.01275:0 (0.9130, 2) (0.9458, 1) 0.91806:0 (0.8379, 2) (0.8698, 2) 0.84736:5 (0.7945, 1) (0.8392, 1) 0.81967:0 (0.7813, 1) (0.8144, 1) 0.791410:0 (0.6451, 1) (0.6710, 1) 0.6379

7. CONCLUSIONS AND FUTURE WORK

We compared blind/semiblind source separation algorithms
with training based schemes. The difficulty is in comparing
the loss in accuracy of the blind algorithms with that of loss
in data rate in training based methods. Information capacity
is the most appropriate measure for doing this performance
evaluation. Using this capacity analysis, we could see that
the semiblind methods perform superior to training as well
as blind methods in LOS conditions (approx 16% improve-
ment in transmit power). But under mean 0 conditions the
improvement is negligible. This method could also be used
to obtain the optimum number of training symbols.

We have extended this work to frequency selective chan-
nels (ISI channels). Our preliminary results show much more
improvement in LOS conditions. One can also try extending
this work to continuously varying channels.
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APPENDIX
Proof of Lemma1 : It suffices to show the result forve
t(E(T )l),
thelth row8l. Since the result is independent of the number of row,l, we omitl for ease of notations.

From ODE (4), we observe that̂HCMA(e;P ( �A); H) is a con-
tinuously differentiable function ofe, P ( �A); H. It then satisfies
uniform Lipschitz condition with respect toe, P ( �A); H in any
compact domain. The requiredC1 property, now follows for local
solution from theorem 7.5 of ([7], p. 30) and hence for the global
solution.2
Proof of Lemma2 : Fix E0; P ( �A). Assume the covariance ma-

trix of h is full rank. From Lemma1,g(H) 4= E(E0; H;P ( �A)),
mapping domainCn�m toR2m�2n, isC1.

Let N = fE 2 R2m�2n : rank(E) < 2mg. ThenN =[2m�1i=0 Ni where,Ni = fE 2 R2m�2n : First i rows are linearly
independent andi+ 1th row is linearly dependent on the firsti rowsg for i 6= 1 andN0 contains all matrices whose first row is all zero
vector.

Consider the collection of all possible(i + 1) � (i + 1) sub
matrices formed from the first(i + 1) rows and define some order
for the collection. With respect to each suchkth sub matrix, defineNik = fE 2 R2m�2n : kth(i+1)� (i+1)submatrix rank= ig.

Clearly,Ni � [kNik and henceN � [n�1i=0 [kNik. Therefore,
it suffices to show thatg�1(Nik) has measure0 for all i andk.

Using the same order as used above, defineMik and a functionfik with domainMik by,

Mik = fE 2 R2m�2n : kth(i+ 1)� (i+ 1)submatrix rank� igfik(E) = det(of kth(i+ 1)� (i+ 1)sub matrixofE) 8E 2Mik.Mik is a open subset ofR2m�2n and hence aC1 manifold of
dimension4nm,Nik equalsf�1ik (f0g) andfik has constant rank1
onMik. (For definition of rank of a function refer to p. 52 [9]).

By Proposition 12 of (p. 65 [9] )Nik is an4nm�1 dimensional
submanifold ofMik and hence ofR2m�2n. From Theorem 1.8 of
(p. 54 of [10])g�1(Nik) is empty or has dimension4nm�1 which
is strictly less than the dimension ofCn�m.

Now the lemma follows from Lemma1.3 ([10], p.47) by using
the inclusion map fromg�1(Nik) to Cn�m and the fact that the
distribution of channelh is absolutely continuous with respect to
the Lebesgue measure.

If the covariance matrix is not full rank, the lemma follows by
restricting domain of the mapg to the hyperplane on which the
probability mass of the channelh is concentrated.2
Proof of Lemma3: Let (E0n; P ( �A)n) ! (E0; P ( �A)). DenoteE(E0n; H; P ( �A)n) andE(E0; H;P ( �A)) by En(H); E(H) re-
spectively. From Lemma1En(H) ! E(H) for all H. Also from
Lemma2E(H) is invertible for all most allH.

Let Zn;j(H) denote a random variable with the distribution
equal to the conditional distribution ofEn(H)Y , given �A = �Sj
was the transmitted vector. HereY is the real vector corresponding
to the complex channel output vector with input�A = �Sj . ThenZn;j(H) �N ��En(H)ve
t(H �Sj)� ; �2n �En(H)En(H)T��.

LetZj be defined in a similar way forE(H)Y .

Then from (5),P (b��A = �Si= �A = �Sj ;E0n; P ( �A)n; H) equalsProb(Zn;j(H) 2 Bi).
Since for almost allH, E(H) is full rank, E(H)E(H)T is

invertible and henceZj(H) is absolutely continuous with respect
to Lebesgue measure.E(H) is full rank for almost allH implies thatEn(H) is full
rank for all n > N for someN > 0 for almost allH . ThusZn;j(H) has density for alln > N and for almost allH. For
all suchH, the density ofZn;j(H) converges pointwise to that ofZj(H) and hence by Scheffe’s theorem ([6]), for alli; j,Prob(Zn;j(H) 2 Bi) ! Prob(Zj(H) 2 Bi). Therefore, for

almost allH, P (b�A = �Si= �A = �Sj ;E0n; P ( �A)n; H)! P (b�A = �Si= �A = �Sj ;E0; P ( �A); H)
And, by bounded convergence theorem,P (b�A = �Si= �A = �Sj ;E0n; P ( �A)n)! P (b�A = �Si= �A = �Sj ;E0; P ( �A)) 2

Proof of Lemma4: I(b�A; �A=E0; P ( �A)) is continuous function ofE0 andP ( �A). For everyE0, constraint setD(E0) = P( �A) is
compact. Thus correspondenceE0 7! D(E0) is compact and con-
stant and hence continuous. Thus the required continuity follows
from Maximum Theorem ([8] p. 235)2


