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Abstract - We consider the problem of comparing source/signal sep- separation algorithm throughout the paper for convenience
aration algorithms for MIMO wireless channels. The channelstate is ; ; ; ;
not known to the transmitter and the receiver. The receiver stimates of prese_njcatlon). The Input to this channe_l will be SymbOIS
the channel via a training sequence or uses blind methods tegarate ~ from a finite alphabet and the output of this channel will be
the signals. By comparing the 'capacity’ of a composite chamel, we o ;
answer the following questions for a given channel: the de_coded s_ymbols. I—_|ence this is a discrete channel. The

i. What is the optimum training sequence size in a training bsed ~ capacity of this composite channel will be a good measure
method ? i ; i ; ;

ii. How do the training based, blind (considering Constant nodu- for comparison of the various Slgnal separating algomhms
lus algorithm, CMA, specifically) and semiblind methods compare with Consider aframe involving[ channel uses withV; train-

eaCthrgs: Channel estimation, MIMO channels, Signal separation ing symbols. In a training based method, the channel is esti-
algorithms, Training sequence, Blind algorithms, CMA. mated from these symbols and then the information symbols
1. INTRODUCTION are decoded. Using the probability of error provided by this
Wireless channels are necessary for ubiquitous conngctivimethod one can compute the capadityof the composite
However, due to time varying multipath fading, broadcast nachannel per channel use. Then the overall channel capacity
ture and limited power and bandwidth, it is important to opper channel use in the frame will & — N;)C/N. In a
timize the wireless resources. Therefore, multiple treihsmblind algorithm (say CMA)N; = 0 but using the general
and receive antennas, adaptive power control, modulatigtatistics of the arrival process one estimates the chganel
and coding are employed to increase the transmission ratey directly obtain an equalizer) as the information sym-
and reduce the bit error rate [14]. An important componerifols arrive. After all theN symbols of a frame arrive, we
in the success of these adaptive techniques is efficieni; acobtain an equalizer. We use this equalizer to estimate the
rate channel estimation and equalization. Due to time varyransmitted information symbols of the frame. The result-
ing nature of the channel, for a good channel estimate, oy probability of error can be used to obtain the capacity
needs to send the training sequence frequently. Thereforepf the composite channély, which will also be the overall
significant ¢ 18% in GSM ) fraction of the channel capacitychannel capacity per channel use in this case. Comparing
is consumed by the training sequence. The usual blind equélV — N;)C'/N with C,, provides a reasonable comparison.
ization techniques have also been found to be inadequ&®e can compare these capacities with the capacity obtained
([13]) due to their slow convergence and/or high computaby a semi-blind method also.
tional complexity. Therefore, semi-blind algorithms, wini This problem for the training based methods has also
use some training sequence along with blind techniques haygen studied in [11] and [12]. They obtain a lower bound on
been proposed (Chapter 7 of [13] and references therein). thle channel capacity and find the optimal training sequence
this paper, we provide a systematic comparison of the traifength (and also placement in case of [11]). We not only
ing based, blind and semi-blind algorithms. study the problem of optimal training sequence length, but
In comparing training based methods with blind algoalso compare it to blind and semi blind methods. Also, we
rithms one encounters the problem of comparing the loss jgttually obtain the channel capacity and compare the differ
BW in training based methods (due to training symbols) witlant methods.
the gainin BER (due to better channel estimation/equadizat e paper is organized as follows. Sect®uescribes
accuracies) as compared to the blind algorithms. We ove$y,r model and the approach to be followed for comparing
come this problem by comparing these methods via the Chagitferent methods. Sectiod considers the training based
nel capacity they provide. To-wards this goal, we combingnannel estimation and sectidrstudies the blind algorithm
the channel, equalizer and the decoder to form a compqg\A) while sections combines the two approaches to ob-
ite channel. (We use the misnomer equalizer for the sourggn 5 semiblind algorithm. Sectidicompares the capacity

This research is partially supported by DRDO-IISc programan-  Of the three algorithms using few examples and Secfion
vanced research in Mathematical Engineering. concludes the paper.




2. THE MODEL AND OUR APPROACH We will show that one can compute the composite channel’'s
Consider a wireless channel with transmit antennas and transition matrix and hence it's capacify using the statis-
n receive antennas witlh < n. The time axis is divided tics of the original channel at transmitter and receivenc8i
into frames; each frame consisting &f channel uses. The all the symbols in the frame undergo same fading and also
transmitted symbols are chosen from a finite alphabet  since the equalizer used by them is same, the capacity of the
{s1,82,---,50}. Attime k, vector A(k)eS™ is transmit- channel per channel use(i& — N;)/N C. We need to find
ted from them transmit antennas. We represent _the elew; which maximize§ N — N;)C.
ments ofS™ by 8™ = {S;;1 < i < L™} i.e eachS; is We will carry out the above program in section 3 for
am length complex vector formed from elementsfThe  training based methods. Next we will consider the blind
channel gain matri¥{ is assumed constant during a framechannel estimation/equalization algorithms. Since Cantst
(quasi static channel). We assume it to vary independentiyodulus Algorithm (CMA) ([13]) has been one of the most
from frame to frame. These are commonly made assumpsed and successful algorithms, we will consider CMA. We
tions. Thus, if we use training based methods, the chanrgdsume perfect carrier phase estimation to resolve thephas
estimate for a frame depends upon the received training sembiguity left after CMA algorithm. We will obtain the chan-
quence during that frame only. Therefore, we will need teiel capacity of the composite channel corresponding to this

consider a single frame in this paper. system using the results in [1]. This will provide a more
The vectors received at the receive antennas in any systematic comparison of the training based and blind algo-
frame are rithms. Finally we will combine the two methods and obtain
V(k) = HA(K) + N(k) V1< k<N 1) a semi-blind algorithm.

rs 3. TRAINING BASED CHANNEL ESTIMATION
\?\/e first estimate the channel via the Minimum Mean Square

We also assume thaf ~ CA(urr, o2 1): this is a Estimator (MMSE) [2] (which is also MLE in this situation)

Rayleigh/Rician channel with independent components. OHrs’ingmNt training symbols. AMMSE equalizeris designed

approach can be easily extended to complex Gaussian Chfﬁ[ngdthl\e/lfhgnne(lj_esUmate_ anld ﬂ:?n used in M(;:l_x[[mum I(‘j'ke'
nels with any arbitrary covariance matrix as well. (1) als hood (ML) decoding (equivalent to minimum distance de-

implies that there is inter-channel interference but nerint Coding in Gaussian channels) of the entire irame.

symbolinterference (ISI). This results from a flat fadingieh Defineh = vect(H), i, = vect (i) andh_ = vect(H),
nel. wherevect(H) denotes the complex matri in real vector

The channel statistics is available at the transmitter aﬁﬁrm by concatenating the real parts of all columns one after
t

the receiver but the actual channel gain matfiis not known e other and then concatenating the imaginary part.ist

to the receiver and the transmitter. The receiver triestio es? complex vector thenect(A) once again represents the cor-

mateH, or directly obtain an equalizer to estimate/detect th esponding real vector and we usdo represent this vector.

information symbols transmitted. For this the most common 8t iS4 = vect(4). This notation is used throughout the
method used in wireless channels is to send a known trainiRg- < € if a lettee represents real vector of size thgne
sequence in the frame. This is used by the receiver to es il repr_esenithe ccirres?ondmg complex vector of size
mateH (say via the maximum likelihood estimation (MLE)). ~ LetYrs = Arsh + Nrs represent theN; length re-
In the rest of the frame, information symbols are transmitteceived data corresponding to allV; training symbols. Here
and are decoded at the receiver using the channel estirhatedirs is annN; x nm complex matrix suitably formed from
alonger training sequence is used, we obtain a better chanft¢ known training symbols and the noise in the observations
estimate resulting in lower BER. However, we loss channdlt the receiver isVzs.

BW (capacity) because information symbols are sent for a The MMSE(MLE) channel estimator ([2]) is given by
shorter duration. Thus one needs to find the 'optimal train-  7in + 0% Afs (0} Ars Aflg + 02 1) =" (Yrs — Arsfin) and
ing sequence length for a given channel. Further we expdorm real vector from the above estimatofh, k) are jointly
that by combining some of the blind methods with the trainGaussian with meatuy,, ). Here, as explained beforgy
ing based methods we can obtain the same performance wigha complex vector such that, = vect(jis). We use”?, 7

a shorter training sequence and hence better capacity.  to denote hermition, complex conjugate respectively.

To address the issue of fair comparison of various equal- Givenh and hencdd, the MMSE equalizer is given by,
izers (training, blind and semiblind), we form a.’compoSiteE ﬁ-) r (ﬁHﬁ n Eﬂa‘fll)il HH  whereE, is the
channel, made of the channel, the channel estimator and the A A
decoder. It forms a finite input - output alphabet time invari€"€rdy Per symbol. .
ant channel. It would be a time invariant channel as the chan- We first compute the transition probabilities (withrep-
nel state is not known to the transmitter, and hence the-trarf§senting output of the decoder corresponding to the input

mitter would experience average behavior in every frameector A), {P(A = §;/A = 5;,H,H);S;,S; € S™} of

whereN (k) is an iid sequence of complex Gaussian vecto
with mean0 and co-variance? I (denoted byC N (0, 62 1)).



the composite channel givei, H and then average over all In the next subsection, we show how analytically we can
values ofh, h to obtain the overall transition probabilities of obtain the value of CMA equalizer at any tirhand then pro-

the composite channeﬂP(;i/A)A}. It is easy to see that the ceed with obtaining the channel capacity with that equalize
transition probabilities givel, H are same for all the sym- 4 1 cma Equalizer approximated by ODE

bols in the frame as the channel is quasi stationary and W, o, there is no ISI, the capacity achieving input distri-
same eqyallzer belpg_ used for the .ent|re frame. The OVEHDtionP(A), must be independent from symbol to symbol
all transition probabilities can be estimated at the trattsm o symbol means the entire x 1 complex vector trans-

and receiver once they have channel statistics as eXpIairW]ﬂted at the same time instant). Further, as the tranamitte

below.A o _ e 11 & P, and receiver is completely unaware of the channel state, ca-

Let Bi={Y € R™ : izl [SI-E(H)Y[["2[|Si-E(H)Y[*}.  pacity achieving input distribution will be iid (indepentte

Then transition probabilities are given (with= HS; + N,  and identically distributed).

N ~ CN(0,021) and€ representing expectation) by, Each one of then update equations in (2) is similar to

p(ﬁ = S;/A=5;;H, ﬁ) = Prob(Y € B;), and the CMA update equation_ for SISO with ISI. Therefore it is
~ = s & N easy to that all the proofs in [1] for convergence of the CMA

P(A=35i/4= SJ') =& P(A=5i/A =5 H’_H)'. _ trajectory to the solution of an ODE hold (note that the input
The composite channel now becomes a time invariagfsyripution would be iid). Thus the update equation(2) can

channel with capacity’ = supp 1) I(4, A) whereI(4, 4)  be approximated by the trajectory of the ODE,

represents the mutual information with input pmf (probabil at) = -HOMA(el(t)) A ErlEn(Honalen, Z,N)] (3)

ity mass function)?(A) and transition probabilitiesP(A/A)}. ' ' '

Y N—_ L

The overall capacity per channel use"i; Ni whereZ = HA. The approximation can be made accurate
i ~ 7 ) _ with high probability by taking: small enough.

SinceP(A/A) is independent of the input pnff(4), the We obtain the capacity of the composite channel approx-

mutual information/ (A, 4) is a concave function oP(A4)  imately by obtaining the capacity of the channel using the so
([5], p. 31) and hence optimization over the convex set dfition of the ODE as equalizer. We can solve (3) numerically
probability mass functions results in a global maximum.  and obtain the equalizer co-efficiedf§T) at timeT = uN
(u is the step size) which approximates the CMA equalizer
4. BLIND CMA EQUALIZER after N channel uses. These co-efficients are used for ML
The CMA Equalizer for single user MIMO flat fading chan-decoding of the entire block. We will show that the tran-
nel with same source alphabet for all transmit antennae caitional probabilities of the approximate composite clednn

be written as ([3]), will be a continuous function of pmP(A) and the common
. S 2 initial equalizer setting%,. Also it is easy to see thaf(T)
Ecpra = S A (= (1ORENEE o) 0 . .
OMA_ arg mmE*(el_ o) B2 € _‘el (k) ‘_ ) R can be computed at the transmitter and the receiver once the

or equivalently (terms in the summation are positive ) original channel statistics are known.
Bema, = argming, & (|le(k)HT|2 _ 35)2’ 1=1,2,...m, Given a value ofH, with Z = HA, 7 := vect(iZ),

B . u 7 := 0;;26n(NNT) (which is permutation of identity ma-
wheree, represents th&" row andR, = E|A|" /€| A" trix), the equation (3) becomes [1],

To obtain the above optimum, the correspondingip-

date equations arel(< I < m), (e; = vect(e;), contains ét) =
all the real parts first and then the imaginary parts, sintilar  -E4[(e/(t)2)? ZT|+R3E4(ZZT ey (t)+ R3o2 e (t)

the definition for a column vector.) 302 (e;()E4(ZZT)er(t)T ey (t) -3 ey (£) )
- 1 Boplle®)|Pe(t)E4(ZZT) 3oy lle()|Pe(t)
el(k +1) = ei(k) + pHena (en(k), vect(HA(k)), N(k()z)) _EA[(ell(t)Zv)3lZiTv]+%§5A(ZZT)GZ (é)+R§a{fLel(t)
where withY'=Z + N, and vectod” < vect(iV) (i=v=T), =30y (el()E4(Z 2T )eu(t) T er(t)-3oper (‘t)(3)
Heygale, Z,N)2—((eY)24(eV)2-R2) (V)Y T4(e¥)YT)  -3onlla®*ei(t)E4(Z227)-3ollei®)|*es(t)
A close look at (2) shows that alt sub cost functionsare  -al(el(t)2)(ei(t)2) ZT]-o7|lei(t)|Per(t)€ (2 27)

same and the different equalizers should be initializedapp ~ ~2074(ei(t)Zei(t) Z)er(t) -7 ei(t)E 4 (e (t) Z)°
priately to extract the desired source symbols. In this work -202e;(t)Zei(t) e1(t)Ex (ZZ7) ~20k |le(t)|2er(?)
we choose the initial conditiof;; (which will be used in all “304 (er(1)) 2D _304 (e (1)) *2)

frames) such that the channel capacity is optimized. In [3] a -Ex[(e1(t)2) (e1(t)Z) ZT]- o2 |ler(t)||2er(t)E5(ZZT)
new joint CMA algorithm is proposed that ensures that the -202E 1 (e;(t) Ze;(t) Z)ei(t)T-02 e (t)E 5(er(t) Z)?
MIMO CMA separates all the sources successfully irrespec- “202e(t)Ze (t)Tel(t)EA (ZZT) 720%||el(t)||2el(t)
tive of the initial conditions. In future we will analyze thi “30t(e(1)) 2D 352 (e, (2)) 1+

algorithm using our analysis. (4)



HereR ; is the source covariance matrbg(t)(3) is the vec- asrequired. Therefore, approximate Capacity of the cHanne
tor formed by taking cube of the individual ternjis|| repre-  with the CMA equalizer per channel use is equal to

sents the norm of the vectde; (t)) ' *?) is the vector formed Coma = C(E}) = suppz) I(ﬁ; AJE})

by taking square of the individual terms &(t) and then and hence the capacity for the whole frame-isVCe 4.
multiplying term by term with vectoe;(t). (e;(¢))>*") is
defined in a similar way.

Itis clear to see thak(T) is a function ofH, Ey and P(A).

Define E(Eq, H, P(A))* fe(]é(?) *Iij(JEIST)) ~ Inthis section we consider a system where the training data
m(E(T)) Re( _( ) of length \V; is placed in the beginning of the frame (it is not

whereRe(), I'm() represent the real and imaginary parts régeg|ly required, we assume it for the convenience). After th

spectively. Next we prove a few properties which are usefifaining data we use CMA algorithm to further improve the

in numerically computing the channel capacity for this syssysiem performance. We use MMSE equalizer of the training

5. SEMI-BLIND CMA ALGORITHM

tem. based channel estimatéf obtained in sectiol as the ini-
Lemma 1 E(E,, H, P(A)) is a continuousdly differentiable  tializer for the CMA algorithm. The equalizer co-efficients
function of Ey, H and P(A). obtained from the CMA at the end of the frame are used for

Proof - Pl fer 1o the A di decoding of data for the whole frame.
root - Flease reter to the Appendix. Once again we use the ODE approximation of the CMA

Given H’ P(4) and EO.’ the tran5|t|0nall probab|I|t|e§ of trajectory in the capacity analysis. The difference from th
the approximate composite channel obtained by solving tkb

def o - _ find case, being that the initializéf, is given by the train-

ODE are, (withY” = HSj + N) . ing based channel estimator. NGw= (N — N;).

P(A=S:/A=S;;E,, P(A), H)=Probs(E(Eo,H,P(A))Y eB) As seenin sectio8 (h, h) are jointly Gaussian with mean
A , e o g5) (1n, n)- The initializer for the CMA,

whereB; = {X € R*™ : Mi»i||Si — X||” > ||S: — X|]*}. o T aH . om o2\ Y ,

For any given(P(A), E,), the transition probabilities are, Eo(H) =/ 7; (H H+ Hgnl) H™ is acontinuously

P(A-S,/A-8,,E,, P(A))=E,P(A-S./A-5,.E,,P(A),H). differentiable function ofd.

N _

The following two lemmas prove the continuity of these over- BY Lemma 1E(E,(H), H, P(A)) (The matrix now cor-

all transition probabilities. responds to timé@ = u(N — N;)) is continuously differen-

- - tiable in H, P(A) andEy(H) and hence also ifif.
Lemma 2 For any given (Eo, P(A)), E(Eq, H,P(A)) is Then by a small modification of the proof in Lemma 2
full rank for almost all H. we can show that for a giveR(A), E(Ey(H),H,P(A))is
Proof : Please refer to the Appendix. full rank for almost alllf andH.

N Once again, if the transmitter and receiver have the in-

Lemma3 P(A = S;/A = S;; Ey, P(A)) isacontinuous ~ formation about the statistics of the channel, they can know
function of Fy and P(A). the averaged conditional probabilities and hence, therean
Proof: Please refer to the Appendix. capgc;t_y _cantrk])e con(wjptgtedlas "t]) bkl)lr:? CMAi the blind

From Lemma 3, one also obtains that the conditional .o, 9 (e conditional probabiiies as [n the blind case,

. . =~ - - = and following the same steps as in Lemma 3 one can see that,

mutual information/ (A; A/ Ey, P(A)) betweenA and A is P(AizS./deG. PA
a continuous function of £y, P(A)). Also, P(A), the set (4 =55/ il (7)) - - .
of probability mass functions od is compact. (Note that =&, ;P(A = 5;/A = 5;; P(A), H, H)
A € 8™, butwe denote the set of probability mass functiongs a continuous function aP(A). Thus the mutual informa-
by P(A)). R tion I(A; A/ P(A)) is a continuous function P (A).

Thus CapacityC(Ey) := supp(i)ep(a) [(4; A/Ep) of  Therefore by compactnessBi 4),
the approximate channel for a givefy, can be achieved. SUP (1) ep(A) (I(A;A/P(A))) is achieved at som@( )"

Note .that the approximate composne_ channelfor a gE@n. Thus the approximate capacity of the channel with the semi-
is a discrete memoryless channel as in the case of the mainiGyin g equalizer is

based equalizer. - ~ o
Lemma 4 C(FE) isa continuous function of E, Osp ~ Syt I(A4; A/P(A)).
0 0- Having obtained the capacity of the channel with training

Proof : Please refer to the Appendix. based, blind and semiblind methods, one can compare them
When the receiver and the transmitter have the knowfer any MIMO wireless channel. Then one can obtain the
edge of channel statistics, one can comfigte whereE} := optimal scheme (say a semiblind channel with a given length

arg maxp,comxn C(Ep), if it exists. Even if it does not, one N; of the training sequence). In the next section we carry out
can choosé’; such thaiC'(Ey) is as close teupg, C(Ey)  this comparison for a few example cases.



The usual optimization techniques will provide only alo-  We have observed that for training and semiblind equal-
cal optimum for the blind and semi blind methods. But comizers, the capacity increases with the number of trainimg-sy
paring the local maxima of blind/semiblind algorithm withbols, reaches a maximum and starts decreasing. From this,
the global optimum of the training based method would inwe can estimate the 'optimal’ number of training sequences
dicate that blind/semiblind method are better at least By th(see Table 1 for some examples). It is observed that usually
amount shown in simulations. less than 10 symbols are sufficient for achieving the maxi-
mum capacity. It is interesting to note that the same proce-
dure can also be used for choosing the optimal training se-
guences (for a givev;). This is possible mainly because
the input alphabet is finite and hence a finite number of com-
aﬂ}irisons will do the job. This might be tedious and we have

6. SIMULATIONS

nels with BPSK modulations. We considgrx 2 MIMO ot conducted experiments in this reaard
channels for simulations. We fixed the frame length at 62 P garc.

. . Table 1 also shows comparison of various equalizers with
symbols. We follow the systematic approach explained abovye, b d

: . . €spect to noise variance. A substantial improvement in per
for calculating the capacity of the composite channel for a : S . X
. . . ormance is observed for semiblind in comparison with any
the equalizers. We normalized the channel gain to one f

[ . ;
both the receive antennas and fixed noise variance to 1. %rt]her equalizers in most of the cases.
Figure 1 we have plotted capacity of the training, semiblin
and blind equalizers versus transmitted power, which is thiTable 1. Capacity of the various equalizers for,n = 2,
case becomes received SNR. We varied the meaand ), = [0.85 0.01 0.01 0.85] andoi = 0.1387 andE4 =
variancer; of the channel during our experiments. 16.0
When the channel variance is small and the mean is large
(first sub figure in Figure 1), it is seen that there is an im-
provement of up to 0.7 db (approx ZGmprovement in TX
power) in semiblind algorithms. But as the mean approaches 10 (0.0975. 2) (10428, 2) 10127
zero (the third sub figure in Figure 1 is with mean 0), it is 50 (0_9130: 2) (0.9458: 1) | 0.9180
seen that the improvement diminishes. Thus semiblind al- 6.0 (0.8379, 2) (0.8698, 2) 0.8473
gorithms make good improvement in the presence of line of 5= (0.7945, 1) (0.8392,1) | 0.8196
sight (LOS) ray and may not be useful for mean 0 channels. 70 (0.7813, 1) (0.8144,1) | 0.7914

10.0 | (0.6451, 1) (0.6710,1) | 0.6379

o Training Semi Blind Blind
(Cap, OptN7) | (Cap, OptNt) | Capacity
3.0 (1.1117, 5) (1.1593, 2) 1.1088

Y
=3

E 7. CONCLUSIONS AND FUTURE WORK

—
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67010 G1=1 |, 090009 We compared blind/semiblind source separation algorithms

: with training based schemes. The difficulty is in comparing
| the loss in accuracy of the blind algorithms with that of loss
04 06 08 Capac;y R in data rate in training based methods. Information capacit
— Training Capacity ‘ ‘ is the most appropriate measure for doing this performance
= - SemiBlind Capacity . evaluation. Using this capacity analysis, we could see that
— Biind Capacly the semiblind methods perform superior to training as well
as blind methods in LOS conditions (approx7d.émprove-
1 ment in transmit power). But under mean O conditions the
‘ ‘ ‘ ‘ improvement is negligible. This method could also be used
02 04 Ogapacny __)0-8 1 12 14 to obtain the optimum number of training symbols.

‘ We have extended this work to frequency selective chan-
nels (1Sl channels). Our preliminary results show much more
improvementin LOS conditions. One can also try extending

] this work to continuously varying channels.
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APPENDIX

Proof of Lemmal : It suffices to show the result farect (E(T'),),

thel'” row VI. Since the result is independent of the number of row

[, we omitl for ease of notations.

From ODE (4), we observe thafo 4 (e; P(A), H) is a con-
tinuously differentiable function of, P(A), H. It then satisfies
uniform Lipschitz condition with respect te, P(4), H in any
compact domain. The required' property, now follows for local
solution from theorem 7.5 of ([7], p. 30) and hence for thebglo
solution.O

Proof of Lemma?2 : Fix Eo, P(A). Assume the covariance ma-

trix of A is full rank. From Lemmalg(H) = E(E,y, H,P(A)),
mapping domairC™*™ to R>™*2" is C"*.

Let N = {E € R*™*>" : rank(E) < 2m}. ThenN =
Uim ' N; where,N; = {E € R*™**" : Firsti rows are linearly
independent and+ 1t" row is linearly dependent on the firstows
} for i # 1 and Ny contains all matrices whose first row is all zero
vector.

Consider the collection of all possiblé + 1) x (i + 1) sub
matrices formed from the firgt + 1) rows and define some order
for the collection. With respect to each suett sub matrix, define
Ny, = {E € R*™*2" . k(i + 1) x (i 4 1)submatrix rank= i}.

Clearly,N; C Ui, Nix and henceV C U ' Uy, Ny Therefore,
it suffices to show thag~' (NV;;,) has measure for all i andk.

Using the same order as used above, defifie and a function
fix with domain;;, by,

My ={E € R*™*® : k" (i + 1) x (i + 1)submatrix rank> i}
fir (E) = det(of k" (i + 1) x (¢ + 1)sub matrixof E) VE € M;y,.

My, is a open subset d@*™*?" and hence &°° manifold of
dimensiordnm, N equalsf;cl({o}) and f; has constant rank
on M;,. (For definition of rank of a function refer to p. 52 [9]).

By Proposition 12 of (p. 65 [9] V.« is andnm—1 dimensional
submanifold ofAf;;, and hence oR>™*2". From Theorem 1.8 of
(p. 54 of [10])g ! (N ) is empty or has dimensiofnm — 1 which
is strictly less than the dimension 6f** ™.

Now the lemma follows from Lemmal.3 ([10], p.47) by using
the inclusion map frony ! (N;;) to C**™ and the fact that the
distribution of channeh is absolutely continuous with respect to
the Lebesgue measure.

If the covariance matrix is not full rank, the lemma followg b
restricting domain of the map to the hyperplane on which the
probability mass of the channklis concentratedd

Proof of Lemma3: Let (Eo,, P(4),) — (Eo, P(A)). Denote
E(Eo,,H,P(A),) and E(E,, H,P(A)) by E,(H), E(H) re-
spectively. From Lemmak,,(H) — E(H) for all H. Also from
Lemma2E (H) is invertible for all most allH .

Let Z, ;(H) denote a random variable with the distribution
equal to the conditional distribution d&,,(H)Y, given A = S;
was the transmitted vector. HeYeis the real vector corresponding

to the complex channel output vector with inplit= S;. Then
Zn s (H) ~ N ((En(H)vect(HS'j)) , o2 (En(H)En(H)T)).
Let Z; be defined in a similar way faB(H)Y".

Then from (5),P(A = Si/A = S;; Eo,, P(4),, H) equals
P’rob(Zn,]' (H) € Bz)

Since for almost allH, E(H) is full rank, E(H)E(H)" is
invertible and henceZ; (H) is absolutely continuous with respect
to Lebesgue measure.

E(H) is full rank for almost allH implies thatE,, (H) is full
rank for alln > N for someN > 0 for almost allH . Thus
Zn.;(H) has density for all > N and for almost allH. For

all suchH, the density ofZ,,,; (H) converges pointwise to that of
Z;(H) and hence by Scheffe’s theorem ([6]), for alf,
Prob(Z,;(H) € B;) = Prob(Z;(H) € B;). Therefore, for
almost allH, P(A = S;/A = S;; Eo,, P(A),,H)

— P(A = SZ/A = S]‘;Eo,P(A),H)

AAnd, by bounded convergence theorem,

P(A=S;/A=S;;Eq,,P(4),)

- P(%\: gz/A = S]‘;Eo,P(A)) O
Proof of Lemmad4: I(A; A/E,, P(A)) is continuous function of
E, and P(A). For everyE,, constraint seD(Ey) = P(A) is
compact. Thus correspondenkg — D(FE)y) is compact and con-
stant and hence continuous. Thus the required continuikywe
from Maximum Theorem ([8] p. 235)



